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Résumé: Les récents développements technologiques dans le domaine de la robo-
tique et de l’intelligence artificielle (IA) pourraient permettre l’utilisation de robots dans
de nombreux domaines de notre vie. Les applications vont de l’industrie 4.0, qui vise
à optimiser divers processus à l’aide de flottes d’agents autonomes, aux opérations de
recherche et de sauvetage, sans oublier les robots d’assistance personnelle. À mesure
que la complexité des plateformes robotiques augmente, les algorithmes de délibéra-
tion doivent être améliorés, notamment pour gérer un nombre croissant d’agents, pour
gérer des objectifs et des tâches complexes, et pour évoluer dans des environnements
plus ouverts où les événements imprévus doivent être traités de manière autonome. Le
niveau d’autonomie d’un agent dépend de cinq grandes fonctions de délibération : la
planification, l’action délibérée, la surveillance, l’apprentissage et l’observation. Nous
nous concentrons ici sur la fonction de planification, qui indique à l’agent ce qu’il doit
faire pour accomplir ses missions, et sur la fonction d’action délibérée, qui adapte le
comportement de l’agent au contexte d’exécution, ce qui le rend plus robuste face aux
imprévus et aux aléas. Nous étudions en particulier l’interaction entre la planification
et l’action délibérée. Bien qu’elles soient presque toujours utilisées ensemble, les ap-
proches dans la littérature ont tendance à les considérer séparément, ce qui limite leur
interaction. Dans cette thèse, nous proposons une approche unifiée de la planification
et de l’action délibérée, dans laquelle les deux systèmes sont en symbiose pour améliorer
leurs performances respectives.

Nous présentons le système OMPAS (Operational Model Acting and Planning Sys-
tem), un moteur d’action qui exécute plusieurs tâches de haut niveau en parallèle en
les raffinant en un ensemble de tâches et de commandes de plus bas niveau. OMPAS
utilise un dialecte Lisp dédié (SOMPAS) pour définir le comportement de l’agent robo-
tique. SOMPAS fournit des primitives pour gérer la concurrence et les ressources et,
dû à son coeur restreint et à l’identification explicite de choix de délibération, permet
la synthèse automatique des modèles de planification. Le moteur tire parti d’un plan-
ificateur temporel et hiérarchique qui utilise les modèles synthétisés pour anticiper et
guider les décisions du système OMPAS. Le planificateur est utilisé de manière continue,
c’est-à-dire qu’il planifie en même temps que l’exécution des tâches et s’adapte toujours
à l’état actuel du système pour améliorer les décisions futures. Ces décisions devraient
permettre d’éviter les blocages et d’optimiser de manière opportuniste l’achèvement de
plusieurs tâches en parallèles.

Nous fournissons une évaluation de l’approche globale sur plusieurs domaines de la
robotique. En particulier, OMPAS a été utilisé pour contrôler une flotte de robots dans
une plateforme logistique simulée. Les résultats ont montré la capacité du système à
gérer plusieurs tâches simultanées grâce à son système de gestion des ressources dédié.
En outre, la planification continue améliore le temps total nécessaire à l’accomplissement
de toutes les tâches d’une mission. La planification étant intégrée au cœur du système,
aucun effort supplémentaire n’est requis de la part du programmeur du robot pour tirer
parti de cette fonctionnalité.
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Abstract:
Recent technological developments in the field of robotics and Artificial Intelligence

could enable the use of robots in many areas of our lives. Applications range from In-
dustry 4.0, which aims to optimize various processes using fleets of autonomous agents,
to search and rescue operations, without forgetting personal assistance robots. As the
complexity of robotic platforms increases, deliberation algorithms need to be improved,
in particular to handle an increasing number of agents, to manage complex goals and
tasks, and to evolve in more open environments where unforeseen events should be dealt
with autonomously. The level of autonomy of an agent depends on five major delib-
eration functions: Planning, Deliberate Acting, Monitoring, Learning, and Observing.
Here we focus on the planning function, which tells the agent what to do to accom-
plish its missions, and the deliberate acting function, which adapts the agent’s behavior
to the context of execution, making it more robust to contingencies and hazards. In
particular, we study the interaction between Planning and Deliberate Acting. Although
they are almost always used together, approaches in the literature tend to consider them
separately, which limits their interaction. In this thesis, we propose a unified approach
to Planning and Deliberate Acting, in which both systems are in symbiosis to improve
each other’s performance.

We present the Operational Model Acting and Planning System (OMPAS), a refine-
ment based acting engine that executes multiple high-level tasks in parallel by refining
them into a set of lower-level tasks and commands. OMPAS uses a custom Lisp dialect
(SOMPAS) to define the behavior of the robotic agent. SOMPAS provides primitives
for handling concurrency and resources, and, thanks to the restricted core language and
the explicit identification of acting decisions, allows the automatic synthesis of planning
models. The engine takes advantage of a temporal and hierarchical planner that uses
the synthesized models to look ahead and guide the decisions of the acting system. The
planner is used in a continuous fashion, i.e., it plans concurrently with the execution of
tasks and always adapts to the current state of execution to improve the expected deci-
sions. These informed decisions should avoid deadlocks and opportunistically optimize
the completion of multiple parallel tasks.

We provide an evaluation of the overall approach on several robotics domains. In
particular, OMPAS was used to control a fleet of robots in a simulated logistics platform.
The results showed the ability of the system to handle several concurrent tasks thanks to
its dedicated resource management system. In addition, continuous planning improves
the total time to complete all tasks of a mission. Since planning is integrated into the
core of the framework, no additional effort is required from the robot programmer to
take advantage of this feature.

Keywords: AI, Robotics, Deliberate acting, Continuous Planning, Task refinement,
Operational Model
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1.1 Motivation

Recent technological developments in the field of Robotics and Artificial Intelligence
(AI) could enable the use of robots in many areas of our lives. Applications range
from Future Industry, which aims in particular to optimize various processes using fleets
of autonomous agents, to search and rescue operations, without forgetting personal
assistance robots. To integrate robots in such scenarios, the robots should be able to
perform some parts of the missions autonomously, and this by limiting the need for a
human to guide the robot.

Here we consider that a robot’s perception, action, and reasoning capabilities define
its degree of complexity and autonomy:

• Perception refers to the robot’s ability to perceive and evaluate the environment
in which it evolves.

• Action refers to the ability of the robot to evolve in this environment and to
modify it by executing commands.

• Deliberation is the ability of a robot to organize and decide the actions it will
take to accomplish its mission.

We consider robots through the combination of these capabilities, and a great deal of
effort is required to design an autonomous agent. This long-term task is refined into
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smaller engineering and research problems. In particular, in this dissertation we are
interested in improving the deliberation capabilities of a fleet of robotic agents that
should deal with multiple objectives while coping with unexpected events.

In the study by Ingrand and Ghallab (2017), the authors define deliberation in
Robotics with six functions: Planning, Acting, Observing, Goal Reasoning, Monitoring,
and Learning. Among these functions, we consider Planning and Acting as the core
of the system’s ability to achieve its goal and adapt to unexpected situations. Indeed,
Planning gives the system the capacity to know "what to do" to accomplish a mission,
while Acting finds "how to do it" to adapt to different contexts. This allows the system to
autonomously decide what course of action to take given the execution context. However,
while planning predicts the state the system is likely to end up in, most acting approaches
tend to make decisions based on the current state of the system, without considering
the long-term effects of deliberative decisions. To address this problem, research has
explored ways to guide the choices made by the acting system with heuristics provided
by a planner.

Many approaches already propose the integration of both acting and planning func-
tions in the deliberation systems of robotic agents. However, their interaction is often
limited to the execution of a high-level plan by an acting engine, where the acting engine
is solely guided by the given plan. This integration is often limited by (i) the fact that
both systems are often designed and developed separately, and (ii) because they use
different models, which adds additional difficulties to their integration.

To avoid both problems, recent approaches such as the Refinement Acting Engine
(RAE) (Patra, Traverso, et al. 2021) propose to design an acting system that natively
supports the guidance provided by an automated planner. Such a system makes the
choice to use a single model to perform both acting and planning, based on hierarchical
operational models to model the capabilities of the robot.

In this thesis, we propose to continue the previous work by:

• Extending RAE with new ways to integrate planning techniques to guide the acting
engine when controlling a fleet of robots performing multiple tasks in parallel.

• Relying on hierarchical operational models to both execute high-level tasks, and
guide their execution with a hierarchical and temporal planner that provides useful
heuristics about the methods to achieve those tasks, and how to optimally perform
the different missions.

This chapter is organized as follows. First, we present how deliberation is viewed
in Robotics and how it is integrated into a robotic architecture. The state of the art
is then reviewed, focusing on the acting and planning capabilities of the deliberation
system, and examining approaches that combine both functions. Based on this study,
we present the contributions described in this thesis, along with a running example that
is used as an illustration in the various chapters of this thesis.
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1.2 State of the art

The goal of the following state of the art is to provide an overview of the deliberation
methods used in Robotics and its larger role in a robotic architecture. The first part will
be devoted to definitions proposed in the literature. Many reviews of the literature con-
sider deliberation from different perspectives. Here we propose to examine the literature
on how they integrate Planning and Acting in robotics deliberation architecture.

1.2.1 Deliberation in Robotics

Deliberation refers to the process by which an agent autonomously makes a decision.
We also refer to deliberation as a cognitive capability. A deliberation system typically
takes as input a set of information about the goals and the execution context:

• The mission to be accomplished,
• A representation of the world that includes both static knowledge and facts that

are continuously updated,
• Models of the world and of the agent’s capabilities.
Based on this setup, deliberation has access to a set of algorithms that allows it to

provide decisions as output.
There are many deliberation algorithms and systems in the literature. However,

many of these deliberation algorithms can be classified into one of the six main deliber-
ation functions that have been proposed by Ingrand and Ghallab (2017):

• Planning: searches for a sequence of actions that will lead a system to a desired
state, either to achieve a goal or to perform a task.

• Acting: executes a set of tasks by refining them into the set of commands appro-
priate to the current context, while monitoring their execution and responding to
changes in the state of the system.

• Observing: actively reasons about the state transition of the system by analyz-
ing both the perceived state change and the internal processes currently being
executed, such as plans and commands.

• Monitoring: analyzes the discrepancies between the estimated state and the ob-
served state, interprets them in terms of the mission, and can make corrections to
the system’s trajectory in the space in which the system evolves.

• Goal Reasoning: keeps track of the system’s high-level commitments and goals,
and adapts the system’s goals as a function of the relevance of the current goals,
either abandoning or modifying them.

• Learning: adapts and improves its behavior through experience. The models used
are updated to make the system more responsive to future experience.

Figure 1.1 summarizes the interactions between the different functions present inside
a deliberator. In this representation, the deliberation functions take advantage of shared



4 CHAPTER 1. INTRODUCTION

Deliberator

Operator

Platform

Environment

Models, data &
knowledge bases

Mission
Criteria

Objectives

Learning
Goal Reasoning

Planning

Acting

Control
variables Feedbacks

Observing

Sensing
actions

Signals

Monitoring

Monitoring
actions Feedbacks

Figure 1.1: Schematic view of a deliberator and the interaction of the different deliber-
ation functions with a centralized view of the models, data, and knowledge bases.

bases of models, data and knowledge. Only three functions are directly interacting with
the rest of the agent: Acting, Observing and Monitoring.

For more details on each of the functions, the survey by Ingrand and Ghallab (2017)
provides an overview of the literature for each of the functions mentioned above.

As mentioned before, this dissertation focuses on the approaches that combine Acting
and Planning. Therefore, we extend their presentation in the following sections. This
will provide the necessary definitions to present the core of the thesis.

1.2.1.1 Planning

This section provides a simple definition of planning. More details about approaches and
systems in the planning literature are discussed in the Chapter 4. In its simplest form,
Planning searches for a sequence of actions whose execution should move the system
from an initial state to a final state in which its goals are met. In particular, we refer to
Task Planning, which takes advantage of a representation of the agent capabilities as a



1.2. STATE OF THE ART 5

symbolic state transition system defined in a descriptive model.
Typically, a descriptive model is a Planning Domain (P∆), a tuple (W,A) where:

• W describes the set of states that the system can be in. A state is typi-
cally represented as a set of state variables sf(p1, . . . , pn) = v. For example,
location(r1) = bedroom states that the location of r1 is bedroom.

• A is the set of actions that can be performed to induce state transitions. An
action is defined by a set of preconditions that define the state in which the action
is applied. Preconditions are typically defined as a set of propositions over the
state variables representing the world. The transitions due to the execution of the
actions are defined as a set of effects that define the new values that the state
variables take once the action has been executed.

Based on this definition of P∆, we define a planning problem (PΠ) as a tuple
(W,A,G), where G represents the goal state to be achieved as a set of values that
some state variables should take.

Here we define a planner as an algorithm that produces a plan to meet all goals of
G and that is valid with respect to the given model and the initial state of the system.

In its simplest form, planning uses a model of actions that describes the set of states
in which the actions are applicable, and the set of updates that are applied to the state
upon execution of the said action. This was first formalized as the STanford Research
Institute Problem Solver (STRIPS) (Fikes 1971) planning. A more complete definition
of planning can be found in the book Automated Planning and Acting (Ghallab, Nau,
and Traverso 2016).

However, the STRIPS model is a simple representation of the real world that may
not be sufficient for planning more complex problems. Several extensions have been
proposed to improve the capabilities of the planning system to more accurately represent
the possible evolutions of a system. Among them, we can note the followings:

• Temporal Planning is interested in the accurate representation of the timing
and the order of the evolution of the state. It introduces an action model in
which actions are no more considered as instantaneous, and that allows parallel
execution. Among the temporal planners we can cite IxTeT (Ghallab and Laruelle
1994) and the Lifted Constraint Planner (LCP) (Bit-Monnot 2018).

• Numerical Planning extends the expressiveness of a planning problem to allow
numerical expressions. Numerical planning takes advantage of specific techniques
to find solutions that account for the use of a numerical resource, such as the
fuel consumed by a truck as a function of the distance traveled. The Expressive
Numeric Heuristic Planner (ENSHP) (Scala et al. 2016) is an example of numerical
planner.

• Hierarchical Planning takes advantage of a hierarchical model of an agent as
a tuple (C, T ,M), where the Commands (C) represents the low-level capabilities
of the agent, the Tasks (T ) represents the more complex and abstract capabilities
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of the agent that should be refined using the skills defined in the set of Methods
(M). Each method represents a different way of performing a task defined in T .
A method traditionally consists of a sequence of lower-level commands and tasks,
the execution of which fulfills the high-level goal of the task. In this context, the
role of a hierarchical planner is to refine a high-level goal down to a sequence of
commands that can be executed by the robot platform. The SHOP (Nau, Cao, et
al. 1999) and FAPE (Bit-Monnot et al. 2020) systems are two examples of planners
taking advantage of hierarchical models.

• Nondeterministic Planning supports probabilistic models of the agent in which
the actions are no longer assumed to be deterministic. Although planning still
searches for a valid plan to achieve the goal, non-deterministic planning is no longer
interested in a sound solution but in the generation of policies, where each policy
is a tuple (s, a) that maps a state s to an action a to perform. We can count on
Stochastic Shortest Path (SSP) (Natarajan and Kolobov 2022) and RFF (Teichteil-
Königsbuch, Kuter, and Infantes 2010) among the planning systems that rely on
the generation of partial policies.

It should be noted that many systems combine several approaches, such as temporal
and numerical planning. In deliberation, Planning is often used to generate behaviors
in the form of a plan that is either executed directly on the platform, or given to an
acting system that will execute the plan in a more robust way.

1.2.1.2 Acting

As stated by Ghallab, Nau, and Traverso (2016), automated deliberation can be sep-
arated into two systems: a planning system that generates a plan composed of a set
of actions to be performed; an acting system in charge of monitoring the execution of
plans and adapting the agent’s behavior to the current state of the system.

While Symbolic Planning deliberates at a high level of abstraction, acting is re-
sponsible for executing actions while coping with the real-time constraints of a robotic
platform, e.g. recovering from failures, adapting to unexpected events, dealing with
temporal constraints such as expected exogenous events and deadlines. Therefore, un-
like planning algorithms that computes the plan offline, acting deliberation is online, i.e.
each decision is a function of the actual perceived state of the system. Therefore, the
models implied in the deliberation differ as they should define the executive behavior of
the robotic agent, and should encode a robust behavior to adapt to contingent events.

While Planning has been properly formalized for decades since the early development
of PLANEX1 using the STRIPS formalism (Fikes 1971), the notion of Acting appeared
more recently with some attempts to formalize it. Before that, such deliberation func-
tion would be referred as Supervision. In a position paper on blended Planning and
Acting (Nau, Ghallab, and Traverso 2015), the authors emphasized the need to formal-
ize Acting to drive research in this area, just as the development of planning languages
such as the Planning Domain Description Language (PDDL) did for Planning several
decades ago.
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In the book Automated Planning and Acting (Ghallab, Nau, and Traverso 2016), we
find a definition for Acting that states its differences with a simple execution of a se-
quence of actions. As defined in the book, deliberate acting relies on operational models,
which can be any model that takes advantage of generic algorithmic structures such as
branches and loops to define a variety of behaviors. They are generally more expressive
than descriptive models when it comes to error management and handling nondeter-
minism. They can be defined using general-purpose languages, taking advantage of rich
programming tools that can be used to define agent behavior (including, for example,
error handling, conditions, loops).

Whereas planning systems reason on descriptive models that explicit the dynamics
of the world and the capabilities of the robotic agent, acting systems rely on a collection
of skills defined in an Acting Domain (A∆) to achieve the tasks. The role of the acting
engine is to execute the most appropriate skills to face the tasks.

To do that, an acting system has several deliberation abilities, which have been
categorized in the survey by Ingrand and Ghallab (2017) as follows:

• The Refinement of a task gives the ability to the system to execute an abstract
task by selecting a skill of A∆ and executing it. The selected skill should achieve
the high-level goal of the task and be executable in the current context. Skills are
either provided by a model, or can be synthesized online to adapt to unhandled
scenarios. By providing several alternatives to execute a task, it also gives the
acting engine a choice about which course of action to take.

• The Reaction to Events allows the system to adjust its behavior. In some cases,
the expected course of action should be adjusted to take into account the impact
of the events on the execution of the current tasks. Failure to do so would be a
cause of failure for another task being performed by the system.

• The Parameterization allows skills to be parameterized, making them more
versatile. It is up to the acting engine to choose which set of parameters to use to
parameterize a skill. For example, a skill might require one of the robot arm’s to
pick up an object on a table. Whether it is the right arm of the left is left to the
discretion of the acting engine.

• The Time Management is critical in an acting system because it performs on-
line deliberation. The acting system should be able to reason on explicit time
to handle operational constraints such as deadlines, durations, rendezvous, time
synchronization, etc.

• The Nondeterminism of action execution should be handled by the acting en-
gine. In fact, the failure of a command does not necessarily invalidate the future
decisions anticipated by e.g. a task planner. The acting engine can handle fail-
ures locally using recovery procedures. Furthermore, the acting engine should be
robust to nondeterministic perception and unexpected events.

• Plan Repair is ultimately detected and triggered by the acting system, since it
should be based on the divergence between the expected execution outcome and
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the actual one. The acting system should therefore be able to detect when Plan
Repair is necessary, i.e. when the acting system cannot fix the divergence itself,
and pass on the important information needed by the task planner to provide a
new plan.

• Resource Management is an additional feature that should be addressed by the
acting engine. Especially when there are multiple concurrent goals that require
limited resources. Therefore, the acting engine should have a reactive resource
allocation strategy.

• Formal Modeling opens the way to ensure the behavior of an agent using Ver-
ification and Validation (V&V) tools. The acting engine can take advantage of
such a model to check some properties of the system at runtime, such as detecting
possible deadlocks.

Through these capabilities, Acting provides the reactive deliberation capabilities to
the robotic system. In fact, the role of Acting has expanded over time with the evolution
of robotic architectures.

1.2.2 Robotic architectures embedding deliberation

Deliberation is one of the main components in the architectures of autonomous robots.
What is interesting is the evolution of deliberation functions embedded in robot archi-
tectures.

The presented approaches and systems have all been studied in the review “Robotic
Systems Architectures and Programming” (Kortenkamp and Simmons 2008). What we
propose is to focus on architectures that make deliberation the system’s top-level decider,
meaning that down to the system’s lowest controllers, an action is taken because the
deliberation system has decided to do so.

1.2.2.1 Sense-Plan-Act (SPA) architecture

One of the first architectures to embed deliberation was the Sense-Plan-Act (SPA) ar-
chitecture. In SPA, the robot performs a mission by first sensing its environment to
gather information that the planning system uses to find an appropriate sequence of
actions to perform. This loops until the robot has completed its mission. This architec-
ture was used on the Shakey robot at the Stanford University in the late 1960s (Nilsson
1969). However, such an approach is rather limited because the robot must wait until
a complete valid plan is found before acting, even though the planning time may be
long enough to require sensing again. The possibility of having an outdated plan is even
more present when it comes to acting, since the environment is evolving (at least due
to the robot’s actions) and should be taken into account by the robot.

1.2.2.2 Subsumption architecture

Previous approaches using SPAs architectures were slow because of this loop, which
requires that each function should be completed before the next one is executed. To
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address this problem, Brooks (1986) proposed the Subsumption Architecture, which de-
composes the global loop of a SPA into a collection of state machines called behaviors
that decomposes the system into several differentiated sets of sensors and actuators.
Each behavior manages its own planning and execution. This makes the system more
responsive to new information and easier to adapt to contingencies. Note that all behav-
iors run concurrently and can therefore request commands on the same actuators. To
orchestrate the execution of concurrent behaviors, higher-level behaviors can be defined
to override signals from lower-level behaviors, allowing multiple behaviors to be defined
to control the same actuators, but activated in a context-dependent manner.

However, while this improves the responsiveness of a robot, it loses some of the
ability to optimize its behavior as a function of higher-level goals that was provided by
the global planning of the SPA architecture. This led to the development of Layered
Architectures, the purpose of which is to take the best of both worlds to make a robot
capable of optimizing its behavior to achieve a high-level goal, while still being reactive
and able to adapt to unexpected events.

1.2.2.3 Layered architectures

Over the years, software developers of autonomous systems have needed an abstract
architecture to facilitate the development of complex autonomous systems. Indeed,
decomposing a complex system into simpler subsystems and formalizing their interaction
would facilitate the development and improvement of the overall system by tackling
smaller problems. A recurring decomposition that emerges from the various approaches
is the layered system, where each layer corresponds to a different level of abstraction. In
fact, over the years, researchers and software engineers have found that having different
levels of autonomy would facilitate the development of specific reasoning tools and their
combination; a single algorithm would either not scale or would be too difficult to develop
and would lack versatility.

Many works proposed a 3-layer approach (Gat, Bonnasso, and Murphy 1998), in
which we distinguish the following systems:

• The Controller (or functional layer), which takes care of the low-level execu-
tion of motor commands and sensing of the robotic platform performed in the
different modules.

• The Sequencer (or executive layer) that receives command execution re-
quests, verifies their applicability, distributes them to the corresponding functional
modules, and monitors their execution.

• The Deliberator (or decision layer), which receives the more abstract form of
objectives that the system should deal with by (i) finding an appropriate set of
abstract actions to accomplish the mission, and (ii) refining those actions down to
executable primitive commands that can be dispatched by the executive.

In such an architecture, the three layers interact either sequentially or in parallel to allow
different levels of responsiveness at each layer. We will now present some examples of
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Figure 1.2: Schematic view of a three-layered architecture for a robotic system.

three-layered architecture.

Atlantis The Atlantis Architecture (Gat 1992) is a perfect example of three-layered
architecture:

• The Controller is defined using the ALFA (Gat 1991) language. The peculiar-
ity of this language is that cognizant failures should be handled explicitly in the
programs. Indeed, a system can hardly guarantee error-free behavior, and should
detect errors so that they can be handled by another system to recover from them.

• The Sequencer is using the Task Control Architecture (TCA) (Simmons 1991).
TCA uses activities to represent rich capabilities by defining abstract operations
that can be composed of lower-level activities, the lowest being the primitive ac-
tivities that correspond to the executable actions of the controller.

• The Deliberator relies on a task planner based on the work of Miller (Miller 1985)
that provides a plan with a bounded horizon that is executed by the Sequencer.
The planner is called again when either the plan reaches its horizon, i.e. no more
action is available, or the execution deviates from the plan, e.g. due to a command
failure.

LAAS architecture The LAAS architecture (Alami et al. 1998) is another three-
layered architecture. It has been deployed successfully on autonomous rovers (Ingrand,
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Lacroix, et al. 2007). Unlike Atlantis, it proposes a more advanced decision layer con-
sisting of both a planner and a procedural engine. The proposed architecture is as
follows:

• The functional layer uses GenoM (Foughali, Ingrand, and Mallet 2018), a func-
tional module generator that would automatically generate appropriate controllers
that ensure properties on the modules composing the functional layer. More re-
cently, GenoM templates could be used to automatically synthesize a corresponding
Fiacre (Berthomieu, Zilio, and Vernadat 2020) formal model suitable for V&V (Dal
Zilio et al. 2023). In particular, Fiacre models are used to ensure timing properties
on critical systems.

• The executive layer was primarily using KHEOPS (Medeiros, Chatila, and Fleury
1996). Then the Requests and Resources Checker (R2C) system (Ingrand and Py
2002) was used to ensure the executability of a command before sending it to the
functional layer.

• The decision layer of the LAAS architecture consists of two systems: a task planner
that generates a plan consisting of a sequence of high-level actions, and a supervisor
that executes the high-level plan by refining each action down to a sequence of
commands that are passed to the executive layer. The task planner IxTeT (Ghallab
and Laruelle 1994) supports temporal planning, allowing it to reason on partially
ordered plans that are more robust to variations in the system. The supervisor is
the Procedural Reasoning System (PRS) (Ingrand, Chatila, et al. 1996), an acting
system that resolves open goals by executing procedures. PRS takes advantage of a
hierarchical representation of agent capabilities that allows reasoning about high-
level goals and the methods for achieving them by executing lower-level actions.
Similarly to the Reactive Action Package (RAP) (R. J. Firby 1989), PRS achieves
high-level goals by iteratively refining them into executable procedures composed
of commands or tasks. The refinement is done at runtime, which avoids the need
to generate the full command sequence before execution. The refinement strategy
of PRS is to execute an arbitrary method in a trial-and-error fashion until the
mission succeeds.

RAX architecture The development and deployment of the Remote Agent Experi-
ment (RAX) (Muscettola, Nayak, et al. 1998) is considered by many to be an important
milestone in the robotics community, particularly for those interested in deliberation.
It was one of the first successful integrations of a complete deliberation system into an
autonomous system with high performance and robustness requirements.

Remote Agent was one of the first to take advantage of model-based programming.
The proposed methodology is to define the agent capabilities as a set of actions (or
activities) that can be used in arbitrary ways. Based on these actions, the system is
capable of learning and searching autonomously how to compose these actions to fulfill
its objectives by, e.g. rely on an automated planner to adapt the behavior of the agent
depending on the goals and the context.
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Unlike other layered architectures, RAX is decomposed into four systems:

• The decision layer is composed of the temporal planner called Planner/Scheduler
(PS) and the Mission Manager (MM). PS is capable of automatically generating
plans that take into account the timing of access to limited resources and hard
deadlines. MM triggers the replanning of PS based on information coming from
the executive layer.

• The executive layer is the Smart Executive (EXEC) that schedules and manages
the activities that make up the plans provided by PS. Similar to PRS, EXEC refines
activities down to commands that can be executed on the robot platform. The
activities and their refinements are defined using the Execution Support Language
(ESL) (Gat 1997), another procedural language.

• The equivalent of the functional layer is the model-based Mode Identification
and Reconfiguration (MIR) system, which is used to abstract the sensor values
as abstract states. These abstract states can then be used at a higher level, in
particular for fault detection. MIR does not fully define a functional layer, as it
does not manage the low-level controllers of the system.

In this architecture, we can see that deliberation is present at each and every level.
Indeed, MM provides goal reasoning that can be used by PS to give instructions in the
form of plans to EXEC, which in turn provides reports to MM to adapt the behavior of
the system. Even if the deliberation is decomposed into multiple systems, their entan-
glement is such that at best the system would have some degree of autonomy without
the system, and at worst would not work at all. The EXEC and MIR systems also take
advantage of the abstraction of the model of the system to facilitate deliberation.

CLARAty architecture The Coupled Layer Architecture for Robotic Autonomy
(CLARAty) (Volpe et al. 2001) is another layered architecture that de facto merges
the decision and executive layers into one, while keeping the functional layer separate.
This stems from the fact that the procedural reasoning of the executive system and
the planner should interact for most of the decisions made by the system. It also takes
advantage of the effort to use a common representation for both planning and execution.

What the CLARAty architecture does is to add a third dimension to the specification
of a robot architecture: in addition to the abstraction (vertical axis) and the system
(horizontal axis), another horizontal axis orthogonal to the system should represent
its granularity. In fact, most layers are themselves decomposed into subsystems, each
operating at a finer granularity.

Such an architecture clearly demonstrated the need to decompose deliberation at
different levels and, in particular, to add deliberative capabilities directly to control the
functional layer, without the executive layer as an intermediary. Either way, since they
often work in a bidirectional relationship, executive and decision can benefit from tight
integration.
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1.2.2.4 Teleo-reactive architectures

Interesting approaches inherited from RAX-PS (Muscettola, Nayak, et al. 1998) and
attempted to unify the different models used by the different deliberation func-
tions. This led to the development of the Intelligent Distributed Execution Archi-
tecture (IDEA) (Muscettola, Dorais, et al. 2002) and the Teleo-Reactive EXecutive
(T-REX) (McGann et al. 2007; Py, Rajan, and McGann 2010), which merge the deci-
sion and execution layers into a hybrid system using a unified model for deliberation
and execution.

In IDEA and T-REX, the system architecture is composed of reactors, where each
reactor use a common design pattern. Each reactor is responsible for one function of
the system, e.g., mission management, and has access to deliberation features such as
lookahead. This way, deliberation is also brought at the functional layer, and is closer
to the actuators and sensors of the system. Each reactor operates at a different level
of abstraction, parameterized by the latency of the reactor, i.e. the maximum allowed
time for deliberation, and a planning horizon that the reactor should consider. The
autonomous system is thus defined as a collection of reactors interacting with each
other using shared timelines representing the evolution of state variables over time and
synchronized with a global clock. IDEA and T-REX rely on a Constraint Satisfaction
Problem (CSP) approach to dispatch the temporal constraints generated by a planner.

Both systems have been integrated with Europa (Barreiro et al. 2012) up to the
commands executed in the different reactors of the system, and the Advanced Planning
and Scheduling Initiative (APSI) (Fratini and Cesta 2012) has also been integrated with
T-REX. T-REX has been successfully integrated into several Autonomous Underwater
Vehicles (AUVs) (Py, Rajan, and McGann 2010; Rajan and Py 2012; Rajan, Py, and
Barreiro 2012). It should be noted that T-REX is planner independent by design. While
the hybrid design may seem interesting, such system specification and debugging has
been proven tedious on large models. Moreover, the programming of the skills is still
required.

1.2.3 Blended deliberate Acting and Planning

In the previous section, we have seen that approaches can differ on how to integrate
deliberation in a robotic architecture. In particular, the notion of reactors brought by
IDEA (Muscettola, Dorais, et al. 2002) and T-REX (McGann et al. 2007) were one of
many approaches that blend Planning and Acting into a unified framework.

These approaches learned from the fact that robotic architectures almost always in-
tegrate a planning component and an execution component that are required to interact
with each other. Most importantly, the interaction between the two components is bidi-
rectional. On the one hand, it is obvious that the planner should give the plan to the
execution. On the other hand, the execution should at least inform the planner about
the success or failure of the plan. In any case, both functions should be implemented
with these constraints in mind. Other approaches propose a more advanced integra-
tion of both functions, resulting in deliberation systems with enhanced autonomy. We
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propose to study the systems that have such a unified approach of Planning and Acting.
In this review, we propose to study their deliberation strategy, the features provided

by the combination of Planning and Acting, and how models of both deliberation func-
tions interact with each other. We examine and attempt to classify the deliberation
approaches that unify Planning and Acting. However, the unification of the two func-
tions is broader than a simple addition of the features of each system, and should be
considered as a new function, which we refer to as a deliberation strategy. A deliberation
strategy might bring new deliberation features. But it could also improve the features
of the two functions that were already present. Since the two functions are presented
as a whole in these approaches, we examine how the deliberation strategy deals with the
discrepancies between the descriptive models and the operational models used by the
planning and acting systems, respectively.

1.2.3.1 Blended deliberation strategies

Plan-Exec: interleave Planning and Acting One of the most common delibera-
tion strategy is Plan-Exec. In Plan-Exec, the planner is called first to generate a plan,
which is then executed by a supervisor (either a simple executive or an acting engine).

PLANEX1 (Fikes 1971) is one of the first proposals for a mixed planning and exe-
cution system using a Plan-Exec strategy. It relies on the planner STRIPS to produce
a plan that is executed by PLANEX1 in a Plan-Exec fashion. In PLANEX1 there is a
direct mapping of the steps of the plan to motor commands of the robot platform.

The Reactive Action Package (RAP) (J. Firby 1987) system was one of the first
systems to introduce the notion of reactive planning, in which the system must act pri-
marily on the current state of the system rather than on expected states, as planners
would do. At the time of its presentation, the authors pointed out the need to looka-
head, in addition to being reactive, in order to prevent undesirable behavior. In this
sense, RAP has been used in a Plan-Exec fashion with the planners AP (Bonasso et al.
1996) and PRODIGY (Veloso and Rizzo 1998). In this approach, PRODIGY is used to
automatically synthesize RAPs capabilities based on the operators used by the planner.
The earlier deliberation architectures we have presented often rely on a Plan-Exec strat-
egy, such as the LAAS architecture (Alami et al. 1998) and RAX (Muscettola, Dorais,
et al. 2002).

More recently, the Flexible Acting and Planning Environment (FAPE) (Bit-Monnot
et al. 2020) planner proposed an approach to execute temporal plans in the form of
chronicles using a dedicated acting system capable of directly using these chronicles to
act. By incorporating traces directly into the chronicles, the system is able to check
the validity of the plan at runtime and better cope with uncertainty. In particular, by
directly mutating the chronicles used by the planner, FAPE can first try to repair with a
timeout before replanning. This approach can improve the responsiveness of the system,
as repair may be faster than replanning.

Similarly to FAPE, PLATINUm produces a plan that takes into account the tem-
poral uncertainty inherent to the execution of a robotic system, especially in Human
Robot Collaboration (HRC) contexts. Its internal representation allows a more flexible
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adaptation of the system to contingencies.
At another level, the Robotic Operating System (ROS) (Quigley et al. 2009) has

been used to implement a generic Plan-Exec deliberation strategy in a robotic system
using the middleware to interface with any planner supporting the Planning Domain
Description Language (PDDL) (McDermott et al. 1998). ROSPlan (Cashmore et al.
2015) and PlanSys2 (Martín et al. 2021) are two proposals for generic Plan-Exec frame-
works to use planning in ROS and ROS2 environments respectively. They facilitate
the invocation of a planner by decoupling planning from execution, using ROS as an
intermediary between the different systems.

The Task Control Architecture (TCA) (Simmons 1992) proposed a Plan-Exec ar-
chitecture in which Planning and Acting are concurrent processes. Indeed, the planner
would anticipate the next step of the plan while executing the first. To do this, the
new planning problem starts from the end state of the previous plan, assuming that
execution will result in the expected state.

Rogue is another approach to interleaving Planning and Acting (Haigh, Veloso, and
Bekey 1998). It can asynchronously receive new goals from multiple users, and is able
to prioritize goals and focus on high-priority goals until they are achieved, recognize
similar goals that can be achieved by common actions, and deal with emergencies by
interrupting actions that can be restarted later appropriately, i.e. get back to a nominal
state in which the action can be resumed. The interweaving of Planning and Acting is
of particular interest here to gather useful information that would help a planner predict
failures and thus avoid them (Haigh and Veloso 1998).

Plan-as-Advices: online planning to guide acting The second deliberation strat-
egy is Plan-as-Advices, where the planner is used to guide the decisions that the su-
pervisor should make at runtime. The fundamental difference with Plan-Exec is the
role of the planner : On the one hand, the planner is the ultimate deliberative, on the
other hand, it is used to inform the supervisor with its lookahead capabilities. The
remarkable thing about how Atlantis works is how it interacts with the deliberator.
When Atlantis was introduced, it was one of the first deliberation systems to use the
Plan-as-Advices strategy. In fact, in Atlantis, the execution of actions is simulated to
guide the acting engine (either RAP (R. J. Firby 1989) or ESL (Gat 1997) depending
on the implementation).

In the approach developed by Beetz and McDermott (1994), the planner XFRM is
used to sample the outcome of actions, and use this to parameterize the skills defined
with the language RPL.

Propice-Plan (Despouys and Ingrand 2000) extends PRS with the guidance of the
refinement process. Indeed, reactive method selection can lead to a suboptimal choice,
which in the worst case can lead the system into deadlocks. Propice-Plan adds to PRS
an Anticipation Module (AM) that simulates the execution of the different refinements
to advise the acting system on the best method to choose, and a continuous planning
module that adapts the high-level plan in function of the feedbacks from the acting
system.
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The PROcedure Planning and Execution Language (PROPEL) (Levinson 1995) pro-
poses to use a unique model for both Planning and Acting. The agent’s capabilities are
defined as procedures in which the nondeterministic choices are explicitly defined and
can be resolved using a planner. In addition, a procedure can be augmented with a sim-
ulation model representing the state transitions due to the execution of the procedure,
which can be used by the planner to simulate the execution of the procedures.

1.2.3.2 Augmented deliberation capabilities: repair and replanning

One of the role of a deliberation system is to handle failures and unexpected events. One
commonly used approach in deliberation is to repair a plan, or replan. In the case of
replanning, it can be costly. Therefore, one might want to avoid replanning and resort to
local repair to minimize the downtime of the system. Among the improvements brought
to deliberation by blending Planning and Acting, the handling of repair and replanning
is one of the main feature that benefits from it. In fact, many systems integrates both
features to tackle this problematic.

One approach is to provide a plan that is flexible enough to handle a failure without
requiring replanning. In fact, only a part of the plan may be invalidated and thus need
not be re-synthesized. This is partly supported by PLANEX1 (Fikes 1971), which views
the plan as a set of actions, the order of which is not explicit. Therefore, replanning is
only triggered when no more actions of the plan are applicable.

In a more sophisticated approach, IxTeT-Exec (Lemai-Chenevier 2004) is a delibera-
tion system that proposes to use a single model for both temporal planning and temporal
dispatching. Temporal planning is handled by the CSP temporal planner IxTeT (Ghal-
lab and Laruelle 1994) already present in the LAAS architecture, and complemented by
the temporal dispatcher Exec, which interfaces between the planner and the supervisor
PRS (Ingrand, Chatila, et al. 1996). The same structure used by IxTeT to search a tem-
poral plan is used by Exec to trigger the execution of actions, but also to represent failed
commands directly in the shared partial plan. Since the failure is represented directly
in the subplan, IxTeT can dynamically search for a new plan. Of course, continuous
planning and replanning is facilitated by this unification of the planning and execution
model. However, in this approach, the role of Exec is only to dispatch the high-level
actions down to PRS, which would have to refine them down to commands and dispatch
them to the lower layers of the system.

The Integrated Planning, Execution and Monitoring (IPEM) (Ambros-Ingerson and
Steel 1988) system is also a plan-exec framework that proposes an architecture specif-
ically designed to handle execution failures and unexpected events. This is done with
both local repair capabilities and the interleaving of planning and execution. Local re-
pair is achieved at the control level using "IF-THEN" rules that, given an unwanted state
defined in "IF", define a behavior to handle it in "THEN". In the context of missing
information, the authors propose to interleave planning and execution to gather missing
information that could be obtained by executing an action. Therefore, they use a partial
plan representation that can be instantiated at runtime based on the observation of the
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execution.
The cost of replanning can also be significantly reduced by synthesizing plans of

shorter length. This is the approach taken by the CASPER/ASPEN (Chien, Knight,
et al. 2000) system, which incrementally searches a plan on a small timescale to be more
responsive to goal updates and unexpected events. The planning process is continu-
ous, and is designed to take into account activities that have already begun execution
when trying to optimize the scheduling of activities that are not yet committed. The
Automated Scheduling and Planning ENvironment (ASPEN) is particularly suitable for
replanning, since it is based on an iterative algorithm that allows anytime planning, ei-
ther starting from its simplest definition as a set of goals, or replanning from a previous
plan in which broken causal links should be replaced. However, the repair capabilities
can only commit to one conflict at a time, which is limiting when multiple conflicts need
to be dealt with, and leaves the system without a valid plan for an extended period
of time. The Continuous Activity Scheduling, Planning, Execution, and Replanning
(CASPER) proposes a balance between constant adaptation to changes in the system
and reactivity of the system, the latter of which is strongly dependent on planning search
time.

Cypress (D. Wilkins and K. Myers 1995) proposes the use of an intermediate language
between a planner (SIPE-2 (D. Wilkins 1988)) and a supervisor (PRS (Ingrand, Chatila,
et al. 1996)). It uses the ACT formalism (D. E. Wilkins and K. L. Myers 1997) to
specify the model of the agent and as the interlanguage between the two deliberation
systems. Since the planner and the supervisor use the same intermediate language, most
deliberation features are easier to implement: events and reports can be specified with
ACT.

The Continuous Planning and Execution Framework (CPEF) system (K. Myers
1999) extends Cypress’s framework in several ways, one of which is to relieve the su-
pervisor of the orchestration of activities and to use a higher-level plan manager that
adapts plans with respect to the overall operation of the system.

1.2.3.3 Unified planning and acting models

When blending Planning and Acting, one might think about the models used by both
functions. Indeed, traditionally the literature separates planning models from acting
models. Planning systems often rely on descriptive models, which make explicit the
dynamics of a system, and the operational model, which are programs executed on the
robotic platform. The descriptive model is a formal model that should allow reasoning,
and is used to systematically explore the state space of the system. The role of the
operational model goes beyond the simple execution of a sequence of commands, and
provide control structures that adapt the behavior based on the context and that are
more robust to unexpected events. In the approaches studied here, some systems make
the choice to use common models for planning and acting. This is particularly interesting
because traditionally, planning and acting systems are developed separately, along with
their models. However, some systems are de facto designed to integrate Planning and
Acting, and choose to rely on a single model for both deliberation functions. Typically,
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IxTeT-Exec takes advantage of its shared subplan to facilitate the interaction between
the temporal planner and the executive.

CSP approaches To reason on time, many approaches relied on CSP models to guide
an acting system using a temporal planner. In such configuration, a temporal planner
provides a temporal plan that can be constrained at runtime by the acting engine.
Among the systems using this approach, we can mention IxTeT-Exec (Lemai-Chenevier
2004), and the heirs of RAX-PS (Muscettola, Nayak, et al. 1998): IDEA (Muscettola,
Dorais, et al. 2002) and T-REX (Py, Rajan, and McGann 2010). The acting engine
provides the values of execution of the uncontrollable timepoints and the free variables
that are not fully instantiated by the planner. Therefore, since the execution model
remains in a CSP form, the running choices can be propagated at runtime to verify
the consistency of the constrained plan with respect to the assumed bounds of the
variables for a given plan; the opposite triggers plan repair. Since some timepoints are
uncontrollable, e.g. the end time of an action, CSP approaches can model the plan as
a Simple Temporal Network with Uncertainty (STNU) in which both controllable and
contingent timepoints and constraints can be represented (Vidal and Ghallab 1996).
In such a representation, a STNU is said to be dynamically controllable if there exists
a set of dynamic execution strategy that assigns controllable timepoints such that all
constraints are satisfied. This assumes that the values of contingent timepoints preceding
the controllable steps are known.

While these systems aim to share common structures for Planning and Acting, the
RAX spin-off Reactive Model-based Programming Language (RMPL) is one of the most
action-oriented CSP-based approaches. It provides refinement, instantiation, time, non-
determinism, and plan repair capabilities. RMPL unifies the representation of the plan-
ning, acting, and monitoring systems in two models: a hierarchical constraint-based
automata representing the system model in which both nominal and fault state transi-
tions are modeled; a control model defined with reactive programming constructs. The
programs in RMPL are transformed into a Temporal Plan Network (TPN), an extension
of Simple Temporal Network (STN) with symbolic constraints and decision nodes. A
TPN can be used to synthesize a plan by finding a path in the network that satisfies
both the temporal and symbolic constraints. Several works have been proposed both to
extend the formalism of TPNs and to improve its use:

• reduce plan size to improve dynamic execution (Conrad, Shah, and Williams 2009),
• add error recovery, temporal flexibility, and conditional execution to TPNs based

on a distribution of its assumed duration (Effinger, Williams, and A. Hofmann
2010),

• add probabilistic notions to TPN to represent weak and strong consistency for
which algorithms can check their consistency (Santana and Williams 2014),

• as for STNUs, Temporal Plan Network with Uncertaintys (TPNUs) (Levine and
Williams 2014) add the notion of uncertainty for contingent decisions.
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Behavior Tree (BT) approaches Several works aim at merging Planning and Act-
ing, using Behavior Trees (BTs) as acting models. BTs (Iovino et al. 2022) are widely
used to define Artificial Intelligences (AIs) in video games, and have been increasingly
used to design robot behaviors in the last decades. They are often used to define the
capabilities used by the execution layer to refine sequences of abstract tasks generated
by, for example, a task planner. A BT is defined as a directed tree composed of root,
child, parent, and leaf nodes. The execution of a node is triggered by receiving a tick,
which can be propagated to one or more children. The execution of a node returns either
the state success, running or failure. A leaf node is called an execution node and can
be either (i) an Action, which returns running on the first receipt of a tick and success
once the command was successfully executed on the platform, or (ii) a Condition, which
returns success if its proposition is true in the current context, failure otherwise. Other
non-leaf nodes are used to define the control flow of the BT. The primary definition of
BT distinguishes three non-leaf nodes:

• Sequence, which executes n children nodes in sequence, failing if at least one child
fails, otherwise succeeding,

• Parallel, which checks all its children at once, and fails if at least one child fails,
otherwise succeeds,

• Fallback which executes one node at a time, succeeding immediately if at least one
child node succeeds and failing if all children fail.

Going back to the unification of Planning and Acting, the work on extended Behavior
Trees (eBTs) (Rovida, Grossmann, and Krüger 2017) tries to unify scripted and planned
procedures, where the extended formalism adds STRIPS-like effect annotations to the
primitive eBT. The skills used by the actor are composed of primitive eBT and have a
direct mapping to the actions produced by the planner. Once the actions of the plan
have been expanded to form a complete eBT, post-processing is performed to optimize
the overall execution time of the BT by organizing independent nodes in parallel and
rearranging the sequence of actions produced by the planner.

HTN planning has been used in a hybrid approach to allocate abstract tasks among
multiple nodes, and relies on BT to refine the abstract tasks into lower-level commands
to act (Neufeld, Mostaghim, and Brand 2018). Since HTN and BT are both hierarchi-
cally structured, the interface between the planner and the actors is more accessible.
Such a hybrid approach showed better performance than pure HTN deliberation, which
requires a lot of replanning in a dynamic environment, where BT is by design reactive to
handle local contingencies without requiring replanning at a higher level of abstraction.
Similarly, a BT can be used to fully define the behavior of an agent, where a said BT is
updated at runtime by continuous planning using the Hybrid Backward-Forward (HBF)
algorithm (Colledanchise, Almeida, and Ögren 2019). Belief BTs (BBTs) are another
extension of BT (Safronov, Colledanchise, and Natale 2020) from which policies can be
synthesized by a planner to act in partially observable environments.

The literature on BT offers many contributions, especially in defining robot behavior.
They are often compared to Finite State Machines (FSMs), and are said to be easier
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to design, more human-readable, which makes them more suitable for debugging and
analysis. However, they lack the expressive power of explicitly programmed procedures.

Logic-based approaches Rather than manually detailing the specification of capa-
bilities, some approaches have proposed to define an agent’s capabilities based on logical
rules of the world, and then use inference mechanisms to generate the behaviors. In such
approach, the logical rules and inference mechanisms can be used to mimic planning ca-
pabilities in the sense that they can synthesize new behaviors to adapt to the various
situation. Here we focus on the situation calculus approach, whose best representative is
the GOLEX system (Hähnel, Burgard, and Lakemeyer 1998). GOLEX is an execution
system for the Golog planner (Levesque et al. 1997); both systems rely on knowledge
defined in the situation calculus, but do not use the similarity of their model to integrate
advanced interleaving of Planning and Acting. The Platas system (Claßen et al. 2012)
extends the capabilities of Golog-based systems to integrate other planners that out-
perform Golog at generating sub-plans and that can benefit from a PDDL model that
can be mapped directly to the situation calculus. ReadyLog (Ferrein and Lakemeyer
2008) extended the usability of Golog by allowing the integration of calling procedures
into Golog plans, making it a language in which the interleaving of imperative code and
situation calculus makes explicit nondeterministic decisions that should be handled by
planners. It can be defined as an acting language in which deliberation functions can
be used to adapt the behavior of the agent while retaining the advantages of procedu-
ral behavior. Following this approach, Golog++(Mataré et al. 2021) both extends the
temporal semantic of Golog and proposes a formalized interaction between the abstract
model used by Golog and a platform that uses a different formalism.

Automata and Petri nets approaches Among the formal models used to define
acting models, Petri nets have been used in several works to define robotic behavior
as they naturally encompass synchronization and sequencing of different sensorimotor
processes, and in particular to represent multi-robot plans (Ziparo et al. 2011). Petri
nets can be found at the functional level (F.-Y. Wang et al. 1991) to simulate and verify
the components of a system.

ASPiC (Lesire and Pommereau 2018) proposes to define skills in the form of Petri
nets that can be combined using operators to model sequence, branching, and concur-
rency. Following this line of work, new works proposed the RobotSkill (RS) language to
define skills from which descriptive models can be automatically derived (Lesire, Doose,
and Grand 2020). The skills of the autonomous agent are defined as a SkillSet. Exten-
sions of the approach propose the use of verification tools on formal models that can
be automatically generated from the SkillSet (Albore et al. 2023), which is particularly
useful in critical robotic systems. The same toolbox can be used to analyze the behav-
ior of the executive and functional layers to detect undesired behaviors in non-nominal
states and provide useful insights for correcting the SkillSet to facilitate skill modeling.

A work using IxTeT as a planner binds each action of a plan to a corresponding user-
defined Finite State Automata (FSA) that specifies the states in which an action can



1.2. STATE OF THE ART 21

be (Chatilla et al. 1992). The model still takes advantage of a hierarchical representation
in which low-level actions are refined using procedures.

Expanding PDDL for execution Among the various acting systems that exist,
the CLIPS rule-based production system (Wygant 1989) has been used to respond to
triggered rules by executing skills. A rule is triggered by an event. In CLIPS, once a rule
is triggered, it is added to an agenda. Each rule of the agenda is then addressed with
an appropriate skill. Recent work presents the CLIPS Executive (CX) (Niemueller, T.
Hofmann, and Lakemeyer 2019), which proposes to build on CLIPS to define an acting
system for which PDDL planners can be used to guide the system. The execution
models are derived from the same PDDL file, for which PDDL has been extended to
allow execution annotations, allowing a unified model for both planning and acting.
CLIPS has been successfully deployed on the RoboCup Logistics League (T. Hofmann
et al. 2021), for which it handles the multi-agent environment with a resource allocation
system that activates a goal only if all required resources are available, improving the
agents’ goal commitment and preventing them from pursuing a goal that is not applicable
in the current context. Upon a goal execution request, a PDDL planner is called to
locally plan the goal and verify its applicability given the current world state. However,
planning does not seem to take into account the execution of concurrent goals, especially
those that share the same resources and thus cannot be reasoned on independently.

Planning with operational models Rather than extending the expressiveness of
descriptive models, the approach taken by the Refinement Acting Engine (RAE) seeks
to use directly the operational models to plan. RAE (Ghallab, Nau, and Traverso 2016)
uses its hierarchical operational model for both Acting and Planning. The extensions
brought to RAE aim to guide the deliberation of the acting system using a planner that
can directly use the hierarchical operational model. Similar to Propice-Plan (Despouys
and Ingrand 2000) and its Anticipation Module, the planner refines ahead to inform the
acting engine on which method is preferable to refine a given task. Essentially, such a
planner simulates multiple methods to select the one that maximizes some utility, such
as the efficiency of the method. Two planners have been proposed:

• RAEPlan (Patra, Ghallab, et al. 2019) is an anytime planning system that uses
Monte Carlo Tree Search (MCTS) algorithms to sample the results of low-level
commands in each method. The result of the command sampling allows the meth-
ods to be ranked by two metrics: their cost (defined as the sum of the cost of the
commands) and their efficiency (the inverse of the cost).

• UPOM (Patra, Mason, Kumar, et al. 2020), which extends RAEPlan to take into
account the nondeterministic result of commands in the selection of a method.
By design, UPOM benefits from learned heuristics to speed up the search in the
MCTS:

– Learnπ maps a tuple (τ, ξ) of a task and a state to a method and is used
when the acting system does not have time to find a method,
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– Learnπi returns the best instantiation of arbitrary parameters for a method
in a given state ξ,

– LearnH gives a heuristic for branching in UPOM.

While they propose asymptotically optimal planning approaches, both planners cannot
guarantee the long-term validity of the choices they propose, since they rely on the
sampling of operational models.

Other approaches based on the RAE algorithms have been proposed to combine
Acting and Planning:

• The simplest, Run-Lookahead (Ghallab, Nau, and Traverso 2016), calls a looka-
head planner whenever a new action should be performed, and executes the first
action of the returned plan online. In this way, the acting system copes with
changes in the environment at each step of execution. However, it seems that call-
ing the planner every time an action should be executed is unnecessary, and could
be done only when needed, and this is what Run-Lazy-Lookahead (Ghallab, Nau,
and Traverso 2016) proposes, by looking ahead only when the plan is finished, or
the current plan is no longer considered feasible by a plan validator.

• Recent work by Bansod, Nau, et al. 2021 proposes to extend Run-Lazy-Lookahead
to a hierarchical representation of the agent’s behavior, using the power of the hi-
erarchical task and goal planner IPyhop. Thus, the planner can control an acting
engine based on a hierarchical representation of the agent’s capabilities. Thanks
to its compliant interface, the user of IPyhop can easily replan from the mid-
dle (Bansod, Patra, et al. 2022), improving the responsiveness of the actor. This
is made possible by the improvements of IPyhop over GTPyhop (Nau, Bansod,
et al. 2021), and in particular the hierarchical structure of the returned plan as
a tree simplifies replanning triggered by the actor, which needs only a pointer to
the part of the hierarchical tree that failed, and gives a head start to find a new
suitable plan. However, the entire tree that has been executed will potentially be
replanned, and even unnecessary parts of the plan that were not affected by the
previous failure. IPyhopper (Zaidins, Roberts, and Nau 2023) tackles this problem
by repairing only the necessary parts of the plans, and has demonstrated faster
results than IPyhop on similar domains.

On another aspect, RAE may face problems in scaling up when it comes to its
online refinement of tasks. Dec-RAE (Li, Patra, and Nau 2021) is a formalization
of a decentralized version of the RAE algorithms to distribute the deliberation across
multiple agents, which should solve some problems related to deploying such algorithms
on a large scale.

Relying on a single model facilitates the exchange of information between delibera-
tion systems, and thus produces systems with more advanced features. In addition to
the improved features of the deliberation system, it is convenient for the roboticist to
define only a single model, rather than specifying dedicated models for each delibera-
tion system. This not only simplifies the configuration of the robotic platform, but also
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prevents semantic mismatches that could arise from representing the same capability in
different models.

1.2.4 Summary

Deliberation is still an active area of research. In particular, Acting could benefit from a
formalization of its deliberation capabilities and models. This is also highlighted by Nau,
Ghallab, and Traverso (2015), which proposes to formalize Acting in the same way that
it has been done to advance research in Planning with the PDDL language (McDermott
et al. 1998). This has been partially proposed in the book Automated Planning and
Acting (Ghallab, Nau, and Traverso 2016), which formalizes the model of an agent that
is suitable for both Planning and Acting.

By using a similar representation for Planning and Acting, it should be easier to
integrate the two functions into a larger deliberation system. Indeed, even though both
systems are often studied separately in the literature, they almost always end up working
together to propose a mixed deliberation function.

Indeed, an acting system should be coupled with an automated planner to provide
lookahead capabilities to an otherwise reactive system. Such systems therefore require
a combination of:

• Reactive capabilities for acting to adapt the behavior of individual robots or the
entire fleet to new requirements and contingencies,

• Explicit deliberation capabilities, e.g., symbolic planning, aimed at optimizing
the global behavior of the system, e.g., to minimize exploitation costs or meet
deadlines.

One obstacle to the integration of planning algorithms into acting systems is the
discrepancy in the model they use. Most approaches use a descriptive model for the
planner and a operational model for the acting system. Specifying different models
requires the robot programmer to master modeling both, and to avoid semantic mis-
matches between the two models. In addition, interaction between the two systems
requires constant translation between their internal representations and a commonly
used language to exchange information.

Different approaches have tackled this problem by relying on a common represen-
tation of plans and execution on which both reasoning systems can work. We can
summarize them as follows:

• Use the planning model as the reference and automatically extend its expressive-
ness for execution,

• Rely on the action model to plan directly,
• Use an intermediate representation that can be easily translated into acting and

planning models.
Among the proposed approaches, the second has recently been explored in

RAE (Ghallab, Nau, and Traverso 2016), a generic acting algorithm that by design can
be coupled with any planning engine to guide its deliberation. The planning algorithms
would rely on operational models, using sampling methods to anticipate the long-term
effects of executing capabilities (Patra, Ghallab, et al. 2019; Patra, Mason, Ghallab,
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et al. 2021). Other approaches proposed a unique modeling language from which both
descriptive models and operational models can be derived (Lesire, Doose, and Grand
2020), but lacked the versatility and computational power proposed in procedure-based
approaches. In contrast to other planner-centered approaches, in which the planner is
the deliberation driver, the acting engine is the top-level deliberation system. The first
implementation of RAE relies on Python as a modeling language whose expressive power
is difficult to match by planning languages.

However, as powerful as Python is, its formal analysis is challenging due to its large
core language, which makes it difficult to use more advanced planning techniques, such
as temporal and hierarchical planning techniques, which requires formal models in the
form of, e.g., chronicles as in IxTeT (Ghallab and Laruelle 1994) and Aries (Godet
and Bit-Monnot 2022). Chronicles have been shown to be suitable for Planning and
Acting in IxTeT-Exec (Lemai-Chenevier 2004), which relies on a Plan-Exec deliberation
strategy whose reactivity is therefore determined by the speed of the planner. Moreover,
the skill models used by IxTeT-Exec rely on a CSP approach, which can be challenging
for the roboticist.

1.3 Contributions of the thesis

In this thesis we present the Operational Model Planning and Acting System (OMPAS),
a new acting engine for deliberation systems. OMPAS (Turi and Bit-Monnot 2022a) can
be seen as an extension of RAE (Ghallab, Nau, and Traverso 2016), targeting multiple
agents and concurrent activities. It includes the following features:

• A refinement based acting system that supports concurrency and resource alloca-
tion,

• An acting language from which planning models can be automatically extracted,

• A unified framework for Acting and Planning with time and resources,

• The guidance of the decisions of the acting engine through continuous planning.

OMPAS extends RAE by adding native support for concurrency in operational mod-
els, and managing the interleaving of parallel tasks thanks to a system that handles the
acquisition of shared resources. The goals of this extension are to (i) provide native
support for concurrency in the system, (ii) explicitly model resources, and (iii) clearly
identify decision points in the operational model.

OMPAS uses a hierarchical representation of agent capabilities, here defined with
SOMPAS, a dedicated acting language based on Lisp. The Lisp dialect is based on the
Scheme (Moretti 1979) variant for defining operational models for RAE systems. The
language supports asynchronous execution, resource management, and explicit decision
points.

The identification of decisions should enable the guidance of the acting engine’s
decisions, e.g. by automated planning techniques. Unlike previous implementations
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of RAE, this custom language enables automated analysis of the operational model to
extract planning domains from acting domains and use dedicated tools to guide the
acting engine through decision points. The analysis is facilitated by the restricted core
of the language, which is limited to a few primitives.

We can then rely on existing planners, in particular Aries (Godet and Bit-Monnot
2022), to select the best method to accomplish each task faced by the system. The plan-
ning system can guide OMPAS in a continuous fashion and guide the runtime delibera-
tion in the acting engine. The Aries planner searches and optimizes a plan indefinitely
for all current missions, taking into account state updates and new missions.

Some of the work has been presented at international conferences and workshops.

• The paper “Extending a Refinement Acting Engine for Fleet Management: Con-
currency and Resources” was presented at the International Conference on Tools
for Artificial Intelligence (ICTAI) 2022 (Turi, Bit-Monnot, and Ingrand 2023) and
presented extensions to the RAE algorithm to better handle concurrency and re-
source management in multi-agent scenarios.

• The workshop papers “Guidance of a Refinement-Based Acting Engine with a
Hierarchical Temporal Planner” and “Enhancing Operational Deliberation in a
Refinement Acting Engine with Continuous Planning” were presented at the In-
tegrated Acting, Planning and Execution (IntEx) workshops of the International
Conference on Automated Planning and Scheduling (ICAPS) in 2022 and 2023.
Both papers proposed new ways of interleaving Planning and Acting to improve
deliberation in a RAE-like system.

1.4 Motivating example: Gripper-Door

To illustrate the approach of this thesis, we present the following running example.
Our scenario is inspired by the Gripper domain proposed in the first editions of the
International Planning Competition (IPC).

Within this domain, a robot named Robby is tasked with moving balls around dif-
ferent rooms. The robot has two grippers - the left and the right - which allow it to
grab and move objects at will. We extend our initial definition by adding doors between
rooms. Robby’s grippers can be used to open and close doors. We call this new domain
Gripper-Door.

State formulation We represent the world of Gripper-Door as a collection of state
variables, where each variable is defined by a parameterized state function sf(p1, . . . , pn)
and a corresponding value v. The following are the state functions of Gripper-Door:

• at-robby()→room returns Robby’s current location,

• pos(?b: ball)→location returns the location of an object, which can be either a
room or Robby.
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• carry(?g: gripper)→ball returns the value of the gripper, which is either empty, in-
dicating that Robby is not carrying anything, or the object that Robby is currently
carrying.

• connects(?r1: room, ?d: door, ?r2: room)→ boolean indicates that door ?d con-
nects rooms r1 and r2.

• opened(?d: door)→ boolean indicates whether a door is open or not.

Robby’s capacities Robby can perform various actions that are applicable in states
where their preconditions are met. These actions result in a new state in which the
effects have been applied. Note that Robby is limited to performing only one action at
a time. Below is a list of actions that Robby can perform:

• move(?from: room, ?to: room, ?d: door) to move from Robby’s current position,
indicated by ?from, to ?to through door ?d:
preconditions: at-robby() = ?from

connects(?from, ?d, ?to),
opened(?d)

effects: at-robby() = ?to

• pick(?r: room, ?b: ball, ?g: gripper) where ?r denotes the location where Robby
should pick up ?b using the gripper ?g:
preconditions: at-robby() = ?r,

pos(?b)=?r,
carry(?g) = empty

effects: pos(?b) := robby,
carry(?g) := ?b

• drop(?r: room, ?o: object, ?g: gripper) where ?r is the location where Robby
should drop ?b with the gripper ?g.
preconditions: at-robby() = ?r,

pos(?o) = robby,
carry(?g) = ?o

effects: pos(?o) := ?r,
carry(?g):= empty

• open(?d: door, ?r: room, ?g: gripper) opens ?d when Robby is in one of the
connected rooms and ?g is empty.
preconditions: at-robby()=?r,

connects(?r,?d,?r2),
carry(?g) = empty

effects: opened(?d):=true

• close(?d: door, ?r: room, ?g: gripper) closes ?d when Robby is in one of the
connected rooms and ?g is empty.
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preconditions: at-robby()=?r,
connects(?r, ?d, ?r2)

effects: opened(?d) := false

In this context, a problem is defined by an initial state consisting of the initial values
of the state variables, and a goal as a target value for a given state variable. The goals
are expressed as a set of new positions for the balls.

Example 1.1: Gripper-Door in a tiny house

Consider the following problem, where Robby is navigating through a house consist-
ing of a bedroom, a kitchen, and a living room (denoted lr). Four balls, b1, b2, b3, b4,
are located in different rooms, and Robby’s goal is to move them all to the bedroom
and back to the living room.

Figure 1.3: Schematic representation of the initial state.

The initial state is defined as follows:

connects(lr, d1, bedroom):= true
connects(kitchen, d2, lr):= true

opened(d1):= true

opened(d2):= false

at-robby():= lr
carry(left):= empty

carry(right):= empty

pos(b1):= bedroom

pos(b2):= kitchen

pos(b3):= lr
pos(b4):= lr

The goals are defined below:
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pos(b1)= bedroom

pos(b2)= bedroom

pos(b3)= bedroom

pos(b4)= bedroom

at-robby()= lr

1.5 Outline

The resulting contributions are presented in the following chapters.

• The Chapter 2 introduces the architecture and algorithms of the acting engine
OMPAS.

• The Chapter 3 introduces the dedicated programming and acting language SOM-
PAS, focusing on the syntax, semantics, and evaluation of programs defined with
the language.

• The Chapter 4 presents the guidance of OMPAS using planning capabilities. The
techniques used to generate planning models and to integrate the planning system
with the acting system are also developed in this chapter.

• The Chapter 5 provides an evaluation of the deliberation capabilities of the sys-
tem on the simulated Gripper-Door domain and the factory simulator Gobot-Sim.

• The Conclusion provides a synthesis and an analysis of the work presented,
followed by suggestions for improvements and avenues for further exploration.
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2.1 Introduction

In this chapter, we present the Operational Model Planning and Acting System (OM-
PAS), an acting system based on the deliberation algorithms and models of the Re-
finement Acting Engine (RAE) (Ghallab, Nau, and Traverso 2016). It extends RAE by
reasoning on the interleaving of tasks thanks to explicit resource modeling in operational
models, and lookahead techniques to schedule the access to these resources.
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In this chapter, we introduce the deliberative capabilities of RAE, beginning with
a description of the features, models, and algorithms proposed in the book Automated
Planning and Acting (Ghallab, Nau, and Traverso 2016). We then examine the limi-
tations of RAE algorithms and survey other RAE-based approaches to identify areas
for improvement that will be targeted in OMPAS. Finally, this chapter presents the
features, architecture, and deliberation capabilities of OMPAS.

2.2 The Refinement Acting Engine (RAE)

RAE is an automated acting system, developed by Ghallab, Nau, and Traverso (2016)
that executes abstract tasks given by an operator through commands sent to a robotic
platform. RAE then monitors the execution of the commands. To accomplish tasks,
RAE uses a set of executable models called skills, which can be used to refine a task. The
skills in RAE are organized hierarchically and are referred to as hierarchical operational
models.

When attempting to perform a given task, RAE first identifies a relevant skill in the
current state and then executes it. If a skill fails, a retry mechanism selects another
skill to continue performing the task. A skill may fail if, for example, a condition is not
met or a command fails. RAE has the ability to perform multiple tasks simultaneously.

Figure 2.1 illustrates the interaction of RAE with other systems in a robotic ar-
chitecture. It receives tasks from an Operator and then sends execution commands to
the Robotic Platform, which represents the lower-level stacks of the robotic architec-
ture, such as the executive and control layers in a three-tier architecture. The Robotic
Platform is responsible for updating the observed state that RAE uses to perform its
deliberation. The Robotic Platform has the ability to send events such as "battery low".
These events are handled by RAE in the same way as tasks, which involves refining
them with skills.

Similar to the Procedural Reasoning System (PRS) (Ingrand, Chatila, et al. 1996),
skills are implemented as executable procedures that are defined using an interpretable
language. This language allows the use of traditional programming constructs, such
as branching and looping, and includes primitives for accessing the RAE’s deliberation
features.

2.2.1 State representation

The reasoning functions of RAE rely on the system state. The state of RAE includes
the observed state, which is read-only and returned by the Robotic Platform, along with
an internal state that RAE and its executed procedures can update.

2.2.2 Hierarchical operational model

The skills used by RAE are defined in a hierarchical operational model on which the
acting system can reason from. This model is formalized here as an Acting Domain
(A∆). It is a tuple (W, C, T, M), where:
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Figure 2.1: An architecture implementing RAE.

• W is the set of state functions represeting the state of the world. Each state
function is of the form sf(p1, . . . , pn), where sf is the label of the state function,
and pi are the parameters.

• C is the set of commands. They are directly executable on the Robotic Platform.
In the Gripper-Door domain of the Example 1.1, the commands are pick, drop,
move, open, close.

• T is the set of tasks, the high-level capabilities of the system, e.g. put balls in the
bedroom, close all doors in the Gripper-Door domain of the Example 1.1.

• M contains the methods that can refine a given task τ ∈ T , where m represents a
method that encapsulates a skill that can perform τ . A method is characterized
by the following attributes:

– The refined task τ ,

– A list of parameters that contains the parameters of τ and may contain ad-
ditional ones,

– A set of preconditions that determine the applicability of the method in a
given state,

– The body of the method: a program that is executed to refine τ when the
method is selected.
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HTN representation of a hierarchical operational model We can represent a
hierarchical operational model using the HTN formalism, where:

• a command is represented as a node with double simple rounded edges:

c(p1, . . . , pn)

• a task is displayed as a node with double dashed rounded borders:

τ(p1, . . . , pn)

• a method is a node with double-dashed chamfered borders:

m(p1, . . . , pn)

You can find in Figure 2.2 examples of HTNs for a proposition of operational model for
the Gripper-Door domain.

2.2.3 Primitives of the operational models

The procedures used in RAE are not bound to any particular programming language.
However, it must provide these operational primitives that can be used within the body
of a method:

• Read(sf, p1,. . . , pn) returns the value of the state variable sf(p1, . . . , pn).

• Write(sf, p1, . . . , pn, v) assigns the value v to the state variable sf(p1, . . . , pn).

• Exec(c, p1 . . . , pn) requests the execution of the command c(p1, . . . , pn) on the
Robotic Platform.

• Refine(τ, p1, . . . , pn) uses RAE to find a skill to refine the task τ(p1, . . . , pn).

2.2.4 Example of hierarchical operational model in the Gripper-Door
domain

The Example 2.1 shows how hierarchical operational models are used to define complex
behaviors composed of lower-level skills in the Gripper-Door domain.

Example 2.1

Take the Example 1.1. We define the task go2(?r), the goal of which is that Robby
lands at ?r. We define the methods noop(?r) and recur(?r, ?a, ?n, ?d). The
latter is used to recursively move Robby to a neighboring room until it reaches ?r;
noop(?r) ends the recursion. The methods of go2(?r) are defined as follows:
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noop(?r)
parameters: ∅

preconditions: at-robby() = ?r
body: nil

recur(?r, ?a, ?n, ?d)
parameters: ?a: room

?n: room
?d: door

preconditions: at-robby()= ?a
?a ̸=?r

connects(?a, ?d, ?n)
body: Refine(move2room, ?a, ?n, ?d)

Refine(go2, ?r)

Similarly, the methods of the move2room(?n) task are defined as follows:

movedirect(?a, ?n, ?d)
parameters: ∅

preconditions: at-robby()= ?a
?a ̸=?r,
connects(?a, ?d, ?n)
opened(?d)

body: Exec(move, ?a, ?d)
open&go(?a,?n,?d,?g)

parameters: ?g: gripper
preconditions: at-robby()= ?a

?a ̸=?r

connects(?a, ?d, ?n)
¬opened(?d)

body: Exec(open, ?d, ?a, ?g)
Exec(move, ?a, ?d)

The hierarchical representation of these capabilities is shown in Figure 2.2.
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Figure 2.2: Hierarchical representation of the methods of the go2(?r) task (2.2a)
and the move2room(?n) (2.2b) task using the HTN formalism defined in Sec-
tion 2.2.2.

2.2.5 Deliberation of vanilla RAE

RAE deliberates on the model of the robotic agent defined in A∆. Its deliberation process
is composed of several functions that have been presented in (Ghallab, Nau, and Traverso
2016; Patra, Mason, Ghallab, et al. 2021). We present them again, with a terminology
more adapted to the formalism presented in this dissertation. Some functions have
been simplified, but the deliberation remains the same. We study them to show how
RAE handles the execution of high-level tasks, and to identify the limitations of these
functions.

Terminology The functions of RAE use the following terminology:

• τ is an abstract task or event to be refined based on the agent model defined in
A∆.

• ξ is a snapshot of the state of the system that can be obtained with the function
Get-State. It aggregates both the perceived state given by the Robotic Platform,
and the state internal of RAE. The state is represented as a collection of facts of
the form sf(p1, . . . , pn) = v, where sf(p1, . . . , pn) is a state variable, and v is
its value. It can have predicates such as opened(d1) = true, and supports more
complex state variables such as loc(r1) = (2.1, 3.5), which represents the location
of a robot r1 in 2D coordinates.
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Algorithm 2.1 Main function of vanilla RAE.
1: function Main
2: Agenda← {}
3: loop
4: for all new task or event τ to be addressed do
5: ξ ← Get-State
6: m← Select(ξ, (τ, nil, 1, ∅))
7: if m = ∅ then Output((τ), "failed")
8: else
9: Push(Agenda,

〈
(τ, m, 1, ∅)

〉
)

10: for all σ ∈ Agenda do
11: ξ ← Get-State
12: σ ← Progress(σ, ξ)
13: if σ = ∅ then
14: Remove(Agenda, σ)
15: Output(τ , "Success")
16: else if σ = retrial-failure then
17: Remove(Agenda, σ)
18: Output(τ , "Failure")

• Output(msg) is the function used to report to the Operator.

• Applicable(τ, ξ) is the set of applicable methods to refine a given task τ . A method
is applicable in ξ if its preconditions are true.

• We denote m as the body of a method that refines a given task τ . Here, a body is a
sequence of instructions that can be a RAE primitive such as Exec(c, p1, . . . , pn),
or a generic programming construct for control flow. m[i] is the ith statement of
a program.

• The Agenda is the list of all refinement stacks of all the tasks currently addressed
by RAE. It is initialized to an empty list {}. A refinement stack σ ∈ Agenda is a
LIFO list of refinements ρ = (τ, m, i, tried) where τ is an event, task, subtask, or
a goal; m is an instance of a method that matches τ ; i is a pointer to the current
step in the body of m initialized to nil (no step was executed); and tried is a set
of instances of methods that failed to accomplish τ , initialized to ∅.

The deliberation algorithm of RAE relies on four principal functions: Main handles
the initial reception of all tasks and events, and their monitoring, Select(ξ, ρ) finds a
suitable method given ρ and ξ, Progress(ξ, σ) executes the operational model of a given
refinement stack σ, and Retry(σ) handles the failure of an operational model.

Main The Main function (Algorithm 2.1) continuously loops over two things:

1. It addresses any new tasks or events τ that the acting system should face by first
finding an initial method m to refine τ using the Select(ξ, (τ , nil, 1, ))(line 6)
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Algorithm 2.2 Select function of Vanilla RAE.
1: function Select(ξ, ρ)
2: (τ, m, i, tried)← ρ
3: Candidates← Applicable(ξ, τ) \tried
4: if Candidates ̸= ∅ then
5: return Arbitrary(Candidates)
6: else
7: return ∅

function. If m is valid, a new refinement stack
〈
(τ, m, O, ∅)

〉
is added to the Agenda

(line 9).

2. It executes and monitors any refinement stack σ of the Agenda by calling the
Progress(ξ, σ) function. All tasks are progressed in a round-robin fashion, i.e.
one instruction per program at a time.

Select The Select(ξ, ρ) function (Algorithm 2.2) finds a suitable method to refine τ .
It first generates the set of applicable methods Candidates by removing the already tried
methods (line 3) from Applicable(ξ, τ). The Applicable(ξ, τ) set contains the methods
defined in the Acting Domain (A∆) that can refine τ . If Candidates is not empty, an
arbitrary method is selected and returned (line 5), otherwise ∅ is returned.

Progress The function Progress(ξ, σ) (Algorithm 2.3) executes and monitors the
operational model m on top of σ based on ξ. It executes the current statement m[i].
It handles the Exec(command), Write(assignment), and Refine(τ) primitives.
Depending on the primitive, we have the following behavior:

• Exec(command): RAE requests the execution of command on the platform
(line 13) and monitors its status until it is completed (line 4), which can result
either in a Success or a Failure.

• Write(assignment): The internal state of the system is updated with the func-
tion UpdateState(assignment).

• Refine(τ ′): τ ′ is refined with the method m′, which is obtained by calling
Select(ξ, ρ). If m′ = ∅, τ ′ is considered a Failure. The failure is propagated
to m and handled with the Retry(ξ, σ) function. If m ̸= ∅, a new refinement
(τ ′, m′, 0, ∅) is pushed to σ and σ is returned.

Upon success of the execution of an instruction, the next step of the method that
RAE should address is addressed. This statement is found using Next(ξ, σ), which
takes into account other programming constructs in m, such as branching. If there are
no more statements in m, the method is considered a Success and the refinement is
removed from σ.
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Algorithm 2.3 Progress function of Vanilla RAE.
1: function Progress(ξ, σ)
2: (τ, m, i, tried) Top(σ)
3: instruction← m[i]
4: if instruction is an already triggered action then
5: status← Execution-Status(instruction)
6: if status = running then return σ
7: else if status = failed then return Retry(σ)
8: else if status = done then return Next(ξ, σ) return
9: else if instruction = Write(assignment) then

10: UpdateState(assignment)
11: return Next(ξ, σ)
12: else if instruction = Exec(command) then
13: ExecCommand(command)
14: return σ
15: else if instruction = Refine(τ ′) then
16: ξ ← Get-State
17: m′ ← Select(ξ, (τ ′, nil, 0, ∅))
18: if m′ = ∅ then
19: return Retry(σ)
20: else
21: return Push(σ, (τ ′, m′, 1, ∅))
22:
23: function Next(ξ, σ)
24: repeat
25: (τ, m, i, tried)← Pop(σ)
26: if σ =

〈〉
then return

〈〉
27: until i <Last(m)
28: j ←NextStep(m, ξ)
29: Push(σ, (τ, m, j, tried))
30: return σ

Algorithm 2.4 Retry function of Vanilla RAE.
1: function Retry(σ)
2: (τ, m, i, tried)← Pop(σ)
3: Push(tried, m)
4: ξ ←Get-State
5: m′ ← Select(ξ, (τ, nil, 1, tried))
6: if m ̸= ∅ then
7: Push(σ, (τ, m′, 0, tried))
8: return σ
9: else if σ ̸= ∅ then return Retry(σ)

10: elsereturn retrial-failure
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Retry The Retry(σ) function is introduced in Algorithm 2.4. Retry(σ) calls
Select(ξ, (τ , nil, 1, tried)) again to find a new method for τ . The set tried of
failed methods is extended by the last tried method m (line 3). If no more methods are
applicable, τ is considered a Failure. The Failure is propagated to the top level, which
will again resort to Retry to handle the problem, and so on until either a new method
is found, or the top level of the refinement stack is reached.

Example of execution of a task in vanilla RAE To illustrate the reasoning behind
RAE, the Example 2.2 shows how the skills defined in Example 2.1 can be used by RAE
to accomplish a task.

Example 2.2: Execution of a task in the gripper-door domain in vanilla
RAE

Let us take the problem given in Example 1.1 and perform the task τ1 =
go2(kitchen) using the skills defined in Example 2.1. The state ξ is defined in
part as follows:

at-robby() := lr
connects(kitchen, d2, lr) := true

opened(d2) := false
carry(left) := empty

carry(right) := empty

RAE asynchronously receives the task τ1, and calls Select(ξ, (τ1, nil, 1, ∅))
to find a suitable method for τ1. Applicable(ξ, τ1) is the set of instances of methods
that might be executable based on the skills associated with τ1:

• noop(kitchen) is not applicable because kitchen ̸= lr,

• m1 : recur(kitchen, lr, bedroom, d1) is applicable,

• m2 : recur(kitchen, lr, kitchen, d2) is applicable.

Applicable(ξ, τ1) chooses an arbitrary method from {m1, m2}:

• If it chooses m2, Robby goes to the kitchen by first opening d2 and then
moving. This possibility is shown in Figure 2.3a. The first attempt to open
the door failed due to, e.g. due to a problem with the left gripper. RAE tries
again with the right gripper, which succeeds. The failed method is shown
in red on the HTN. Finally it calls go2(kitchen) again, the only applicable
method being noop(kitchen).

• If it chooses m1, Robby moves to the bedroom, and recursively calls
go2(kitchen) until it ends up in the kitchen. This scenario is shown in Fig-
ure 2.3b.
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Figure 2.3: Different traces of the deliberation of RAE in function of the method
chosen to refine the task τ1.

2.2.6 Limitations of vanilla RAE

Lack of lookahead capabilities In Example 2.2, it should be obvious that the task
τ1 is not guaranteed to finish, since there is a non-zero probability that Robby will
go back and forth between lr and bedroom, and this indefinitely. Without lookahead
capabilities, RAE cannot guarantee the success of a task in bounded time, especially in
these recursive cases. It is the responsibility of the programmer to handle this kind of
scenario.

By design, the deliberations of RAE can be guided by any heuristic. In particular,
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RAE could use planning techniques to make informed decisions based on their long-term
effects.

To address these problems, the version of RAE proposed by Patra, Mason, Ghallab,
et al. (2021) integrates UPOM, an anytime planner that guides the refinement of tasks
into methods. For a given task τ , UPOM suggests refining it with the most efficient
method based on current and future states.

Efficiency takes into account the total cost of the commands, and the probability
of their failure. Therefore, it handles the non-deterministic results of commands, and
should limit the number of retry.

Therefore, even if it does not guarantee the termination of the refinement, UPOM
should guide RAE to limit the number of recursions in Example 2.2.

Limited interleaving of concurrent tasks One of the key features of RAE is its
ability to handle multiple tasks simultaneously. Each task is associated with a particular
refinement stack in the agenda, and each refinement stack proceeds one instruction at a
time in a round-robin fashion. This situation is illustrated in Example 2.3, which we will
examine. In this example, RAE must deal with two tasks received at the same time.

Example 2.3

Let us define a new task place(?o, ?r), which places an object in the given room.
Three methods can be defined to perform this task:

place_noop(?o, ?r)
parameters: ∅

preconditions: pos(?o) = ?r
body: nil

move&drop(?o,?r,?g)
parameters: ?g: gripper

preconditions: carry(?g) = ?o
body: Refine(go2, ?r)

Exec(drop, ?o, ?r, ?g)
pick&drop(?o,?r,?g,?p)

parameters: ?g: gripper, ?p: location
preconditions: pos(?b) = ?p,

?p ̸= Robby

body: Refine(go2, ?p)
Exec(pick, ?o, ?p, ?g)
Refine(go2, ?r)
Exec(drop, ?o, ?r, ?g)
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Figure 2.4: Hierarchical representation of the skills of place(?o, ?r) in the RAE
formalism.

Now, let us take the problem given in Example 1.1, where the initial state is
defined as:

at-robby() := lr
carry(left) := empty

carry(right) := empty
pos(b1) := bedroom
pos(b2) := kitchen

connected(lr, d1, bedroom) := true
connected(kitchen, d2, lr) := true

opened(d1) := true
opened(d2) := false

...

In this context, RAE should face two tasks at the same time: τ1 : place(b1, lr)
and τ2 : place(b2, lr). We assume that the refinement of τ3 : go2(bedroom) is in-
formed by a planner, e.g. UPOM, and thus RAE makes the most efficient decisions.
The hierarchical representation of the execution trace of tasks τ1 and τ2 is shown
in Figure 2.5a and Figure 2.5b, respectively. The execution trace is as follows:

Executed command High-level task
move(lr, bedroom) place(b1, lr)
x open(d2, lr, left) place(b2, lr)
move(bedroom, lr) place(b2, lr)
x pick(b1, bedroom, right) place(b1, lr)
. . . . . .

These traces show that several commands failed because their preconditions
were not met at the time RAE requested their execution. This is due to the
execution of τ1 and τ2, which create threats to their respective execution. This
means that if the skill currently running to refine one task requires the execution
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of a command, it may pose a threat to the execution of the skill of another task,
rendering the skill inapplicable.

place
(b1, lr)

pick&move
(b1, lr, right, bedroom)

go2
(bedroom)

movedirect
(lr, kitchen, d1)

move
(lr, bedroom)

go2
(bedroom)

noop
(bedroom)

pick
(b1, bedroom, right)

pick&move
(b1, lr, left, bedroom)

. . .

(a)
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Figure 2.5: Hierarchical decomposition of two tasks that are executed in parallel
in vanilla RAE. Processes in red failed due to inapplicable commands or failure of
a subtask in a method.

The example we have just examined highlights a fundamental flaw in RAE’s design:
it is ill-equipped to effectively handle multiple tasks competing for the same resources.
This shortcoming leads to avoidable failures that could be mitigated by explicitly re-
questing exclusive access to shared resources, for example, by specifying the exclusive
use of a robot like Robby for the task of fetching a ball.

Vanilla RAE, as originally defined, lacks an explicit resource concept. In vanilla
RAE, resources can be managed in two primary ways: either by representing resource
status with a state variable, such as lock(Robby), indicating whether Robby is in use,
or by implementing locking mechanisms directly in method bodies using programming
language constructs.

In either case, the system should have the ability to reactively manage exclusive
resource usage. However, the burden of implementing these utilities falls on the robot
programmer, which is less than ideal. Ideally, the acting engine should provide native
resource handling solutions, relieving the programmer of this responsibility.

Furthermore, both resource management approaches limit the system’s ability to
reason about resource access and, consequently, task execution. In the first case, the
state variable simply indicates that a resource is in use, without specifying which task
is using it. In the second case, the use of programming language mutexes restricts the
acting system’s control over the timing of resource access.

In addition, vanilla RAE lacks the ability to induce concurrency in the body of
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methods. Concurrency is limited to the high-level tasks.
Ideally, the acting system should have the ability to orchestrate the concurrent

progress of multiple tasks, making informed decisions such as prioritizing one task over
another based on urgency or the potential to optimize overall system performance.

Therefore, our goal is to build on RAE and introduce a new acting system that
not only inherits RAE’s deliberation features for high-level task execution through a
hierarchical operational model, but is also better adapted to handle concurrent tasks
in parallel. This involves active deliberation about their coordinated execution, with
two primary goals: (i) avoiding failures, deadlocks, and dead-ends that can result from
simultaneous execution, and (ii) improving system performance by reasoning about task
execution.

2.3 The Operational Model Planning and Acting System
(OMPAS)

The Operational Model Planning and Acting System (OMPAS) is a novel acting sys-
tem that uses hierarchical models to perform multiple high-level tasks simultaneously
by executing commands on a robotic platform. In its role as RAE, the system accom-
plishes high-level tasks by decomposing them using the skills defined in the hierarchical
operating model, and manages skill failures by resorting to the Retry function to find
another skill to perform the task it is refining. In addition, OMPAS manages the ac-
quisition of resources required by skills during execution. The system explicitly signals
the acquisition of a resource to manage concurrent access to limited resources. OMPAS
supports procedures that can be executed concurrently within their bodies. OMPAS can
also delay the instantiation of parameters until they are needed in the method body.
Decision points are made explicit, allowing the acting system to use any heuristic to
inform its decision, such as considering the long-term effects of the decisions, similar to
RAE.

In this section, we present the architecture of OMPAS and its deliberation functions,
along with their algorithms.

2.3.1 Architecture of OMPAS

The OMPAS architecture shown in Figure 2.6 is based on the RAE architecture (see
Figure 2.1). Like RAE, OMPAS gets its assignments in the form of tasks from the
Operator or events from the Robotic Platform.

The internal architecture of OMPAS consists of several managers, each responsible
for one or more deliberation functions of OMPAS. These managers operate in parallel
and can communicate with each other through asynchronous channels.

The Platform Manager (PM) is responsible for executing commands on the
Robotic Platform and receiving perceived states and events from it. It monitors the
command status for each request returned by the platform. The Platform Manager is
the only manager that interacts with the lower-level stack of the robotic system, e.g.
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the executive layer.
The State Manager (SM) manages both the perceived state provided by the Plat-

form Manager and the internal state that OMPAS can reason about. It provides secure
read and write access to the state and provides reasoning functions, such as the moni-
toring of boolean expressions whose values depend on the state.

The Execution Manager (EM) is responsible for executing and monitoring tasks
and events that OMPAS must respond to. Each task corresponds to a procedure that
the Execution Manager executes and monitors. Tasks are received directly from the
operator, while events are assigned by the Platform Manager. The role of the Execution
Manager can be compared to the main loop of RAE (see Algorithm 2.1).

The Resource Manager (RM) provides secure access to shared resources among
multiple procedures. It handles multiple resource access requests and can reposition
the access queue for a particular resource to increase system efficiency. The Resource
Manager can make conscious decisions about which requests to approve in order to
maximize a metric, such as minimizing the total time required to complete all ongoing
tasks.

The Acting Manager (AM) is responsible for refining tasks into methods and
instantiating free variables within method bodies. It also keeps track of all deliberative
decisions made by OMPAS. This deliberation trace takes the form of an Acting Tree,
which represents the hierarchical execution of the processes. The Acting Tree is used to
track the refinement of tasks and replaces the Agenda used in vanilla RAE.

The purpose of the PLanner Manager (PLM) is to interface with an external
planner that informs OMPAS of choices to make during procedure execution. The plan-
ner advises OMPAS on preferred methods for task refinement, instantiation of method
parameters, and sharing of resources among tasks that request them. The Acting Man-
ager is used as a middleman between the reactive execution of the Execution Manager
and the predictive execution of a planner. We only describe its interfaces with other
managers here, more details on its internal workings are given in the Chapter 4.

2.3.2 Platform Manager (PM)

The Platform Manager (PM) abstracts the deliberation of OMPAS from the specifics of
a Robotic Platform. We define a Robotic Platform as any robotic system that is capable
of perceiving its environment, and acting in its environment by executing commands.

The Platform Manager uses a standard interface to communicate with the robot
platform, achieved through the use of generic middleware or frameworks such as the
ROS (Quigley et al. 2009).

Command execution requests can be sent from the Platform Manager to the Robotic
Platform, and their execution status can be received and transmitted to other modules
of OMPAS. The Robotic Platform transmits perceived states and events to OMPAS
through the Platform Manager.

Execution of commands The Robotic Platform should accept requests to execute
commands, and cancel them. An execution request is received from the Execution
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Figure 2.6: Architecture of the Operational Model Planning and Acting System. The
Execution Manager, State Manager and Platform Manager inherit from the vanilla RAE
architecture (see Figure 2.1). The Resource Manager, Acting Manager and PLanner
Manager bring additional deliberation features to look ahead.
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Manager (EM) following the call to Exec(command) in the body of a method. For a
given command, EM waits for the command request to complete in order to resume the
execution of a skill. Each execution request is associated with a unique ID, which can
be used by the EM to monitor the execution of a particular command.

In OMPAS, the execution cycle of a command follows a specific pattern. First,
the command enters a pending state until the Robotic Platform processes it. Next,
as the command is executed, the platform may send progress information to OMPAS
to estimate the time remaining. When the command is complete, the Robotic Platform
sends a notification of either Success or Failure. Regardless of the outcome, the command
is considered completed. Finally, the skill responsible for the command can resume its
execution.

A cancel request can be sent at any time during the execution cycle of a command.
It can be requested in the body of a method by calling the Cancel(ID) primitive. The
cancel request is propagated to the Robotic Platform, which returns a Cancelled state
that can either be caught in the body of the method, or treated as a failure by OMPAS
and therefore handled by the retry mechanism of the acting engine.

Update of the state The observation of the robot state of OMPAS is managed by
the Platform Manager, which interacts with the other parts of the Robotic Platform to
collect the information from the perception and knowledge management systems. The
facts are transmitted by the Platform Manager to OMPAS through a unique interface.
The State Manager is directly provided with the facts by the Platform Manager, which
securely manages the update of the system status. The facts must be formatted so that
the State Manager can support them.

2.3.3 State Manager (SM)

The State Manager (SM) aggregates all the facts that OMPAS can use to reason about
a single state ξ. Certain facts come from the Platform Manager, while others reflect
internal facts used by the methods executed in OMPAS.

In OMPAS, facts are defined by the date they were recorded by the State Manager
and a key-value pair. The key in this pair is a state variable expressed in the format
sf(p1, . . . , pn), where sf is the name of the state function and pi are the instantiated
parameters. The state variable can take any value compatible with the procedural
language used to define the body of the method.

OMPAS distinguishes between static and dynamic state functions:

• Static state functions have a value that cannot change, i.e. their value remains
constant throughout execution. They can be used to represent static properties,
such as the name of a robot.

• Dynamic state functions, on the other hand, represent state variables whose val-
ues can change during execution, and multiple facts representing the same state
variable can be recorded during execution. These state variables can be used to
represent the position of a robot that is to evolve at runtime.
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The state ξ consists of two parts: the internal state, which contains all OMPAS-
scoped facts and can be updated by methods, and the perceived state, which relies solely
on updates from the Platform Manager. A fact can only be defined in a subset of the
state, and facts in the perceived state are read-only.

Functions to manipulate the state The value of a fact is retrieved with the function
Read(sv), which returns the last value v of sv. The internal state can be changed with
the following functions:

• Write(sv, v) adds the key-value pair (sv, v) to the internal state of OMPAS. If
the key is already defined, the value will be overwritten.

• Erase(sv, v) removes the key-value pair (sv, v) from the state, meaning that sv

is no longer defined.

Fluent monitoring In OMPAS we define a fluent as an expression whose value de-
pends on at least one state variable. Such a fluent can be used to wait for or monitor a
certain state of the system, e.g. waiting for a robot to be at a certain location in order
to continue the execution of a skill. To do this, the State Manager includes a feature to
monitor the value of a boolean fluent, fluents that evaluate to boolean values until their
value becomes true. To access this feature, the body of a method can use the primitive
Wait-For(fluent), where fluent is a boolean fluent. The functionality of Wait-For
is illustrated in the algorithm 2.5. The function sends a new boolean fluent to monitor,
and gets back a FluentID that it can use to wait until the State Manager notifies it that
the fluent has become true.

The Execution Manager uses the MonitorFluents function to monitor one or more
fluents simultaneously. The Algorithm 2.5 describes the operation. When a new boolean
fluent f is requested for monitoring, it is added to the list of fluents to be monitored.
A unique FluentID is assigned to f , which is sent back to the subscriber executed in
the Execution Manager. Each time the state is updated, all fluents are re-evaluated
with the updated state. If a fluent becomes true, it is removed from the list of fluents
and the subscriber is notified. All propositions are re-evaluated regardless of the facts
added to the state. The evaluation time is a function of O(|fluents| × |f |) and can be
problematic when monitoring many propositions at once. An improved algorithm could
use the pattern-matching capabilities of the RETE (Forgy 1989) algorithm to verify
fluents only when there is a change in the value of one of the state variables of which
they are composed.

2.3.4 Execution Manager (EM)

The Execution Manager (EM) is responsible for overseeing the execution of all concur-
rent tasks. Unlike vanilla RAE, concurrent tasks are not processed in a round-robin
fashion. Each new task is executed in its own thread.

Algorithm 2.6 represents the adaptation of the main algorithm to deal with asyn-
chronous task execution. The execution of the function Exec-Task(τ) (presented in
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Algorithm 2.5 Fluent monitoring process of OMPAS.
1: function Wait-For(fluent)
2: FluentID ← SendFluent(f)
3: WaitEndMonitoring(FluentID)
4: function MonitorFluents
5: Fluents← {}
6: loop
7: for all new fluent posted (f, subscriber) do
8: FluentID ←Insert(Fluents, f)
9: SendBackID(subscriber, FluentID)

10: if StateUpdated then
11: ξ ← Get-State
12: for all (FluentID, f) ∈ Fluents do
13: r ← Eval(f, ξ)
14: if r=true then
15: Remove(FluentID)
16: NotifyEndMonitoring(FluentID)

Algorithm 2.7) is spawned in a new thread (line 5). Exec-Task(τ) handles both the
refinement of the task τ by the method m and the execution of the body of the method.
Each thread is associated with a handle, which can be used to monitor the execution of
a task τ . If the thread is marked as terminated (line 9), the result of the evaluation of
τ is printed.

With this design, the language used in the body of the method should ensure thread
safety. In particular, the side effects of the primitive should prevent any race conditions
and provide safe access to shared memory.

Unlike the Main function of RAE, concurrent task execution relies on the system’s
thread scheduler, allowing for easier utilization of multiple CPUs. However, this reduces
control over thread order, resulting in different task execution rates.

In RAE systems, the execution of tasks and commands are handled in different ways.
The former relies on the acting engine and the latter relies on the Platform Manager
(PM).

Command execution When a command c is to be executed in a method m, a request
is sent to the Platform Manager and the Execution Manager holds the execution of m

until c is finished. The execution cycle of the command has already been defined in
Section 2.3.2.

Task execution The execution of a task resorts to the primitive Exec-Task(τ)
presented in the Algorithm 2.7. First, all methods Applicable(ξ, τ) in the current
state ξ are created. Then the function Select-Method(τ, M) selects a method
from Candidates = Applicable(ξ, τ) \ tried. By default, it selects the first method
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Algorithm 2.6 Main algorithm of OMPAS in which each new task τ is executed in
a dedicated thread. The initial refinement of τ is part of the function call Exec −
Task(τ)(see Algorithm 2.7).

1: function Main
2: Handles← {}
3: loop
4: for all new task or event τ do
5: h← Spawn(Exec-Task(τ, ∅))
6: for all h ∈ Handles do
7: if Terminated(h) then
8: r ← Result(h)
9: Output(r)

10: Remove(Handles, h)

Algorithm 2.7 Adaptation of RAE’s procedure for executing a task τ . The procedure
arbitrarily selects a method m that is applicable in the current state ξ and has not been
tried before.

procedure Exec-Task(τ, tried)
Mapp ← Applicable(ξ, τ)
Candidates←Mapp \ tried
m← Select-Method(τ , Candidates)
if m = ∅ then ▷ No untried applicable method left

return failure
res← Exec-Body(m)
if res = failure then ▷ Retry, with m forbidden

return Exec-Task(τ , tried ∪ {m})
else

return res

of Candidates, but other systems can guide the selection, e.g. with a learned heuristic
or an anytime planner such as UPOM (Patra, Mason, Kumar, et al. 2020). The body
of the returned method is executed with the Exec-Body(m) function. If the result
of the execution is a Failure, the acting engine tries to execute τ again by selecting a
method from those that are still applicable and have not yet been tried. The function
Exec-Task(τ) is called until either a method is a Success or no more methods are
applicable. In the latter case, τ is an error.

This task execution procedure is the same whether τ is a top-level task or a subtask
of a method. While the overall system remains simple, most of the complexity of the
procedure lies in the Exec-Body(m) function, which is responsible for interpreting the
program of the user-defined body.
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2.3.5 Resource Manager (RM)

To ensure safe execution of concurrent procedures, OMPAS relies on its Resource Man-
ager (RM), which guarantees secure access to resources. The Resource Manager handles
multiple resource access requests and maintains a dedicated wait list for each resource.
Consider the problem presented in Example 2.3, where the robot Robby is required to
perform two simultaneous tasks, τ1 and τ2. To ensure safe operation, both tasks must
request exclusive access to Robby to perform their respective activities.

While mutexes could handle this, we propose a resource system that allows for
non-unary resources and richer waitlist management than First In First Out (FIFO).
The Resource Manager has the freedom to define its own allocation strategy to improve
overall system performance without necessarily guaranteeing correct access to a resource.

In complex robotic systems, efficient resource allocation is critical to ensure robust
behavior and optimize operations. In situations where different tasks must be prioritized,
the Resource Manager can choose to reserve a portion of a resource for a potentially
high-priority task. For example, reserving twenty percent of a medical supply robot’s
load can allow it to respond to an urgent request without having to unload or complete
other deliveries before committing to the urgent one. The allocation strategy is designed
to be guided by any heuristic, such as a scheduling system. Thus, the Resource Manager
cannot guarantee the order in which resources will be accessed, so it is uncertain when
a resource access request will be granted. In other words, a request could potentially
experience arbitrary delays if the Resource Manager decides to delay granting its request.

Even if the Resource Manager guarantees secure resource access, it relies on well-
programmed methods. This is similar to the mutex in other programming languages,
where explicit access within the method body is required. However, we ensure that
proper programming of the method body will guarantee no race conditions in resource
acquisition.

The proposed resource design has two goals: to allow exclusive use of resources and
to allow the Resource Manager to define an allocation strategy that meets the robustness
and efficiency requirements of a robotic system.

2.3.5.1 Definition of a resource

We define a resource r as an object with an initial capacity Cinit. A resource r can be
acquired at time t with an amount c ≤ Ct ≤ Cinit, where Ct is the current capacity of
r. Upon acquisition, the Resource Manager ensures that no race condition occurs that
would lead to overallocation, and the current capacity is immediately reduced by the
acquired amount c.

We distinguish between unary and divisible resources:

• A unary resource can be acquired by one task at a time. It has an initial capacity
of one unit, and only one unit can be requested.

• A divisible resource has an initial capacity of Cinit. Any amount c of the resource
can be acquired as long as c ∈ [0, Cinit].
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When a resource is released, its capacity is increased by the amount borrowed.

2.3.5.2 Acquisition of a resource

When a resource r with amount c is requested by a procedure, the Execution Manager
sends a request to the Resource Manager. If the request is valid, i.e. c ≤ Cinit(r),
then the Execution Manager holds the execution of the procedure until the acquisition
is granted. The Resource Manager grants the acquisition according to its allocation
strategy. The allocation strategy can be different depending on the robot domain.

Default allocation strategy based on priorities If no allocation strategy is defined
for the Resource Manager, requests are granted as follows. If r is available and the queue
is empty, the request is granted directly. Otherwise, the request is queued and given a
priority.

Priorities are in descending order. Whenever a new request is added to the queue,
the queue is re-sorted to accommodate the new request. If two requests have the same
priority, the earliest request date takes precedence. The default priority is 0. With this
priority system, urgent operations take precedence over accessing a resource, such as
recharging a robot with critical battery levels.

Example 2.4 provides a runtime example in which asynchronous acquisition requests
are received by the Resource Manager. The allocation strategy is based on the priority
of each request.

Example 2.4

Let us take a medical supplies delivery drone that has a load limit of 20kg. It first
receives a request to deliver 10kg of medical supplies, the priority is low, 5. The
associated request r1 is granted immediately and the current capacity Ct is reduced
to 10kg. A second request r2 requires 8kg of the space with a medium priority of
10. Since the strategy is to keep twenty percent of the load for high priority tasks,
r2 is queued until more space becomes available. A third request, r3, requests 12kg
with a medium priority of 11. Like r2, r3 is queued, but before r2 due to its higher
priority. A fourth request r4 arrives with a high priority of 15, requesting 3kg. The
fourth request is granted immediately, and the capacity is now 7kg. The task that
requested r1 is now terminated, meaning that 10kg of the load is free to be used
again; r3 is granted and the capacity is now 5kg; r2 is still waiting. . .

The proposed design utilizes resources to enable secure concurrent execution of
robotic programs across domains. This framework also provides an opportunity to
apply high-level allocation strategies to optimize the overall robotic system strategy by
considering shared resource access by robotic programs.
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Figure 2.7: Example of an Acting Tree representing the execution of the task t1 =
place(b1, lr) and τ2 = place(b2, lr) of Example 2.3. The Acting Tree is only partially
displayed. The methods of the tasks place use the new resource acquisition feature of
OMPAS to request the exclusive use of Robby during the execution of the skill. Processes
in red have failed, triggering a retry of the task using a different method. We have an
example of a retry for task τ1.

2.3.6 Acting Manager (AM)

The Acting Manager (AM) is responsible for refining tasks and instantiating variables in
the body of methods. The refinement and instantiation request is sent by the Execution
Manager, which holds its execution until the Acting Manager responds. In order to
carry out its deliberations, in particular to refine tasks, the Acting Manager should be
aware of the choices made previously. In particular, when retrying a task, the Acting
Manager should know what methods have been tried previously.

To facilitate access to the execution traces, the Acting Manager has an internal rep-
resentation of the execution of programs on OMPAS. The execution of procedures is
represented as a tree. The structure of the tree extends a HTN by adding the repre-
sentation of the acquisition and instantiation of variables in the body of methods as
sub-processes of a method. The tree is built using the information provided by the Exe-
cution Manager. We call it an Acting Tree, and more details are given in the Chapter 4.
An example of an Acting Tree is shown in the Figure 2.7.

2.3.6.1 Selection of methods

At runtime, the selection of a method to refine a task τ is handled by the func-
tion Select-Method(τ, M) called in the function Exec-Task(τ) presented in Al-
gorithm 2.7. The Select-Method(τ, M) uses the Acting Manager to select a suitable
method, taking into account the methods applicable in the current state of the sys-
tem and the methods previously tried. The candidates are obtained by computing
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Candidates = Applicable(ξ, τ) \ tried, the set of methods that can be used to refine
the task τ . To choose a method among the candidates, several strategies are available
in OMPAS. Like RAE, OMPAS can rely on an external program to provide a heuristic
about which method to choose, e.g. by relying on a task planner. The design of OMPAS
takes into account the possibility to plug in such a program. The following strategies
are available in OMPAS.

Greedy selection The most basic way to refine a task is to select the first method
from Candidates. This approach is deterministic.

Random selection Like vanilla RAE, OMPAS can refine τ by arbitrarily selecting m

among the Candidates. This is a non-deterministic approach that may be more robust
in some contexts.

Cost-based selection Candidates can be sorted with a cost. The cost is calculated
with the function Cost(ξ, m, λcost), which returns the cost of a given method. Once the
cost of all candidates is computed, Candidates is sorted in ascending order so that the
method with the lowest cost is the first element of the list. Then the first element in
the list is selected.

Planning-based selection In other versions of RAE, the acting system resorts to a
planner to find the best method m to try to refine τ , taking into account the long-term
effects of m.

We use the Lazy − RefineAhead approach, which refines the entire hierarchical
network down to commands. It is similar to Run − Refine − Ahead (Bansod, Nau,
et al. 2021). However, our approach relies on a planner in which time is explicit to
represent concurrent execution in the body of the methods. It is Lazy because it uses
the same hierarchical decomposition for the entire tree while the plan is valid.

In a previous work (Turi and Bit-Monnot 2022a), we introduced the
PlanSelectMethod(τ, tried) (see Algorithm 2.8). The most important part of the al-
gorithm is the call of the planner (line 7), which, based on the current state ξ, tries
to find a plan that refines the task τ . This plan is then analyzed (line 8) to identify
the method m used to refine τ . If this succeeds and the method is one of the allowed
methods in Candidates, then the method is returned to the Execution Manager (EM)
(line 10). Otherwise, the system may use some arbitrary heuristic to choose one of the
allowed methods (line 12). The latter case might occur especially if the planner fails to
find a plan within the allotted time. Note that if τ is a subtask of a method that was
selected based on a plan π, then τ will also appear in that earlier plan. In this case,
it is possible to check if the previous plan π is still valid, and if it is, avoid calling the
planner to compute a new one (lines 5-6).
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Algorithm 2.8 Plan-based method selection for a task τ .
1: function PlanSelectMethod(τ, tried)
2: m← ∅
3: ξ ← Get-State
4: Candidates ← Applicable(τ , ξ) \ Tried(τ)
5: π ← Get-Parent-Plan(τ)
6: if π = ∅ or not Is-Valid(π) then
7: π ← Call-Planner(τ , ξ)
8: m ← Get-Method-From-Plan(π, τ)
9: if m ̸= ∅ ∧m ∈ Candidates then

10: return m
11: else
12: return Arbitrary(Candidates)

2.3.6.2 Arbitrary selection

OMPAS provides the ability to arbitrarily select a value from a set of options. The in-
stantiation takes into account the state of the parameter at the moment of instantiation,
not the state at the beginning of the execution of the method.

This feature is implemented in OMPAS by the function Arbitrary(set, λ), which
selects an element e ∈ set, using λ as a heuristic for selecting e. The λ heuristic is
optional. By default, the Arbitrary(set, λ) function returns the first element of the
set.

The λ function is given by the robot programmer to improve the selection of the
element given a domain. However, as for the other deliberation functions of OMPAS,
the acting system is free to ignore λ and use its own heuristic to select e, e.g. by relying
on a task planner that will be able to take into account the long-term effects of such a
choice.

The Acting Manager has the responsibility for some key decision points of the acting
system. The choice to keep these deliberation features from the Execution Manager
is to decouple the execution from the deliberation, and to facilitate the integration
of a planner that looks ahead of the execution to anticipate the decision points the
Execution Manager will face. By keeping an internal representation of the execution
trace, the Acting Manager can perform its deliberation as intended in refinement based
acting engines, but also have a representation of the current state of the system that is
more amenable to a task planner.

2.3.7 PLanner Manager (PLM)

The function of the PLanner Manager (PLM) is to interact with a planner to guide the
deliberations of OMPAS.

The PLanner Manager creates a planning problem (PΠ) based on the Agenda, the
system state (including both perceived and internal states), and the resource state (pro-
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vided by the Resource Manager).
The task planner is used to anticipate the executable sequences that can be achieved

from the current state of the system. Its primary function is to avoid deadlocks or dead
ends. The planner should anticipate OMPAS’s decisions to avoid such flows and inform
about the necessary decision to be made. These informed decisions should result in safe
execution flows, or even execution flows that improve overall system performance.

Once the task planner has found a solution, the PLanner Manager should analyze
the plan and extract data that will guide the various reasoning processes of OMPAS.

The PLanner Manager is responsible for updating the planning problem at runtime
based on new execution traces, facts, and changes in resource allocation.

Instantiation of the planner Each planner may have a different representation of
the planning problem, and it is the role of the PLanner Manager to build it given the
information accessible in OMPAS. To build a planning problem, the PLanner Manager
has access to the execution traces of the system in the form of an Acting Tree given
by the Acting Manager. The state is retrieved from the State Manager. Only the
state variables that are involved in the planning model are retrieved, which reduces the
size of the state encoding in the planning problem. The current state of the resources
is also encoded in the planning problem so that the task planner can anticipate their
acquisition.

Output of the planner The plan of the task planner is analyzed to determine the
following information:

• For each task OMPAS encounters, the method that refines it,

• For each arbitrary variable, the element chosen to instantiate it,

• The order in which resources are acquired for different tasks.

Once the plan has been analyzed, the PLanner Manager informs the Acting Manager
and the Resource Manager of the decisions that were made by the planner. This infor-
mation is for the sole purpose of informing the managers. In other words, the managers
are free to ignore it.

Update of the planner Because the planning process runs concurrently with exe-
cution, it’s necessary to update the planning problem to reflect the current state of the
system.

Therefore, managers must inform the PLanner Manager when they update the data
structures shared with it. Thus, whenever the Acting Tree, the world state, or the
resources evolve, the PLanner Manager should be kept informed.

The PLanner Manager analyzes any changes to determine if they will affect the
planning process, possibly causing it to no longer produce a valid solution in light of the
new system state. If such an impact on the planning problem is detected, the PLanner
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Manager can restart the planner with an updated problem that takes into account the
new system state.

It should be noted that certain planners have the ability to sustain their planning
search process by consistently updating the planning problem, starting from a previous
solution or even repairing it. The goal of PLanner Manager is to take advantage of the
special features of a particular planner to improve the call to a planner, thus ensuring
optimal guidance for OMPAS.

2.4 Conclusion

This chapter introduced OMPAS, a new deliberation system based on the deliberation
capabilities of RAE. First, a presentation of vanilla RAE introduced the foundation
on which OMPAS is built. We first presented the features of RAE, the formalism
of hierarchical operational models, and the algorithms of the deliberation functions of
RAE. Then we analyzed the deliberation limitation of vanilla RAE. Based on what other
versions of RAE have proposed, we defined what new deliberation functions OMPAS
should provide.

OMPAS targets the safe execution of multiple concurrent tasks in a multi-robot
environment. It proposes an acting system that allows the parallel execution of high-
level tasks, and supports concurrency in the skills executed by the acting engine to refine
those high-level tasks. To ensure secure execution of concurrent procedures, OMPAS
exposes a resource system that can be used in the skills to ensure exclusive access to
shared resources.

The proposed architecture decomposes OMPAS into a set of modules called man-
agers, where each manager is responsible for one or more deliberation features. Some
deliberation features are inherited from RAE, such as executing and monitoring tasks,
commands, and skills, and refining tasks into methods. Others are aimed at extending
the deliberation features exposed by OMPAS to allow the instantiation of parameters
in the body of methods. In addition, the acting manager is responsible for the strategy
of allocating resources among the different skills by requesting them.

This decomposition of OMPAS into several modules should facilitate the integration
of more advanced deliberation features directly into the acting engine. For example, one
could extend the State Manager to infer new facts from the state, or to detect erroneous
behavior by analyzing the state. We could also extend the Platform Manager to check
the applicability of commands by using models of the commands. These models could
also define invariants that should hold during the execution of the commands. In this
thesis, we present the integration of a hierarchical temporal planner to guide several
deliberation functions of OMPAS. This integration is presented in the Chapter 4.

Based on the architecture and deliberation functions of OMPAS, the next chapter
presents an acting language dedicated to OMPAS.
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3.1 Introduction

In the previous chapter we introduced the Operational Model Planning and Acting
System (OMPAS), a new acting system that aims at the execution of multiple tasks
using a collection of skills in the form of programs. The programs are defined as a
hierarchical operational model that describes the skills of a robotic agent by the arbitrary
composition of these programs. With such a model, the goal of the acting engine is to
execute these programs and resolve the nondeterministic choices of these programs using
the deliberation features of the acting engine.

The formalism of OMPAS allows any programming language to be used to define
these skills, as long as it exposes primitives to take advantage of the capabilities of the
acting engine. We call such a language an acting language.

In the literature we find several languages for similar purposes, often called control
languages. These typically differ from an acting language in that they do not allow non-
deterministic execution flows. Control languages allow defining the robust and reactive
behavior of robotic agents used by the controller in a three-layer architecture. Over
the years, several control languages have been developed, each offering specific features.
While each language has its own advantages, most of them do not integrate all the acting
features required by OMPAS, and in particular the explicit use of the resources required
for the execution of skills. Therefore, we decided to develop SOMPAS, a new acting
language based on a procedural language with a restricted core, and which implements
acting primitives as modules.

The chapter is organized as follows. First, we review the existing modeling languages
used to define the behavior of the robotic agent at the control level. Based on this review,
we present a new procedural language that is used as a backend for our acting language.
We then present the acting primitives available in SOMPAS, as well as the facilities
provided by the language to define a hierarchical operational model that can be used
by OMPAS to perform high-level tasks. The next chapter is dedicated to the use of the
hierarchical operational model defined in SOMPAS to guide the deliberation of OMPAS
with heuristics obtained from a hierarchical temporal planner.

3.2 Acting languages: a review of the literature

In many robotic systems, multiple models are used at different levels of the software
architecture. In particular, the deliberation and control systems use different models
to perform their tasks. While planning systems traditionally use descriptive models,
control systems use what we call operational models. Descriptive models explicitly de-
scribe the possible evolution of the state of a system for each action that a robot can
perform. Operational models define how those same actions can be performed by this
same robot. While descriptive models usually take advantage of a deterministic model
of the dynamics of the system, operational models do not have this luxury and should
take into account unexpected events and possible failures, both of which are inherent in
real robotic systems.
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For several decades, languages have been developed to unify the modeling of planning
domains. In this sense, PDDL and its derivatives have been widely used by the planning
community to drive the development of planning systems.

In contrast, the field of control languages is more diverse. At first glance, each control
system takes advantage of its own dedicated control language. This is limiting, as one
would have to re-model the system when switching from one control system to another.

When choosing between different control systems, the robot programmer will cer-
tainly make his choice depending on the capabilities of the control system in question.
However, the control language used is also of primary importance, as it is the main link
between the robot programmer and the system.

In this section, we review several languages that have been used in various control
systems. By reviewing these languages, we have identified the main features that a
control language should implement. We also group these languages according to their
nature. Finally, we present an acting language that meets the needs of OMPAS.

3.2.1 Features of an acting language

An acting language is essentially a control language extended with deliberation prim-
itives. Control languages are used to define reactive and robust behavior for robotic
systems. In this sense, we believe that a control language should implement the follow-
ing features:

• Executing and monitoring commands on the robot platform. In fact, the first role
of a program is to execute commands; the rest should define the context in which
they are executed and control the choice between different sequences of commands.

• The control language should allow to adapt the behavior according to the known
state of the world. Therefore, a control language should provide a primitive that
allows reading the knowledge base of the system. More advanced features to
update the knowledge base might also be useful.

• The language should implement basic programming constructs such as branches
and loops to define the control flow of a program.

• The definition of event-based behavior is what makes a model robust and reactive
to events. Possible events include those that are exogenous as well as those that
are internal to the control system. One might want to monitor the state of the
system, or define a program whose behavior changes as a function of the other
programs running concurrently in the system.

• Concurrency should be allowed in the control system. Indeed, it is highly unlikely
that a robotic system can define its behavior by relying solely on a sequence of
actions. Moreover, it is possible to control a fleet of robots that perform tasks
in parallel. Therefore, the control language should allow concurrent execution of
programs. In the presence of concurrency, synchronization is essential, especially
when order is required in the execution of multiple tasks.
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• At the control level, an execution error can always occur. For cognizant errors, the
roboticist should be able to define recovery behaviors directly in the programs.

• The control language may provide facilities to define the composition of programs
in a hierarchical fashion, where high-level skills are defined by the composition of
lower-level behaviors.

These modeling features are those we have identified as necessary to define models
that are robust to hazards and can adapt to events. However, these features are primarily
used in reactive models, and do not allow models that can take advantage of deliberation
systems to better adapt their behavior. Therefore, in addition an acting language must
incorporate explicit decision points as primitives in the language:

• Choice of an alternative course of action,

• Choice of intantiation of parameters in the body of programs,

• Choice of resource allocation strategy.

Some languages already have some of these acting features in addition to the control
primitives, such as the PROPEL (Levinson 1995), which makes the invocation of a
planner explicit.

Among the control languages that exist in the literature, we have identified two
families: model-based languages, which define a model that is then compiled as an
automaton, or interpretable languages. Both types of languages are interesting, each
of them embracing different paradigms that could benefit from inspiring each other.
Here we try to define a new interpretable acting language, but to be inspired by the
programming paradigm of languages used to define automatons, both in the features they
propose and in the constructs they expose. Let us first identify the modeling languages
used to define capabilities in robotic applications, before moving on to the interpretable
languages that have been developed over the years for execution, monitoring, and now
acting systems.

3.2.2 Modeling languages

Finite State Machine (FSM) languages FSMs are a convenient way to define
skills. The deterministic behavior is based on the states that the system can be in and
the actions that should be performed in each state.

To define a skill as a state machine for robotic applications, one of the easiest ways is
to rely on SMACH (Bohren and Cousins 2010). State machines use the ROS executive
to implement them, which is convenient for prototyping robotic applications.

Many synchronous languages have been used to formalize the model of a robotic
agent. In a synchronous language, all events are considered to occur at the same time,
and their propagation is considered to be instantaneous. Synchronous languages are a
convenient way to program an automaton. Among the synchronous languages that have
been used in robotics, ESTEREL (Boussinot and De Simone 1991) has been used to
design a controller for a mobile robot (Sowmya, Tsz-Wang So, and Hung Tang 2002).
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ESTEREL relies on strong mathematical semantics, which makes it a formal language
particularly suited for automated validation of the models. APL (Coste-Manière, Es-
piau, and Rutten 1992) and then Maestro (Coste-Maniere and Turro 1997) are two
languages that propose to define skills based on the response to signals. Both languages
are then compiled in ESTEREL.

Hierarchical State Machine (HSM) languages FSMs have been extended to a
hierarchical formalism in which states can themselves be composed of substates. Pro-
teus (Tellier et al. 2020) uses this formalism to define the skills of an agent in a hierar-
chical way in a language similar to C++, which is itself compiled in C++.

Petri nets languages While ESTEREL compiles a controller into a FSM, other
languages propose to model a system, which is then compiled into a Petri net. Several
systems use Petri nets to both define complex skills and have a formal model to verify
formal properties for those skills, such as liveness, deadlocks, and deadends markings.
Among the systems that take advantage of Petri nets, we can mention ProCoSa (Barbier
et al. 2006) and ASPiC (Lesire and Pommereau 2018), which have been successfully
deployed on several robotic architectures. However, using such systems still leaves the
burden of defining Petri nets, either textually or with graphical tools. This is where
RS (Lesire, Doose, and Grand 2020) is particularly interesting. The language proposes
to define skills with a specific language that is then compiled into either a Petri net
model for verification and validation, or as a SMACH (Bohren and Cousins 2010) model.
Furthermore, in RS skills are defined in a SkillSet that explicitly represents the resources
of a system and the state transitions of those resources.

Graphical languages To define skills, one could rely on graphical programming tools.
Several languages extend the UML formalism to define skills whose model is verifiable.
Among them, we can cite P (Desai et al. 2013), which is a synchronous language taking
advantage of the semantics of UML. LightRocks (Thomas et al. 2013) is another attempt
to extend UML to define skills.

Event-based languages The previous languages we have presented have chosen to
rely on a textual language to model skills, which are then compiled as an automaton.
With such a language, we have a state-oriented programming paradigm in which the
behavior depends on the state of the system. However, the more complex a system is, the
more states should be considered in modeling the system, which can be unmanageable for
large robotic systems. Another way is to have an event-based programming language
that defines the behavior of a system based on signals or events that are abstracted
from the state in which they occurred. RMPL (Williams et al. 2003) is a language that
allows Hierarchical Constraint Automata (HCA) to be defined naturally, exposing rich
constructs to represent parallelism and synchronization between actions and conditions.
Unlike other languages for defining automata, the programming style is closer to an
imperative style. Another interesting synchronous language is the PLan EXecution



64 CHAPTER 3. ACTING LANGUAGE

Interchange Language (Verma et al. 2006), which defines a skill in a formalism that can
be compiled into a FSM. A skill is modeled with several nodes that are inherent to each
skill and represent the behavior of the skill as a function of its state.

If we go back to the features of control languages that we enumerated earlier, most
of them are implicit in such a model. For example, parallelism is de facto possible by
implementing multiple state machines, and monitoring is the default mode of operation.
Synchronization is less trivial: to implement it, two states should be simultaneously
reachable from any state the system is in. It is easier in HSMs or StateCharts, which
allow simultaneous sub-states in a macro state.

However, programming such a model requires some expertise in the proposed formal-
ism. Moreover, error handling and recovery should be explicit, in the sense that the state
reached by the system after an error should be explicitly handled by the automaton.

When it comes to the features expected for skill modeling, such as skill decompo-
sition, nondeterministic decisions, and resource management, they are not specifically
handled by formal languages. This is a fair missing feature, since these decision points
are inherently nondeterministic and make it difficult to use a formal model to verify that
the requirements are met by the skill model.

3.2.3 Interpretable languages

Where automatons are often compiled into C++ code, there are systems where skills
are interpreted at runtime. In many cases, such a language would take the form of a
Lisp dialect. The language would either be a standalone of Lisp or an extension of Lisp.

Lisp dialects One of the first languages for skills is RAP (R. J. Firby 1989), which
represented the skills of a robot agent as Lisp procedures. It was one of the first to
propose a refinement system in which a task could be accomplished by one or more
methods, the choice of the method being made nondeterministically by the execution
system. Parallelism was achieved by defining a "TASK-NET" for each method, which
defined the subtask of a method. Order constraints could be defined for the TASK-NET
in an HTN-like style.

Not long after, RPL (McDermott 1991) also proposed to build on a Lisp dialect
to propose a language for skills. Unlike RAP, skills can be composed of other skills,
but there is no notion of methods for abstract tasks. The interest of RPL lies in the
powerful constructs proposed for defining reactive behaviors that explicitly take failures
into account, such as defining multiple ways to handle a procedure that might fail (with
try-one, try-all, try-in-order). Synchronization between processes is also explicit, where
RAP relied on the TASK-NET to define the ordering constraints between processes.

CRAM Plan Language (CPL) (Beetz, Mösenlechner, and Tenorth 2010) is another
language based on Common Lisp. Many of its constructs for expressing reactive behav-
ior are similar to those in RPL. The peculiarity of CRAM is that it relies on a dedicated
inference system that can be used directly on the language to express context-aware
behavior. An interesting application of such an inference system is the ability to delay
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the instantiation of a parameter until the moment it is needed, e.g. to execute a com-
mand. During execution, the parameter can be constrained to respect some necessary
properties. When the parameter should be instantiated, the CRAM executive relies on
a Prolog-based system to find a suitable value for the said parameter.

PROPEL (Levinson 1995) is another Lisp-based language. At the difference of RAP,
RPL and CPL, it does not extend Common Lisp, but a subset of Lisp, which makes it
lighter than other acting languages. Speaking of acting languages, it is one of the first
to formalize the notion of decision points in procedures. There are two decision points
in the language: "choose-value" and "choose-procedure". For both functions, the acting
engine must arbitrarily choose an element from a set; a heuristic can be given to guide
the choice. Since these choices are explicit, the system can rely on lookahead techniques
to anticipate these choices. In addition, facilities are provided to define a simulation
model of a procedure that can be used by the deliberation system to anticipate the
effects of executing a particular procedure.

ESL (Gat 1997) is another language that extends Common Lisp. It has been suc-
cessfully used to define the skills that run in the EXEC module of the RAX (Muscettola,
Nayak, et al. 1998). It extends Common Lisp with constructs needed to define skills,
and in particular to handle errors. In fact, it adopts the paradigm of cognizant errors,
in which errors should be handled explicitly by the skills. Thus, for a given procedure
that may fail, it is easy to define the behavior the system should have as a function of
the type of failure that occurs.

Goal-oriented languages So far, we have seen languages that are either used to
define automatons, or executable procedures that are evaluated at runtime. In the
latter category, some distinguish themselves by describing the behavior of a system not
by the actions it should do, but by the goals it should achieve. The language of the PRS
system (Ingrand, Chatila, et al. 1996) takes advantage of skills, which are defined as a
set of Knowledge Areas (KAs)1. Each KA is responsible for achieving a specific goal.
The body of a KA is an executable procedure defined with PRS primitives, in which
subgoals can be defined to achieve the goal of the KA. With such a representation of
skills, and in the same way as with RAP, the acting system has the choice of which
skill to refine a given goal. Among the different iterations of PRS, we can mention
Propice-Plan (Despouys and Ingrand 2000), whose language syntax differs slightly from
that of PRS, but keeps the same operators.

Other languages are goal-oriented, such as Golog (Levesque et al. 1997), a skill
language for both execution and planning that takes advantage of Prolog’s inference
mechanisms. Similar to CRAM, nondeterministic choices can use the Prolog engine
to find suitable instantiations for some specific procedures in the body of the skills.
However, these decisions seem to be handled locally, without considering the long-term
effects of such decisions. Golog++ (Mataré et al. 2021) extends Golog to represent
skills in a hierarchical way. However, it does not seem to imply a representation as a

1The authors of PRS clarified that the terms plans, scripts, procedures, and KAs can be used
interchangeably.
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hierarchical operational model, where a task can be refined by different methods, and
where one may be more appropriate than another depending on the context.

Multiagent oriented languages Following these goal-oriented modeling languages,
AgentSpeak (Rao 1996) is defined as a language for Belief-Desire-Intention (BDI) sys-
tems. In AgentSpeak, a program is both goal-oriented and agent-oriented, as it aims to
define the behavior of an agent based on its recollection of how the world is evolving
and the actions of other agents of which it is aware. We can define an agent’s knowledge
as beliefs, goals as desires, and plans or skills as intentions. With such a framework,
the programmer defines the behavior of the agent to respond to new desires or changes
in the agent’s beliefs. AgentSpeak has been used in the Jason (Bordini and Hübner
2006), and the JAHRVIS (Mayima, Clodic, and Alami 2022) acting systems, in which
primitive actions are calls to JAVA functions.

Another recent multiagent control language is Resh (Carroll, Namjoshi, and Segall
2021). Resh provides the most advanced synchronization features found for defining
robot capabilities. Resh takes advantage of a temporal engine to orchestrate parallel
tasks. In Resh, parallelism and synchronicity are at the root of the language’s grammar.
Many facilities are provided to define exactly how multiple tasks should be orchestrated,
in a natural and very concise way.

Python With the increasing popularity of Python as a general-purpose programming
language, several systems have chosen to rely on Python to define skills. The RAE sys-
tem of Patra, Mason, Ghallab, et al. (2021) uses operational models defined as Python
procedures. In this way, procedures can take advantage of the full extent of Python to
define their behavior. However, Python embeds few constructs for controlling robots,
and in particular lacks those expected in an acting language. To use it as an acting
language, the robot programmer should implement his own module to bind an acting
system to the Python interpreter. Recently, the CLAPLEx system proposed Ala (Vapsi,
Borrajo, and Veloso 2023), an acting language that can be compiled into Python code at
runtime. This high-level language makes it easier to define robot behavior and reduces
the burden of defining specific constructs in Python.

3.2.4 Summary

The various languages presented in this section have all the necessary features expressed
to make them control languages. Their uniqueness lies in the way they implement these
features. Some suggest focusing on specific features, such as ESL, which is particularly
suitable for defining the behavior of an agent in which errors are explicitly enumer-
ated and should be handled accordingly. We have seen that two categories of control
languages can be distinguished: those used to define automatons, and those used to
define procedures that are interpreted at runtime. The first category proposes to define
reactive capabilities based on the states that the agent can be in, or the event that it
can face. These languages are particularly suitable because they are often based on a
mathematical formalism on which properties can be verified.
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On the other hand, an interpretable language can be used to define capabilities as
plans or policies that can adapt to the different situations that a robotic system may
face. Procedures can use decision points that rely on the reasoning capabilities of the
acting system to, for example, refine tasks into methods as proposed in RAP, Propel,
PRS, and RAE. More advanced features even propose to manipulate these capabilities
as first-class citizens that can be transformed as in RPL in combination with the planner
XFRM (Beetz and McDermott 1994) or CRAM.

When it comes to modeling the agent using a library of skills, interpretable languages
are the ones that propose the most flexible formalism. Some model-based languages use
a hierarchical representation of skills, but never allow the choice of multiple skills to
perform a given task.

3.2.5 Proposition of an acting language for RAE

The need to define a new interpretable acting language stems from the limitations of
previous iterations of RAE, which relied on Python programs to define skills. Python
has many advantages in that it is a widely used programming language, so anyone could
start defining RAE skills. However, its powerful expressiveness is also its weakness,
since the language relies on a grammar that is too rich to allow semantic analysis of
skills defined with such a language. Furthermore, concurrency is not handled natively
in the language. In fact, the Python interpreter relies on a global interpreter lock that
prevents parallel execution in a single process. This limits the ability to define concurrent
behavior.

Here are the desiderata for our acting language:

• An interpretable language with a restricted core.

• A language whose evaluation has no side effects except for well-defined operators,
and whose evaluation is not context-sensitive.

• A language that natively supports concurrency.

• A language that has explicit decision points and whose evaluation is not determin-
istic, that is, not fixed by the semantics of the language.

These features will make the acting language more amenable to automated analysis,
such as the automated generation of planning models from programs, as proposed in
Chapter 4.

As we have seen, Lisp dialects have a long history of being used to define execu-
tion languages. Therefore, the best option seems to be to implement a subset of the
Lisp dialect as proposed by Propel, keeping only the primitives necessary to define re-
active behavior. Some of these more advanced constructs could be inspired by those
proposed in CRAM (Beetz, Mösenlechner, and Tenorth 2010), ESL (Gat 1997), or even
RMPL (Williams et al. 2003).

One particular feature that has been missing in the acting languages we have studied
is the notion of resources. The allocation of resources is often supervised at a higher



68 CHAPTER 3. ACTING LANGUAGE

level of reasoning, in most cases by a task planner. However, when concurrent skills are
involved, these skills may request access to shared resources. Some languages treat them
naively in RAP, ESL, and TCA (Simmons 1994): a process can wait for the availability
of a resource and request its explicit lock. However, the semantics of the resource
are restricted. We believe that the allocation of a resource should be a nondeterministic
choice, since it affects not only the progress of the task that requires it, but also possibly
other tasks that may request access to the same resources, with a potentially critical
effect on the efficiency of execution.

Like RAP, PROPEL, and PRS, the language should facilitate the definition of the
model by annotating the skills with metadata. At a minimum, the language must allow
an abstract task to be associated with a set of methods that can refine it. However,
the model should not be limited to defining the structure of a hierarchical operational
model, e.g. defining the equivalent HTN of the operational model. The language should
allow to model the whole acting domain of a robotic system, adding the definition of
the low-level capabilities of the agent (primitive commands), a definition of the world
(state functions), and other facilities that might help the acting system to do its job.

3.3 The fundamentals of Scheme

Since we wanted a language with a simple syntax, we focused on Lisp dialects. Lisp is an
old language and stands for List Processor. It was developed by John McCarthy (Mc-
Carthy 1960), and has been widely used ever since, especially in AI applications. The
language is based on the recursive evaluation of lists called S-Expressions (S-Exprs) and
it belongs to the imperative and functional programming styles. In the 90s, a unification
of the different Lisp dialects led to Common Lisp (Steele 1990), which is now the refer-
ence language from which many Lisp dialects inherit. Before this unification, a variant
called Scheme (Moretti 1979) appeared, proposing a syntax slightly different from other
dialects. In particular, it has fewer primitives and is mostly functional, which facilitates
the analysis of the programs. The features of Scheme convinced us to use it as the basis
of our own acting language. We deal with a subset of Scheme, which we present in this
section.2

3.3.1 Scheme syntax and semantics

A programming language can be defined as a set of statements and expressions that can
be organized to produce a computation. The syntax defines the rules to form correct
statements or expressions, whereas the semantics gives meaning to those statements
and expressions. Let us take the addition of one plus two, which in a mathematical
language would be "1 + 2" (like in many programming language), and the semantics is
the application of the addition operation to the two numbers, yielding the value 3. The

2It should be noted that the preliminary version of our Scheme dialect was heavily inspired by
Peter Norvig’s implementation of a Scheme interpreter in Python. He has proposed two tutorials at
https://norvig.com/lispy.html and https://norvig.com/lispy2.html that combine Lisp
training with an implementation tutorial.

https://norvig.com/lispy.html
https://norvig.com/lispy2.html
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evaluation of expressions is the determination of its value; in our example we would say
that "1+2" evaluates to 3, which could be written as "1+2" ⇒ 3.

Unlike other programming languages, Scheme consists entirely of expressions, called
S-Expressions (S-Exprs). There is no distinction between statements and expressions,
which makes it an expression-oriented language. There are two types of expressions:

• Atomic expression such as numbers (e.g. 1), symbols (e.g. x), boolean (e.g. true).
Some functions are associated with symbols such as "+" and "*".

• List expression which is defined by parentheses surrounding zero or more expres-
sions, the first expression defining the meaning of the expression, the rest are the
arguments. In the case where the first element of the expression is a function (e.g.
"+"), the expression represents the application of the function to the rest of the
list, which are referred as the arguments of the function call. If the first element
is a special operator, its evaluation should be handled by the executor.

Comments are delimited by the semicolon character ";" and the return to line character.

3.3.2 Scheme interpreter principles

The execution of a Scheme program is based on the interpretation of the program, whose
initial form is a sequence of characters. The interpreter consists of two parts:

• A parser which takes a program as input in the form of a sequence of characters,
parses it according to the syntactic rules of the language, and translates the pro-
gram into an internal representation. In most interpreters, the translation results
in a tree structure, often called an abstract syntax tree, which reflects the nested
structure of expression statements in the program.

• An executor that applies the semantic rules of the language to the internal struc-
ture produced by the parser, and thus carries out the computation of the program.
In Scheme, the execution is equivalent to evaluating a single expression that com-
poses the program.

3.3.2.1 Scheme Eval function

The principle of evaluation in the Scheme dialect can be summarized in the Eval(expr,
env) function presented in Algorithm 3.1. It takes as parameters an S-Expr expr and
an evaluation environment env. If the expr is an atom, the value returned depends on
its type and the env. If it is a list, the first element is considered to be the procedure
f that should be applied to the rest of the list, called the args. The args are evaluated
recursively before being passed to f . A procedure can be either (i) a special operator,
whose specific semantics is handled line 6; (ii) part of the standard language library and
associated with a symbol in env; (iii) a user-defined function called lambda that can be
mapped in the current evaluation environment env. Unlike other procedure calls, special
operators are specific functions that take the unevaluated arguments of an expression.
Scheme’s special operators are described in detail below in the Section 3.3.4.
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Algorithm 3.1 Overview of the recursive evaluation of expressions in Lisp
1: function Eval(expr, env)
2: if expr is an atom then return Value(env, expr)
3: else if expr is a list then
4: f ← eval(expr[0], env)
5: if f is a core operator then
6: return f(expr[1..], env)
7: else
8: args ← []
9: for i do in [1..|expr|]

10: arg ← eval(expr[i], env)
11: push(args, arg)
12: return Apply(f, args)
13:
14: function Value(env, atom)
15: if atom is a symbol and atom is defined in env then
16: return Get(env, atom)
17: else
18: return atom

3.3.3 Scheme evaluation environment

The evaluation of an expression depends on a context defined by an environment. An
environment is a dictionary that maps variables to a value. In Scheme, a variable is
defined by a label, a symbol. The environment consists of a list of predefined bindings
between symbols and standard Scheme procedures (e.g. "+" and "sqrt"). The special
operator define can be used to map a symbol to any S-Expr in a given environment.

Scheme does not tolerate side effects other than the definition of a variable. Each
expression is defined in a new environment envn, which inherits the bindings of a parent
environment envp. No change in envn will affect envp. However, the special operator
begin allows sequential evaluation of a list of S-Exprs in a common environment, so the
definition of an environment local to the environment of begin can be used in the rest of
the expressions. The result of the begin expression is the result of the evaluation of the
last expression.

The example given in the figure 3.1 should clarify its function. First, the environment
is defined only with bindings to standard Scheme functions (the "+" symbol is bound
to a pointer to the interpreter’s function addition). After evaluating line 2, the symbol
"x" is bound to the value "1" in the environment of the "begin" expression that started
line 1. In line 7, the value of x has been locally redefined to "2" after being redefined
in line 5. However, because the scope of the second environment only extends to line 7,
the value bound to "x" at line 8 is the value previously defined in the environment at
line 2.
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line Program Env
1 (begin {}
2 (define x 1 ) {}
3 (define y {x=1}
4 (begin {x=1}
5 (define x {x=1}
6 (+ x 1)) {x=1}
7 x)) {x=2}
8 (+ x y)) {x=1, y=2}

Figure 3.1: Illustration of the nested environments during the evaluation of a Scheme
program. The env value represents the bindings at the moment the expression is eval-
uated. The standard bindings are supposed part of env and are not listed here to keep
the example clear.

3.3.4 Special operators

As mentioned earlier, Scheme supports a list of special operators with specific semantics.
Their special treatment is deliberately omitted in Figure 3.1 to keep the function Eval
as simple as possible. The define and begin operators were introduced earlier to explain
how nested environments work. Here we recall their use and introduce the rest of them.

(define sym val) define binds a symbol sym to an S-Expr val in the current en-
vironment env and returns the nil value. If sym was already bound to another value,
the new binding is defined in the env, and holds until env is dropped. Sym can now be
viewed as a variable that can be called in expressions that share env. In the following
example, we define the variable x with a value of 10:

( d e f i n e x 10) => n i l

(begin e1 . . . en) begin evaluates a list of n expressions (e1, . . . , en) and returns
the result of en. It is most often used to evaluate a sequence of expressions where the
evaluation may depend on the result of previous expressions stored in local variables
defined in a context shared by all expressions. Consider the following example, where
"x" and "y" are bound to the values "10" and "20", respectively. Once bound, we compute
their addition:

( begin
( d e f i n e x 10)
( d e f i n e y 20)
(+ x y ) )

=> 30

(if cond l r) if evaluates an expression cond that returns a boolean expression b, and
evaluates one of two expressions depending on b: if b = true, then the left expression
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l is evaluated and the result of the expression is the result of l, otherwise the right
expression r is the evaluated expression. The language supports if expressions where
the right expression r is missing, and defaults to the value nil.

Here is an example of a comparison of two numbers that yields different results from
two different calculations.
( i f (> 3 10) (+ 3 3) ( * 10 5) ) => 50

(lambda args body) lambda creates a user-defined function that consists of evalu-
ating the body of the expression in a context where the parameters defined in args are
bound to values passed as arguments to the lambda. There are two ways to define the
arguments of a lambda:

• args is a list (p1, . . . , pn) of n symbols that should be bounded to the n arguments
during the evaluation. At runtime, if the number of arguments does not match
the number of expected parameters, the evaluation of the lambda fails.

• args is a unique symbol list that is bound to a list of arbitrary length.

Here are three examples of lambdas:

1. We define the function square that takes a single parameter x and computes x2.
( begin

( d e f i n e square ( lambda ( x ) ( * x x ) ) ) => n i l
; d e f i n e s a new lambda in the environment bound to the

symbol " square "
( square 5) => 25

)

2. We define the function rectangle_perimeter that takes as parameter x and y that
represent the length and width of a rectangle and computes its perimeter.
( begin

( d e f i n e rec tang l e_per imeter
( lambda ( x y ) (+ ( * 2 x ) ( * 2 y ) ) ) )

=> n i l
( r ec tang l e_per imeter 5)

=> "unexpected number of arguments for lambda"
( r ec tang l e_per imeter 10 5)

=> 30
)

3. We define the function print_all that print all the elements of a list of arbitrary
length. Specific meaning of functions: null? returns true if the expression corre-
sponds to nil, false otherwise, car returns the first element of a list (e.g. (car (list
1 2) → 1)), cdr returns a list without its first element (e.g. (cdr (list (1 2))) →
(2)).



3.3. THE FUNDAMENTALS OF SCHEME 73

( begin
( d e f i n e p r i n t _ a l l

( lambda args
; i f the l i s t o f args i s empty, re turn n i l

( i f ( n u l l ? args ) n i l
( begin

; p r i n t the f i r s t element o f the l i s t
( p r i n t ( car args ) )

; r e c u r s i v e c a l l o f the func t i on with the r e s t o f the l i s t
( p r i n t _ a l l ( cdr args ) ) ) ) ) ) )

(quote e) quote prevents the expression e from being evaluated recursively and re-
turns it without applying any computation. The quote operator has a shortened form:
(quote e) ⇔ ’e.

In the following example, the multiplication is not calculated and the expression is
returned as is:

( quote ( * 3 3) ) => ( * 3 3)

(eval e) eval explicitly evaluates the expression e. This can be useful to evaluate
an expression resulting from a previous evaluation. Following the previous example, we
can evaluate a quoted expression:

’ ( * 3 3) => ( * 3 3)
( eva l ’ ( * 3 3) )
=> 9

3.3.5 Macro

In Scheme, and in Lisp in general, macros can be defined to simplify the definition
of a program. A macro is a special function that, unlike other functions, formats an
expression before evaluating it. This is a powerful tool for defining complex programs
in a compact way, and for thinking about programs as first-class objects that can be
manipulated at runtime. A call to a macro requires its expansion before it is evaluated,
meaning that the syntactic rules defined in the macro are applied to the expression
before it is evaluated.

A macro is defined in the root environment of the evaluation. We use the operator
(defmacro label lambda) to add a new macro to the environment. The macro’s lambda
takes a raw (unevaluated) expression as an argument and returns a new, formatted
expression. Such lambdas can take advantage of the special operators quasiquote and
unquote to simplify the definition of syntactic rules for formatting expressions.

As a simple example, we could define the operator (cadr l ), which returns the
second element of a list l, as a macro:

( defmacro cadr ( lambda ( x ) ‘ ( car ( cdr ,x ) ) ) ) => n i l
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Once defined in the environment, the macro can be called in the interpreter like any
other function. Here is an example with a quoted list ’(3 4). The expression is first
expanded using the lambda of the macro, then evaluated to the value "4".

( cadr ’ (3 4) )
=> ( car ( cdr ’ (3 4) ) ) ; expansion o f the macro
=> ( car ( cdr (3 4) ) )
=> ( car (4 ) )
=> 4

Quasiquote and Unquote As mentioned above, we rely on the special operators
quasiquote and unquote to define macros.

Consider the following examples, in which a quasi-quoted expression is partially
evaluated into an expression. The first phase expands the expression, the result of
which is displayed in line 2. Then the resulting expression is the result of the expanded
expression, where only the first sub-expression is evaluated, the rest is quoted.

( quas iquote (+ ( unquote ( * 3 6) ) 10) )
=> ( cons ’+ ( cons ( *3 6) ’10) ) ; expansion
=> (+ 18 10) ; r e s u l t i n g exp r e s s i on

The operators quasiquote and unquote have their corresponding annotations, (
quasiquote e)⇔ ‘e and (unquote e) ⇔ ,e, respectively.

3.3.6 Runtime errors

So far, we have presented the evaluation of a Scheme program assuming perfectly defined
expressions. However, as with many interpreted languages, programs that do not follow
the syntax will provoke a runtime error. A runtime error occurs when the evaluation of
an expression does not follow the syntax of the language. For example, the evaluation
of (+ 3 ’x) produces a runtime error because the addition of a symbol("x") and a
number("3") is not allowed. In our implementation of Scheme, a runtime error is a
structure composed of a verbose message that attempts to clarify the source of the error,
and a backtrace that points to the expression in the program that caused the error, again
to facilitate debugging. Most of the time, a runtime error is of the following type:

• Wrong kind errors are raised when a procedure expects a different kind of expres-
sion.

( * 3 t )
=> "Runtime error:
In *, t: got Symbol, expected Number"
( l ength 10)
=> "Runtime error:
In length, 10: got int, expected [List, Map]"
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• Wrong number of arguments errors occur when the number of arguments is not in
the expected range.
( cons 10 25 3)
=> "Runtime error:
In cons, "(10 25 3)": got 3 elements, expected 2"

3.3.7 Standard modules of Scheme

In addition to the special operators that have specific behavior, which is handled by
the Eval function, Scheme provides numerous computational functions for defining
programs. In fact, it is a Turing-complete language, which means that any Turing
machine can be defined with this language, thanks to the operators that make up the
library of the Scheme dialect.

Depending on the Scheme dialect, the list of operators may differ. We group these
functions into modules. A module is defined by

• A label, e.g. math, and a module description,

• A list of bindings, including native procedures, but also lambdas and macros that
are loaded into the evaluation environment.

We use modules to make our Scheme interpreter modular, and to facilitate the
definition of applications that require specific functions that can be easily loaded into
the interpreter at compile time.

Therefore, we define all of Scheme’s core operators in the Core module of OMPAS.
We introduce some of the functions it provides, focusing on those that are specific to Lisp
dialects. The documentation available at https://plaans.github.io/ompas/ presents all
the functions available in our Scheme interpreter. Here we present only a few of them.

List functions A peculiarity of Lisp dialects is to handle list as first-class objects.
Various operators are available to manipulate list:

• ( list e1 ... en) returns a list of n elements formed with the arguments of the
expressions.
( l i s t 1 ’ (2 3) ) => (1 (2 3) )

• (car l ) returns the first element of a list:
( car ’ (1 2 3) ) => 1

• (cdr l ) returns a list without the first element.
( cdr ’ (1 2 3) ) => (2 3)
( cdr (1 ) ) => n i l

• (cons e1 e2) returns a list based on the value of e2. If e2 is a list, e1 is prepended
to e1. Otherwise, a list is created with e1 and e2.

https://plaans.github.io/ompas/
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Mathematical functions Scheme’s standard library includes the most basic math
functions: +, -, *, /, square, pow, sqrt, etc.

Logical functions Logical functions can be calculated, such as <, <=, >, >=, =,
!, !=. In the case of the operator !=, in can be handled natively by the interpreter or
defined as a macro that converts an expression (!= a b) to the expression ( ! (= a b)).

Utility functions In addition to Scheme’s core operators, we have added some useful
functions. Here are just the ones we found particularly interesting, and whose semantics
are not obvious at first glance.

• Predicate functions are used to check the type of an expression, e.g. (int? e)
returns true if e is an int. There is an operator for each type of expression.

• ( rand-int-in-range i1 i2) is a non-deterministic function that returns a random
n ∈ [i1, i2]. Obviously, i1 ≤ i2 should be true. There is an equivalent function for
floats.

• The IO module is used to interact with the rest of the operating system, e.g. it
contains the print function. The load operator reads a text file containing a
SOMPAS program and evaluates it. The write operator edits a text file. As path
to files are used in those operators, the module provide facilities as get-current-dir
that returns the working directory of the interpreter, and set-current-dir that
will change the working directory if the new directory is valid, i.e. it exists in the
operating system. We can also access to environment variables with get-env-var
that takes as argument the label of the environment variable.

• A variety of macros and lambdas are provided to facilitate programming with
complex functions that, when evaluated, call basic operators. These include the
let and let* functions, which abstract the definition of bindings and are often used
by Lisp programmers; zip and unzip, which are useful for pairing and unpairing
lists of elements.

• We can stop the execution of a program for a certain time t with the function
(sleep t), where t is in seconds.

3.4 Augmenting the Scheme core for control

In its most basic form, Scheme is a procedural language that evaluates expressions
recursively and sequentially. The core of Scheme is purely functional, which means that
it respects the referential transparency expected of a functional language, achieved in
particular by forbidding mutation. Furthermore, Scheme does not explicitly represent
errors as a possible result of evaluation. Some additional types and functions may be
needed to facilitate the definition of robotic programs, e.g. to specify error values. In
addition, we specified in Section 3.2 that the core of acting language should support
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concurrent evaluation of expressions. This is particularly useful for designing skills that
require parallel execution of commands, such as taking photos while moving toward the
target. In addition to concurrency, the Scheme dialect should allow interaction with the
execution environment, and in particular interaction with the acting system.

In this section, we present the extensions that have been made to the Scheme dialect
presented in the previous section. We refer to this extended dialect as Scheme OMPAS
(SOMPAS), the dialect used to define procedures in OMPAS.

3.4.1 Representing errors in robotic programs

In OMPAS, a program can fail for several reasons. Either the evaluation of an expression
caused a runtime error, or the primitives relying on OMPAS functions failed. In the
latter case, we use a convention for representing error types that we call Error. An
Error is an expression (Err e), where e is an arbitrary expression that carries an
explanation of the error. The expression e can then be used by programs to handle the
error accordingly.

In SOMPAS we provide the following operators to manipulate errors:

• (err e) creates a Error with the explanation e.

• (err? e) returns true if the expression is an error, false otherwise.

• (explanation e) unwraps the explanation of the error. Causes a runtime error if
e is not an error.

• (check e) takes a boolean parameter and returns a error if e is nil, which means
false, otherwise true.

In addition to these operators, we add the construct do. Similar to begin, do
evaluates a sequence of expressions and returns the last result, except that do stops
evaluating if an error err is returned by one of its sub-expressions. When this happens,
err is the result of the do expression. Structures with do and check are often used to
define programs that check some facts before executing commands.

3.4.2 Concurrency

We have adapted Scheme to concurrency by adding new types and primitives to the
language. With the following additions, it is possible to evaluate an expression in a new
thread, wait for its result, or interrupt it. The first thing we define is the handle, a new
type of Atom that represents the thread doing the asynchronous evaluation. A handle
can be manipulated with the following functions:

• (async e) takes an expression as argument and creates a new thread3 in which
the expression e is evaluated. The thread is marked ready for execution and the
operator returns the thread’s handle.

3In the current implementation, the interpreter creates a green thread that is handled by a dedicated
scheduler.
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• (await h) takes a handle h as an argument and returns the result of the evaluation
performed in the thread associated with h. Until the result of the thread is marked
as available, the interpreter waits for the termination of the concurrent thread.

Here is an example where two math computations are evaluated in parallel, with the
last computation obligated to wait on the asynchronous evaluations.
( begin

( d e f i n e h1 ( async ( * 3 3) ) )
( d e f i n e h2 ( async ( * 4 5) ) )
(+ ( await h1 ) ( await h2 ) ) )

=> 29

Interruptions In addition to providing operators to create threads, you may want to
be able to interrupt them before they complete their concurrent evaluation. We define
here that an interruption can only occur during the evaluation of an expression, and
does not interrupt the call to a native function. When an interrupt signal is sent to
a concurrent evaluation of a handle, the interrupt signal propagates recursively to all
expressions currently being evaluated in the handle.

• (interrupt h) takes a handle as argument and sends an interrupt signal to the con-
current thread. The function then waits for the result of the interrupted evaluation.
The default result of an interrupted evaluation is the expression (Err interrupted)

• (uninterruptible e) marks an expression e as uninterruptible. This means that
if the interpreter has started the evaluation of e, it cannot be interrupted by an
interrupt signal.

• (race e1 e2) takes as argument two expressions that are executed in parallel,
the result of the expression is the result of the first expression that finished its
evaluation, the second expression is interrupted. Therefore, the result of a race
expression is non-deterministic.

• (with-handler body handler) evaluates body in a new thread and returns its
result. If the execution is interrupted, then the lambda handler is evaluated (with
the result of the interruption of body as parameter) and its result is returned as
the result of the whole expression.

In Figure 3.2, we illustrate the evaluation of a robot program that executes some
commands in a concurrent thread. A subset of the commands is marked as uninterrupt-
ible because their sequential execution should be completed to prevent the system from
ending up in a broken state. The robot program assumes that the execution of the ac-
tions should not take more than 10 seconds, otherwise the sequence of commands should
be interrupted. In the scenario presented here, the signal is received during the evalua-
tion of the second command. Since the first three commands are in an uninterruptible
expression, the execution of the command is not interrupted, and more importantly, the
third command is still executed. Only the fourth command will not be executed.
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( begin
( d e f i n e h

( async
( begin

( u n i n t e r r u p t i b l e
( begin

( exec-command pick ?r ?o )
( exec-command move ?r ? l )
( exec-command drop ?r ?o ) ) )

( ex e c - t a sk i n s p e c t ?r ?o ) ) ) )
( race

( await h)
( begin

( s l e e p 10)
( i n t e r r u p t h) ) ) )

(a)

pick r1 o3

move r1 l6

drop r1 o3

inspect r1 o3

0

10 Int.

time (seconds)

(b)

Figure 3.2: Example of interruption of an expression (a) consisting of a sequence of ac-
tions to be executed in less than 10 seconds. In the example of a real-time execution (b),
the interruption Int. (in red) occurs during the action move, therefore inspect r1 o3 is
not executed.

3.4.3 Representing knowledge using maps

In Scheme, everything is either an Atom or a List. In SOMPAS, we add Maps as
first-class citizens of our language. Maps are another kind of Atom, defined by a set
of key-value pairs: the key and the value can be any expression. Maps are similar
to association lists already defined in other Lisp dialects. As association lists, map
tables are particularly suitable for representing knowledge in a robotic system. This
way we can easily encode and manipulate a group of facts directly in robot programs.
However, for reasons of efficiency, we decided to use native map tables to manipulate
knowledge. Pragmatically, we represent the OMPAS state as a map, where the keys are
state variables associated with the values they have.

We propose the following operators to manipulate Maps:

• (map ’(k1 v1) ... ’(kn vn)) creates a new map, arguments are a list of key-value
pairs.

• (get map1 key) returns the value corresponding to the key in map1.

• (set map1 (key value)) returns a new map with the new entry.

• (union map1 map2) returns a new map resulting from the union of the two maps.
Values of map1 prevail in case of duplicated entries.
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Here is an example of how to use a map. We define a map that represents the properties
of a robot. Each time the map should be updated, we create a new object, as variables
are immutable, we simply define a new binding.

( begin
( d e f i n e robot (map ’ ( bat te ry 10) ’ ( wheels 4) ( speed 5 . 6 ) ) )
( d e f i n e speed ( get robot speed ) )
( d e f i n e robot ( s e t robot ( speed 7 . 4 ) ) )
( d e f i n e robot

( union robot
(map ’ ( arms 2) ( cameras 4) ) ) )

robot
)
=> [ speed : 7 . 4

bat te ry : 10
wheels : 4
cameras : 4
arms : 2 ]

3.4.4 Interaction with the environment

In Scheme, the evaluation environment env is a dictionary that maps symbols to ex-
pressions. Most functions are pure, meaning that their evaluation depends only on the
arguments of the expression and does not produce side effects. However, some opera-
tors related to the acting features of the system may produce results based on a shared
environment that can be mutated by the evaluation of an expression or from outside the
interpreter by an external program.

Here we introduce the concept of the Environment Context. An Environment Context
is a shared data structure that provides an interface to a memory space or functions
external to the Scheme interpreter. Any data structure can be used as an Environment
Context as long as it guarantees safe access and mutation of its internal data. Access
to an Environment Context is possible through special functions that should be loaded
into the interpreter. Functions that require access to an Environment Context have no
referential transparency.

An Environment Context can only be defined during compilation of the interpreter.
Generally, Environment Context are defined as part of specific Scheme modules that are
loaded into the interpreter along with the functions that can be used to access them.
Once defined in the top environment, each child environment has a reference to the
Environment Context.

A simple example of Environment Context is a globally shared counter that can be
used, for example, to count the number of times the print operator is called.

In our case, we use Environment Contexts to link the interpreter of SOMPAS with
the managers of OMPAS, e.g. the State Manager.
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Figure 3.3: Schematic representation of the modules loaded in the interpreter of the
Execution Manager and their connections to the other managers of OMPAS.

3.5 Execution modules of the language

So far we have presented the backbone of the language that we use to define acting
models. Here we present how to add acting primitives as part of the language’s library.
To access the features of OMPAS, we define new modules that are loaded in the inter-
preter of the Execution Manager (EM). Each module is associated with its corresponding
manager, as shown in figure 3.3. Each module provides functions to access the acting
features of the manager to which it is bound.

3.5.1 Platform module

The primary function of an operational model is to define the contexts for executing
commands on a robotic platform. As presented earlier in the chapter 2, the module
responsible for executing commands is the Platform Manager. The platform module
loaded in the SOMPAS interpreter provides the function (exec-command c p1...pn),
where c(p1,. . . ,pn) is a command to be executed on the robotic platform. This function
requests the execution of the command on the Platform Manager (PM) and monitors
the status of the command until the command is marked as finished (success or failure).
The exec-command function can be interrupted by sending a cancel request to the
platform. The execution of a command can be aborted by interrupting the call to the
exec-command function. In this case, the evaluation of the function will stop when the
Platform Manager (PM) returns the abort status of the command.
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Here is an example of a program that starts the execution of a command in a new
thread. The command asks the robot ?r to move to position (?x, ?y), where ?r, ?x and
?y are parameters of the program. The program can cancel the movement of ?r if the
robot’s battery reaches a critical level and asks it to move to the nearest recharging
area.
( do

( d e f i n e h ( async ( exec-command ’ move-to ?r ?x ?y ) ) )
( race ( await h)

( do
( w a i t - f o r ‘ (< ( batte ry , ? r ) 0 . 4 ) )
( i n t e r r u p t h)
( exec-command ’ go_charge ?r ) ) ) )

3.5.2 State module

The role of the state module is to provide an interface to the State Manager (SM) of
OMPAS. As a reminder, the first responsibility of SM is to maintain a representation
of the state in which the robot system is, and to provide facilities to monitor the value
of boolean fluents that are function of the state. In addition, SM has a special repre-
sentation of the objects in the world. Objects are grouped by type, where types are
represented hierarchically. The default type of an object is Object, which can be spe-
cialized by defining specific types (e.g. robot). Therefore, the functions provided by
the state module should allow the definition of behaviors that adapt to the state of the
world as known by OMPAS:

• The function (read-state ’ sf p1 ... pn) returns the last known value of a state
variable sf(p1,. . . ,pn). The parameter sf should evaluate to a symbol, the rest of
the parameters can be any kind of expression. In the following example, we define
a program that moves a robot to the location of an object, the location being
obtained at runtime by reading the state:
( exec-command ’move ?r ( r e a d - s t a t e ’ l o c ?o ) )

• The function (wait-for fluent ) evaluates to nil when the expression fluent be-
comes true. Until then, the expression holds the evaluation of the program. The
expression fluent is passed to SM, which checks its value every time the state is
updated. If fluent does not evaluate to a boolean value, it causes a runtime error
in the interpreter. The call to this function can be aborted. Here is an example
of an expression that waits for a robot’s battery to be below 0.4:
( w a i t - f o r (< ( r e a d - s t a t e bat te ry r ) 0 . 4 ) )

• The function (monitor fluent) is the counterpart of wait-for. Actually, it is a
macro that expands to (wait-for ( ! fluent )). So it waits for fluent to become
false and returns nil The following expression monitors that the communication
medium is still running:
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( monitor (= ( r e a d - s t a t e communication r ) ok ) )

• The function (instance o t) returns true if the object o is of type t, nil otherwise.
In the following example, we assume that r1 is a robot, so the following expressions
evaluate to true:

( i n s t anc e r1 robot ) => true
( i n s t anc e r1 ob j e c t ) => true

• The function (instances t) returns a list of all objects of type t. We give an
example where we have defined the type robot and the type rover (a subtype of
robot). We have the following results:

( i n s t a n c e s robot ) => ( r1 r2 r3 )
( i n s t a n c e s rover ) => ( r1 r3 )

Here r2 is just declared to be a robot.

3.5.3 Acting module

As a reminder, the Acting Manager (AM) is responsible for the refinement of tasks and
the arbitrary instantiation of parameters in the body of methods. Therefore, the acting
module of the SOMPAS interpreter should provide functions that allow access to these
deliberation features.

• To execute a task, we define the function (exec-task t p1 ... pn), where
t(p1,. . . ,pn) is a task to be executed by refining it into a method and execut-
ing the method. The exec-task function handles the potential failure of a method
and uses the retry mechanism of OMPAS to find another method to try. The
exec-task function ends its evaluation when either a method has succeeded or no
more methods are applicable. The function returns nil if the task is a success, an
error otherwise. The error may be different depending on the cause of the failure.
The exec-task function can be interrupted, resulting in the signal being passed to
the body of the method currently being executed to refine the task.

• The Acting Manager (AM) of OMPAS is able to guide the arbitrary selection of
an element from a set. The function call is expressed as (arbitrary s h), where
s is a list of arbitrary length and h is a function that takes a set as argument and
returns a single element from it. The arbitrary function can return any element
of the set. The h function can be thought of as a programmer-provided heuristic
that OMPAS can freely use to select a value in s. In the absence of external
guidance provided by OMPAS, the interpreter will default to returning the first
element of the set.

Here are a couple of examples to illustrate how it works. Let us take a list of
numbers and call arbitrary three times.
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1 : ( a r b i t r a r y ’ (1 2 3) ) => 1
2 : ( a r b i t r a r y ’ (1 2 3) cadr ) => 2
3 : ( a r b i t r a r y ’ (1 2 3) cadr ) => 1

The first call evaluates to the first element of the list. In this case, OMPAS has
not been given any external guidance or user-defined heuristic. For the second
call, the programmer suggests selecting the second element of the list. For the
third call, the heuristic is bypassed by the external guidance provided to OMPAS.

3.5.4 Resource module

The Resource Manager (RM) is responsible for the resource allocation strategy among
concurrent programs evaluated by the SOMPAS interpreter. The resource module pro-
vides functions to request access to these resources, but also to declare them at runtime:

• The function (new-resource r c) requests the creation of a new resource r of
optional initial capacity c to RM: if c is defined, r is declared as divisible, otherwise
r is declared as unary. If r is already declared, it causes a runtime error in the
interpreter.

• The function (acquire r q) sends a request to RM to borrow quantity q of resource
r and eventually evaluates to a resource-handle if the request was validated by RM
and RM granted it. If q is greater than the maximum capacity of the resource,
it provokes a runtime error. The evaluation of the program continues until the
request is granted. The function call can be interrupted. A resource-handle rh

represents the acquisition of the quantity q of the resource r. The resource-handle
is encapsulated in a Handle and has the following property: If all references of rh

are dropped, i.e. they are no longer defined in any environment of the interpreter,
the borrowed resource is automatically released.

• The function ( release rh) immediately releases the borrowed amount of a resource
defined behind the resource-handle rh, even if other references to rh still exist.

This simple program should facilitate the understanding of how these operators can
be used:

( begin
( new-resource ’ robby )
( d e f i n e rh ( acqu i r e ’ robby ) )
( exec-command ’move robby ( r e a d - s t a t e ’ l o c ?o ) )
( r e l e a s e rh ) )

First, the resource Robby is declared as a unary resource. Robby is borrowed before it
is moved to the location of ?o. Once the command is executed, the resource is released.



3.6. CONFIGURATION AND CONTROL MODULES 85

3.5.5 Useful control constructs

The new primitives introduced in SOMPAS provide ways to define the behavior of an
agent. Based on these primitives, we define programming constructs to express more
complex behaviors in a readable and compact way. Some are inspired by languages
like PRS (Ingrand, Chatila, et al. 1996) and CRAM (Beetz, Mösenlechner, and Tenorth
2010), others are specific to SOMPAS. All the following functions can be interrupted and
stopped if one of their sub-expressions returns an error. Most of them can be defined in
terms of the previously introduced operators:

• (seq e1 ... en) evaluates n expressions sequentially. It is similar to do, but its
result is a list containing all the results of the n expressions in order. If one of
the evaluations of ei, i ∈ J1, nK returns an error e, the evaluation of the rest of the
expression is interrupted, and the result of the expression is e.

• (par e1 ... en) evaluates n expressions in parallel and waits for all of their results.
The result of the expression is a list containing the result of the n expressions.

• (repeat e n) evaluates e n times and returns a list containing the result of all
evaluations. However, if one of the evaluations returns an error, the loop is broken
and the error is returned as the result of the expression.

• (retry-once e): evaluates e, and if its result is an error, evaluates it again once
and returns its result, otherwise returns the result of e.

• (run-monitoring body e) evaluates body while monitoring that e remains true,
and returns the result of body. If e becomes false, body is interrupted.

With the definition of such an acting language, we can describe the behavior of a
robotic agent in terms of operational models like the one shown in Figure 2.1. The lan-
guage provides tools to explicitly let the acting engine make decisions during execution,
while defining a large variety of skills with generic constructs. In the following section,
we present how a programmer can configure an Acting Domain (A∆) loaded in OMPAS
using functions provided by the Configuration Module of SOMPAS.

3.6 Configuration and control modules

The OMPAS system provides an interface to interact dynamically with the system
through a command prompt. The core of this interaction is a REPL (which stands
for Read-Print-Eval-Loop) that evaluates expressions passed through the command line
and prints the result to the standard output, i.e. the result can be seen in real time.

The REPL function is quite simple: it loops on reading the string at the input of
the system, e.g. the standard input of the program, then parses and evaluates this
string, and finally prints the result of the evaluation to the standard output. Note that
in the current implementation of OMPAS, the program supports parallel evaluation of
multiple expressions coming from multiple inputs, e.g. the standard input or an external
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Figure 3.4: Schematic representation of the configuration modules of the interpreter of
REPL interpreter provided by OMPAS.

program sending commands via TCP. The REPL can be used to execute any Scheme
program, to define the domain of an agent by e.g. loading an external file with load,
but also to control the acting engine and monitor its execution. All these features are
defined in different modules that are loaded in the evaluation environment of the REPL
interpreter. In Figure 3.4 we show how they interact with the managers of OMPAS.
The Configuration Module provides functions to configure everything OMPAS needs
to control a robot platform, including the robot agent’s Acting Domain (A∆). The
Controlling Module provides functions to control and monitor the execution of OMPAS.
Both modules can interact with the Execution Manager, State Manager, Acting Manager
and Resource Manager of OMPAS. They either send new information to the managers
that might mutate their internal data, or request reports on their internal data structure.

3.6.1 Configuring OMPAS

There are several ways to configure OMPAS. We illustrate them by defining part of
the Acting Domain (A∆) of the Gripper-Door domain, as shown in Example 1.1. The
operational model of the domain is the one shown in Example 2.1 and Example 2.3.
The definition of the hierarchical operational model is done in the same way as shown
in (Turi and Bit-Monnot 2022b).
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3.6.1.1 Acting Domain (A∆)

The Acting Domain (A∆) of a robot agent is defined by a set of state functions, com-
mands, tasks, and methods. The model of each object is stored in the Acting Manager.
When OMPAS starts its main loop, lambdas are automatically generated and loaded
into the execution environment of the Execution Manager to use the capabilities of the
agent as functions in the body of methods. Here we describe how the components of A∆
are declared and what their corresponding lambdas are in the execution environment.

State-functions The state-function abstract the acquisition of the value of a state
variable that has been defined in the State Manager. The function ( def-state-function
sf (:params (p1 t1) ...( pn tn)) (: result t)) defines a new state function sf(p1,. . . ,pn).

The parameters pi are defined along their types ti as a pair (pi ti ). The (: result t)
defines t as the expected type of the value of the state variable. The parameters are
optional. Here is the declaration of the state-function pos(?o), which holds the value of
the position of an object ?o:

( d e f - s t a t e - f u n c t i o n pos
( : params ( ?o ob j e c t ) )
( : r e s u l t l o c a t i o n ) )

Each state-function declared in A∆ will have a corresponding lambda loaded in the
execution environment of EM. For the state-function pos(?o), we have:

( d e f i n e pos ( lambda ( ?o )
( r e a d - s t a t e ’ pos ?o ) ) )

Similarly, functions can be defined to read the value of a static value in the State
Manager. We declare them with the function (def-function f (:params (p1 t1)) (:
result r)). The arguments are similar to those of def-state-function . However, the
generation of the corresponding procedure is the following:

( d e f i n e s f ( lambda ( p1 . . . pn )
( r e a d - s t a t i c - s t a t e p1 . . . pn ) ) )

read-static-state is equivalent to read-state but reads only the static part of the
state. The difference between read-static-state and read-state is that since it reads
only the static part of the state, we can consider that read-static-state has referential
transparency in a given context of execution of OMPAS.

Commands The basic commands of a platform can be declared with the function
(def-command label (:params (p1 t1)...(pn tn))) where label is the name of the com-
mand. The parameters are defined as a list of pairs (pi ti ), where pi is a label, and
ti is a type. Here, we declare the command move as defined in Gripper-Door :

( def-command move ( : params ( ?from room ) ( ?to room ) ( ?d door ) ) )
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This declaration results in the definition of the following lambda in the execution envi-
ronment:

( d e f i n e move ( lambda ( ?from ?to ?d )
( exec-command ’move ?from ?to ?d ) ) )

Thus, the body of a method can request the execution of a command with an expression
of the form (move ?from ?to ?d) (?from, ?to and ?d are assumed to be variables of a
program) without explicitly calling the exec-command function.

Tasks We recall that in the RAE formalism, a task represents a capability that can
be performed in several ways, depending on the context. For a given task, one or more
methods should be defined, each method being adapted to different situations. In such a
model, the role of the acting engine is to select the most appropriate method to perform
the task.

In OMPAS, we declare tasks in a similar way as we declare commands. We use the
function (def-task label (:params (p1 t1) ...( pn tn))) where label is the name of the
task. The parameters are again defined as a list of pairs (pi ti ) where pi is the label
of the parameter, and ti is its type. Parameters are optional. Let us define the task
go2(?r) as defined in the Example 2.1.

( d e f - t a s k go2 ( : params ( ?r room ) ) )

This declaration will result in the definition of the following lambda in the evaluation
environment:

( d e f i n e go2 ( lambda ( ?r )
( ex e c - t a sk ’ go2 ?r ) ) )

Methods As explained earlier, a task should be defined with methods to perform it.
At least one method should be defined for each task. Otherwise, a task will never be
executable.

The function (def-method label task params pre-conditions body) defines a new
method with the following parameters:

• label is the name of the method,

• task is an expression (: task label) where label is the name of the task that the
method refines,

• params is an expression (:params (p1 t1) ... (pn tn)) defining the parameters
of the method that mirror those of the task it refines, and to which additional
parameters can be appended,

• pre-conditions is an expression (: pre-conditions e1 ... en), where ei should be
a boolean expression that is evaluated to assess the applicability of the method
depending on the state and its parameters.
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• body is an expression (:body exp) where exp is the program to evaluate when
the method is selected.

Let us declare the methods noop(?r) and recur(?r, ?a, ?n, ?d) of the task go2(?r):

( def-method noop
( : task go2 )
( : params ( ?r room ) )
( : p r e - c o n d i t i o n s (= ( at- robby ) ?r ) )
( : body n i l ) )

( def-method recur
( : task go2 )
( : params ( ?r robot ) ( ?a room) ( ?n room ) ( ?d door ) )
( : p r e - c o n d i t i o n s

(= ( at-robby ) ?a )
( != ?a ?r )
( or ( connects ?a ?d ?n ) ( connects ?n ?d ?a ) ) )

( : body
( do

( move2room ?a ?n ?d )
( go2 ?r ) ) ) )

This definition will result in several lambdas used by the engine to test the precon-
ditions and generate the program of the method. We will demonstrate with the method
recur(?r,?a,?n,?d).

• The pre-condition lambda tests the types of the parameters and the pre-condition
expressions. It returns true if all expressions are true, an error (Err check-error)
otherwise.

( d e f i n e r e c u r - p r e - c o n d i t i o n s ( lambda ( ?r ?a ?n ?d )
( do

( check ( in s t ance ?r room ) )
( check ( in s t ance ?a room) )
( check ( in s t ance ?n room ) )
( check ( in s t ance ?d door ) )
( check (= ( at-robby ) ?a ) )
( check ( != ?a ?r ) )
( check ( or ( connects ?a ?d ?n ) ( connects ?n ?d ?a ) )

)
) ) )

• The body that first checks the pre-conditions of the method before evaluating the
user-defined program.

( d e f i n e recur ( lambda ( ?r ?a ?n ?d )
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( do
( r e c u r - p r e - c o n d i t i o n s ?r ?a ?n ?d )
( move2room ?a ?n ?d )
( go2 ?r ) ) ) )

Events In addition to tasks, OMPAS can also handle events. We define an event
as a program whose execution is triggered by a set of pre-conditions being true. An
event can have a number of parameters. At runtime, the enumeration of all possible
instantiations of the event is monitored. The instance of an event can be triggered once
or whenever the pre-conditions are true. For example, given an event check-battery(?r
- robot) and a list of robots (r1,r2), the system will check the events check-battery(r1)
and check-battery(r2).

The function (def-event label params pre-conditions body) declares an event with
the following arguments:

• label is the name of the event,

• params is an expression of the form (:params (pi ti)...(pn tn)), similar to the other
parameter declarations,

• pre-conditions is an expression of the form (:pre-conditions trigger e1 ... en),
where trigger defines when the event can be triggered: either once or whenever ;
and the expressions ei are boolean expressions, similar to the pre-conditions of
methods,

• body is an expression that represents the program that will be executed when the
event is triggered.

As an example, we could define an event that triggers the closing of a door whenever
it is opened. We assume that close(?d) is a task that acquires Robby and moves to a
room from which it can close ?d.

( d e f - e v en t c lose_door
( : params ( ?d door ) )
( : p r e - c o n d i t i o n s whenever ( opened ?d ) )
( : body ( c l o s e ?d ) ) )

At runtime, events are checked by the State Manager (SM), which notifies the EM
that new events have been triggered.

3.6.1.2 Types

Types are used to annotate the operational models used in OMPAS. The type system of
OMPAS is hierarchical, which means that subtypes can be defined. The root types are
int, float, boolean, object. The type annotation of an object of A∆ supports compound
types:
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• ( list t) type represents a list of objects of type t, e.g. the object locations
represents a set of locations and can be of type ( list location).

• (tuple t1 ... tn) represents a list of n objects of possibly different types, e.g.
the position of a robot in a 2D space can be represented by an object of type
(tuple float float ).

New types can be defined in the State Manager of OMPAS using the function (
def-type t p), which creates a new type t with optional parent p. If p is already defined,
it is added to the type hierarchy as a subtype of object. If p is not specified in the function
call, t is defined as a subtype of object.

In addition to this operator, macros are available to define multiple types with a
single expression using (def-types e1 ... en), where ei can be:

• A symbol t for a new type to be defined as a subtype of object.

• A list (t1 ... tn p) where ti are new subtypes of p.

Note that the types are added in order, so the declaration of types can benefit from
types declared just before in the same call to def-types. Now let us define the types of
Gripper-Door :

( d e f - t y p e s
( b a l l c a r r i a b l e )
( door robot l o c a t i o n ) )

ball is declared as a subtype of carriable, which in turn is defined as a subtype of object.
The second line declares door and robot as subtypes of location, where location is declared
as a subtype of object.

3.6.1.3 Objects

Objects can be declared in the State Manager with the function (def-object o t), where
o is the label of the object and t is the type of the object. Similar to the definition of
types, several objects can be defined at once with ( def-objects e1 ... en), where ei is
an expression of the form (o1 ... oi t), where oi are labels of objects of type t. The
functions def-object and def-objects are defined as macros, so there is no need to
quote list when calling them. We can now define the static objects of the Gripper-Door
domain.

( d e f - o b j e c t s
( r i g h t l e f t g r i ppe r )
( robby robot ) )

We define the left and right grippers of Robby, which itself is declared as a robot.
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3.6.1.4 Facts

Facts can be defined in the internal state of the State Manager with the function (
def-facts f1 ... fn). The expressions fi are expressions of the form (key value),
where key and value can be arbitrary expressions. We use them to define the initial
state of the Gripper-Door problem:
( d e f - f a c t s

( ( opened d_1) true )
( ( opened d_2) n i l )
( at - robby l_r )
( ( car ry l e f t ) empty )
( ( car ry r i g h t ) empty )
( ( pos b_1) bedroom )
( ( pos b_2) k i t chen )
( ( pos b_3) l_r )
( ( pos b_4) l_r ) )

Static values can be defined in the static part of the internal state of the State
Manager with the function (def-values f1 ... fn). It could typically be used to define
the topology of the Gripper-Door problem:
( d e f - v a l u e s

( ( connects l_r d_1) bedroom )
( ( connects k i t chen d_2 k i tchen ) t rue ) )

3.6.1.5 Resources

Instead of declaring resources at runtime, they can be declared through the REPL with
the function (def-resource r c), where r is the resource label and c is an optional
capacity that defaults to 1. Similar to new-resource, def-resource sends a declaration
request to Resource Manager, which may result in a runtime error if the resource has
already been declared. Multiple resources can be declared at once with ( def-resources
e1 ... en), where ei can be:

• A single label defining a unary resource

• A list (r c) where r is the label of the resource and c is its initial capacity.

Let us define Robby and the grippers as unary resources
( d e f - r e s o u r c e s robby l e f t r i g h t )

3.6.1.6 Bindings in the execution environment

Similar to define in a program, bindings can be defined so that they are available in
the evaluation environment of the programs. Instead of define we use (def-env label
expr), where label is a symbol and expr is any expression, e.g. a lambda. This way

we could define the lambda square:
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( de f - env square ( lambda ( x ) ( * x x ) ) )

Or define a constant useful for some computations such as the value of π:

( de f - env p i 3 .141592653)

3.6.1.7 Configure the deliberation of OMPAS

The heuristic used by the Select function of OMPAS can be configured with the
function ( set-select h), where h can take the value {greedy, random, score, ...}, a list
that will grow as new algorithms are added. (get-select) returns the configured heuristic,
greedy by default.

3.6.2 Controlling OMPAS

The REPL interface can be used to send jobs to the acting engine. We can (start ) the
engine, or (stop) it.

The operator can send tasks to address using the function ( trigger-task t p1 ...
pn), where t is the label of the task, (p1, . . . , pn) its instantiated parameters. The
trigger-task command returns a TaskID tid that can be used to wait on its termination
with (wait-task t_id), or cancel it (cancel-task t_id). This TaskID is considered to
be external to OMPAS and has nothing to do with its internal identification system.
We can request the OMPAS ID of a task with ( get-task-id t_id).

Monitoring OMPAS To understand how OMPAS works, several functions format
the internal state of OMPAS to make it human-readable. We distinguish runtime infor-
mation from static information for a given instance of execution. The internal state of
OMPAS can be monitored through the REPL with the following functions:

• The function ( get-state kind) returns the whole state of the system, where the
optional kind (static,dynamic) returns only part of the state,

• The current state of the resources can be monitored with ( get-resources ), which
outputs in a readable way, and for each resource, the current list of acquirers, the
capacity of the resource, and the waiting list,

• For debugging purposes, the list of monitored fluents can be accessed via (
get-monitors). Each fluent is annotated with the time it was added to the moni-
toring system.

Once an Acting Domain has been defined with the functions previously presented,
a user can verify its declaration with the function (get-domain label), which returns
the entire domain composed of the state functions, commands, tasks, methods and
bindings of the domain, and a particular element of the domain if label corresponds
to a previously defined element. The list of elements of each type is accessible with the
functions ( get-state-functions ), (get-commands), (get-tasks), (get-methods).
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Logs and loggers The internal functioning of OMPAS generates logs that can be
viewed in special windows. The logs are separated into different topics, e.g. log_platform
or log_ompas, which log messages from the platform and the different modules of OM-
PAS respectively. We can activate the logs with ( activate-logs l1 ... ln) which takes
as argument the labels of the logs to activate. They can be deactivated at runtime
with ( deactivate-logs l1 ... ln). A log message is associated with a level of criticality
defined in {trace, debug, info, warn, error}, where error is the highest level. We can
define the minimum log level of messages to be stored in log files. For example, we can
execute ( set-log-level debug) to accept all messages with at least debug log level. As
for other configurations, we can get the actual log level with ( get-log-level ).

Other functions are available to control, configure and monitor OMPAS. The detailed
list is available in the online documentation of OMPAS (https://plaans.github.
io/ompas/).

3.7 Conclusion

In this chapter, we introduced a new programming language based on Scheme, a watered-
down version of Lisp. The decisions to extend Scheme were based on the study of other
languages used to model robotic behavior. This led to the addition of concurrency prim-
itives to Scheme, and acting primitives to provide an interface to a robotic execution
platform, and to access the deliberation functions proposed by OMPAS. This concur-
rency and acting extension to Scheme gave rise to SOMPAS, which is also used to model
the behavior of an acting language in description files that can be loaded by OMPAS at
runtime. The same language is used by the REPL of OMPAS to interact dynamically
with the system and to use it as an interface to control a complete deliberation system.

Such a decision to define a new language dedicated to OMPAS is motivated by
the desire to control the acting system using planning techniques, without resorting to
dedicated planning models that mirror the operational models defined with SOMPAS.
Our goal here is to provide a unified framework that both defines the procedures executed
by the acting system and serves as a model for the planning engines. In the next
chapter we will present how the programs defined with SOMPAS can be automatically
analyzed to translate them into a formalism of descriptive models that can be used by
a hierarchical temporal planner to anticipate the choices of the acting engine.

https://plaans.github.io/ompas/
https://plaans.github.io/ompas/
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4.1 Introduction

The primary function of an acting engine is to address abstract tasks through the execu-
tion of skills, which in turn can request the execution of commands on a robotic platform
to achieve the goals associated with those abstract tasks. Here, we employ a refinement
based acting engine that utilizes a hierarchical operational model. Within this model,
each task can be further refined by one or more methods, where each method consists
of a skill, which is essentially an executable program. Within this operational context,
the acting engine must decide based on the prevailing context:

• Which methods should refine the tasks,
• How to instantiate parameters in the body of methods,
• the order in which resources should be allocated to the tasks that need them.

In addition, the acting engine has the ability to handle failed tasks by switching to an
alternate method.

From a broader perspective, we want the acting engine to improve the overall perfor-
mance of the system. To do this, the acting engine attempts to proactively mitigate the
occurrence of failures, deadlocks, or impasses that may occur during the execution of
skills. What is in the power of the acting engine is the decision it makes. It cannot avoid
unexpected events, because they are unexpected by nature, but it can make decisions
that reduce the likelihood of such an event occurring. In addition, the acting engine
can make decisions to improve the efficiency of execution, such as decisions to reduce
resource contention.

In its simplest form, the acting engine makes reactive decisions that depend only on
the current state of the system. However, the acting system can make better decisions if
it is guided by a heuristic that takes into account the long-term effects of such decisions.

Such a heuristic can be obtained through planning techniques. At its core, planning
explores the possible states that the system can reach and tries to find a course in
this state space that achieves goals or maximizes some utility measure. Here, the state
transitions are induced by the decisions of the acting engine. Therefore, the planning
engine should inform the acting engine which decision to make to reach a state in which
the tasks it is executing are fulfilled.

From the beginning, the Operational Model Planning and Acting System (OMPAS)
has been designed to benefit from planning technology. The PLanner Manager is the
entry point of the acting engine to plug in a planning engine that will inform OMPAS
of the decisions it should make based on what the planner has foreseen.

Therefore, in this chapter we propose to study the different planning techniques
that exist and which one is suitable to guide the deliberation of OMPAS. This study
will also justify the integration of a particular planner that takes advantage of a rich
planning model that can be directly derived from the operational models used in OM-
PAS. The techniques used to extract such a planning model are also presented in this
chapter. Finally, the integration of continuous guidance of the planner at runtime is
explained. Continuous planning allows the planner to anticipate the possible execution
flows induced by the decision points of the acting engine, while continuously updating
the planning problem to match the current execution state of the system.
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4.2 Background & related work

4.2.1 Task Planning

Task planning is a subset of the AI discipline that seeks to give agents autonomy by
giving them the ability to know "what to do" to achieve a goal, typically defined as
a desirable property that should hold in the final state. In its simplest definition, a
planning algorithm is capable of generating a sequence of actions to be performed in
order to reach a given state in which the goal is achieved, the actions being applicable
by one or more agents available in the system. The planning system, also called planner,
assumes that it has access to a model of the world and a model of the agent, representing
its capabilities and the impact on the world of performing an action. The world model
and the agent model are described in a so-called descriptive model, which defines the
dynamics of the world from a high-level perspective.

One of the first formalizations of such a descriptive model is more than fifty years
old, and was defined along the well-known STanford Research Institute Problem Solver
(STRIPS) (Fikes 1971) system. In STRIPS, the planning problem is described as a set
of first-order formulas over the state of the system that should be true. The planner
then uses the applicable actions of the agent to achieve its goal, here making the first-
order formulas true. The peculiarity of the STRIPS model is that it describes actions
by the state in which they are applicable, defined by first-order formulas over the state,
and the changes to the state resulting from the execution of that action. STRIPS
was coupled with the PLANEX1 (Fikes 1971) acting system. After the introduction
of STRIPS, many other planning systems based their models on a similar state space
representation.

As planning systems were developed around the world, it became difficult to compare
them because they used proprietary models to define the descriptive model. To bring
the different planning communities closer together, the planner independent language
PDDL (McDermott et al. 1998) was developed. This language would facilitate both the
definition of planning models and the sharing and exchange of planner technology. Of
course, planners had to accept PDDL. In most cases, they transform the planning model
into an internal representation that is more suitable for their algorithm.

Classical planning relies on many assumptions that are often unrealistic in a robotic
context. The more abstract and ideal the model is, the further it is from its physical
counterpart, and therefore the further the planner’s output is from being executable.
Therefore, the planning community seeks to enrich the possible models that a planner
would support to answer the question "what to do?".

To support richer models, PDDL has been extended in several ways. In fact, the
first version of PDDL remains simple, allowing only the definition of STRIPS-like models
based on symbolic state transitions. Among these extensions, PDDL2.1 (Fox and Long
2003) supports the followings:

• Numerical extensions to represent numerical state variables, which can be used to
define functions that describe continuous changes in state variables (e.g., increasing
a robot’s battery by a certain amount). Metrics can also be defined that the
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planner should optimize in his plan (e.g., energy consumed).
• Temporal extensions to represent the duration of actions, conditions, and effects

that can occur at the beginning, at the end, or throughout the action; continuous
effects that depend on the duration of an action.

• Other extensions, such as representing conditional effects.
The following planning techniques often use PDDL2.1 extensions to define their models.

4.2.1.1 Temporal Planning

When it comes to integrating planning techniques into a robotic architecture, the planner
should have a model that is close to the execution of the system. This means that time
should be explicitly modeled to represent at least the duration of commands. Time
modeling is also needed to represent concurrency and synchronization between processes,
and to account for exogenous events. When dealing with another system, time should
also be explicit, for the simplest need of synchronization with e.g. another robot agent.

The first temporal extension that has been proposed is to consider the duration of
actions, but keep a state-based representation in which state transitions are instanta-
neous and do not consider continuously evolving effects, e.g., representing the depletion
of a battery as a continuous process. This could be done by discretizing the state for
each time step, but the size of the state space would be intractable. Another approach
is to rely on timelines to represent state variables independently of the state. The state
space representation can still be derived from this representation, but from the planner’s
point of view, it is easier to reason about intervals than about state transitions when it
comes to temporal planning, especially when it involves parallel execution of actions.

While classical planning techniques typically search for a trajectory in state space,
some temporal planning evolves in plan-space. Plan-space differs from classical planning,
which reasons in terms of state transitions, where plan-space reasons in terms of partial
plans. As in state space, the planner seeks a solution by adding or removing actions
to the plan, but here the plan-space strategy reasons about flaws, where a flaw is an
unsupported precondition or a conflict between actions (e.g. two actions that change
the same state variable). The goal of the planner is therefore to iteratively resolve these
flaws without creating threats, which are flaws created by adding an action that were
previously resolved by another action. A plan is found when there are no more defects
in the subplan. The search algorithm starts with an empty plan in which the goals are
open defects that need to be resolved. Since the strategy starts from the goal, it is called
a backward strategy, as opposed to forward strategies, which start from the initial state
and search for a trajectory to the goal.

Typically, temporal planners rely on the following ingredients:
• Temporal primitives: unique timepoints or intervals (defined by a start and an

end timepoints),
• State variables that can evolve, e.g. position(robot1), and static values that are

state-independent, e.g. is_city(Paris),
• Temporal assertions about the persistence of a state variable or its evolution (dis-

crete or continuous)
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• Temporal constraints defined using the Allen algebra (Allen 1983) or by defining
a STN (Dechter, Meiri, and Pearl 1991).

• Non-temporal constraints on the values and parameters of state variables.
Using these basic ingredients, the chronicles of the IxTeT planner (Ghallab and

Laruelle 1994) represent actions as a set of variables V , a set of constraints over V , a set
of conditions that are time-qualified constraints over V that should be true at a given
time or during an interval, and a set of effects that define the temporal dynamics of the
action with time-qualified assertions representing the continuous or discrete evolution
of state variables that are a function of V . Similarly, the planners developed by the Na-
tional Aeronautics and Space Administration (NASA) the Remote Agent Experiment
Planner/Scheduler (RAX-PS) (from the DS1 mission) (Jónsson et al. 2000) and EU-
ROPA (Barreiro et al. 2012), and the planner developed by the European Space Agency
(ESA) the APSI (Fratini, Cesta, et al. 2011) are based on timelines and tokens. The
PLATINUm framework (Umbrico et al. 2017) is yet another timeline-based approach
that extends the ability of a temporal planner to account for temporal uncertainty. This
allows the planner to plan in highly unpredictable environments such as HRC, where
the human is uncontrollable but should still be taken into account during the planning
process.

More recently, the FAPE (Bit-Monnot et al. 2020) is another planner that benefits
from the rich expressiveness of chronicles to formulate a plan-space problem with rich
search control heuristics based on analysis of the causal network generated by plan-
space search. Also using a formulation like chronicles, the Lifted Constraint Planner
(LCP) (Bit-Monnot 2018) encodes the planning problem as a CSP, and plan-space
exploration is delegated to a standard CP solver. CPT is also a temporal planner that
encodes the planning problem as a CSP. CPT takes advantage of the Partial Order
Causal Link (POCL) planning algorithm, which it extends for temporal problems.

In addition to PDDL2.1, other modeling languages have been developed, mostly
by NASA, such as the New Domain Definition Language (NDDL) for the EUROPA
planner (Barreiro et al. 2012), the IxTeT language (Ghallab and Laruelle 1994), and the
ASPEN Modelling Language (AML) used by ASPEN (Chien, Rabideau, et al. 2000).
Actions in AML (here called activities) can be either primitive actions or abstract tasks
(here called compounds). This allows a hierarchical representation of an agent model.
AML presents an interesting semantic for resources: resources can be used by multiple
users at the same time, and we distinguish deplatable resources that are consumed from
non-deplatable resources that are only borrowed for the duration of the activity.

More recently, the Action Notation Modeling Language (ANML) (Smith, Frank,
and Cushing 2008) proposed to support both hierarchical and generative planning in a
unified framework. ANML is translatable to PDDL. It proposes a language that makes
state transitions explicit in terms of precedent and new value for a state variable, rather
than relying on a condition-effect pair, making the definition of an action more compact.
In addition, actions can be defined with timing other than the classical start and end
labels, e.g. to express a transitive effect that ends before the action ends. However,
few planners support ANML: FAPE (Bit-Monnot et al. 2020), which focuses on the
temporal and hierarchical features of ANML, and TAMER (Valentini, Micheli, and
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Cimatti 2020), which supports numerical fluents.

4.2.1.2 Hierarchical Planning

Instead of relying on the classical representation of the agent’s capabilities with atomic
actions, the hierarchical formalism allows the composition of capabilities using simple
capabilities of the agent. Typically, such a model is formalized as a tuple (A, T, M),
where A is the set of primitive actions of the agent, e.g., moving, T is a set of abstract
tasks representing more complex behaviors, e.g., moving an object to another room,
and M is the set of skills that can be used to refine a given task t ∈ T . The goal of a
hierarchical planner is therefore to find an appropriate decomposition to refine a task in
a Hierarchical Task Network (HTN).

The Simple Hierarchical Ordered Planner 2 (SHOP2) planner (Nau, Au, et al. 2003)
was awarded at the IPC for its outstanding performance thanks to its search algorithms
that generates the planning steps in the same order as they will be executed, thus
reducing order uncertainty during the planning phase. Based on the Simple Hierarchical
Ordered Planner (SHOP) planning algorithm, Pyhop (Nau 2013) has been successfully
adopted in many projects due to its use of Python to define both the planning engine
and the planning domain in the form of Python programs. GTPyhop (Nau, Bansod,
et al. 2021) extends Pyhop to support Hierarchical Goal Network (HGN) planning as in
the Goal Decomposition Planner (GDP) (Shivashankar et al. 2012) where methods are
defined to achieve a goal rather than refine a particular task. The Human-Aware Task
Planner with Emulation of Human Decisions and Actions (HATP/EHDA) (Buisan et al.
2022) extends the Human Aware Task Planner (HATP) (Lallement, De Silva, and Alami
2014) planner to consider social rules in the HTN formalism, which is particularly useful
in Human Robot Interaction (HRI) contexts. HATP/EHDA can emulate the behavior
of a human agent and take it into account during the planning process.

The Planning and Acting in a Network Decomposition Architecture (PANDA) frame-
work (Höller et al. 2020) provides a complete planning suite including SAT and forward
search techniques. In addition, the PANDA framework embeds techniques for plan
repair, plan and goal recognition, and plan validation.

The Hierarchical Domain Definition Language (HDDL) (Höller et al. 2020) is another
extension of PDDL that supports a hierarchical description of an agent’s capabilities:
in addition to the classical primitive actions, abstract task can be defined, for which one
or more methods should describe how a high-level task can be achieved. HDDL is the
official planning language for the hierarchical track of the IPC. HDDL has also been
extended for temporal and numerical support in HDDL2.1 (Pellier et al. 2023).

Several hierarchical planners also support temporal models. Among them,
SIADEX (L. A. Castillo et al. 2006) uses the forward search strategy of SHOP to which
temporal reasoning is added to take into account a richer temporal formalism. The tem-
poral constraints are encoded in a STN that is propagated during the search using a CP
solver. In addition to supporting temporal planning, FAPE Bit-Monnot et al. 2020 also
targets hierarchical decomposition problems. The hierarchical decomposition problem
is expressed in the chronicles used to encode the planning problem, and each chronicle
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has a dedicated temporal network compiled as a CSP. Aries (Godet and Bit-Monnot
2022; Bit-Monnot 2023b) is also a temporal planner that models the planning prob-
lem as a set of chronicles compiled into a CSP. Aries extends LCP (Bit-Monnot 2018)
for hierarchical problems. The Hierarchical Temporal Event Planner (HTEP)(Cavrel,
Pellier, and Fiorino 2023) is also a hierarchical temporal planner. It decomposes the
temporal problem into a simpler problem by decomposing durative actions into a pair
of two instantaneous actions, each representing the start and end of the durative action.
The two actions are then constrained with a causal link representing the duration of the
action. It then uses POCL as a search strategy to find a valid lifted solution, and uses
a classical CP solver to instantiate all the remaining variables of the planning problem.

4.2.2 Planning to guide a refinement based acting engine

4.2.2.1 Guiding the refinement of tasks

Coming back to our problem, we want to use planning techniques to inform the acting
engine what decisions to make. Previous approaches proposed to guide the refinement
of tasks into methods. In Propice-Plan (Despouys and Ingrand 2000), programs are con-
tinuously simulated by an Anticipation Module that can inform PRS (Ingrand, Chatila,
et al. 1996) on which skill to choose to refine a goal. The guidance uses an anytime algo-
rithm, meaning that a solution is always available during the search process. However,
the more time is given to the search phase, the better the solution should be.

Extensions to RAE have been proposed to provide the system with lookahead capa-
bilities similar to Propice-Plan (Despouys and Ingrand 2000) to guide the choice of the
method to achieve the goal, taking into account both the current state of the system and
possible refinements of subtasks. RAEPlan (Patra, Ghallab, et al. 2019) is an anytime
planning algorithm that has been integrated with RAE to guide method refinement at
runtime. It uses a MCTS algorithm that simulates multiple executions. The MCTS is
used to compute the estimated utility of all applicable methods by sampling the costs
of the methods’ primitive actions. The cost of a method is the sum of the costs of all
primitive tasks. Here, the utility is the efficiency, which is the inverse of the cost of a
method. Then it chooses the method that maximizes the utility of the task, i.e. the one
that has the highest efficiency.

RAE has also been integrated with UPOM (Patra, Mason, Kumar, et al. 2020),
another planning algorithm based on a MCTS algorithm. Unlike RAEPlan, it takes
into account the nondeterministic outcome of commands to guide the exploration of the
search tree, and can use learning techniques to speed up the search and produce useful
heuristics. Several techniques have been proposed along UPOM :

• Learnπ maps a tuple (τ, ξ) of a task and a state to a method, and is used when
the acting engine does not have enough time to execute UPOM,

• Learnπi returns the best instantiation of arbitrary parameters for a method in a
given state ξ, and LearnH gives a heuristic for branching in UPOM.

While they speed up the search and increase the quality of the chosen methods, they
do not guarantee the long-term validity of the plan and the possibility of reaching the
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high-level goal.
Along with the formalization of the RAE algorithms, several look-ahead algorithms

have been sketched in (Ghallab et al., 2016). The simplest Run-Lookahead calls a
lookahead planner whenever a new action should be executed, and only executes the
first action of the returned plan. In this way, the acting system copes with changes in
the environment at each step of execution. However, it seems that calling the planner
every time an action should be executed is unnecessary, and could be done only when
needed, and this is what Run-Lazy-Lookahead proposes, by looking ahead only when the
plan is finished, or the current plan is no longer considered feasible by a plan simulator.
Recent work by (Bansod, Nau, et al. 2021) proposes to extend Run-Lazy-Lookahead to a
hierarchical representation of the agent’s behavior, using the power of a hierarchical task
and goal planner IPyhop. The result is a new algorithm called Run-Lazy-Refineahead.
This allows the planner to guide an acting engine based on a hierarchical representation
of the agent’s capabilities. Thanks to its compliant interface, the user of IPyhop can
easily replan from the middle (Bansod, Patra, et al. 2022), improving the responsiveness
of the actor. This is made possible by the improvements of IPyhop over GTPyhop (Nau,
Bansod, et al. 2021), and in particular the hierarchical structure of the returned plan,
which simplifies replanning triggered by the actor, and which requires only a pointer
to the part of the hierarchical tree that failed, and gives a head start on finding a new
suitable plan.

However, the part of the tree that has not yet been executed will potentially be
replanned, and even unnecessary parts of the plan that are not affected by the previous
failure. IPyhopper (Zaidins, Roberts, and Nau 2023) addresses this problem by repairing
only the necessary parts of the plans, and has demonstrated faster results than IPyhop
on similar domains.

Previous work has focused on guiding the refinement of tasks or goals. Indeed, the
choice of method is often the most important decision in a refinement based acting en-
gine. However, as we saw in chapter 2, the acting engine must also be able to manage the
progression of multiple tasks, i.e., when the progression of multiple tasks may conflict,
the acting engine should be able to favor one task over another.

The previous approaches consider the problem of decomposing a single task and do
not take into account the possible problem that may arise from the concurrent execution
of tasks. In fact, the planning approach should take into account the concurrent tasks,
and also has an explicit representation of time to decide how tasks are interleaved at
runtime.

4.2.2.2 On guiding the progression of multiple tasks in a refinement based
acting engine

In chapter 2, we have described a generic way to interface a planner with OMPAS,
without specifying which planning system could be used. OMPAS uses a description of
an agent’s capabilities as a set of hierarchical operational models. Therefore, it seems
natural to use a planner that shares this hierarchical representation. In fact, preferred
decisions are extracted from the plan synthesized by the planner. Therefore, analyzing
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a plan with a structure similar to hierarchical operational models should facilitate the
process.

In addition, the plan should provide guidance on how concurrent tasks should be
interleaved and, in particular, at what point resources should be allocated to the tasks
that request them. Therefore, the planner must explicitly reason about time.

Given the above requirements, the planner should support both hierarchical and
temporal planning. Few planners integrate both features. Among them, we can count
on SIADEX (L. Castillo et al. 2006), FAPE (Bit-Monnot et al. 2020), PlatinuM (Umbrico
et al. 2017), and HTEP (Cavrel, Pellier, and Fiorino 2023).

Aries (Godet and Bit-Monnot 2022; Bit-Monnot 2023a) is a new planner currently
under development. Aries targets planning problems that require temporal, hierarchi-
cal, and numerical reasoning. Aries uses a custom hybrid CP-SAT solver to enhance
the performance of the planning engine (Bit-Monnot 2023a). Like IxTeT, the planning
problems are encoded as chronicles, which are extended to support hierarchical mod-
els (Godet and Bit-Monnot 2022). By using chronicles as a model, it should be easier
to represent operational models in this formalism. In fact, chronicles are more flexible
in representing the internal dynamics of an action, which is needed to represent the
temporal complexity of an operational model.

For all of the above reasons, Aries was chosen as the planner to guide the delibera-
tions of OMPAS. It should be noted that the design of OMPAS allows for the integration
of any planner, but given the scope of this thesis, we chose to focus our efforts on the
tight integration of one particular planner. Furthermore, Aries is currently being devel-
oped by the same team as the author of this thesis. This has facilitated the integration
of the planner; support has always been available to help with the integration of the
planner; missing features have been quickly added to the planning engine. This has
resulted in a level of integration that would have been difficult to achieve with any other
planner.

4.2.3 Aries: hierarchical temporal planner

As mentioned before, Aries is a hierarchical temporal planner that returns a plan com-
posed of a set of temporally qualified actions. These actions can result from the decom-
position of high-level tasks, or they can be included in a generative way. Aries inherits
from LCP (Bit-Monnot 2018), a temporal planner that encodes a planning problem (PΠ)
as a set of chronicles. A chronicle is a rich formalism that allows more expressive tem-
poral qualification of actions than the classical STRIPS (Fikes 1971) formalism. From
the PΠ formulation, a set of rules transforms the problem into a corresponding CSP,
which is solved by a dedicated solver. The extension proposed in Aries is the support
for hierarchical planning (Godet and Bit-Monnot 2022) by extending the definition of
a chronicle to support the definition of methods composed of subtasks, either primitive
actions or abstract tasks.
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4.2.3.1 Planning formalism: chronicles

A chronicle is a formalism used in planning to represent the temporal model of an action.
Here, an action is either a low-level command or a method that refines a task. As with
other planning formalisms, an action model is a predictive model that represents the
set of states in which the action is applicable and the set of states resulting from its
execution. The state is represented as a set of state variables of the form sf(p1, . . . , pn) =
v, where sf is the label of a state function, (p1, . . . , pn) is the list of parameters, and v

is its value. Here we assume that the parameters and values are of one of the following
types int, float, boolean, object.

Unlike a classical STRIPS representation, conditions and effects can happen at any
time between the start s and the end e of the action. The core of the chronicle is defined
as a tuple (N, T, V, X, C, E, S), where:

• Name (N) is the name of the action it models. It consists of a label and a list of
variable parameters, e.g. move(?from,?to,?door).

• Task (T) is the name of a task the action refines. It also consists of a label a list
of variable parameters, e.g. place(?object, ?room). If the chronicle represents a
command, this attribute is the same as Name.

• Variables (V) is the set of variables of the chronicle. It contains the chronicle pa-
rameters (also present in N), the timepoints s, and e and possibly other variables.

• Constraints (X) is the set of constraints over V . For example, it may contain the
structural constraint s ≤ e− 10, which imposes the duration of the action.

• Conditions (C) is the set of temporal conditions of the form [sc, ec] sf(p1, . . . , pn) =
v, where sc and ec define the interval during which the expression should be true,
the said expression being defined as an equality constraint on the value v, and a
state variable sf(p1, . . . , pn). Conditions are more expressive than STRIPS pre-
conditions, which are only relative to the start of an action. Conditions can be
defined for any interval [sc, ec] such that: s ≤ sc ≤ ec ≤ e.

• Effects (E) is the set of temporal effects of the form [se, te] sf(p1, . . . , pn) := v,
where sf(p1, . . . pn) is a state variable that transitions to the value v between se

and te, meaning that the value is unknown during ]se, te[. Like conditions, effects
are more expressive than the STRIPS post-effect, which are only relative to e.
Effects can be defined for any interval such that: s ≤ se ≤ ee ≤ e. In addition,
the transition of a state variable can have a duration, e.g. to represent the time it
takes to move between two locations over a temporal interval.

• Subtasks (S) is the set of subtasks of the form [ss, es] a(p1, . . . , pn), where a is
the label of a subtask (either a command or a high-level task), followed by its
parameters (p1, . . . , pn); [ss, es] denotes the interval of execution of the subtask.

Examples of chronicles are given in Figure 4.1 for the command pick(?o,?r,?g) of
the Gripper domain (see Example 1.1).
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name: pick(?o,?r,?g)
task: pick(?o,?r,?g)

variables: s, e, ?o, ?r, ?g
constraints: s ≤ e
conditions: [s] pos(?o) = ?r

[s] at-robby() = ?r
[s] carry(?g) = empty

effects: [s,e] carry(?g):= ?b
[s,e] pos(?o):= Robby

subtasks: ∅
(a)

name: pick&drop(?b,?r,?g,?p)
task: place(?b,?r)

variables: s, e, ?b, ?r, ?g, ?p
constraints: s ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5 ≤ t6 ≤ e
conditions: [s] pos(?b) = ?p

[s] at-robby() != Robby
effects: ∅

subtasks: [t1,t2] pick(?b,?p,?g)
[t3, t4] go2(?r)
[t5, t6] drop(?b,?r,?g)

(b)
name: move&drop(?b,?r,?g)
task: place(?b,?r)

variables: s, e, ?b, ?r, ?g
constraints: s ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ e
conditions: [s] carry(?g) = ?b

effects: ∅
subtasks: [t1, t2] go2(?r)

[t3, t4] drop(?b,?r,?g)
(c)

Figure 4.1: Examples of chronicles to represent actions of the Gripper-door domain
(see Example 1.1): the command pick(?o,?r,?g) (Figure 4.1a), and the methods
pick&drop(?b,?r,?g,?p) (Figure 4.1b) and move&drop(?b,?r,?g) (Figure 4.1c) of the task
place(?b,?r).
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4.2.3.2 Planning problem: collection of chronicles

In Aries, the planning problem (PΠ) is defined as a tuple (C0, CI , C∆), where:

• C0 encodes both the initial state and the goals,

• CI is the set of chronicle instances representing the actions that may exist in the
plan, These are instantiations of the chronicle templates defined in CT .

• CT is the set of chronicle templates that can be used by the planner to add missing
actions to the plan. Each possible action of the domain (e.g., move(?from, ?to,
?door)) is associated with a template.

Initial chronicle C0 is the initial chronicle, representing both the initial state of the
system and its goals. C0 is contained in CI . The interval of C0 represents the planning
interval [0,H], where H is the planning horizon. If no limits are defined, H = +∞.

The past and current state is constructed with a set of instantaneous effects
{[ti] svi := vi} that represent the current state of the system. The timepoint ti cor-
responds to the moment when the state variable was updated. In a classical planning
problem, we consider ti = 0. If events are known in advance, they can be encoded as
timed effects in C0.

A goal can be represented in two ways:

• As a goal condition that is encoded by a set of n conditions on the state such that:
{i ∈ J1; nK : [ti] svi = vi, ti ≤ H}.

• As a goal task [st, et] task where et ≤ H.

With such a definition of a goal, temporal constraints can be defined for it. For
example, we can define the following for a goal task:

• a deadline t: happens before t (et ≤ t),

• a start constraint: start after t (t ≤ st),

• a maximum duration for goal tasks: take less than x time units (et − st ≤ x).

All of these constraints are defined in the Constraints attribute of C0. Note that
multiple goals can be defined in PΠ.

Chronicle templates The planning domain is defined as a set of chronicle templates
CT . A chronicle template can represent either a command or a method. The tem-
plates can be instantiated in multiple instances by the planner to populate the planning
problem. Newly instantiated chronicles are added to the set of chronicle instances CI .

Chronicle instances The set of chronicle instances CI represents the set of param-
eterized actions that may be present in the final plan. Any c ∈ CI \ C0 is intended to
refine a subtask of a chronicle of CI . If a subtask is not refined by any chronicle present
in the problem, the planner can use the templates present in CT to instantiate a new
chronicle that can refine the subtask.
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4.2.4 Unified model for Acting and Planning

Most deliberation systems rely on different models for acting and planning because
historically the algorithms of both domains were developed along with their models.
On the one hand, deliberate acting reasons about the "how" and relies on operational
models that express complex reactive behaviors that aim to be robust to hazards. In our
system, skills are defined as programs executable in an interpreter, in particular we rely
on the dedicated acting language SOMPAS. On the other hand, planning reasons on the
"what" and takes advantage of descriptive models that can be defined using dedicated
planning languages such as PDDL (McDermott et al. 1998) and ANML (Smith, Frank,
and Cushing 2008).

However, relying on different models for Planning and Acting can lead to semantic
mismatch. In fact, descriptive models abstract the inner workings of skills, especially in
robotic systems with truly complex behaviors. The more abstract the descriptive models
are from the operational models, the greater the chance that planning will mislead the
acting system. At best, the planner will produce a suboptimal plan. At worst, it may
induce incorrect behavior.

Some works have proposed using a single model for both Acting and Planning, such
as IxTeT-Exec (Lemai-Chenevier 2004) or the T-REX (Py, Rajan, and McGann 2010),
more systems are discussed in chapter 1. However, these approaches often rely on a
formalism that can be difficult for the roboticist to understand. Instead of starting
from the operational model, the approach taken by CX (Niemueller, T. Hofmann, and
Lakemeyer 2018) is to build on the PDDL model and enrich the language to make it
more suitable for execution. However, the modeling language has some limitations when
it comes to representing branching, loops, and error handling mechanisms.

In other versions of RAE, the planning engines, such as UPOM, plan directly with
the operational models defined in Python (Patra, Mason, Ghallab, et al. 2021). As a
reminder, UPOM samples the simulated execution traces of operational models in a
MCTS. In UPOM, the planning models are considered as black boxes: the planning
engine does not reason about the semantics of actions, it analyzes the state resulting
from the simulated execution of the said actions.

The algorithm proved to be efficient to guide the refinement of tasks in RAE, but it
does not take into account the execution of concurrent tasks, which limits its ability to
guide the interleaving of tasks in OMPAS.

In fact, to guide the interleaving of tasks, the planning algorithm should have access
to a temporal model of the actions. However, previous implementations of RAE relied
only on the operational models to perform both Acting and Planning, without having
access to an explicit predictive temporal model of the actions. With such a model, and
in particular by resorting to chronicles, we can use a temporal planner to anticipate
the concurrent execution of several tasks, and in particular those that share limited
resources.

Therefore, we need chronicles to represent the effect of the execution of programs.
Moreover, we propose to derive the chronicles from a unique model provided by the
roboticist to avoid semantic mismatch between the descriptive and operational models.
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Procedures,
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Figure 4.2: Schematic representation of the translation of a program defined in SOMPAS
into a chronicle.

What we propose here is to automatically synthesize the chronicles from the operational
models. By relying on SOMPAS to define the operational models, we use a procedural
language that is simpler than Python, and whose well-defined semantics should facili-
tate the automated translation of the programs into chronicles. Once translated, the
chronicles can be used to call a temporal planner, here Aries, to anticipate the execution
of tasks, and guide the acting engine in the decisions it will make.

4.3 Automated generation of planning models from pro-
grams

The automated generation of chronicles from programs is, to our knowledge, a new way
of blending Acting and Planning. The process consists in the syntactic and semantic
analysis of the programs in order to generate a corresponding predictive model in the
form of a chronicle.

The synthesis process is divided into two stages: first, the program is transformed
into an Intermediate Representation (IR) that is more suitable for static analysis, then
the chronicle is built from the lower-level formalism. An overview of the translation
process is shown in Figure 4.2.

In our approach, we emphasize the interest of having an intermediate representation
of the skills in a lower-level formalism. First, it removes syntactic sugar to obtain a
restricted set of primitives. Second, it can be used to abstract the translation process
from a specific formalism for the skills and the planning models. In fact, if either the
skill formalism or the planning formalism is changed, only half of the process needs to
be redefined. Finally, the lower-level formalism can facilitate the static analysis of the
skills using a standard compilation pass.

To illustrate the translation of the programs, we will use the program defined in
Listing 4.1. It is the program of the method pick&drop(?b, ?r, ?g, ?p) that refines
the task place(?b, ?r). The body contains both the check of the pre-conditions of the
method and the body defined in the operational model of the method.
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Listing 4.1: Program of the method pick&drop(?b, ?r, ?g, ?o) that refines the task
place(?b, ?r). It is the SOMPAS program of the operational model defined in Figure 2.2a.
( do

( do
( do

( check ( in s t ance ?b b a l l ) )
( check ( in s t ance ?r l o c a t i o n ) )
( check ( in s t ance ?g g r ippe r ) )
( check ( in s t ance ?p l o c a t i o n ) ) )

( do
( check (= ( pos ?b ) ?p ) )
( check ( != ?p robby ) ) ) )

( do
( d e f i n e r_h ( acqu i r e robby ) )
( go2 ?p )
( p ick ?b ?p ?g )
( go2 ?r )
( drop ?b ?r ?g ) ) )

4.3.1 Encoding into an Intermediate Representation (IR)

During the early development of OMPAS, the intermediate representation of a program
was defined in the Single Static Assignment (SSA) formalism (Turi and Bit-Monnot
2022b). It is a formalism in which each value is uniquely defined by a label, and a
computation depends only on previously defined labels.

Going back to SOMPAS, the representation of the evaluation of an expression e in
SSA is as follows: each step of the evaluation of an expression corresponds to a single
line defined by a unique timepoint label ti, a unique result label ri, and the call to a
primitive.

For example the translation of the expression (+ x y) gives:

t1 : r1 ← cst(+)
t2 : r2 ← cst(x)
t3 : r3 ← cst(y)
t4 : r4 ← apply(r1, r2, r3)

where cst and apply are primitives in the SSA form.
However, SSA does not aim to represent the concurrent execution of flows in pro-

grams. Therefore, we propose to extend the SSA formalism to a flow graph formalism
to model branching and concurrency in programs.

A flow graph is a graphical representation of all possible execution flows of a program.
This representation is particularly useful for checking the coverage of a program and for
identifying paths that should be avoided, such as those that lead to failures, deadlocks,
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or dead ends.
Previous work has focused on control flow graphs for Scheme (Shivers 1988), but since

SOMPAS is simpler than generic Scheme dialects, we have derived our own formalism
that is sufficient for synthesizing planning models.

4.3.1.1 Flow graph: definition

A flow graph is an oriented acyclic graph in which a node represents a set of primitive
computations, e.g. a call to a primitive. As in SSA, each line is denoted by a unique
timepoint label ti, a unique result label ri, and a computation can only be a function
of previously defined labels. For SOMPAS programs, their flow graph representation is
composed of nodes, each corresponding to the evaluation of an expression.

Node A node represents a sequence of n primitive calls, where each line is defined by
a timepoint label referring to the end of the computation, a result label, and the call to
a primitive. The generic representation of a node is as follows:

t1 : r1 ← prim0
. . .

tn : rn ← primn

Since in a node the computations are done sequentially (line by line), then ∀i ∈
J1, nJ, ti ≤ ti+1, and the result of the node is rn.

In the flow graph, we use two specific nodes to represent both the entry point of the
program, and its termination:

• The root node represents the beginning of a program. It is defined by the start
timepoint s:

s

• The result node represents both the end of the evaluation of the expression, and
its result. It is defined by the end timepoint e and its result r, both inherited from
the last computation node of the flow graph:

e : r

Flow We define a flow as a path between two nodes. A flow consists of a root, a result
node, and in between a set of flows and nodes. By defining a flow with at least a root
node and a result one, a complex program can be viewed as a result obtained during an
interval. A flow f can be manipulated with the following operators:

• Start(f) returns the timepoint of the root node of a flow,
• End(f) returns the timepoint of the result of the flow,
• Result(f) returns the result of the last node of the flow.
Flows can be composed in the following ways:
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• A sequential flow is an ordered set of n flows such that ∀i ∈ J1, nJ, End(flowi) ≤
Start(flowi+1).

s

flow0

. . .

flown

End(flown) : Result(flown)

• A branching flow represents the conditional execution of n flows, such that only one
flow can be executed. It consists of a first condition flow flowc, and n branches. A
branch branchi, i ∈ J1, nK is executed if fi(rc) = true, where rc = Result(flowc).
For a given rc, ∃!i ∈ J1, nK, fi(rc) = true. The result of the flow is the result of the
executed branch:

s

flowc

branch1

f1(
rc

)

. . . branchn

f
n (r

c )


End(branch1) : Result(branch1) if f1(rc)
. . .

End(branchn) : Result(branchn) if fn(rc)

• A concurrent flow represents the parallel execution of n flows. All the flows
threadi have a common predecessor flows such that ∀i ∈ J1, nK, End(flows) ≤
Start(threadi):

s

flows

thread1 . . . threadn

End(thread1) : Result(thread1)

Thread1 is the main flow, and defines the result of the concurrent flow.
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• A joining flow represents the synchronization of n flows. All the flows threadi have
a common successor flowj such that ∀i ∈ J1, nK, Start(flowj) ≤ End(threadi):

thread1 . . . threadn

s

flowj

End(flowj) : Result(flowj)

Thread1 is considered the main flow, so it defines the start of the flow.

4.3.2 Translation of a program into the Intermediate Representation

Now that the formalism and accompanying definitions have been presented, we can dive
into the heart of the matter. The process of translating a SOMPAS program into a
chronicle was first outlined in (Turi and Bit-Monnot 2022b) and then adapted to the
flow graph formalism in (Turi, Bit-Monnot, and Ingrand 2023).

4.3.2.1 Pre-processing of programs

Before converting programs into a corresponding flow graph, the programs are prepro-
cessed to facilitate their translation. During this preprocessing step, two transformations
are applied to the programs:

• The calls to user-defined functions (lambda functions in SOMPAS) are expanded
into new expressions from which the function call has been removed. The details
of the transformation are given in Appendix A.1.1.

• The static expressions of the program are pre evaluated. A static expression
is essentially a referentially transparent expression, that is an expression whose
evaluation does not depend on any parameters outside the ones of the expression,
and whose evaluation does not produce any side effects. This static evaluation can
benefit from the distinction between static values and dynamic facts. Indeed, we
can consider that the evaluation of Read-State(sf, p1, . . . , pn) to be pure as long
as all the arguments of Read-State are pure and that the state variable is static.
This is particularly useful because much of the context is known at the time of the
translation, such as the execution environment and the goal tasks. More details
and examples of the pre-evaluation process are given in the Appendix A.1.2.

If we take the example given in Listing 4.1, the result of the preprocessing of the
program is given in Listing A.1. For the rest of the process, that is the expanded version
of the program that is used.
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4.3.2.2 Iterative translation of a SOMPAS Program into a flow graph

Once the program has been preprocessed, we can translate the program into a corre-
sponding flow graph. The process works as follows: the flow graph is derived from a pro-
gram by iteratively translating any expression into a flow, and this until only primitive
computations are present in the flow graph. As a reminder, every program in SOMPAS
consists of a single expression, denoted here as body. Therefore, the translation starts
from a flow graph with a single node consisting of the body expression:

s

e : r ← body

e : r

The flow graph representation of the expression body expression is obtained by expand-
ing each node of the following form into a new flow, where expr is not a primitive:

s

e : r ← expr

e : r

The expansion of expr is defined by the rules presented below, so that a unique rule
applies to each expr. When applicable, the rule expands the single node into a new flow
composed of simpler nodes. The rules proposed below are defined for any expression of
SOMPAS.

Translation of an expression Given any expr, we define the following rules.

expr is an atom that evaluates to the value v. The corresponding flow is the
following:

t

t : r ← cst(v)

t : r

expr is a list (f e1 ... en) In SOMPAS this corresponds to the application of
the function f to the ei parameters (where each ei might be an arbitrary expression).
Following the definition of the Eval function, it is expanded to:
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t

t0 : r0 ← f

t1 : r1 ← e1

. . .

tn : rn ← en

tn+1 : rn+1 ← apply(r0, r1, . . . , rn)

tn+1 : rn+1

Note that after this expansion, other expansions will be triggered to, e.g., refine
the computation ei into a primitive expression or specialize the last line (function
application) into a primitive expression depending on the nature of r0.

Translation of the special operators of SOMPAS

expr matches (define var val) This operator defines a name for the value val
and returns nil. It is translated as follows, and all subsequent uses of var are replaced
with the label r:

s

s : r ← val

s : nil

expr matches (begin e1 ... en) The begin operator evaluates a list of n ex-
pressions sequentially, returning the result of the last expression. It is translated as:

s

t1 : r1 ← e1

. . .

tn : rn ← en

tn : rn

The result of the flow is rn, the value of the last expression en. The end of the flow is
defined as the end of the evaluation of en.
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expr matches ( if cond a b) The if operator first evaluates the cond expression,
which returns the boolean r0. If r0 is true, a is evaluated and is the result of the
expression, otherwise b will be evaluated. This is translated as a branching flow that
depends on r0: the result of expr is either the result of a or the result of b, depending
on which branch is executed.

t

t0 : r0 ← cond

t1 : r1 ← a

r 0

t2 : r2 ← b

¬
r0

{
t1 : r1 if r0
t2 : r2 if ¬r0

expr matches (quote e) The quote operator avoids evaluating the expression e.
The expression e is therefore considered as an atom, and we obtain:

t

t : r ← cst(e)

t : r

expr matches (async e) The async operator creates a new thread in which the
expression e is evaluated, and immediately returns a handle that is used to refer to the
concurrent evaluation, either to wait for its result or to interrupt it. Here, the handle
represents the concurrent evaluation flow. The expression is translated as a concurrent
flow:

t

t : r0 ← h t1 : r1 ← e

t : r0

expr matches (await h) The await operator holds the evaluation of the current
thread until the result of the handle h is available. Once available, it returns the result
of h. The corresponding flow graph is a join flow, where threadh is the flow represented
by h:
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t : r0 ← h threadh

t

te : r ← Result(threadh)

te : r

Translation of apply

expr matches apply(r0, r1, . . . , rn) where r0 is a user defined function f with
parameters (x1, . . . , xn). In this case we replace the expression with the body of the
function f , where each parameter xi has been replaced with the corresponding value of
ri:

t

t0 : r ← body(f)[xi/ri]

t0 : r

expr matches apply(r0, r1, . . . , rn) where r0 is the read-state primitive:

t

t : r ← read-state(r1, . . . , rn)

t : r

expr matches apply(r0, r1, . . . , rn) where r0 is either the exec-task or the
exec-command operator:

t

te : r ← exec(r1, . . . , rn)

te : r

expr matches apply(r0, r1) where r0 is the arbitrary primitive:
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t : r ← arbitrary(r1)

t

t : r

The label r1 should represent a finite set of elements: either a list of atoms or a symbol
type.

expr matches apply(r0, r1, r2) where r0 is the acquire primitive. The acquire opera-
tor requests a resource r1 with quantity r2, and holds the execution until the resource is
granted. It can then return a resource-handle which can be used to release the resource.
The corresponding flow graph is:

ta : rh ← acquire(r1, r2)

t

ta : rh

expr matches apply(r0, r1) where r0 is the release primitive. The release operator
returns the borrowed amount of the resource. The corresponding flow graph is:

tr : r ← release(r1)

t

tr : nil

Termination If no more rules apply, then the program has been completely translated
into a flow graph, meaning that all expressions are in primitive form. In our case, this
means that each statement corresponds to one of the primitives: cst, read-state, exec,
acquire, release, arbitrary or apply (with the restriction that the first parameter of apply
must be a built-in function, since all user-defined functions have been expanded).

4.3.2.3 Post-processing the flow graph

Once the program is translated into a flow graph, a series of static analysis passes are
applied to it. The goal is to simplify the structure of the flow graph by binding variables
and, in the meantime, to identify invalid flows. We briefly present the post-processing
steps here, more details are given in the Appendix A.2.
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Binding labels Equivalent labels are bound using the Union-Find algorithm pre-
sented in Algorithm A.1. Two labels are said to be equivalent if they are bound to be
equal. Binding two labels also means that the set of possible values they can take should
intersect, i.e. that the set is constrained by both labels. We here represent the possible
values of a label l as a domain D(l). Thus, if two labels l1 and l2 are bound, the resulting
domain of both labels is defined as the intersection of both domains D(l1)∩D(l2). More
details about the domain representation can be found in the Appendix A.2.2.

Propagating constraints on the domain of labels In addition to matching the
domains of bound labels, the domains of labels can be inferred from the expressions in
which they are implied. For example, the result of a mathematical calculation must be
a number. Therefore, the domain of labels bound to the translation of an expression
should be bound based on the semantics of the operator. Both the label representing
the result of the expression and the labels representing the parameters of the operator
should be bound.

For some specific primitive expressions, we propose a set of constraints that would
help the automated analysis of the translated programs. We describe these constraints
in detail in the Appendix A.2.4.

In some cases, the constraints on the domain of a label can result in an empty
domain, meaning that no valid value is allowed for the label. This results in a program
that is invalid and would typically return a compilation error. In our case, since the
program is interpreted, its evaluation would return a runtime error. If the program is
declared invalid, the translation process will fail.

Specializing the program to get a predictive model Here we translate programs
that are the bodies of methods that are executed in the acting engine. As a reminder,
when selecting a method to refine a task, the acting engine expects the evaluation of the
method to be successful. At runtime, the program may fail, and the acting engine is able
to deal with this thanks to its retry mechanism as presented in Chapter 2. However,
here we are translating the program in order to have an appropriate predictive model to
use a planning algorithm to anticipate the execution of the program. Therefore, we want
a representation of the program for which we make the assumption that it cannot fail.
The failure of a method is characterized by an error return value (see Chapter 3 for more
details on expression types in SOMPAS). So we enforce that the result r of the program
cannot be an error. Therefore, we restrict the domain of r such that D(r) ∩ Err = ∅.

Because of this special analysis of the program, aimed at the synthesis of a planning
model, we relax the rule presented earlier, which states that an empty domain for a
variable makes the program invalid. In fact, the additional constraint enforces some
values on labels and can lead to empty domains. In this particular case, we state that
a label with an empty domain invalidates the nodes and flows in which the label is
present. Variables are then constrained to prevent those flows from being executed. In
particular, the value of a condition in a branching flow can be constrained. In the case
of branching flows, when specializing the flow graph to represent a predictive model,
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we allow the removal of branches that cannot be taken by the program, resulting in a
simplified model. The transformation is described in detail in Appendix A.2.5.

Example of translated program after postprocessing Based on these rules, we
obtain the flow graph shown in Figure 4.3. The postprocessing steps presented earlier
have been applied to the flow graph. In particular, the flow graph is now specialized to
represent a predictive model that is free of erroneous execution paths.

The postprocessing removed all branching flows, of which there were ten. Among
the branches that were removed, we have the translation of (check e) expressions in a
do expression. As a reminder, the check operator returns an error if the expression it
contains evaluates to false. Furthermore, if one of the sub-expression of a do expression
evaluates to an error, the evaluation of the entire expression evaluates to the raised
error. Since we assume that a program cannot fail, i.e. its result cannot be an error
expression, this in fine constrains the result of check expressions, that should evaluate
to true. In other words, we use the semantics of the check and do operators to encode
preconditions.

Binding the labels also allowed us to reduce the number of primitive expressions by
six times (from 156 nodes to 26). We can also see that most of the primitive expressions
are bound to the timepoints s. This is due to the assumption that most computations
are instantaneous.

4.3.3 Encoding from the Intermediate Representation to chronicles

Having this flow graph representation, it becomes quite natural to express them as
predictive models adapted to planning and in particular in the formalism of hierarchical
chronicles presented above.

Each chronicle is associated with the task accomplished by the method it represents.
For a given method, a chronicle will contain a temporal variable for each of the ti

timepoints and a variable for each of the ri intermediate results. In addition, a chronicle
allows the definition of conditions, which we use to represent the read-state primitive,
and subtasks, which we use to represent the exec primitive. The other primitives are
translated as constraints, restricting the set of valid values for the variables.

For a given method, the corresponding chronicle is constructed by iterating through
the flow graph and applying for a given flow the corresponding rule below.

4.3.3.1 Primitive expressions

Constant ti : ri ← cst(v)
The constraint ri = v is added to the chronicle.

Read state ti : ri ← read-state(sv, p1, . . . , pn)
The condition [ti, ti] sv(p1, . . . , pn) = ri is added to the chronicle.
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s

s : r1 ← read(instance, ?b)
s : true← apply(=, r1, ball)
s : r2 ← read(instance, ?r)

s : true← apply(=, r2, location)
s : r3 ← read(instance, ?g)

s : true← apply(=, r3, gripper)
s : r4 ← read(instance, ?p)

s : true← apply(=, r4, location)
s : r5 ← read(pos, ?b)

s : true← apply(=, r5, ?p)
s : true← apply(! =, ?p, robby)

t1 : rh ← acquire(robby)
t2 : nil← exec(go2, ?p)

t3 : nil← exec(pick, ?b, ?p, ?g)
t4 : nil← exec(go2, ?r)

t5 : nil← exec(drop, ?b, ?r, ?g)

t5 : nil

Figure 4.3: Flow graph resulting from the translation of the program presented in List-
ing 4.1. The flow graph has been simplified: all nodes have been merged into a single
one.

Write state ti : ri ← write-state(sv, p1, . . . , pn, v)
An effect [t′

i, ti] sv(p1, . . . , pn)← v is added to the chronicle, along with the constraint
ti−1 ≤ t′

i ≤ ti.

Subtask ti : ri ← exec(τ, p1, . . . , pn)
The subtask [t′

i, ti] τ(p1, . . . , pn) is added to the chronicle, along with the timepoint
t′
i and the constraint ti−1 ≤ t′

i ≤ ti. Note that in a hierarchical planner, all subtasks of
a method must be successfully decomposed and do not provide any result value. The
above translation is therefore only valid if the result ri has been identified as necessarily
successful by the error propagation.

Arbitrary t : r ← arbitrary(set)
An arbitrary primitive is converted into a disjunctive constraint such that ∨

e∈set r =
e.

Acquire t : rh ← acquire(?r, ?q)
To represent the acquisition of the resource ?r with the quantity ?q, we use the

synthetic state variable quantity(?r) and the function max-q(?r).
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• quantity(?r : resource)→ int encodes the current quantity of the resource,
• max-q(?r : resource) → int encodes the maximum value that the resource can

take (set to 1 for unary resources).
Therefore, the possible values for the state variable quantity(?r) are bounded by 0 and
max-q(?r).

To encode the acquisition of a resource, we assume that the solver supports the
numerical operators increment and decrement on numerical state variables. The acqui-
sition of a resource is encoded as follows:

constraints: 0 ≤?q ≤ max-q(?r)
0 ≤ q1 ≤ max-q(?r)
0 ≤ q2 ≤ max-q(?r)
t ≤ tr

tr = max(Drops(rh))
conditions: c1 : [t] quantity(?r) = q1

c2 : [tr] quantity(?r) = q2
effects: e1 : [t] quantity(?r) −=?q

e2 : [tr] quantity(?r) +=?q

The timepoint t represents the moment of the acquisition. At this moment, the
effect e1 decreases the state variable quantity(?r) of the borrowed amount ?q, and the
condition c1 checks that the acquisition is valid, i.e. if the new value is within the allowed
range.

Since an acquisition automatically implies a release, we propose to encode the release
of the resource in the meantime using a timepoint tr. At the time of release tr we add
an effect e2 that increases quantity(?r) of the previously borrowed quantity ?q. The
condition c2 has the same function as the condition c1, i.e. it checks that the release is
valid. As presented in Chapter 3, a resource can be released explicitly, or automatically
when the last reference of the resource-handle is dropped. For the moment, we propose
to constrain tr in function of the moment of releases of the resource. Those moments are
defined by the set Drops(rh), which is the set of all the timepoints at which a reference
to rh is dropped. We take the maximum, since it is the dropping of the last reference
that triggers the automatic release.

Release tr : r ← release(rh)
The explicit release of a resource can be triggered with the release primitive and

constrains the release date tr. Previously, when encoding the acquisition of the resource,
tr was previously constrained based on the drop dates of the references to rh. With an
explicit release, we change the constraint to take into account the explicit release dates.
A release of a resource can occur at various points in the program, especially if multiple
threads have access to a reference of the resource-handle.

With all these rules in mind, we replace the previously defined constraint tr =
max(Drops(?r)) with the constraint tr = min(Releases), where Releases is the set of
all release dates of rh.
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Function application ti : ri ← apply(f, p1, . . . , pn)
A new variable ri is added to the chronicle, along with the constraint ri =

f(p1, . . . , pn). Note that f is a built-in function by construction, so it is assumed that
the solver is able to handle it, possibly with semantic bindings.

In the current version we support the following operands:

• f is the + operator: it is transformed into the constraint ri = ∑n
i=1 pi,

• f is the - operator: it is transformed into the constraint ri = p1 −
∑n

i=2 pi,

• f is the ! operator: it is transformed into the constraint ri = ¬p1,

• f is the = operator: it is transformed into the constraint ri = (p1 = p2).

Note that the and and or operators of SOMPAS are encoded as lambdas and have
been expanded during the translation process.

4.3.3.2 Complex flows

Branching flow For a given flow of the form
t

t0 : r0 ← cond

t1 : r1 ← a

r 0

t2 : r2 ← b

¬
r0

{
t1 : r1 if r0
t2 : r2 if ¬r0

we take advantage of the hierarchical formalism to transform it into a call to a synthetic
task τ associated with two synthetic methods. The synthetic task τ takes as parameters
the variable r0, a new variable rresult to represent the result of the task, and any variable
that should be passed to the methods. The two synthetic methods are defined as follows:

• The first one represents the translation of the flows of the left branch. Its param-
eters are inherited from those of τ and may possibly have additional ones. It has
two predefined constraints: r0 = true and rresult = r1.

• The second method represents the translation of the flows of the right branch.
Its parameters are inherited from the ones of τ and may possibly have additional
ones. It also has two predefined constraints: r0 = false and rresult = r2.

The Example 4.1 presents a simple example of the conversion of a branching flow
into the chronicle formalism.
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Example 4.1

Let us take the expression

( i f (= ( carry ’ l e f t ) ’ empty ) ’ l e f t ’ r i g h t )

This expression returns the gripper left if it does not carry anything, otherwise the
right one. The corresponding (postprocessed) flow graph is:

t

t : r ← read-state(carry, left)
t : r0 ← apply(=, r, empty)

t1 : r1 ← cst(left)

r0

t2 : r2 ← cst(right)

¬
r0

{
t1 : r1 if r0
t2 : r2 if ¬r0

The conversion of the flow graph results in the addition of the following elements
to the main chronicle:

variables: r, r0, rresult, t, te

constraints: r0 = (r = empty)
conditions: [t] carry(left) = r

subtasks: [t, te] τ(r0, rresult)

In addition two templates of methods are generated for the task τ :
• The method ml representing the left branch:

name: ml(r0, rresult)
task: τ(r0, rresult)

variables: r, r0, rresult

constraints: r0 = true

rresult = left

• The method mr representing the right branch:

name: mr(r0, rresult)
task: τ(r0, rresult)

variables: r, r0, rresult

constraints: r0 = false

rresult = right



124 CHAPTER 4. PLANNING IN OMPAS

Concurrent flow For concurrent flows of the form
t

t : r0 ← h t1 : r1 ← e

t : r0

we constrain the start of the concurrent branch t′ such that t ≤ t′.
The semantics of the language say that if all references to h are released, then the

asynchronous process of h is interrupted, which can be considered as a failure in the
planning semantics. Therefore, we enforce that t1 ≤ max(Drops(h)), where Drops(h)
is the set of all the moment the reference h is dropped.

Join flow For join flows of the form

t : r0 ← h threadh

t

te : r ← Result(threadh)

te : r

we add the constraint End(threadh) ≤ t, and r = Result(threadh).

Success and ordering constraints We rely on the error analysis, to enforce that
the plan is fault-free if it is deemed valid by an automated planner. In particular, if a
condition is found to require a particular value to avoid a failing branch, we enforce this
as an additional constraint on the corresponding variable. We also enforce the order
in the various statements, i.e. ti ≤ ti+1 for any two consecutive timepoints in the flow
graph.

All these rules are used to build the chronicle of Figure 4.4, which is obtained from the
flow graph of the Figure 4.3. Once the chronicle is constructed, the same postprocessing
steps as described by Turi et al. (2022b) are used to simplify the structure of the resulting
chronicle by removing unnecessary variables and reducing the number of constraints,
conditions, effects and subtasks. Typically, the post-processing of a chronicle such as
the one shown in Figure 4.3 can remove a quarter of the variables, more than half of the
constraints and half of the conditions.

4.3.3.3 Postprocessing of chronicles

Once the program is converted from its intermediate form, here a flow graph, we obtain
a corresponding chronicle suitable for planning. However, since the chronicle is con-
structed by iteratively transforming flows into a corresponding set of constraints and
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name: pick&drop(?b, ?r, ?g, ?p)
task: place(?b, ?r)

variables: s, e, ?b, ?r, ?g, ?p, t1, t2, t3, t4, t5
constraints: ?p ̸= robby

s ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ e
0 ≤ r6 ≤ 1
0 ≤ r7 ≤ 1

conditions: [s] instance(?b) = ball
[s] instance(?r) = location
[s] instance(?g) = gripper
[s] instance(?p) = location
[s] pos(?b) =?p
[s] quantity(robby) = r6
[e] quantity(robby) = r7

effects: [s] quantity(robby) −= 1,
[e] quantity(robby) += 1

substasks: [t1, t2] go2(?p)
[t2, t3] pick(?b, ?p, ?g)
[t3, t4] go2(?r)
[t4, t5] drop(?b, ?r, ?g)

Figure 4.4: Chronicle resulting from the conversion of the flow graph of Figure 4.3. The
chronicle has been postprocessed and simplified to make it more readable for the sake
of this dissertation.
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timed assertions, we can easily understand that artifacts come along with it. Some
of these artifacts are useless with respect to the structure of the chronicle, and can
therefore be removed by automated analysis of the resulting chronicle. We propose a
series of postprocessings applied to the raw chronicle in order to obtain a refined one.
The obtained chronicle is more readable, has fewer elements and therefore implies a less
complex planning problem.

Simplify constraints We suggest simplifying constraints of the form (true = c),
where c is a constraint, and replacing it directly with c, which gives (true = c) =⇒ c.

Merge duplicated conditions The translation of a program into a chronicle can
create duplicate conditions. Such conditions can be merged if they meet the following
criteria: given ca : [sa, ea] sfa(p1a , . . . , pna) = va and cb : [sb, eb] sfb(p1b

, . . . , pnb
) = vb, if

sfa = sfb ∧ sa = sb ∧ ea = eb ∧ p1a = p1b
∧ · · · ∧ pna ∧ pnb

, then cb is removed and the
labels va and vb are bound in the same way as described in section 4.3.2.3.

Remove useless variables During the translation of a program into a flow graph
many temporal and result labels are created. The set of variables is analyzed to remove
any synthetic variable l that is not in the set of constraints, conditions, effects, or
subtasks.

Simplification of the temporal network of the chronicle During the conversion
process, some temporal constraints involve timepoints that are no longer referenced in
the rest of the chronicle. We call these timepoints ghost timepoints and propose an
algorithm to check if such timepoints can be removed without changing the properties
of the chronicle. For this purpose, we use Point Algebra (PA) (Gerevini 2005) to first
check the path consistency of the Temporal Network (TN) resulting from the temporal
constraints of the chronicle, and then to shrink the set of constraints by removing ghost
timepoints. The details of the algorithm are given in Appendix A.3.

The Example 4.2 shows the simplification of the temporal network of a simple chron-
icle composed of ghost timepoints. The two ghost timepoints (in green) can be safely
removed from the chronicle, and three constraints have also been removed.

Example 4.2

The chronicle shown below contains two ghost timepoints t1 and t2, that can be
removed from the chronicle. The path p(t1, t4) is updated by calculating p(t1, t4)∩
(p(t1, t2) ◦ p(t2, t3) ◦ p(t3, t4)) =≤ ∩(≤ ◦ < ◦ ≤) =<.
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Chronicle

variables: t1, t2, t3, t4, r1
constraints: t1 ≤ t2 < t3 ≤ t4,

t1 ≤ t4
subtasks: [t1, t4] τ r1

⇒
t1, t4, r1
t1 < t4

[t1, t4] τ r1

TN
t1

t2 t3

t4

≤
≤

<

≤
⇒ t1 t4

<

4.3.4 Additional SOMPAS’ features to model planning problems

The synthesis of chronicles based on the body of methods should allow the planning
engine to anticipate the decisions of OMPAS. However, the model of the methods alone
is not sufficient to take into account the effects of the execution of the commands on
the robotic platform. Therefore, the planner should be provided with a model of the
commands.

Here we propose to provide models for commands defined with the same procedural
language used to define the body of methods, i.e. SOMPAS. In particular, we propose
to use the same techniques described above to obtain a corresponding planning model
of the commands. To do this, we add new operators and constructs to SOMPAS to
provide models for commands. In addition, we have added the possibility to define the
model of a task, so that the task is considered as a command by the planner, and should
reduce the size of the planning problem, since the task should not be refined anymore.

4.3.4.1 Modeling commands

Here, we provide facilities to define the model of a command as a program, for which
we can use to the same techniques to derive a planning model. The model of a com-
mand can be defined in a PDDL (Fox and Long 2003) fashion using the operator (
def-command-pddl-model label params pre-conditions effects). For the pick command
of the Gripper-Door domain, we have:

( def-command-pddl-model p ick
( : params ( ?b b a l l ) ( ?r room ) ( ?g g r ippe r ) )
( : p r e - c o n d i t i o n s

(= ( pos ?b ) ?r )
(= ( at-robby ) ?r )
(= ( carry ?g ) empty ) )

( : e f f e c t s
( ’ car ry ?g ?b )
( ’ pos ( ?b ) robby ) ) )

The fields of the operator are defined as follows:

• label is the name of the command (the command should be defined before),
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• params is an expression of the form (:params (p1 t1) ... (pn tn)) defined by
parameter and type pairs,

• pre-conditions is an expression of the form (: pre-conditions pc1 ... pcn), where
each pci is a boolean expression,

• effects is an expression of the form (: effects e1 ... en), where each ei is an
expression of the form (sf p1 ... pn v) that defines the new value v of the state
variable sf(p1, . . . , pn).

The model can also be specified as a program to represent more complex models with
the operator (def-command-om-model label params body), where label and params
are the same, and body is a program. The pick command can therefore be represented
as:

( def-command-om-model p ick
( : params ( ?b b a l l ) ( ? room ) ( ?g g r ippe r ) )
( : body ( do

( check (= ( pos ?b ) ?r ) )
( check (= ( at-robby ) ?r ) )
( check (= ( carry ?g r ippe r ) empty ) )
( e f f e c t ’ car ry ?g ?b )
( e f f e c t ’ pos ?obj robby ) ) ) )

Primitives to represent state transitions The effect primitive is used to describe
the effects of a command on the observed world. The operator is similar to assert, but
effect can only be used in models and cannot be invoked at runtime. In addition, effect is
used to model changes to state variables that are only observed by the system, meaning
that the system should not be able to deliberately change their values. The operator
can be invoked as (effect sf p1 . . . pn v), where the first arguments (sf, p1, . . . , pn) define
the state variable that takes the value v. Here is an example where the location of robby
is updated to the value bedroom:

( e f f e c t ’ at - robby ’ bedroom )

Durative effects can also be modeled with (durative-effect d sf p1 . . . pn v), where
the new argument d is the duration of the transition in seconds. Going back to our
example, we could say that the transition from its previous value takes ten seconds.

( d u r a t i v e - e f f e c t 10 ’ at - robby ’ bedroom )

4.3.4.2 Modeling abstract tasks

In addition to modeling commands, models for tasks can be defined. The planner
will rely on these models to refine a task, rather than choosing a method. In cases
where an abstract model is sufficient to capture the essence of the task, or where the
method of a task cannot be converted, it may facilitate the planning problem to define
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a higher-level model for a task. Such a model can be defined with def-task-pddl-model
and def-task-om-model, which are the counterparts of def-command-pddl-model and
def-command-om-model for a task, respectively. Note that the sole purpose of the model
is to abstract the hierarchical decomposition of a high-level task with a model that is
used only by the planner. The acting engine will rely on the methods of the task to
refine it during execution. Therefore, by relying on an abstract model of a task, the
planner will not be able to guide the refinement of that task.

4.4 Unique representation of the executed and anticipated
processes

In chapter 2 we introduced the acting tree, which is a representation of both the execution
traces and the deliberation of OMPAS. It extends the HTN formalism to represent other
deliberation functions of OMPAS, such as the acquisition of a resource and the arbitrary
instantiation of a variable.

However, the purpose of the acting tree is broader than simply representing execu-
tion; it is also used to represent the anticipated processes that the system can perform.
The acting tree is used to link the execution of programs in the Execution Manager, and
the possible execution flows and informed decisions coming from the PLanner Manager.

Using the anticipated processes, the Acting Manager can guide some deliberation
functions of OMPAS, such as the refinement of tasks, the instantiation of free parameters
in the body of methods, and the allocation order of resources.

To represent both executed and anticipated processes, the acting tree uses a special
formalism. Each call to a deliberation function is modeled as an AP whose value depends
on whether it was instantiated by the execution or anticipated by the planner. Both the
execution and the planner can update the acting tree by adding new acting processes.
However, updates coming from the Execution Manager are considered static by the
PLanner Manager. On the other hand, the Execution Manager is free to ignore the
guidance offered by the planner if it does not match the context when the decision is
actually made at runtime. Now we will present the formalism in detail.

4.4.1 Acting Process (AP)

Each call to a deliberation function is modelled as an AP. An AP is defined by a unique
ID, an execution interval and a set of Acting Variables (AVs) that are associated with
it, whose values depend on whether they were instantiated by the PLanner Manager or
the Execution Manager. We distinguish the following APs:

• Root: virtual task that represents the overall execution of OMPAS. All top-level
tasks are children of the Root process,

• Task: represents the execution of a task τ ,

• Method: represents the execution of the program to refine a task τ ,
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• Command: represents the execution of a command on the Robotic Platform,

• Acquisition: represents the acquisition cycle of a resource, which encapsulates the
waiting, the use of the resource, and its release,

• Arbitrary: represents the instantiation of a free variable in the body of a method.
We assume that an arbitrary process is instantaneous.

4.4.2 Acting Variable (AV)

An Acting Variable (AV) is a variable representing a choice that can have three states:
Unset, Observed(v) or Executed(v’). Here is the state transition of an AV:

Unset Suggested(v) Executed(v′)
plan

exec

exec

replan

The AV starts in the state Unset. When the value v′ is instantiated by the Execution
Manager, then the AV is in the state Executed(v′). The AV is considered as a constant
by the other managers of OMPAS. The planner can suggest the value v by setting the
AV to the state Suggested(v). After replanning, the value v can be updated and remains
in the state Suggested(v).

4.4.3 Acting tree

OMPAS simplifies the integration of a planner in a continuous way by providing a unique
model on which both the execution and the planner can work. The tasks addressed by
OMPAS are represented by their hierarchical structure in an acting tree. An acting tree
is an AND-OR tree where the nodes are APs. An example of an acting tree is shown in
Figure 4.5. In this acting tree, the generic representation of a node is as follows:

ID: [s, e] process

As with APs, a node is uniquely defined by an ID, a start timepoint s, and an end
timepoint e.

The acting tree consists of several types of nodes. We distinguish between abstract
nodes and leaf nodes:

• The abstract nodes represent processes whose outcomes depend on subprocesses.
This type of process includes Root, Tasks, and Methods. In Figure 4.5, they have
dotted boundaries.
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0: [0, h] Root

1: [0.4, e1] place
(b1, lr)

2: [0.4, e2] pick&move
(b1, lr, right, bedroom)

3: [0.4, 0.4, e4] acq
(Robby, all)

4: [0.4, e4] go2
(bedroom)

. . .

6: [0.5, e6] place
(b2, lr)

7: [0.5, e7] pick&move
(b2, lr, right, kitchen)

8: [0.5, tacq8 , e8] acq
(Robby, all)

Figure 4.5: An example of an acting tree representing the execution of two tasks t1:
place(b1, lr) and t2: place(b2, lr) (see Example 2.7). Both tasks are running in parallel,
and both tasks have requested the exclusive use of Robby. OMPAS received the task
t1 at 0.4s (time relative to the start of the execution). The task t1 was refined into
pick&move(b1,lr, right, bedroom), which immediately requested the resource Robby. The
resource was granted immediately (at relative time 0.4s) and the method requested the
execution of the task go2(bedroom). The task t2 has been refined with the method
pick&move(b2,lr, right, kitchen). The method is waiting for the resource Robby to
continue its execution. All processes are currently running.

• The leaf nodes are processes whose termination depends on the call of a unique
function. The Command, Acquisition, and Arbitrary nodes are leaf nodes. In
Figure 4.5, they have simple borders.

The nodes corresponding to each AP are presented in Table 4.1. The table presents
their definitions and the set of specific APs that define them.

A node also represents the status of an AP, which can be one of the following:

Running
(yellow)

The process started, which means that the
start timepoint and the parmaters of the
process are observed.

ID: [s, e] process

Executed
(green)

The process has been successfully executed,
all parameters are observed thanks to the
traces of execution.

ID: [s, e] process

Failed
(red)

The process failed, all parameters are ob-
served, and the final timepoint represents
the moment the process failed.

ID: [s, e] process

Planned
(blue)

The process has been anticipated by the
planner, and is added in the acting tree.
Values of the parameters are suggested.

ID: [s, e] process
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Name Definition Node

Root Root AP whose children are all the top-
level tasks. 0:[0, horizon]Root

Task
Task AP whose children are the methods
that can refine τ : the tried ones, the cur-
rently executed, and the anticipated ones.

Id:[st, et] τ(p1, . . . , pn)

Method

A method m that refines a given task τ .
Its children are all the APs that are part
of the body of the method, e.g. the call to
execute a command.

Id:[sm, em] m(p1, . . . , pn)

Command
A leaf node that represents the execu-
tion of a command c with parameters
(p1, . . . , pn) during the interval [sc, ec]

Id:[sc, ec] c(p1, . . . , pn)

Acquisition

A leaf node that represents the acquisi-
tion cycle of a resource r with amount
q. Three timepoints represent the acqui-
sition: treq is the moment the request has
been sent, tacq is when the resource has
been acquired, and tr is the instant of re-
lease.

Id:[treq, tacq, tr] acq(r, q)

Arbitrary
Represents the call to the acting primitive
arbitrary. It contains the set from which
the value v has been chosen.

Id:[ta] arb(set) = v

Table 4.1: Definition and graphical representation of the APs in the acting tree.
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4.4.4 Linking the acting tree to the execution and planning models

As mentioned above, both the Execution Manager and the PLanner Manager can update
the acting tree. However, a protocol is needed so that both managers can refer to the
same processes in the tree.

4.4.4.1 Labeling the operational models

To refer to the same processes, the Execution Manager (EM) is the one that decides
what will be the labels of each deliberation call in a given program. At runtime, the EM
labels each program before evaluating it. The labeling process works as follows: each
call to an acting primitive is replaced by a corresponding labelled call, which has exactly
the same semantics as the acting primitive with an additional annotation on the ID of
the call relative to the program. The labeling function takes any expression of the form
(prime p1 ... pn), where prime is a call to an acting primitive, and transforms it into
(l-prime id p1 ... pn), where id is unique for the primitive prime in the context of
the program. Here is an example of a program (on the left) with several calls to acting
primitives and their labelled counterparts (on the right):

Raw program: Labelled program:

( begin
( d e f i n e ?r ( a r b i t r a r y

( i n s t a n c e s robot ) ) )
( d e f i n e h1 ( acqu i r e ?m) )
( d e f i n e h2 ( acqu i r e ?r ) )
( ex e c - t a sk ’ car ry ?r ?p ?m)
( r e l e a s e h2 )
( ex e c - t a sk ’ p roce s s ?m ?p ) )

( begin
( d e f i n e ?r ( l - a r b i t r a r y 0

( i n s t a n c e s robot ) ) )
( d e f i n e h1 ( l - a c q u i r e 0 ?m) )
( d e f i n e h2 ( l - a c q u i r e 1 ?r ) )
( l - e x e c - t a s k 0 ’ car ry ?r ?p ?m)
( r e l e a s e h2 )
( l - e x e c - t a s k 1 ’ p roce s s ?m ?p ) )

We can see that the different calls to the acquire and exec-task acting primitives have
been labeled differently.

In the current version of the system, the annotation system does not support the
generation of expressions at runtime that contain new calls to acting primitives.

Each AP is associated with a unique ID when it is added to the acting tree. However,
if case an AP has been anticipated by the planner, the EM should be able to refer to it
without prior knowledge of its ID.

We propose the following protocol for referring to an AP by its position in the acting
tree. For a given AP ap, its reference is the path in the acting tree from the process
Root to ap. The path is defined by a set of labels, and refers to a unique child at each
level of the tree. A label is defined by the type of child (Task, Command, Method,
Arbitrary, Acquire) and a unique number, so that no two children of a node can have
the same label. In Figure 4.5, we can refer to the acquire process of m1 by its unique
position in the tree with either its unique ID (3), or by the path from Root to the process
(0/Task(0)/Refinement(0)/Acquire(0)).
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4.4.4.2 Acting Process Binding (APB)

During the synthesis of the chronicles, the labeled calls to acting primitives of the
programs are used to define an Acting Process Binding (APB). An APB binds a subset
of the variables of the chronicle to an AP ap of the acting tree. It is defined by the
reference of ap (either an ID or a path) and the variables of V corresponding to the
AVs of ap. We extend the definition of the chronicle with the field Bindings (B), which
contains these APBs.

The APB are only defined for chronicles that represent processes that can have
children. In this case they are Method processes. Therefore, for each type of child of
a Method process (Task, Command, Acquisition, Arbitrary), we have a corresponding
APB.

4.5 Guidance of the reactive deliberation of OMPAS using
a planner

In OMPAS, calls to acting primitives can be triggered in the body of methods that are
evaluated in the Execution Manager (EM). The Execution Manager (EM) may request
guidance from the Acting Manager (AM), usually to instantiate the parameters of the
corresponding Acting Process ap. The guidance may use reactive algorithms, or take
advantage of the processes anticipated by the planner. If ap was anticipated by the
planner, AM informs EM of the choices made by the planner. If the choices are still
valid in the current state ξ, EM uses those choices to instantiate ap. Otherwise, reactive
algorithms are used to find a solution that is valid in ξ. In either case, the decisions
made by EM are integrated into the acting tree as a set of executed AVs.

4.5.1 Scope of the planning problem

Local planning

A planning problem can be instantiated to solve locally a deliberation choice faced by
OMPAS. Here, it is limited to refining one task. AM can refine a task τ by calling the
function PlanSelectMethod(τ , tried) (see Algorithm 2.8) to find a method m to
refine τ . The PLanner Manager (PLM) encodes the corresponding problem to find a
suitable solution. To do this, the PLM has access to the acting domain A∆ to populate
the planning problem (PΠ). In this case, the execution state of the other tasks is not
taken into account. The State Manager provides the current state ξ, which defines
the initial state in PΠ. The planner should return an answer in the allotted time1,
otherwise the Acting Manager (AM) will resort to another (reactive) heuristic to solve
the refinement of the task. We assume that the facts of ξ hold during the allotted time
given to the planner, so that the solution found by the planner is still valid despite the
time that has elapsed for the search.

1This value can be configured in OMPAS using a configuration file loaded via the REPL.



4.5. GUIDANCE OF THE REACTIVE DELIBERATION OF OMPAS USING A PLANNER135

Global planning Local planning can provide good heuristics for avoiding local fail-
ures, and optimizing the time to complete a task. However, it has been shown in
Example 2.3 that the anticipation of a given task τ should also take into account the
interactions with the other tasks currently executed.

Here the planner is used in a continuous way to adapt to the evolution of the system
and to guide the not yet executed APs. The planning problem (PΠ) is composed of the
hierarchical decomposition of all running tasks, obtained with the acting tree, and is
based on the current state ξ of the system. The analysis of the returned plan should
give:

• the most promising method for each task not yet refined,
• instantiation for arbitrary variables,
• an access order for resources shared by concurrent tasks.
To do this, PLM constantly monitors updates to the acting tree and on the state of

SM. When a new process is added to the acting tree, a new planning instance is created.
The planning instance runs until either a plan is found, or until PLM determines that
the updates to the acting tree and the recent observations received by the State Manager
render the previous PΠ obsolete. In this case, PLM starts a new planning instance with
an updated PΠ. With this configuration of PLM, the planner is constantly running a
planning instance in the background, which will hopefully provide useful heuristics for
the processes to run in the future.

In addition to anticipating the execution of processes, the planner is used to optimize
the total time to execute all tasks in the agenda, i.e. all the top-level tasks defined in
the acting tree.

4.5.2 Instantiation of the planner

In section 4.2.3.2 we introduced how a planning problem (PΠ) is instantiated in the
Aries planner. In the following paragraphs, we will show how PΠ is constructed by the
PLanner Manager (PLM) using the state given by the State Manager (SM), the current
state of the resources given by the Resource Manager (RM), and the acting tree defined
in the Acting Manager (AM). Let us see how the problem is instantiated at a given time
tπ.

Instantiation of C0 The initial chronicle C0 is instantiated using the current state of
the system returned by SM. Since the state returned by SM is composed of facts, the
encoding of the planning problem is fairly straightforward. For each fact of the form
(t, sv, v), a new effect [t] sv := v is added. Note that t is the last time sv was updated.
To reduce the size of the coded problem, only the state variables referred to by the
chronicles in CI are added to C0.

Since typed objects can be defined in OMPAS, we add a synthetic state function
that specifies the type t of an object o: [0] instance(o) := t. Since the fact is always
true, we state that the state variable is true from the beginning.

The state of the resources is encoded using the two synthetic state functions quan-
tity(?r) and max-q(?r):
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For each resource ?r defined in the Resource Manager, we add the effects:

• [t] quantity(?r) := q, where t = tπ

• [0] max-q(?r) := C

Goals are defined using the acting tree: it is the set of high-level tasks TH , i.e. the
children of Root, that are currently running. For each task τi ∈ TH , we define a goal task
in C0, i.e. a subtask [si, ei] τ(pi1 , . . . , pin) is added to the Subtasks field of C0. Note
that si and pij are already instantiated because τi is running.

Example 4.3

Let us take the problem given in Example 2.3. We want to plan at tπ = 0.7. Based
on the acting tree shown Figure 4.5, we have the following C0:

constraints: e1 ≤ H, e6 ≤ H
effects: [0] pos(b1) := bedroom,

[0] at-robby() := lr,
. . .
[0.7] quantity(Robby) := 0
[0] max-q(Robby):=1

subtasks: [0.4,e1] place(b1,lr)
[0.5, e6] place(b2,lr)

Since Robby was acquired by the process acq1, quantity(robby):=0. Robby is a
unary resource, so max-q(robby):=1.

Populating CI For each program that is currently running, there is a corresponding
chronicle representation stored in the Acting Manager. CI is composed of all the chron-
icles representing the process currently marked as running in the acting tree, as well as
the processes that have been previously anticipated by the planner, and that are still
valid.

To construct CI , the PLanner Manager traverses the acting tree, and for a given
node it applies one of the following rules:

• The node is a Task τ : τ is defined as a subtask in the chronicle of the parent node.
If the task is currently running, it means that a method m is refining it and the
chronicle of the method Cm is added to CI . If τ has not yet been refined, all the
chronicles representing the possible refinements of τ will be added to CI . If τ has
been previously planned, these possible refinements have already been defined in
the acting tree.

• The node is a Command c: c is defined as a subtask in the chronicle of the parent
node, and the chronicle model of the command is added in CI .
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• The node is an Acquire or an Arbitrary: the process model is handled as part of
the parent method’s chronicle and does not require a separate chronicle.

Example 4.4 presents some chronicles corresponding to the processes present in the
acting tree in Figure 4.5. In particular, we have the partial chronicles for the methods
m1 and m2, for which the bindings have been made explicit here.

Example 4.4

Let us take the acting tree defined in Figure 4.5. We represent the chronicles of the
method m1 and m2. This representation is only partial and aims at representing
the link between chronicles and the acting tree. Here is the (partial) chronicle of
m1:

name: pick&move(b1, lr, right, bedroom)
task: place(b1, lr)

variables: . . .

constraints : e4 ≤ s9, . . .

conditions: . . .

effects: ∅
substasks: [0.4, e4] go2(bedroom)

[s9, e9] pick(b1, bedroom, right)
[s10, e10] go2(lr)
[s11, e11] drop(b1, lr, right)

bindings: 3 : (0.4, 0.4, tr3 , Robby, 1)
4 : ((0.4, e4), (go2, bedroom))
2/Command(1) : ((s9, e9), (pick, b1, bedroom, right))
2/Task(2) : ((s10, e10), (go2, lr))
2/Command(2) : ((s11, e11), (drop, b1, lr, right))

Here is the (partial) chronicle of m2:
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name: pick&move(b2, lr, right, kitchen)
task: place(b1, lr)

variables: . . .

constraints: e4 ≤ s9, . . .

conditions: . . .

effects: ∅
substasks: [s12, e12] go2(kitchen)

[s13, e13] pick(b1, bedroom, right)
[s14, e14] go2(lr)
[s15, e15] drop(b1, lr, right)

bindings: 8 : (0.5, ta8 , tr8 , robby, 1)
6/Task(1) : ((s12, e12), (go2, bedroom))
6/Command(1) : ((s13, e13), (pick, b1, bedroom, right))
6/Task(2) : ((s14, e14), (go2, lr))
6/Command(2) : ((s15, e15), (drop, b1, lr, right))

Using C∆ to populate CI For all subtasks s ∈ S such that S =⋃
c∈C0∪CI

Subtasks(c), and s does not have a chronicle refining it in CI (i.e. no method
or command exists in the acting tree yet), the PLM adds a new chronicle instance that
can refine s in CI . If s is a task, it adds a chronicle in CI for each method that can refine
τ . Otherwise, s is necessarily a command, and the chronicle that models the command
is added to CI . These chronicles are created using the chronicle templates defined in
C∆.

4.5.3 Extraction of the decisions from the plan

The plan returned by Aries consists of instantiated chronicles that should be analyzed
to extract:

• the refinement of abstract tasks,
• the selection of arbitrary values,
• the order of acquisition of resources.

We rely on the fact that Aries encodes the chronicles as a CSP, where each possible
plan decision is associated with a corresponding variable. With such an encoding, we
extract the decisions from the plan by obtaining the value of the variables of the APBs
proposed by Aries. In this way, only the use of these APBs is necessary to extract
useful information to guide OMPAS. For each AV already instantiated by the Execution
Manager (EM), the value found by the planner is used in the acting tree. The value it
takes is Planned(v), where v is the value of the variable, e.g. "left" for the value of the
gripper parameter of a command. So the PLanner Manager returns the instantiated
APBs to the Acting Manager. For processes that do not yet exist in the acting tree,
e.g. a method for a task that has not yet been refined, the PLanner Manager adds an
appropriate node to the acting tree and the AVs are instantiated using the APBs of the
process.
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Reservation of a resource In OMPAS, acquisitions can be anticipated by the plan-
ner. This results in an acquisition request called a reservation. A reservation is an
acquisition request that is placed in the waiting queue of a resource. In response to
an acquisition request coming from the Execution Manager (EM), the Acting Manager
(AM) can pass the reservation ticket of a resource to EM. Until the reservation is passed
to EM, the ticket remains in the waiting queue.

Reservations are extracted from the plan by analyzing all bindings of Acquire pro-
cesses. These Acquire processes are used to sort the order of resource access requests: for
all requests of a common resource r, the system sorts the reservations using tacq in de-
scending order, so that the earliest tacq has the highest priority. The ordered reservation
list is then sent to RM, which sends the reservation tickets back to AM. Example 4.5
should illustrate how this works.

Example 4.5

Consider a resource r that is scheduled to be acquired three times in the plan. Let
us define the acquisitions a1 that should happen at 10 seconds, a2 at 13 seconds
and a3 at 12 seconds. The PLanner Manager sorts them from smallest to largest,
we get the sorted list (a1, a3, a2). Given that the base priority of a reservation is
10, we get the corresponding reservations a1 with priority (13), a3 with priority
(12), and a2 with priority (11).

4.5.4 Continuous update of the planner

In addition to the initial creation of the planning problem (PΠ), the PLanner Manager
(PLM) is responsible for instantiating new planning instances in function of the arrival
of new runtime information. In particular, PLM monitors the instantiation of AVs, the
update of the state, and the status of tasks. If new information renders the currently
running planning problem (PΠ) obsolete, PLM interrupts the planner and then creates
a new planning instance that reflects the latest updates received by PLM. If no planning
instance is running, PLM immediately creates a new planning instance with the current
state of the system. Here, we detail how PΠ is updated based on new information
received by PLM.

Variable instantiation Executing an Acting Process in the Execution Manager re-
sults in the instantiation of Acting Variables in the acting tree. For an Acting Variable
var whose value has become Executed(v), an additional constraint var = v is added to
the chronicle in which var is present.

Update of the state When the state is updated, the initial chronicle C0 is modified
to take into account the last values of all updated state variables. Since only the last
value of a state variable is taken into account, this means that the previous effect is
removed from C0.



140 CHAPTER 4. PLANNING IN OMPAS

Durative effects Some actions are defined with transitive effects. They represent a
durative transition of a state variable between a previous value and a new value, without
modeling all the transitory values of a state variable.

In reality, the state variable can take any number of values between the start of
the effect and its end. Therefore, such a model may conflict with the continuous value
update of a state variable as perceived by the Robotic Platform.

For example, consider the durative effect e1 : [s, e] pos(b1) := bedroom, with e =
s + d, where d ∈ R∗

+ , that is part of the model of a drop command. The effect
e2 : [tobs] pos(b1) := robby encodes the perceived state such that s < tobs < e. As
encoded in Aries, two effects on the same state variable cannot occur simultaneously,
which means that if e1 and e2 are present in PΠ, the planner cannot find a valid solution.

To handle these situations, we suggest the following rule: For e1 : [t] sv1 := v1, an
effect of C0: if ∃e2 : [s, e] sv2 := v2, an effect present in a chronicle of CI , such that
s ≤ t ≤ e ∧ sv1 = sv2, we remove e1 from C0. In this way, we preserve the predictive
property of the model by preserving the effect that represents the final value of the
state variable. The opposite would preserve the transient value of the state variable as
perceived by the system, which would invalidate the planning model.

Handling subtasks When a new high-level task is received, the chronicle C0 is up-
dated to reflect the new task. The binding of the new task is also added to C0. If a
subtask is terminated, this means that its end timepoint has been instantiated. In this
case, we remove the subtask from its parent’s chronicle, but keep the time constraints
on its interval.

4.6 Conclusion

In this chapter we presented how a planning system can be used to guide the operational
deliberation of OMPAS. The proposal consists in binding the execution of a program
to a corresponding planning model by relying on an intermediate representation of the
deliberation of the acting system.

As a planning formalism, we rely on chronicles, which have a rich temporal semantics
and which have been extended to facilitate bindings with the acting tree. They are
particularly suitable for representing problems where we expect the planner to guide the
allocation of resources, the refinement of tasks, and the instantiation of free variables.
The planning problem is constructed by scanning the acting tree for all running tasks
and commands; the current state of the system is based on the information provided
by the State Manager and the Resource Manager. Although the approach aims to
be planner independent, we decided to focus our efforts on a strong integration with
the planner Aries, which can take advantage of the hierarchical formalism and the
temporal expressiveness of the chronicles. The resulting implementation benefits from
the interface Aries provides to its solver, on which OMPAS has a hand to define dedicated
search strategies.

However, the real novelty is the ability of the system to automatically generate the
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planning models on the fly, based on the programs of the current tasks and methods. The
process is based on the automated analysis of the programs, which are first transformed
into a flow graph. This is a representation of a program in a form that is particularly
suitable for static analysis, some inherent to compilers, others specialized for planning.
The flow graph is then compiled into a chronicle, which is cleaned of artifacts before
being handed over to the planner. With such a proposal, it is sufficient to define the
capabilities of an agent in the form of a program and benefit from planning techniques
to improve the performance of the acting engine, without specifying the corresponding
planning models of the agent.

In the following chapter, the whole approach is evaluated and compared with other
algorithms proposed in the literature. The evaluation will cover the system’s ability to
perform a high-level task as quickly as possible, its ability to adapt to exogenous events,
and to take advantage of its lookahead capabilities at runtime.
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5.1 Introduction

In this chapter, we propose to evaluate the approach developed in OMPAS. In particular,
we want to assess its ability to handle multiple objectives using a fleet of agents. To this
end, we present the integration of OMPAS on two domains:

• The Gripper-Door domain for which we provide a complete definition using the
SOMPAS language,

• The Gobot-Sim domain, a factory simulator in which a fleet of robots should move
packages between machines on which they will be processed.
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Each domain is used to emphasize a particular deliberation feature provided by OMPAS.
The first domain requires deliberation on the choice of the course of action, whereas
the second one should benefit from the allocation strategy of the temporal planner to
schedule the processing of packages. First, we present the setup used to evaluate each
domain: the metrics used, the compared configuration of OMPAS, and the setup of the
compared domains. Then, we successively present the two domains: their formalization,
the models used by OMPAS, general results, and case studies of particular problem
instances.

5.2 Setup of the evaluation

To assess the pertinence of the approach developed in OMPAS, we propose to evaluate
the capabilities of the acting system. To do this, we propose to benchmark OMPAS on
a set of different problem instances for each of the two domains. In each problem, a
set of tasks T defines the tasks that the acting engine should face. To face the tasks
of T , we define a maximum allotted time TM . The value is defined for each one of the
domains.

With such an evaluation, we want to ensure that the proposed approach improves
the efficiency of the system when performing multiple tasks in parallel. In this section,
we specify the setup used to evaluate the two proposed acting domains. We present the
metrics as well as the different systems that have been benchmarked.

5.2.1 Measured metrics

To measure the performance of the system, we use a set of temporal metrics that should
provide useful information about how the system performs on a given problem. The
metrics used are as follows:

• TE is the total execution time of the acting system, which is the total time to
complete all the tasks in T ,

• TD is the total deliberation time, which is the sum of all deliberation times during
execution,

• TP is the total planning time, which is the sum of all planning times taken by the
continuous planner,

• TW P is the total time during which the deliberation waited for the continuous
planner to make a decision. In OMPAS, when the Execution Manager handles the
call of a deliberation process and if the continuous planner runs in the background,
the deliberation waits for the response of the planner for a bounded time. If
during the period the continuous planner was not able to provide a plan that
would guide the deliberation process, the Execution Manager resorts to a reactive
deliberation strategy. This period can be defined by the programmer using the
( set-deliberation-reactivity t) operator, where t is a duration in seconds.
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We also examine the total number of commands NC required to complete all the
tasks.

To evaluate the efficiency of the system, we use a metric that represents the through-
put of the system. Here, the efficiency of the system is defined in terms of tasks per
second. We represent this throughput by an Efficiency Score ES . To calculate it, we
introduce the Coverage Cov, which is the percentage of the problem’s tasks that were
successfully performed. We define it as follows:

Cov = |{t ∈ T , status(t) = success}|
|T |

We remind that T is the set of tasks that should be performed.
Having defined the Coverage, we can now define how the Efficiency Score ES is

calculated:

ES = Cov

TE

We refer to E∗
S as the virtual best efficiency score for a given instance. Based on the

E∗
S , we also compute the relative distance to the best score for a given problem instance.

We define this metric as the distance to the best efficiency score (DE∗
S). We compute

it as follows:

DE∗
S = E∗

S − ES

E∗
S

To compare the results on the same instance of a problem, we use the normalized
efficiency score ÊS normalized by the maximum time TM allotted to solve the acting
problem, which gives:

ÊS = ES × TM

We also use the normalized distance to the best score ˆDE∗
S , which is defined as:

ˆDE∗
S = Ê∗

S − ÊS

Ê∗
S

For both the Gripper-Door and the Gobot-Sim domains the above metrics are eval-
uated.

5.2.2 Compared systems: different configurations of OMPAS

We propose here to evaluate the different configurations of OMPAS against each other.
OMPAS can be configured in two ways:

• The algorithm used by the select function of OMPAS to select an instantiated
method to refine a task,

• The management of runtime deliberation with the continuous planner, which runs
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in parallel with execution, Here we rely on Aries for continuous planning.

5.2.2.1 Select function configuration

As presented in the Chapter 2, OMPAS is equipped with several configurations for
the select function. As a reminder, select (see Algorithm 2.2) takes as input an
instantiated task τ , which it refines depending on the current state ξ. First, it generates
the instantiated methods that are applicable in ξ. We call the set of applicable methods
Applicable(τ, ξ). We then define Candidates = Applicable(τ, ξ) \ tried, where tried is
the set of methods already tried. Based on Candidates, we then select an element of
the set. The selection depends on one of the following strategies:

• The Greedy strategy selects the first element of the set.

• The Random strategy selects a random element from the set.

• The Cost strategy selects the element with the lowest cost. If two items have the
same cost, an arbitrary one is picked.

• The UPOM strategy relies on the anytime planner UPOM (Patra, Mason, Ghal-
lab, et al. 2021), which has been reimplemented in OMPAS.

• The Aries strategy relies on the planner Aries used to resolve the hierarchical
decomposition of the task locally and select the method chosen by the planner in
its plan.

UPOM: anytime planner To compare our approach with the literature, we reimple-
ment the algorithm of UPOM in OMPAS. The implementation of UPOM in OMPAS
uses the same algorithm as described by Patra et al. (Patra, Mason, Ghallab, et al.
2021).

As a reminder, UPOM is an anytime planner that samples various execution flows.
It is used to find a method m to refine a task τ so that m maximizes some utility. The
utility can be defined in two ways:

• The Efficiency, which is the inverse of the cost of a method. The cost of a method
is defined as the sum of the costs of its subtasks.

• The Robustness, which represents the probability of success of a method.

In our case, we compute the Efficiency of a method. The exploration of the execution
flows is done in a Monte Carlo Tree Search (MCTS) in which at each node of the tree, a
task is sampled by simulating the execution of the possible methods that can refine it.
The result of the simulation gives the value of the utility of the method. The efficiency
of a method depends on the utility of its subtasks. In particular, it depends on the
efficiency of the instructions, which is based on the cost of the instructions. Here, the
cost of the commands is sampled using the cost model provided by the programmer. If
no cost model has been provided, the default cost for a command is set to one if the
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command is applicable, zero otherwise. If a method cannot be sampled, for example
because the method is a terminal node of the MCTS, then UPOM can also rely on the
cost model of the method. This model can also be provided by the programmer. If it is
not provided, we assume that an unsampled method has a cost of zero.

UPOM can be configured with the following parameters:

• dmax is the maximum depth of a branch to explore in the MCTS,

• nro is the number of rollouts of UPOM to refine a given task,

• C is the tradeoff between exploring less sampled method instances (high C) and
exploiting more promising ones (low C).

• timeout, which is the maximum amount of time given to UPOM to sample the
execution of the various methods. Here the timeout is defined by the deliberation
reactivity of OMPAS,

We do not use UPOM with iterative exploration, i.e. UPOM always explores to the
maximum depth limited by the parameter dmax. For the evaluation of OMPAS we use
the same values for the parameters of UPOM for all configurations, i.e:

dmax = 10
nro = 10

C = 2

5.2.2.2 Continuous planning configuration

As mentioned above, OMPAS can take advantage of continuous planning to anticipate
the flows of execution of OMPAS. Planning is thus a concurrent process with execution.
Continuous planning has three different configurations:

• The Deactivated configuration does not use the planner in the background,

• The Satisfactory configuration, which calls the planner in the background each
time a new planning process is created by the PLanner Manager, runs the planner
to find a first plan that satisfies the planning problem. When the planner finds
a plan, it is added to the acting tree of the Acting Manager, which can then be
accessed by the deliberation processes to get the planner ’s guidance. For more
details on how to create the planning instance, see the Chapter 4. In this config-
uration, the planner has a minimum amount of time during which it cannot be
interrupted. After this time has elapsed, the PLanner Manager is free to interrupt
the planner at any time,

• The Optimality configuration, which has the same triggering and interrupting rules
as the Satisfactory configuration, but in which the planner is configured to return
a plan that optimizes the total makespan. In this configuration, the planner may
return multiple plans, each of which improves the optimal metrics over the previous
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Deactivated Satisfactory Optimality
Greedy C(G) C(G/Sat) C(G/Opt)
Random C(R) C(R/Sat) C(R/Opt)
Cost C(C) C(C/Sat) C(R/Opt)
UPOM C(G) C(U/Sat) C(U/Opt)
Aries C(A) C(A/Sat) C(A/Opt)

Table 5.1: Table of configurations used in the OMPAS evaluation. The rows indicate the
algorithm used by the Select function, while the columns indicate the configuration of
the continuous planning function.

one. In this case, the plan returned is the last plan returned by the planner. In
some cases, the planner may exhaust the search space and return an optimal plan.

When configuring continuous planning we can set the reactivity of the planner, i.e.
the maximum time during which a planning instance cannot be interrupted. This is
a domain dependent setup1, which is typically defined in the domain file loaded in
OMPAS.

To easily refer to a particular configuration of OMPAS, we suggest using the table 5.1,
which defines unique names for the configurations. Note that the table represents all
the different configurations of OMPAS that we provide along this thesis. These configu-
rations are referred to as C(a/b), where a refers to the strategy of the select function,
while b refers to the configuration of the continuous planning feature. For example,
C(C/Opt) refers to the configuration that uses the Cost strategy and the Optimality
configuration for continuous planning.

Now that we have presented how OMPAS is evaluated, we present in detail each of
the domains, the results and a study-case that should highlight the functioning of the
deliberation of OMPAS.

5.3 Gripper-Door: simulated domain

Throughout the presentation of this work, we have used the Gripper-Door domain to
illustrate the workings of OMPAS. We continue to use it here to evaluate the deliberation
capabilities of OMPAS.

5.3.1 Acting Domain

Based on the definition of the domain provided in Chapter 1, we provide the acting
domain of the Gripper-Door domain defined in SOMPAS. The domain is defined in a
single file consisting of the following program:

1The SOMPAS function to set the reactivity of the planner is ( set-planner-reactivity t) where t
is a duration in seconds.
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( begin
( d e f i n e gripper−door−path

( concatenate ( get−env−var "OMPAS_PATH" ) "
/domains/gripper_door " ) )

( set−current−dir gripper−door−path )
( load base . scm)
( set−current−dir gripper−door−path )
( load om. scm)

)

In this program the working directory depends on the main directory of OMPAS, called
OMPAS_PATH, from which the files base.scm and load.scm are loaded.

The file base.scm contains all the basic definitions of the domain, namely the types,
state functions and commands. Here we show part of the file where the type door is
declared, along with the state functions opened(?d) and connects(?r1, ?d, ?r2), and the
command move(?from,?to,?d) with its model.

( def−types door )
; Addi t iona l s t a t e f u n c t i o n s
( de f−state−funct ion opened

( : params ( ?d door ) )
( : r e s u l t boolean ) )

( de f−funct ion connects
( : params ( ?r1 room) ( ?d door ) ( ?r2 room ) )
( : r e s u l t boolean ) )

; New commands
(def−command move ( : params ( ?from room) ( ?to room ) ( ?d door ) ) )
(def−command−pddl−model move

( : params ( ?from room) ( ?to room ) ( ?d door ) )
( : pre−condit ions

(= ( at−robby ) ?from )
( connects ?from ?d ?to )
( opened ?d ) )

( : e f f e c t s
( durat ive 5 ’ at−robby ?to )

The second file om.scm contains the operational model. In this file, we can find
the declaration of the task place(?o,?r) with its methods. Other tasks and methods are
defined, which are used to refine the subtasks of place(?o,?r), such as task go2(?r).

( def−task p lace ( : params ( ?o c a r r i a b l e ) ( ?r room ) ) )

( def−method place_noop
( : task p lace )
( : params ( ?o c a r r i a b l e ) ( ?r room ) )
( : pre−condit ions (= ( pos ?o ) ?r ) )
( : body n i l ) )

( def−method pick_and_drop
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( : task p lace )
( : params ( ?o c a r r i a b l e ) ( ?r room ) )
( : pre−condit ions ( != ( pos ?o ) ?r ) ( != ( pos ?o ) robby ) )
( : body

( do
( d e f i n e ?g ( a r b i t r a r y ( i n s t a n c e s g r ippe r ) ) )
( d e f i n e res_g ( acqu i r e ?g ) )
( d e f i n e rh ( acqu i r e ’ robby ) )
( d e f i n e ?a ( pos ?o ) )
( go2 ?a )
( p ick ?o ?a ?g )
( r e l e a s e rh )
( d e f i n e rh2 ( acqu i r e ’ robby ) )
( go2 ?r )
( drop ?o ?r ?g )
( r e l e a s e rh2 )
( r e l e a s e res_g ) ) ) )

A cost model is also provided by the operational model. Here we use an ad hoc
state function min-distance(?r1: room, ?r2: room), which gives the minimum number
of moves to go from room ?r1 to room ?r2. Here, we use precomputed values for min-
distance that are loaded with the rest of the values of a given problem.

This heuristic can be used by the configuration that relies on the cost-based selection
strategy. UPOM can use it to have an estimated cost of the task go2(?r). In the following
listing, we give the model of the method m_move(?r, ?a,?n,?d) that can refine the task
go2(?r).

( def−method m_move
( : task go2 )
( : params ( ?r room) ( ?a room) ( ?n room ) ( ?d door ) )
( : c o s t (+ 1 ( min−distance ?n ?r ) ) )
( : pre−condit ions

(= ( at−robby ) ?a )
( != ?a ?r )
( connects ?a ?d ?n ) )

( : body
( do

( t_open ?a ?d )
(move ?a ?n ?d )
( go2 ?r ) ) ) )

The entire operational model can be found in Appendix B.1.

5.3.1.1 Results

We evaluate the different configurations of OMPAS on the Gripper-Door domain on sev-
eral problems of different complexity. The overall results are presented in the Table 5.2,
the Table 5.3 and the Table 5.4.

For this evaluation, we compared the most basic configuration of OMPAS C(R),
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Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 21.7 4.3 100.0 21.0 0.0 0.0 0.0 0.0
C(R/Sat) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.9
C(R/Opt) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.7

C(G) 21.7 4.3 100.0 21.0 0.0 0.0 0.0 0.0
C(G/Sat) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 17.0
C(G/Opt) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.9

C(C) 21.7 4.3 100.0 21.0 0.0 0.0 0.0 0.0
C(C/Sat) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 17.1
C(C/Opt) 21.7 4.3 100.0 20.9 0.3 0.1 0.1 16.9

C(U) 21.7 4.3 100.0 20.9 0.3 0.1 0.0 0.0
C(U/Sat) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.9
C(U/Opt) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.8

C(A) 21.8 4.3 100.0 20.9 0.5 0.1 0.0 0.0
C(A/Sat) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.8
C(A/Opt) 21.8 4.3 100.0 20.9 0.3 0.1 0.1 16.8

Table 5.2: Results on the Gripper-Door domain averaged on three easy problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 81.3 16.2 100.0 5.8 48.6 0.1 0.0 0.0
C(R/Sat) 56.0 10.5 100.0 8.3 24.9 4.2 4.1 51.2
C(R/Opt) 54.1 10.1 100.0 8.6 23.1 3.5 3.4 49.4

C(G) 80.8 16.1 100.0 5.8 48.6 0.1 0.0 0.0
C(G/Sat) 50.4 9.4 100.0 9.2 17.7 2.9 2.8 45.7
C(G/Opt) 51.6 9.8 100.0 9.0 19.4 3.2 3.1 47.0

C(C) 43.7 8.7 100.0 10.6 5.2 0.1 0.0 0.0
C(C/Sat) 48.8 9.4 100.0 9.3 15.2 2.4 2.3 44.1
C(C/Opt) 47.4 9.1 100.0 9.7 12.7 2.3 2.3 42.7

C(U) 42.2 8.3 100.0 11.2 0.9 0.7 0.0 0.0
C(U/Sat) 46.9 9.0 100.0 10.0 11.2 2.8 2.5 42.1
C(U/Opt) 45.5 8.7 100.0 10.2 8.5 2.4 2.2 40.8

C(A) 47.6 9.4 100.0 9.6 12.6 0.8 0.0 0.0
C(A/Sat) 48.3 9.5 100.0 9.5 14.0 1.5 1.2 43.5
C(A/Opt) 47.1 9.3 100.0 9.8 12.0 1.4 1.2 42.5

Table 5.3: Results on the Gripper-Door domain averaged on three medium problems.
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Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 418.4 83.5 71.7 0.8 81.5 2.7 0.0 0.0
C(R/Sat) 324.7 50.0 81.7 1.2 71.7 78.2 76.3 319.2
C(R/Opt) 313.0 49.2 83.3 1.2 70.4 76.5 74.7 308.7

C(G) 403.0 80.4 75.0 0.8 79.7 2.6 0.0 0.0
C(G/Sat) 321.5 50.9 68.8 1.1 74.4 82.1 80.2 317.2
C(G/Opt) 332.6 51.8 81.7 1.1 73.4 82.1 80.2 328.1

C(C) 113.5 22.6 100.0 4.0 3.3 0.7 0.0 0.0
C(C/Sat) 137.2 23.0 100.0 3.3 20.2 25.3 24.5 132.4
C(C/Opt) 135.4 22.6 100.0 3.4 18.8 25.1 24.3 130.8

C(U) 127.1 22.7 100.0 3.6 14.2 16.4 0.0 0.0
C(U/Sat) 149.9 23.7 100.0 3.1 26.6 37.5 24.3 145.0
C(U/Opt) 158.8 22.9 98.3 2.8 32.1 37.9 24.7 152.5

C(A) 112.9 22.2 100.0 4.0 3.4 5.7 0.0 0.0
C(A/Sat) 114.4 22.4 100.0 4.0 4.6 8.9 4.0 109.3
C(A/Opt) 109.3 21.4 100.0 4.2 0.3 8.9 4.0 104.1

Table 5.4: Results on the Gripper-Door domain averaged on three hard problems.

which is comparable to vanilla RAE, with configurations that benefit from more ad-
vanced heuristics.

We compare these configurations on different problems at three arbitrary levels of
complexity. In each problem, a unique robot is used to move balls to target rooms. The
complexity of each problem varies with the parameters presented in the following table:

complexity Tasks Room Max-distance
Easy 1 2 1

Medium 2 4 2
Difficult 4 8 3

For each level of complexity, the number of tasks to work on in parallel is different.
Here it ranges from one for a easy problem to four for a difficult problem. The number
of rooms defines the complexity of the navigation. To limit the displacement, we add a
max-distance parameter that defines the maximum distance between two rooms, where
the distance between two adjacent rooms is one. For a given door, its initial state is
evenly distributed between open and closed.

For all available commands, we simulate them with an ad hoc duration of five seconds,
which assumes that the robot is quite fast in performing actions. As for the parameters
deliberation reactivity and planner reactivity of OMPAS, they are set to one second
and two seconds respectively. This means that the system has at most one second
to refine a task into a method, and the continuous planner has at most two seconds
during which the planner cannot be interrupted. This also assumes that two seconds is
a good interval, during which we assume the world does not change much. Again, these
are ad hoc parameters, and no further study has been done to identify the best set of
parameters.
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For the three levels of complexity, we generated three different problems. For each
one of the nine problems, each configuration was run ten times. We present the results
for each one of the configurations and grouped by level of complexity. The results are
averaged over the thirty runs (ten runs on three problems) for each level of complexity.

From the data given in the Table 5.2, we can see that on easy domains, all the
configurations are mostly equivalent, with a maximum ˆDE∗

S of 0.5%. On these problems,
the advantage is given to the configurations that have a low deliberation time TD. As
the complexity of the problem increases, we can see that configurations that benefit
from lookahead capabilities have a clear advantage over the other configurations.

For problems of medium complexity, the information of Table 5.3 shows that C(U)
has the advantage on other configurations. This configuration takes advantage of the
anytime planner UPOM to guide the refinement of tasks. Unlike other planner-based
configurations, UPOM can provide a solution at any time. This should explain its
advantage over the configurations based on Aries, since there is no guarantee that the
planner can find a solution in the limited time.

Finally, for the difficult problems, the best configuration is C(A/Opt). This con-
figuration has a slight advantage over other configurations. On this configuration, it is
interesting to note that the continuous planning does not significantly affect the running
time, as we have an average TW P of four seconds.

Overall, we see that as the complexity of the problem increases, the configurations
based on Aries and continuous planning improve the quality of the solutions, and the
overhead cost of using such heuristics is amortized with respect to the total execution
time TE .

5.3.2 Case study

Now that we have presented global results on the performance of different configurations
of OMPAS on the Gripper-Door domain, we will present more detailed results on a
specific instance. We take an instance of hard complexity. In Figure 5.1 we show the
execution time TE with the different configurations of OMPAS. In Figure 5.1b we show
the Deliberation Time Ratio (RTD) for each of the configurations. The RTD is defined
as

RTD = TD

TE
× 100

We can see that the configurations using either the Cost, the UPOM or the Aries
strategies are almost three times better than the ones using the Random and the Greedy
ones. Moreover, these strategies have a more consistent TE as shown by the smaller
standard error.

Moreover, we can see that continuous planning improves the performance of the
less performant configurations, but increases the execution time for the ones that were
already performing well. This could be explained by the effect of planning on execution
time. In fact, as we can see in Figure 5.1b, deliberation represents more than 20%
of the total execution time. It is interesting to note that continuous planning has a
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Figure 5.1: Mean of the total execution time TE in Figure 5.1a of several configura-
tions of OMPAS and the ratio of the deliberation time over the execution time RTD in
Figure 5.1b. The standard error for the two metrics is also represented.
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smaller impact on execution time when relying on Aries to refine tasks locally. This
can be explained by the fact that continuous planning can benefit from the local plan,
and it can speed up the search for the instance of Aries running continuously in the
background.

Differences on the choices The differences in performance can be explained by the
choices made by the acting engine at runtime. The configurations that use planning
are informed by algorithms capable of looking ahead. The main improvement brought
by the use of Aries is the limitation of the number of displacements of Robby. In fact,
the planner naturally finds a solution that limits the recursions in the go2(?room) task.
Moreover, the continuous planner is able to manage the access to the resources of the
gripper globally, so that Robby might be able to move with both gripper transporting
balls. This is also possible with other configurations, but it may happen arbitrarily.
The planner makes sure that the choices made by OMPAS are on average "good" with
respect to the overall performance of the system. Therefore, this is the combination
of all the "good" choices made by the acting engine that results in a better Efficiency
Score, even at a greater deliberation cost.

5.4 Gobot-Sim: integration with a factory simulator

As mentioned before, the extension of the operational language to represent hierarchical
concurrent reasoning can be justified by logistics scenarios involving robotic platforms.
In such a scenario, one of the sub-problems addressed is the processing of different objects
at different locations, which is close to a Job Shop Scheduling Problem (JSSP) (Apple-
gate and Cook 1991). The solution of such a problem is generally found thanks to
scheduling. In robotic domains, we can generalize this problem to a temporal planning
problem, where deliberation is used to generate the sequence of actions to fulfill a mis-
sion, while ordering them to optimize the JSSP subproblem and taking into account
deadlines. We assume that the time to process an object is several orders of magnitude
larger than the time between processes, which includes the time to transport an object
between two locations, the time to move robots, and other durations that should be
considered during execution but are negligible with respect to the overall process. To
show the relevance of the presented approach, we present here the successful integration
of OMPAS with Gobot-Sim, a new job shop benchmark for acting systems.

5.4.1 Gobot-Sim

Gobot-Sim is a factory simulator in which a fleet of robots should move packages between
machines. The machines are used to process packages, each package having one or more
processes applied to it. The goal is to process packages as fast as possible. Gobot-
Sim has been implemented as a 2D video game that abstracts from the complexity of
physics and collision between elements to focus on deliberation. This makes it simple
and lightweight.
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Gobot-Sim is implemented in the Godot engine. Godot Engine is an open source
video game engine. Godot Engine can run headless, which means that no image is
generated. This is especially useful if you want to run benchmarks on Gobot-Sim. Gobot-
Sim uses version 3.5 of the game engine.

Gobot-Sim is simpler than the RoboCup Logistics League Simulation (Niemueller,
Karpas, et al. 2016) because it is a 2D environment in which the manipulation of pack-
ages is simplified: the pick and place actions are instantaneous. Gobot-sim is similar
to Craftbots (Nemiro et al. 2021) in that navigation is simplified. However, Gobot-Sim
focuses on logistical problems similar to JSSP.

The simulator can receive keyboard and mouse input like a video game, but it can also
receive commands from an external system via a TCP connection. The TCP connection
is also used to send state updates to the external system. The format and information
of the message exchange are described in detail in the documentation of the simulator.
An implementation with OMPAS has been done using the TCP connection exposed by
Gobot-Sim.

The simulator was developed in the same team as the author of this thesis. Some
contributions have been made to improve the simulator and add specific features for the
purpose of implementing it with OMPAS.

5.4.1.1 Environment of Gobot-Sim

As mentioned before, the Gobot-Sim environment is a factory that processes packages
on different machines. A screenshot of the simulator is available in Figure 5.2. It shows
a specific scenario in which two robots should move six packages between six machines,
while monitoring their battery level. In Gobot-Sim, the factory is delimited by walls
that are impenetrable. Inside those walls, we have machines, packages, robots, belts
and recharge areas that we are going to detail.

Machine The factory consists of machines. Each machine can perform one or more
processes, and each process is identified by an ID. A machine can process one package at
a time. Graphically, processes are uniquely identified by a color. Processing machines
receive packages on their input belt. The length of the input belt defines the entry buffer
of the machine. The output belt of the machine is used to store packages pending a
robot takes them to the next processing machine.

There are also specific machines in the environment. The input machines from
which the packages arrive in the environment, and the output machines that take the
fully processed packages and send them out of the factory.

Package A package is an object to which one or more processes are to be applied.
Each process has a specific processing time. Two packages that should receive the same

1The documentation on the communication format and information of the Gobot-
Sim simulator is available at the following URL: https://github.com/plaans/gobot-
sim/blob/master/doc/communication.md

https://github.com/plaans/gobot-sim/blob/master/doc/communication.md
https://github.com/plaans/gobot-sim/blob/master/doc/communication.md
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Figure 5.2: Overview of a 6 × 6 job shop scenario in Gobot-Sim composed of one in-
put machine (on the left) that feeds the environment with unprocessed packages, six
processing machines that can do a predefined process, and one output machine (at the
bottom right) that receives fully processed packages. Two robots can be used to dispatch
packages on the machines. The recharge area (in yellow) is available at the bottom.
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process may have different processing times. The process to be applied to a package is
ordered. Packages are moved from one machine to another by robots.

Robot A robot can move around the factory in a holonomic way, meaning that there
are no restrictions on the direction in which it can move. It has a battery that discharges
continuously. However, the rate of discharge is different when the robot is performing
an action than when it is idle. Its battery can be recharged on recharge areas. The
recharge rate can vary from robot to robot. Robots are the only manipulators in the
factory. They can pick up one package at a time. They can carry the package (the
additional package has no effect on the energy consumption, i.e. the consumption rate
is not changed). Packages can only be dropped on machine belts.

To interact with packages on the belt, the robot should be in one of the interact
areas around the belt.

5.4.1.2 Integration with Gobot-Sim

From the perspective of an external system, Gobot-Sim is viewed as a robotic platform.
This means that Gobot-Sim sends perception information and receives commands to be
executed on the platform.

State representation The perceived information is aggregated into a state represen-
tation of the system. The state consists of state variables. Each state variable represents
a part of the state of the system. State variables can represent either static facts or dy-
namic facts. The state is composed of information about the robots, the machines, and
the topology of the environment, e.g., locations of machines. The state is considered
to be fully observable in the current version, but we see no limitation in restricting the
observability of the state.

Every object in the environment (except the walls and the floor) is represented by a
set of state variables and values in the state.

• Robots are defined by their position, their speed, and their battery level.

• Machines are represented by their progress rate in processing a given package.

• Packages are represented by their location and the remaining processes to be
performed.

The complete definition of the state variables can be found in the documentation of the
simulator1.

5.4.1.3 Commands

Commands can be sent to Gobot-Sim to either robots or machines. The full description
of the command arguments and format is given in the documentation1.
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Robot commands The robot can move and manipulate packages using the following
commands:

• We can ask the robot to pick up a package with the command pick(?r: robot).
The command can only succeed if the robot is facing the belt on which the package
is located, and the robot is in one of the interact areas of the belt. If there are
several packages on a belt, the robot will pick the closest one. To pick a specific
package, we can use pick_package(?r: robot, ?p: package).

• A robot can use the place(?r: robot) command, which places the currently carried
package on the belt the robot is facing. If the robot is not facing a belt, the
command will be denied.

• To face a belt, a robot can rotate by a certain angle with do_rotation(?r: robot,
?angle: float, ?speed: float), which will rotate robot ?r by ?angle in rad at ?speed

in rad.s−1. We ask to rotate to an absolute angle with rotate_to(?r: robot, ?angle:
float, ?speed: float); the speed parameter is the same. In general, the robot only
needs to rotate to face a line. This is exactly the role of the command face_belt(?r:
robot, ?b: belt), which will face a belt regardless of the robot’s position.

• There are several commands to move the robot. The most basic one is
do_move(?r: robot, ?angle: float, ?speed: float, ?duration: float) tells the robot
?r to move in direction ?angle at ?speed for ?duration. For very precise control
of the robot’s movement, this command might be useful. However, you might
want to control the commands at a higher level. Therefore we have the com-
mand navigate_to(?r: robot, ?x: float, ?y: float), which gives target coordinates
to reach. Similarly, navigate_to_cell(?r: robot, ?cx: int, ?cy: int) moves to the
cell defined by the two coordinates. At a higher level, we can move to a given area
with navigate_to_area(?r: robot, ?area: area).

• To recharge, we can even issue the command go_charge(?r: robot), which will
send the robot to the nearest recharge area. So we rely on the robot platform to
find the closest area.

Machine command In the version of the simulator that we are using, processes on
machines should be started explicitly with a command. The command is process(?m:
machine, ?p: package), where ?m is the machine on which the package ?p should be
processed. Note that a prerequisite for the success of the command is that the package
is present on the input belt of the machine, otherwise the command will be rejected.

5.4.2 Versions of Gobot-Sim

With the environment presented, we can now define different scenarios for handling
packages. We consider two of them.
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Gobot-Sim Jobshop The first is a job shop type problem where all packages are
present at the start of the simulation. We call it Gobot-SimJS. In this configuration,
each machine can perform only one process, and only one machine can perform a given
process. The underlying problem we consider here is n ×m JSSP, where n is a finite
number of packages to be processed on a finite set of machines m. However, the model
is more complex than a classic JSSP. In fact, a package has to wait at the entrance
of a machine before it can be processed. At best, it is processed directly. Moreover, a
package must be brought to a machine before it can be processed. Therefore, the travel
time of the package should be taken into account.

Gobot-Sim Continuous-shop In the second, we consider a finite set of packages
that can arrive in the environment at any time. Therefore, the autonomous agent should
consider the new mission resulting from the arrival of the new package. We refer to this
second configuration as Gobot-SimCS. In this case, the external agent has no knowledge
of the incoming packages, which means that it cannot anticipate their impact on its
agenda until they are introduced into the environment.

5.4.3 Integration with OMPAS

OMPAS can control the robotic platform by sending commands over a TCP connection.
Updates on the status of the robotic platform and the command status are done at a
fixed frequency of 60Hz.

Acting Domain Given the specification of the system, we define two types of events
that should be handled by OMPAS at runtime.

• For each package ?p in the system, a new event on_new_package(?p) is triggered
once and executes the task t_process_package(?p) in a new thread, whose goal
is to process the package. One of its methods is m_process_package(?p), which
generates a list of tasks, each task representing the action to process the package
?p on a given machine, which includes getting the package, bringing it to the
machine, and instructing the machine to process the package. The last task of the
method t_output_package(?p) brings the package to the output machine.

( def−task t_process_package ( : params ( ?p package ) ) )
( def−method m_process_package

( : task t_process_package )
( : params ( ?p package ) )
( : body

( do
( d e f i n e ta sk s

( mapf
( lambda ( proce s s )
‘ ( t_process_on_machine ,?p

( a r b i t r a r y ’ , (
f ind_machines_for_process ( car
p roce s s ) ) )



5.4. GOBOT-SIM: INTEGRATION WITH A FACTORY SIMULATOR 161

, ( cadr p roce s s )
) )

( package . a l l _ p r o c e s s e s ?p ) ) )
( apply seq ta sk s )
( t_output_package ?p ) ) ) )

( : params ( ?p package ) )
( : t r i g g e r ( once ) )
( : body

( do
( wait−for ‘ ( i n s t ance ( package . l o c a t i o n ,?p )

b e l t ) )
( t_process_package ?p ) ) ) )

• For each robot ?r in the system, each time the battery level of ?r is under a critical
level (here 40%), a new event on_battery_low(?r) is triggered to charge the robot.

( : params ( ?r robot ) )
( : t r i g g e r ( whenever (< ( robot . bat te ry ?r ) 0 . 4 ) ) )
( : body ( charge_robot ?r ) ) )

The full domain is given in Appendix B.2 along with an example of problem instance.
In such representation of the problem, we can distinguish two kinds of unary re-

sources: robots and machines. Since the number of robots is smaller than the number of
packages to be processed, it is obvious that one robot will contribute to the processing
of several packages.

Therefore, the role of the acting engine is to assign robots to packages, and to
schedule the passage of packages on the machine. In the current version of the system,
the acquisition of a resource is sorted by a priority level, where the task that monitors
the battery of a robot has the highest priority.

5.4.4 Benchmark

We benchmarked OMPAS on the two versions of Gobot-Sim, namely Gobot-SimJS and
Gobot-SimCS . For each configuration, we compared a user-defined reactive allocation
strategy against a random allocation strategy that benefits from continuous planning.
The difference between the custom strategy and the random strategy lies in the opera-
tional models used in the two configurations. The reactive strategy, called First Available
(FA), takes advantage of a new operator of SOMPAS that attempts to acquire a list of
resources, and returns the first one that is available. The operator is ( acquire-in-list
l q), where l is a list of resources, and q is an optional amount to borrow. On success,
it returns the tuple ( label rh), where label is the name of the borrowed resource and
rh is its resource-handle. This results in the following operational model:

( d e f - t a s k t_process_on_machine ( : params ( ?p package ) (?m
machine ) ( ?d i n t ) ) )

( def-method m_process_on_machine
( : task t_process_on_machine )
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( : params ( ?p package ) (?m machine ) ( ?d i n t ) )
( : body

( do
( d e f i n e h_m ( acqu i r e ?m) )
( d e f i n e h_r ( a c q u i r e - i n - l i s t ( i n s t a n c e s robot ) )

)
( d e f i n e ?r ( f i r s t h_r) )
( t_carry_to_machine ?r ?p ?m)
( r e l e a s e ( second h_r) )
( t_process ?m ?p ?d ) ) ) )

The random strategy is defined as follows:

( d e f - t a s k t_process_on_machine ( : params ( ?p package ) (?m
machine ) ( ?d i n t ) ) )

( def-method m_process_on_machine
( : task t_process_on_machine )
( : params ( ?p package ) (?m machine ) ( ?d i n t ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do
( d e f i n e ?r ( a r b i t r a r y ( i n s t a n c e s robot )

rand-e lement ) )
( d e f i n e h1 ( acqu i r e ?m) )
( d e f i n e h2 ( acqu i r e ?r ) )
( t_carry_to_machine ?r ?p ?m)
( r e l e a s e h2 )
( t_process ?m ?p ?d )

The only difference between the two models is how the resource is acquired in the body
of the m_process_on_machine method. We use the second model because in the
present work we do not support the translation of acquire-in-list into a corresponding
planning representation.

Problem configuration The problems for each version of Gobot-Sim are generated
as follows: In each configuration, we use a fleet of two robots. We have the following
parameters for the problems generated for Gobot-SimJS version.

complexity Packages Processes Process time
Easy 2 2 [2;8]

Medium 4 4 [2;15]
Difficult 6 6 [2;15]

For each problem we define the number of packages to process and the number of
processes for each package. Then, the process-time is a range of values that a given
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process will take on a machine. For each easy problem, it ranges from 2s to 8s. In the
Gobot-SimJS version, each process can only be run on one machine. It should also be
noted that all packages are in the system from the beginning of the problem instance.

For the Gobot-SimCS version, we use the following parameters, which are slightly
different from the other version. Therefore, the parameters for creating a planning
instance are as follows:

complexity Packages Processes Process time Machine/Process
Easy 2 [1;2] [1;5] 3

Medium 4 [1;4] [1;10] 2
Difficult 6 [1;6] [1;20] 1

For each one of the complexities, we define a fixed number of packages that can have
a range of processes to be done. As for the Gobot-SimJS version, the process time is a
range of values. We also add some flexibility on the machines by allowing a process to
be run on multiple machines. This gives the acting engine a choice of which machine to
process a given package.

Results In the Table 5.5 we have the results on the Gobot-SimJS and Gobot-SimCS
versions comparing the performances of OMPAS using the C(R), the C(R/Sat), and
the C(R/Opt) configurations. Here, the C(R) configuration benefits from the custom
reactive strategy. We do not benchmark the other configurations of OMPAS because
there is no choice of methods to refine a task. For each task, there is a single task to
choose. Hierarchical decomposition is only used to break down the model into multiple
levels of abstraction.

The metrics used are those described at the beginning of this chapter. On all six
problems, the configuration C(R/Opt) outperforms all other strategies. Depending on
the version and the complexity of the problem ˆDE∗

S ranges between 9.3% and 15.9% for
the reactive strategy. What is also interesting is that with a similar number of actions,
the C(R/Opt) outperforms the other configuration.

What is also interesting is that the planning time TP increases drastically with the
complexity of the problem, but the impact on the deliberation time stays minimal. In
the worst case, the TW P is 23.8% for the configuration C(R/Opt) on the difficult problem
of Gobot-SimJS , which represents approximately 5% of TE .

5.4.5 Case Study

As for the Gripper-Door domain, we present a case study on a particular instance of
the domain. Here we have chosen a problem of hard complexity of the Gobot-SimCS

domain. We focus on the continuous planning process. In figure 5.3 we show for each
of the planning instances the average time to compute a new solution. Unlike other
systems that wait for the planner’s response to execute, here the planner searches for
a solution in a parallel process. We can see that the planning time is non-linear and
decreases as the execution reaches the end.
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Table 5.5: Results for the Gobot-SimJS and the Gobot-SimCS domains.

(a) Results for Gobot-SimJS averaged on three easy problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 79.2 40.0 98.9 8.3 12.2 0.0 0.0 0.0
C(R/Sat) 79.9 40.0 100.0 8.3 12.3 0.2 0.1 1.0
C(R/Opt) 70.8 40.0 100.0 8.8 4.3 0.2 0.1 1.2

(b) Results for Gobot-SimJS averaged on three medium problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 279.2 136.4 99.6 2.2 15.9 0.1 0.0 0.0
C(R/Sat) 289.6 136.4 100.0 2.1 18.7 2.4 2.2 24.2
C(R/Opt) 235.3 136.4 100.0 2.6 0.0 2.8 2.7 104.3

(c) Results for Gobot-SimJS averaged on three difficult problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 523.0 288.4 98.9 1.1 6.0 0.3 0.0 0.0
C(R/Sat) 551.6 277.9 89.4 1.0 19.3 26.2 25.8 242.2
C(R/Opt) 494.0 288.7 99.4 1.2 0.0 24.2 23.8 368.7

(d) Results for Gobot-SimCS averaged on three easy problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 53.9 26.0 98.9 11.3 13.5 0.0 0.0 0.0
C(R/Sat) 54.8 26.0 100.0 11.1 14.1 0.1 0.1 0.5
C(R/Opt) 48.2 26.0 100.0 12.7 2.9 0.1 0.1 0.5

(e) Results for Gobot-SimCS averaged on three medium problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 199.0 91.8 99.4 3.0 9.3 0.1 0.0 0.0
C(R/Sat) 203.1 91.9 99.5 3.0 10.3 0.8 0.7 9.5
C(R/Opt) 180.1 91.9 99.0 3.3 0.3 0.9 0.8 29.6

(f) Results for Gobot-SimCS averaged on three difficult problems.

Config TE(s) NC Cov(%) ÊS(T/s) ˆDE∗
S(%) TD(s) TW P (s) TP (s)

C(R) 399.2 164.8 99.7 1.5 14.3 0.2 0.0 0.0
C(R/Sat) 384.9 164.9 99.7 1.6 11.7 3.0 2.8 49.8
C(R/Opt) 339.8 164.8 99.7 1.8 0.0 4.2 4.0 129.2
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Figure 5.3: Continuous planning time for successive instances in Satisfactory and Opti-
mality configurations

It is interesting to note that in the case of the Gobot-SimCS domain, the planning
time increases during the first instance. This is explained by the arrival of new packages
in the system, which increases the complexity of the planning problem with the number
of packages. However, we still see that the required planning time decreases as the
execution continues, with a minimum time in the last instances. We can also see that
there is a large difference in planning time between the Optimality and Satisfactory
configurations. This should explain why the performance of the Optimality version is
worse on problem instances of easy and medium complexity.

5.5 Discussion

With the benchmark presented above, we wanted to evaluate the ability of OMPAS to
handle multiple tasks and optimize a quality metric. We chose to optimize the total
time, which is interesting because it introduces a trade-off between execution time and
deliberation time. To do this, we set up two benchmarks, each targeting a specific
feature of OMPAS. On the one hand, the Gripper-Door domain requires that the acting
system makes informed decisions about task refinement, and task interleaving is of
secondary importance to the efficiency of the system. On the other hand, the Gobot-Sim
domain provides a context that requires scheduling capabilities from the acting engine.
Moreover, the Gobot-Sim domain shows how OMPAS is able to adapt its execution to
take into account tasks and events that may occur at any time. It is interesting to note
that the improvement in performance brought by the planning techniques presented in
this thesis is most noticeable on problems of the highest complexity. In the near future,
we plan to benchmark OMPAS on extensions of the Gripper-Door domain in which:

• we use a fleet of robots instead of a single robot,
• the tasks to be performed are more complex than placing a ball in a room.

In the last extension, we propose to target "complex" tasks, such as building a toy from
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parts scattered across all rooms. With this domain, we can introduce parallelism, and
synchronization is required to first get all the parts and then build the toy. We expect
that this domain will better highlight the approach presented in this dissertation.

Limitations of the evaluated domains While the domains showed that the most
efficient approaches are those that use planning to guide the acting engine despite the
increased deliberation cost, the evaluation is still limited.

First, the only dynamic feature considered is the response to new tasks, which was
addressed in Gobot-SimCS . However, the ability of OMPAS to face failures is not em-
phasized in the evaluated domains. The retry mechanism of OMPAS could be tested by
introducing non-determinism in the result of command execution. We could take inspi-
ration from the previous evaluation of RAE systems in previous papers (Patra, Ghallab,
et al. 2019; Patra, Mason, Kumar, et al. 2020; Patra, Mason, Ghallab, et al. 2021).
For example, we could easily extend the Gripper-Door domain by relying on another
simulator that supports stochastic models for commands. In this sense, OMPAS already
provides facilities to define different models for planning and simulation. In Chapter 4
we introduced the def-command-pddl-model operator, which can be used to define a
PDDL-like model that a planner can take advantage of. In addition to this operator, we
have the def-command-simulator-model operator, which takes as input a model in the
form of a SOMPAS program that only the internal simulator can access. The sole pur-
pose of this simulator model would be to emulate the behavior of the robotic platform.
This way we could have an evaluation close to the one proposed for the previous ver-
sions of RAE (Patra, Mason, Ghallab, et al. 2021), and this would make the comparison
easier.

Second, we decided to define our own robotics domain based on a simple scenario
where a robot should move objects. One could argue that we could have used the
domains already provided in (Patra, Mason, Ghallab, et al. 2021). However, those
domains were defined in Python. Therefore, to have the same domains, it would be
necessary to translate those domains into SOMPAS at the cost of having slightly different
models. In fact, since the operational models were defined in Python, they could use the
full extent of the language, which they used to define the locking mechanism between
tasks. In the near future, we plan to translate these domains from Python to SOMPAS
and provide a fair comparison with the previous implementations of RAE. In particular,
we could better compare the performance of our plan-based approach, which relies on
the temporal and hierarchical planner Aries, with the nondeterministic planner UPOM.

On the integration with other simulators During the development of OMPAS
the simulator CraftBots (Nemiro et al. 2021) was presented. In this 2D simulator, a
fleet of robots should mine resources to craft objects in a limited time. Each task
gives a reward, and the goal is to maximize the total reward in a limited time. This
simulator introduces a different reward for each task, which adds an interesting problem
of optimizing a metric different than the number of tasks or the makespan. In addition,
there are constraints on the resources that can be mined: each resource has a different
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weight, so a robot cannot move the same amount of each resource, and resources are
only accessible during certain time windows. This adds interesting resource and time
constraints to the domain.

However, few acting systems have been integrated with CraftBots. In fact, one of
the few systems that have been integrated with CraftBots is the one that is part of
the demonstration of the simulator. For this reason, we plan to extend Gobot-Sim to
integrate the interesting features of CraftBots:

• Processing a package gives a reward,
• The machines are only available during certain time windows.

With such an extension, in addition to efficiently processing packages, the goal would
be to maximize the total reward while coping with contingencies.

Lack of comparisons with other systems Returning to the comparison with other
RAE systems, OMPAS uses a dedicated implementation of UPOM that is specific to
OMPAS. We compare UPOM with the hierarchical and temporal planner Aries in a
setup that clearly favors Aries:

• The models used in OMPAS are deterministic, which allows the automatic trans-
lation into chronicles to be used by Aries, and the UPOM has no advantage in
this setup.

• UPOM is not accompanied by the learned heuristics proposed in the previous
works (Patra, Mason, Ghallab, et al. 2021), which showed to significantly improve
the performances of UPOM.

To fully compare our approach with UPOM, the complete framework should be reim-
plemented in OMPAS and benchmarked on nondeterministic domains.

Finally, it would have been interesting to compare OMPAS with other acting frame-
works such as CLIPS (T. Hofmann et al. 2021), which also targets metric optimization
and resource management. To compare both approaches, we could integrate OMPAS
into the Robocup Logistics League simulator (Niemueller, Karpas, et al. 2016). Even
if the Robocup Logistics League simulator is close to GobotSim in terms of the task to
be performed, we would be on common ground with CLIPS and would provide a fair
comparison. In addition, OMPAS would gain an integration with ROS2 (Macenski et al.
2022), which would make it easier to share OMPAS with the rest of the community.

5.6 Conclusion

In conclusion, the provided evaluation proved the pertinence of the approach developed
in this thesis, i.e. using hierarchical and temporal planning to guide the deliberation of a
refinement based acting engine that aims to control a fleet of agents. In the near future,
we plan to integrate OMPAS into other robotic domains in order to better compare it
with other approaches, and to evaluate the other reactive features of OMPAS, such as
the handling of failures. We are confident that OMPAS is well equipped to perform on
other robotic domains.





Conclusion

In this thesis, we presented a new deliberation system that aims to achieve multiple
goals using a fleet of robots. In particular, we presented a unified planning and acting
approach based on a refinement acting engine that executes high-level tasks by refining
them into executable commands. This resulted in the Operational Model Planning and
Acting System (OMPAS) system, a new acting system that extends the capabilities of
the Refinement Acting Engine (RAE) to better face the concurrent execution of tasks
that require shared resources.

In particular, OMPAS supports concurrency in procedures and takes advantage of
a dedicated resource management system to handle the interleaving of executed tasks.
Similar to RAE, the deliberation of OMPAS can be guided by an automated planner.
In addition to guiding the refinement of tasks into methods, the planner can be used to
instantiate arbitrary parameters in the body of methods, but also to organize the order of
access to shared resources among concurrent procedures. Thus, OMPAS extends RAE,
RAP, PRS, and PROPEL to provide an acting system in which deliberation decisions
are explicit and can be influenced by arbitrary heuristics to improve the performance of
the system.

To interface with OMPAS, we have defined a new acting language. Based on a
simplified version of the Lisp dialect Scheme, SOMPAS provides the facilities to define
procedures that can take advantage of the deliberation features of OMPAS. In addition
to the operators already defined in the core of the Scheme dialect, the language embeds
special modules with control and acting primitives, in which the nondeterministic choices
are explicit.

The language is also used as an interface between OMPAS and the user. Through
files or a REPL, the programmer can configure the hierarchical operating model that
OMPAS will use, but also interact with the system at runtime, such as starting the
deliberation system, sending tasks or commands to be executed, or getting reports on
the internal state of the system.

The definition of a dedicated acting language has facilitated the integration of a
hierarchical and temporal planner to guide the deliberation of OMPAS. Since the lan-
guage has a restricted core and a clearly identified semantic for the nondeterministic
choices, it opens the way to an automated analysis of the programs defined with SOM-
PAS. In particular, we automatically synthesize the corresponding planning models of
the methods defined in the hierarchical operational model of SOMPAS. The planning
models take the form of chronicles, a rich planning formalism that allows for expressive
temporal models. Chronicles are particularly suitable in our case, since we want to plan
the nesting of procedures while optimizing the overall process.

We use these planning models to guide the deliberation of OMPAS at runtime. The
planner continuously searches for plans that anticipate the course of action given the
choices already made by OMPAS.

With such a generic approach, we were able to provide the interface to simulated
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domains, in particular the Gripper-Door domain which has been presented in Chapter 1.
We also interfaced OMPAS with Gobot-Sim, a factory simulator. In contrast to Gripper-
Door, the complexity does not lie in the refinement of the tasks, but in the scheduling
of the concurrently executed procedures on the system. We demonstrate this with these
two experiments:

• OMPAS is well equipped to face multiple tasks that require the use of limited
resources,

• OMPAS is able to improve its deliberation by using continuous planning to antic-
ipate the course of action of the system with minimal downtime for the system.

Most importantly, the planning is transparent to the robot programmer and does not
require an additional model. This makes OMPAS one of the most advanced proposals
for blended planning and execution.

Limitations and future work The disadvantage of such an approach is that, at the
moment, continuous planning is not scalable with respect to the number of objectives
that OMPAS should face simultaneously. In order of complexity and work required, here
are some of the possible improvements and avenues that could be explored to improve
the planner’s performance:

• At this point, the planner restarts its search without any information about the
previously found solutions. Therefore, we could improve the interface of the plan-
ner by providing the previous plan it found. If the planner could benefit from this
information, we believe that the search time would be significantly reduced, as the
planner would certainly converge to a valid solution faster.

• Another thing would be to relax the underlying temporal problem of the planning
problem and solve only the classical part of the planning problem. This would
certainly provide useful heuristics for refining the task and instantiating arbitrary
variables. However, the ordering of resource access would not be anticipated.

• To reduce the complexity of solving a global planning problem, we could take inspi-
ration from the work on Hierarchical Conformance Planning (HCP) (Kamperis, Y.
Wang, and Castellani 2023), which proposes to automatically define several levels
of abstraction, each of which is conformant with respect to the lower levels. The
proposed approach also targets continuous planning and should provide guidance
in a much faster way. However, where we gain search time, we lose globally scoped
planning, which would take into account the interactions between the elements of
the lower-level stack, here abstracted by the different levels. Therefore, we can
expect a loss in quality of the plan, which could be quickly regained by the faster
response of the planner.

By defining our system entirely, we also choose to rely on a dedicated execution
language, with a homemade interpreter. No particular effort was made to optimize the
evaluation of the programs, since the performance of the interpreter of SOMPAS was
sufficient for the work presented in this thesis. However, for future iterations of the
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system that require a fast evaluation of the programs, it would be necessary to compare
its capacities, in particular with respect to interpreters of other Lisp dialects on the part
of the language that they share.

Avenues to explore Apart from potential improvements to the performance of the
proposed system, it could be extended in other directions. In particular, learning tech-
niques at different levels could be integrated into OMPAS. Based on the traces provided
by the acting tree of OMPAS, the system could learn the following heuristics:

• Having the trace of the execution of the commands, we could extract or improve
the model of the commands. In fact, a limitation of our approach is that the
model of the commands should still be provided by the user. One could argue
that the planning system still needs to be provided with such a model, but having
knowledge of the state in which the command started its execution and the state
after the execution of the command, we can imagine that we could extract a model
of a command composed of the preconditions of the command, its effects, and most
importantly, its duration. We could rely on what exists in the literature such as
the EXPO (Gil 1994) system, the OBSERVER (X. Wang 1995) system, or more
recently the SAM algorithm (Juba, Le, and Stern 2021).

• With OMPAS we have proposed a system in which we can configure the heuristic
that the system will use to guide part of its reasoning. For now, we can only define
the function used to select a method to refine a task, but we could easily imagine
extending this to the resource allocation strategy and so on. Even more interesting
would be to provide OMPAS with meta-reasoning capabilities that would allow it
to automatically choose its heuristic for a given domain. This would typically be
feasible with reinforcement learning, since OMPAS is already capable of simulating
the execution of operational models.

In addition to extending the autonomous capabilities of OMPAS, it would be in-
teresting to adapt the system to generic frameworks such as ROS2. Currently, the
OMPAS implementation has its own protocol for connecting to a platform using the
gRPC framework. However, the majority of the robotics community uses ROS2 to bind
robotics software together, and it would be a mistake to turn away from them.

Last but not least, OMPAS only exists because the author of this thesis decided to
build a completely new system from scratch. This required a non-negligible amount of
engineering to first implement a new interpreter for the concurrent Scheme dialect, and
an acting system to benefit from it. On top of that, it is designed from the ground
up to unify Planning and Acting in a single system. Therefore, it could be the perfect
candidate to continue the line of work extended in this thesis, ergo to improve the
interaction between Planning and Acting to increase the autonomous capabilities of
robotic agents.
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Appendix A

Detailed translation techniques of
SOMPAS programs into

chronicles

A.1 Pre-processing of programs

A.1.1 Expanding user-defined functions

During the preprocessing of the programs, we replace all calls to lambdas with new
expressions in which the abstract calls are removed. Such an expression is expanded as
a begin expression, where the parameter bindings are replaced by define expressions.
Since there are translation rules for begin and define expressions, this should make
the process easier. The expansion works like this: for each expression of the form

( ( lambda ( p1 . . . pn ) body ) v1 . . . vn )

, the expression is replaced by

( begin
( d e f i n e p1 1)
. . .
( d e f i n e pn vn )
body )

A.1.2 Pre-evaluation of static expressions of programs

To simplify the programs, the translated programs are pre-evaluated, i.e. any pure
computation pc contained in them is replaced by the result of the evaluation of pc. In
SOMPAS an expression e is pure if:

• e is an atom,

• e is a list in which all its arguments are pure, and in particular the first element of
the list is a function that has been marked as pure. A function is pure if the result
its produces only depends on its arguments and not on any external parameters,
and the function has no side effects. For example the + operator is pure, whereas
rand-int-in-range is not.
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To pre-evaluate a program, we use the function PreEval(x, penv), which is similar
to Eval(x, env) presented shown in Algorithm 3.1. It uses additional annotations to
distinguish between pure and unpure expressions. An example of a pre-evaluation is
given in Example A.1.

Example A.1

Let us take the following program:

( begin
( d e f i n e x ( * 3 4) )
( d e f i n e y (+ 5 6) )
( exec-command ’move_to ?r ( l i s t x y ) ) )

The bindings of x and y result from pure computations, and can be evaluated.
The last expression is partially evaluated as assert is unpure, but its last argument
has been evaluated, and quoted to avoid a new evaluation that would result in a
runtime error. The resulting program is:

( begin
n i l
n i l
( exec-command ’move_to ?r ’ (12 11) ) )

A.1.3 Result of the expansion of the body of the method pick&drop

Here is the result of expanding the program presented in Listing 4.1 using the processes
described above. Note that the (check e) expressions have been expanded to the (
begin (define __r__ e)(if __r__ true (err nil))) expressions.

Listing A.1: Expanded program of the method pick&drop
( begin

( d e f i n e __r__
( begin

( d e f i n e __r__
( begin

( d e f i n e __r__
( begin

( d e f i n e a ( i n s t anc e ?b ( quote b a l l ) ) )
( i f a n i l ( e r r n i l ) ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e __r__
( begin

( d e f i n e a ( i n s t anc e ?r ( quote l o c a t i o n ) ) )
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( i f a n i l ( e r r n i l ) ) ) )
( i f ( e r r ? __r__)__r__

( begin
( d e f i n e __r__

( begin
( d e f i n e a ( i n s t anc e ?g ( quote g r ippe r ) ) )
( i f a n i l ( e r r n i l ) ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e a ( i n s t anc e ?p ( quote l o c a t i o n ) ) )
( i f a n i l ( e r r n i l ) ) ) ) ) ) ) ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e __r__
( begin

( d e f i n e a
(= ( begin

( d e f i n e ?b ?b )
( r e a d - s t a t e ( quote pos ) ?b ) )

?p ) )
( i f a n i l ( e r r n i l ) ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e a ( != ?p ( quote robby ) ) )
( i f a n i l ( e r r n i l ) ) ) ) ) ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e __r__ ( d e f i n e r_h ( c t x - a c q u i r e 0 ( quote robby ) ) ) )
( i f ( e r r ? __r__) __r__

( begin
( d e f i n e __r__

( begin
( d e f i n e ?r ?p )
( c t x - e x e c - t a s k 0 ( quote go2 ) ?r ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e __r__
( begin

( d e f i n e ?obj ?b )
( d e f i n e ? l o c a t i o n ?p )
( d e f i n e ?g r ippe r ?g )
( ctx-exec-command 1 ( quote p ick ) ?obj

? l o c a t i o n ?g r ippe r ) ) )
( i f ( e r r ? __r__) __r__
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( begin
( d e f i n e __r__

( begin
( d e f i n e ?r ?r )
( c t x - e x e c - t a s k 2 ( quote go2 ) ?r ) ) )

( i f ( e r r ? __r__) __r__
( begin

( d e f i n e ?obj ?b )
( d e f i n e ? l o c a t i o n ?r )
( d e f i n e ?g r ippe r ?g )
( ctx-exec-command 3 ( quote drop ) ?obj

? l o c a t i o n ?g r ippe r ) ) ) ) ) ) ) ) ) ) ) )

A.2 Post-processing of the flow graph

The post-processing of a flow graph aims at checking the validity of the program, i.e. if
the evaluation of such a program is possible, and at specializing the program to represent
a predictive model that can be used by a planner to anticipate the successful execution of
it. In this section, we introduce the tools necessary to represent labels, and in particular
to represent their domains, which is the set of possible values they can take. Then we
present how to manipulate flow graphs based on the representation of labels we have
here.

A.2.1 Representation of the labels

In the flow graph, labels represent the intermediate values in a program. As variables,
different labels can refer to the same value. They can be unified in order to simplify the
representation of a program. As an example, consider the following pseudocode:

x := 1;
z := x;
y := x + 2;

The value "x" can be replaced by "1" at any point "x" is present, which gives:

z := 1;
y := 3;

In addition to removing the line that assigns a constant value to "x", "y" can be statically
computed.
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To perform such processing on a synthesized flow graph, we can rely on the Union-
Find algorithm, which unifies trees in a forest. We use it to unify the labels in the flow
graph. To do this, we rely on a symbol table, whose underlying data structure is a forest,
in which all labels are declared and associated with a unique ID, a domain, and a set
Drops(l), which is the set of moments at which a reference to the label is dropped.
In fact, in programs, references are defined in a given scope. In particular, in Scheme,
values are defined only in the scope in which they are created.

The ID is used to uniquely refer to a tree in the forest. For a label l, we denote D(l)
as its domain.

To use the Union-Find algorithm, we add the following attribute to a label

• The ID of the parent, by default the ID of the label,

• The rank of the label, representing the number of children the node has. The
default rank is 1, since a node is at least its own child.

The different functions of Union-Find are presented in the algorithm A.1. The
function Union(x,y) connects two labels based on their rank: the label with the highest
rank becomes the parent of the other. The function Find(x) returns the parent of a
node, which is found by recursively checking the parent of a node until the root of a tree
is reached. In the meantime, the tree is flattened so that the parent of x is now the root
of the tree. This operation reduces the computation time for the next time Find(x) is
called. We add the UnionOrdered(x, y) function which forces x to be used as the
parent of the tree. FlatBindings() reduces the level of each tree to one. In Figure A.1
we present an example of the application of the Union-Find algorithms, starting from a
forest composed of atomic trees.

A.2.1.1 Label Binding

The analysis of the flow graph detects primitive expressions of the form (ti : ra = rb),
where that ra and rb are labels. For such an expression, we bind ra and rb and remove the
primitive expression from the flow graph. To do this, we use the Union-Find algorithm
to perform the binding. In particular, we use the function UnionOrdered(ra, rb) (see
Algorithm A.1), which binds rb to ra such that:

• ra replaces rb wherever it appears in the program,
• the allowed values of ra are restricted to contain only allowed values of rb (i.e.

D(ra)←Meet(D(ra), D(rb)))),
• the sets Drops(ra) and Drops(rb) are merged because they refer to the same value.

A.2.2 Domain of a label

As mentioned before, a label is associated with a domain which represents the allowed
values that a label can take. The typing system of SOMPAS is defined as a lattice,
an oriented graph in which each pair of elements has a unique supremum, defined as
the lowest common ancestor, and a unique infimum, defined as the greatest common
children. Figure A.2a is the lattice representing the types of the variables in SOMPAS:
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Operation Resulting Forest
Init → A B C D E

Union(A,B) →
A

B

C D E

Union(C,D) →
A

B

C

D

E

Union(A, D) →

A

B C

D

E

UnionOrdered(E,B) →

E

A

B C

D

FlatBindings() →
E

A B C D

Figure A.1: An example of successive operations on a forest {A, B, C, D, E} using the
Union-Find algorithms (see Algorithm A.1).
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Algorithm A.1 Union-find algorithm
function Union(x,y)

px ← Find(x)
py ← Find(y)
if px ̸= py then

if px.rank < py.rank then
px.parent← py.parent

else
py.parent← px.parent
if px.rank = py.rank then

x.rank ← x.rank + 1

function Find(x)
parent← x.parent
if x ̸= parent then

parent← Find(parent)
x.parent← parent
parent.rank ← parent.rank + 1

return parent

function FlatBindings(f)
for all x ∈ f do

Find(x)

function UnionOrdered(x,y)
px ← Find(x)
py ← Find(y)
if px ̸= py then

y.parent← x.parent
x.rank ← x.rank + 1

all expressions are of type Any, which is then specialized to, e.g. Number. The type
∅ represents an empty domain, i.e. a label has no valid value. We use an extension
of this lattice to represent the additional types inherent to our planning representation
(see Figure A.2b).

The domain of a label is more complex than a single type. Since it represents all the
possible values that a label can take, we need a definition of a domain that allows this.
Therefore, we suggest that a domain can be defined with one of the following types:

• Type(t) where t is a type defined in the lattice,

• Singleton(t, v) where t the type is the type of singleton and v is its value. The
value of v can be one of Int(i), Float(f), Boolean(b) or Symbol(s). Note that two
singletons with the same value can be of different types, e.g. Singleton(Symbol,
"robby") and Singleton(Robot, "robby").
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(a) Lattice representing the typing system of SOMPAS.

(b) SOMPAS lattice extended with types required by planning

Figure A.2: Lattices representing the lattice system of SOMPAS and its extension to
handle specific types for planning

• Unify(d1, . . . , dn) is the union of multiple domains, e.g. Unify(Type(True),
Type(Nil))

• Composition(t, d) represents compound types such as Composition(Handle,
Type(Int)), which represents the result of an asynchronous computation that re-
turns an integer.

• Subtraction(d1, d2) represents a domain as the subtraction of two domains: d1\d2.

A.2.3 Operations on the lattice of type

By using the lattice, we can perform some operations on the domains. This is particu-
larly useful during the static analysis of a flow graph, since we want to check whether
the unification of two labels l1 and l2 is allowed. In fact, a unification is permitted if
and only if the resulting domain is not empty, i.e. it is different from ∅. To do this, we
want to compute the intersection of the domains D(l1) and D(l2). In a generic lattice,
we have two operators:

• Infimum(n1, n2) returns the greatest child of two nodes.

• Supremum(n1, n2) returns the lowest parent of two nodes.

In the lattice we define the rule D = Decomposition(t1) which says that D = ⋃
i ti,

and D = t1. Perfect(D) states that D is a perfect decomposition, such that ∀(t1, t2) ∈
(D, D), t1 ∩ t2 = ∅. In addition, we define the following operators:
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• The Meet(d1, d2) operator that returns d1∩d2, It is used to check if a unification
is allowed.

• The Unify(d1, d2) operator that returns d2 ∪ d2, It is used to define the result of
a branching flow in which the domain of the result can be one of the domain of
the results of the two branches.

• The Subtract(d1, d2) operator that returns d1 \ d2.

Operator Meet We define the following rules for the Meet(d1, d2) operator in func-
tion of the pair (d1, d2):

• (Type(t1), T ype(t2)): Infimum(t1, t2),

• (Type(t1), Composed(t2, d2)): Composed(Meet(t1, t2), d2),

• (Type(t1), Constant(v, d)): Constant(v, Meet(t1, d)),

• (Composed(t1, d1), Composed(t2, d2)): Composed(Meet(t1, t2), Meet(d1, d2)),

• (Constant(v1, d1), Constant(v2, d2)):

– If v1 = v2: Constant(v1, Meet(d1, d2)),
– else Empty

• (d, Unify(d1, . . . , dn)): Unify(Meet(d, d1), . . . , Meet(d, dn)),

• (d, Substract(d1, d2)) : Unify(Meet(t1, d1), Meet(t2, d2)).

Operator Unify We define the following rules for the Unify(d1, d2) operator in func-
tion of the pair (d1, d2):

• (Type(t1), Type(t2)): Supremum(t1, t2),

• (Type(t1), Composed(t2, d2)): Composed(Unify(t1, t2), d2),

• (Type(t1), Constant(v, d)): Constant(v, Unify(t1, d)),

• (Composed(t1, d1), Composed(t2, d2)): Composed(Unify(t1, t2), Unify(d1, d2)),

• (Constant(v1, d1), Constant(v2, d2)):

– if v1 = v2: Constant(v1, Unify(d1, d2)),
– else: Unify(d1, d2),

• (d, Unify(d1, . . . , dn)): Unify(Unify(d, d1), . . . , Unify(d, dn)),

• (d, Substract(d1, d2)): Subtract(Unify(d, d1), d2).
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Simplification of Sets Given U = Unify(d1, . . . , dn), we simplify the result of U by:

• Removing all duplicates in U,

• Removing all d such that: ∃d′ ∈ U, d ⊂ d′,

• Merging all the decomposition of a domain d such that:

∃U ′ ⊂ U, U ′ = decomposition(d) : U = (U \ U ′) ∩ d.

Operator Subtract We define the following rules for the Subtract(d1, d2) operator
in function of the pair (d1, d2):

• (Type(t1), T ype(t2)): In function of d = Meet(t1, t2)

– If d ∈ D = Decomposition(t1) ∧ Perfect(D): D \ d

– else: Subtraction(t1, d),

• (Type(t1), Composed(t2, d2)) : Composed(Subtract(t1, t2), d2),

• (Type(t1), Constant(v, d)) : Constant(v, Subtract(t1, d)),

• (Composed(t1, d1), Composed(t2, d2)) : Composed(Subtract(t1, t2), Subtract(d1, d2)),

• (Constant(v1, d1), Constant(v2, d2))

– If v1 = v2: Constant(v1, Subtract(d1, d2))

– else: t1,

• (d, Unify(d1, . . . , dn)) : Unify(Subtract(d, d1), . . . , Subtract(d, dn)).

We illustrate the functioning of these operators in Example A.2.

Example A.2

Here is a list of computation on different domains. The annotation has been sim-
plified such that t = Type(t).

Meet(List, Map) = ∅
Meet(Composed(Err, Int), Err) = Composed(Err, Int)
Meet(Boolean, Unify(True, Symbol)) = True

Meet(Unify(True, Number), Unify(Boolean, Int)) = Unify(True, Int)
Unify(Unify(False, Map), Unify(Boolean, List)) = Unify(Boolean, Mapn, List)
Unify(Unify(Symbol, F loat, Int, Map, Proc), Unify(Boolean, List, Handle, Err, Map)) = Any
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A.2.4 Constraints on the domain of the labels

Some constraints can be defined on the domain of variables, since the domain of one
label may depend on the domain of another. For example, we can define the domain
of the result of a branching flow as a set composed of the domains of the result of each
branch.

To represent such relationships between domains, we propose to define constraints
on the domains of labels, where a constraint C(d1, . . . , dn) restricts the possible value
of d ∈ {d1, . . . , dn}.

We then use a constraint propagation system that, when updating d ∈ {d1, . . . , dn},
propagates C(d1, . . . , dn) again. Constraints are automatically generated during the
translation process.

We suggest to define the following rules based on the semantics of SOMPAS:

Constraint on domains in a if statement Let us take the expression ( if cond a b)
which corresponding flow graph is:

t

t0 : r0 ← cond

t1 : r1 ← a

r 0

t2 : r2 ← b

¬
r0

{
t1 : r1 if r0
t2 : r2 if ¬r0

We define the following constraints:

D(r0) ⊆ Boolean

D(r) = D(r1) ∪D(r2)

where r is the result of the flow.

Constraints on variables implied in asynchronous computation Let us take
the expression (async e), which corresponding flow graph is:

t

t : r0 ← h t1 : r1 ← e

t : r0
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We define the constraint D(r0) = Handle(D(r1)). In the same way, we take the expres-
sion (await e), which corresponding flow graph is:

t : r0 ← h threadh

t

te : r ← Result(threadh)

te : r

We define the constraint D(r0) = Handle(D(r)).

Constraint on err Let us take the expression (err e) which corresponding flow graph
is:

t : r0 ← err

t1 : r1 ← e

te : re ← apply(r0, r1)

t

te : re

We define the constraint D(re) = Err(D(r1))

Constraint on err? Let us take the expression (err? e) which corresponding flow
graph is:

t : r0 ← err?

t1 : r1 ← e

te : re ← apply(r0, r1)

t

tr : re
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We define the constraints:

D(re) ⊆ Boolean

D(re) = True ⇐⇒ D(r1) ⊆ Err

D(r1) = False ⇐⇒ D(r1) ∩ Err = ∅

A constraint C(d1, . . . , dn) is checked each time a di is updated, which may trigger
new updates.

Note that more constraints could be defined, especially to infer the result type of
more functions. Here we have focused on the constraints specifically needed to synthesize
planning models.

A.2.5 Removing erroneous paths in branching flows

Following the post-processing presented in Section 4.3.2.3, here we detail the process
of removing erroneous flows in branching flows. This transformation of the flow graph
is only acceptable in the context of synthesizing a corresponding predictive model of a
program. We emphasize that it is not a strict representation of the program, since some
parts have been removed.

With these assumptions in mind, we propose to remove invalid flows, i.e. flows that
could lead to runtime errors in branching flows. Consider the following branching flow,
which represents an if expression:

t

t0 : r0 ← cond

t1 : r1 ← a

r 0

t2 : r2 ← b

¬
r0

{
t1 : r1 if r0
t2 : r2 if ¬r0

If the left branch contains a variable with an empty domain, the branch is invalidated:
the flow becomes unreachable by declaring that D(r0) = False. The branch can be
removed from the flow graph to simplify its structure.
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t

t0 : r0 ← cond

t1 : r1 ← a

r0

t2 : r2 ← b

¬r0

{
t1 : r1 if r0
t2 : r2 if ¬r0

⇒
tc : false← cond

t2 : r2 ← b

t

tr : nil

Detection of the invalid branches Simplification
The opposite is true if the right branch contains a variable with an empty domain.
If it is the main flow that contains a variable with an empty domain, then the whole

flow is invalid.

A.3 Simplification of the Temporal Network of a generated
chronicle

Here, we extend the presentation of simplifying the TN of a chronicle as presented in
Section 4.3.3.3. We recall that in order to simplify the TN of the chronicle, we want
to safely remove the ghost timepoints of the chronicle. We define ghost timepoints as
temporal variables that exist in the TN of the chronicle, and that are not used in the
other expressions of the chronicle (i.e. conditions, effects, subtasks).

For this purpose we use PA (Gerevini 2005), to first check the path consistency of
the TN resulting from the temporal constraints of the chronicle, and then to shrink the
set of constraints by removing ghost timepoints. The simplification of a TN is allowed
because the path consistency of TN has been checked beforehand.

We define p : (timepoint, timepoint) → {<, >, =,≤,≥, ̸=,⊤,⊥} as the PA relation
between two timepoints. Any ghost timepoint t′ can be certainly removed from the
chronicle in the following cases:

• t′ has at most one relation. Any relation it is implied in can also be removed from
the chronicle.

• t′ has two relations with timepoints t1 and t2, where p1 = p(t1, t′), p2 = p(t′, t2),
and p3 = p(t1, t2) are the respective paths between t1 and t′, t′ and t2, and t1
and t2 in the network. We define p′

3 = p1 ◦ p2 as the path between t1 and t2
through t′ and note that p3 can be replaced by p′′

3 = p3 ∩ p′
3. The resulting path is

constrained by both p3 and p′
3 since the path consistency has been checked before.

The relations p1 and p2 are then removed from the chronicle, and p3 is overwritten
by p′′

3.

Complete example of Temporal Network simplification In the following exam-
ple we have a TN where the green timepoints are ghost timepoints, and the red ones
cannot be removed from TN.
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t1

t2 t3

t4

t5

t6

t7

e1

e2

e3 e4

e5 e6

e7

Removing the ghost timepoints (in green) results in the following graph, where the
paths p(t1, t6) and p(t1, t7) have been updated, by successively removing t2, t3, t4 and
t5:

Removing t2:
t1

t3

t4

t5

t6

t7

e1 ◦ e2

e3 e4

e5 e6

e7

Removing t3: t1

t4

t5

t6

t7

e3 e4

e1 ◦ e2 ◦ e5

e6

e7

Removing t4: t1 t5

t6

t7

(e3 ◦ e4) ∩ (e1 ◦ e2 ◦ e5)
e6

e7

Removing t5:
t1

t6

t7

((e1 ◦ e2 ◦ e5) ∩ (e3 ◦ e4)) ◦ e6

((e1 ◦ e2 ◦ e5) ∩ (e3 ◦ e4)) ◦ e7





Appendix B

Acting domains

B.1 Gripper domains
B.1.1 Gripper domain

Listing B.1: gripper_base.scm
( begin

( d e f - t y p e s
( room robot l o c a t i o n )
g r ippe r
( b a l l c a r r i a b l e ) )

( d e f - o b j e c t s
( l e f t r i g h t g r ippe r )
( empty c a r r i a b l e )
( robby robot ) )

; s t a t e f u n c t i o n s
( d e f - s t a t e - f u n c t i o n at -robby ( : r e s u l t room ) )
( d e f - s t a t e - f u n c t i o n pos ( : params ( ?o c a r r i a b l e ) ) ( : r e s u l t l o c a t i o n ) )
( d e f - s t a t e - f u n c t i o n car ry ( : params ( ?g g r ippe r ) ) ( : r e s u l t c a r r i a b l e ) )
( d e f - f u n c t i o n capac i ty ( : params ( ?r robot ) ) ( : r e s u l t o b j e c t ) )

; a c t i o n s
( def-command move ( : params ( ?from room ) ( ?to room ) ) )
( def-command-pddl-model move

( : params ( ?from room ) ( ?to room ) )
( : p r e - c o n d i t i o n s

(= ( at-robby ) ?from )
( != ?from ?to ) )

( : e f f e c t s
( durat ive 5 ’ at - robby ?to ) ) )

( def-command pick ( : params ( ?o c a r r i a b l e ) ( ?r room ) ( ?g g r ippe r ) ) )
( def-command-pddl-model p ick

( : params ( ?o c a r r i a b l e ) ( ?r room ) ( ?g g r ippe r ) )
( : p r e - c o n d i t i o n s

(= ( pos ?o ) ?r )
(= ( at-robby ) ?r )
(= ( car ry ?g ) empty ) )

( : e f f e c t s
( durat ive 5 ’ car ry ?g ?o )
( ’ pos ?o ’ robby ) ) )

( def-command drop ( : params ( ?o c a r r i a b l e ) ( ?r room ) ( ?g g r ippe r ) ) )
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( def-command-pddl-model drop
( : params ( ?o c a r r i a b l e ) ( ?r room ) ( ?g g r ippe r ) )
( : p r e - c o n d i t i o n s

(= ( car ry ?g ) ?o )
(= ( at-robby ) ?r ) )

( : e f f e c t s
( durat ive 5 ’ car ry ?g empty )
( ’ pos ?o ?r ) ) ) )

Listing B.2: gripper_om.scm
( begin

( d e f - r e s o u r c e s robby l e f t r i g h t )
( d e f - t a s k go2 ( : params ( ?r room ) ) )
( def-method go2_noop

( : task go2 )
( : params ( ?r room ) )
( : p r e - c o n d i t i o n s (= ( at -robby ) ?r ) )
( : body n i l ) )

( def-method m_move
( : task go2 )
( : params ( ?r room ) )
( : p r e - c o n d i t i o n s ( != ( at -robby ) ?r ) )
( : body (move ( at -robby ) ?r ) ) )

; task with t h e i r methods
( d e f - t a s k p lace ( : params ( ?o c a r r i a b l e ) ( ?r room ) ) )

( def-method place_noop
( : task p lace )
( : params ( ?o c a r r i a b l e ) ( ?r room ) )
( : p r e - c o n d i t i o n s (= ( pos ?o ) ?r ) )
( : body n i l ) )

( def-method pick_and_drop
( : task p lace )
( : params ( ?o c a r r i a b l e ) ( ?r room ) )
( : p r e - c o n d i t i o n s ( != ( pos ?o ) ?r ) ( != ( pos ?o ) robby ) )
( : body

( do
( d e f i n e ?g ( a r b i t r a r y ( i n s t a n c e s g r ippe r ) ) )
( d e f i n e res_g ( acqu i r e ?g ) )
( d e f i n e rh ( acqu i r e ’ robby ) )
( d e f i n e ?a ( pos ?o ) )
( go2 ?a )
( p ick ?o ?a ?g )
( r e l e a s e rh )
( d e f i n e rh2 ( acqu i r e ’ robby ) )
( go2 ?r )
( drop ?o ?r ?g )
( r e l e a s e rh2 )
( r e l e a s e res_g ) ) ) )
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( def-method move_and_drop
( : task p lace )

( : params ( ?o c a r r i a b l e ) ( ?r room ) ( ?g g r ippe r ) )
( : p r e - c o n d i t i o n s ( != ( pos ?o ) ?r ) (= ( carry ?g ) ?o ) )
( : body

( do
( go2 ?r )
( drop ?o ?r ?g ) ) ) )

)

Listing B.3: gripper_problem.scm
( begin

( d e f - o b j e c t s
( bedroom ki tchen l r room )
( b1 b2 b3 b4 b a l l ) )

( d e f - f a c t s
( at - robby l r )
( ( pos b1 ) bedroom )
( ( pos b2 ) k i t chen )
( ( pos b3 ) l r )
( ( pos b4 ) l r )
( ( car ry l e f t ) empty )
( ( car ry r i g h t ) empty ) )

( e x e c - t a s k p lace b3 bedroom )
)

B.1.2 Gripper-door domain

Listing B.4: gripper_door_base.scm
( begin

( d e f i n e g r i p p e r - d o o r - p a t h
( concatenate ( g e t - e n v - v a r "OMPAS_PATH") "/domains/gripper_door") )

( s e t - c u r r e n t - d i r g r i p p e r - d o o r - p a t h )
( load "../gripper/base.scm")

( d e f - t y p e s door )
; Addi t iona l s t a t e f u n c t i o n s
( d e f - s t a t e - f u n c t i o n opened

( : params ( ?d door ) )
( : r e s u l t boolean ) )

( d e f - f u n c t i o n connects
( : params ( ?r1 room ) ( ?d door ) ( ?r2 room ) )
( : r e s u l t boolean ) )
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; New commands
( def-command move ( : params ( ?from room ) ( ?to room ) ( ?d door ) ) )
( def-command-pddl-model move

( : params ( ?from room ) ( ?to room ) ( ?d door ) )
( : p r e - c o n d i t i o n s

(= ( at-robby ) ?from )
( connects ?from ?d ?to )
( opened ?d ) )

( : e f f e c t s
( durat ive 5 ’ at - robby ?to )

) )

( def- lambda is_door_of ( lambda ( ?d ?r )
( e x i s t s ( i n s t a n c e s room )

( lambda ( ?r2 )
( connects ?r ?d ?r2 )

) ) ) )

( def-command open ( : params ( ?d door ) ( ?r room ) ( ?g g r ippe r ) ) )
( def-command-om-model open

( : params ( ?d door ) ( ?r room ) ( ?g g r ippe r ) )
( : body

( do
( check (= ( at -robby ) ?r ) )
( check (= ( car ry ?g ) empty ) )
( check ( is_door_of ?d ?r ) )
( d u r a t i v e - e f f e c t 5 ’ opened ?d true ) ) ) )

( def-command c l o s e ( : params ( ?d door ) ( ?r room ) ( ?g g r ippe r ) ) )
( def-command-om-model c l o s e

( : params ( ?d door ) ( ?r room ) ( ?g g r ippe r ) )
( : body

( do
( check (= ( at -robby ) ?r ) )
( check (= ( car ry ?g ) empty ) )
( check ( is_door_of ?d ?r ) )
( d u r a t i v e - e f f e c t 5 ’ opened ?d f a l s e ) ) ) )

)

Listing B.5: gripper_door_om.scm
( begin

( d e f i n e g r i p p e r - d o o r - p a t h
( concatenate ( g e t - e n v - v a r "OMPAS_PATH") "/domains/gripper_door"

) )
( s e t - c u r r e n t - d i r g r i p p e r - d o o r - p a t h )
( load "../gripper/om.scm")
( remove-method m_move)

( d e f - f u n c t i o n min-d i s tance
( : params ( ?r1 room ) ( ?r2 room ) )
( : r e s u l t i n t ) )



B.1. GRIPPER DOMAINS 205

( def-method m_move
( : task go2 )
( : params ( ?r room ) ( ?a room ) ( ?n room ) ( ?d door ) )
( : c o s t (+ 1 ( min-d i s tance ?n ?r ) ) )
( : p r e - c o n d i t i o n s

(= ( at-robby ) ?a )
( != ?a ?r )
( connects ?a ?d ?n ) )

( : body
( do

( t_open ?a ?d )
(move ?a ?n ?d )
( go2 ?r ) ) ) )

( d e f - t a s k t_open ( : params ( ?r room ) ( ?d door ) ) )
( def-method open_noop

( : task t_open )
( : co s t 0)
( : params ( ?r room ) ( ?d door ) )
( : p r e - c o n d i t i o n s ( opened ?d ) )
( : body n i l ) )

( def-method open_direct
( : task t_open )
( : co s t 1)
( : params ( ?r room ) ( ?d door ) ( ?g g r ippe r ) )
( : p r e - c o n d i t i o n s (= ( car ry ?g ) empty ) ( ! ( opened ?d ) ) )
( : body

( open ?d ?r ?g ) ) )

( def-method drop_and_open
( : task t_open )
( : params ( ?r room ) ( ?d door ) )
( : c o s t 3)
( : p r e - c o n d i t i o n s

( ! ( opened ?d ) )
( f o r a l l

( i n s t a n c e s g r ippe r )
( lambda ( ?g ) ( != ( car ry ?g ) empty ) ) ) )

( : body
( do

( d e f i n e ?g ( a r b i t r a r y ( i n s t a n c e s g r ippe r ) ) )
( d e f i n e ?o ( car ry ?g ) )
( drop ?o ?r ?g )
( open ?d ?r ?g )
( p ick ?o ?r ?g ) ) ) )

)

Listing B.6: gripper_door_problem.scm
( begin
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( d e f - o b j e c t s
( b1 b2 b a l l )
( r1 r2 room ) )

( d e f - i n i t i a l - s t a t e
( ( at b1 ) r1 )
( ( at b2 ) r1 )
( at - robby r2 )
( ( car ry l e f t ) no_ball )
( ( car ry r i g h t ) no_ball )
( ( connected r1 r2 ) yes )
( ( connected r2 r1 ) yes ) )

( t r i g g e r - t a s k p ick -and-drop b1 r2 )
)

; r1 - r2

B.2 Gobot-Sim domain

Listing B.7: gobot_sim_base.scm
( begin

; types d e c l a r a t i o n
( d e f - t y p e s machine package ( robot parking_area b e l t l o c a t i o n )

in te rac t_area )

; g l o b a l s
( d e f - f u n c t i o n g l o b a l s . robot_default_battery_capac ity ( : r e s u l t f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_battery_charge_rate ( : r e s u l t f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_battery_drain_rate ( : r e s u l t f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_battery_drain_rate_idle ( : r e s u l t f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_standard_veloc i ty ( : r e s u l t f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_battery_charge_rate_percentage ( : r e s u l t

f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_battery_drain_rate_percentage ( : r e s u l t

f l o a t ) )
( d e f - f u n c t i o n g l o b a l s . robot_battery_drain_rate_idle_percentage ( : r e s u l t

f l o a t ) )

; s y n t h e t i c s t a t e f u n c t i o n s
( d e f - f u n c t i o n t r a v e l - t i m e ( : params ( ? l 1 l o c a t i o n ) ( ? l 2 l o c a t i o n ) ) ( :

r e s u l t f l o a t ) )

; s t a t e func t i on d e c l a r a t i o n
; robot s t a t e f u n c t i o n s
( d e f - s t a t e - f u n c t i o n robot . c o o r d i n a t e s ( : params ( ?r robot ) ) ( : r e s u l t (

tup l e i n t i n t ) ) )
( d e f - f u n c t i o n robot . i n s t a n c e ( : params ( ?r robot ) ) ( : r e s u l t symbol ) )
( d e f - s t a t e - f u n c t i o n robot . bat te ry ( : params ( ?r robot ) ) ( : r e s u l t f l o a t ) )
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( d e f - s t a t e - f u n c t i o n robot . v e l o c i t y ( : params ( ?r robot ) ) ( : r e s u l t ( tup l e
f l o a t f l o a t ) ) )

( d e f - s t a t e - f u n c t i o n robot . rotat ion_speed ( : params ( ?r robot ) ) ( : r e s u l t
f l o a t ) )

( d e f - s t a t e - f u n c t i o n robot . in_stat ion ( : params ( ?r robot ) ) ( : r e s u l t
boolean ) )

( d e f - s t a t e - f u n c t i o n robot . in_interact_areas ( : params ( ?r robot ) ) ( :
r e s u l t ( l i s t in t e rac t_area ) ) )

( d e f - f u n c t i o n robot . d e f a u l t _ v e l o c i t y ( : params ( ?r robot ) ) ( : r e s u l t i n t )
)

( d e f - f u n c t i o n robot . dra in_rate ( : params ( ?r robot ) ) ( : r e s u l t f l o a t ) )
( d e f - f u n c t i o n robot . recharge_rate ( : params ( ?r robot ) ) ( : r e s u l t f l o a t ) )
( d e f - s t a t e - f u n c t i o n robot . l o c a t i o n ( : params ( ?r robot ) ) ( : r e s u l t

l o c a t i o n ) )

; machine s t a t e f u n c t i o n s
( d e f - f u n c t i o n machine . i n s t a n c e ( : params (?m machine ) ) ( : r e s u l t symbol )

)
( d e f - f u n c t i o n machine . c o o r d i n a t e s ( : params (?m machine ) ) ( : r e s u l t (

tup l e i n t i n t ) ) )
; ( d e f - f u n c t i o n machine . c o o r d i n a t e s _ t i l e ( : params (?m machine ) ) ( : r e s u l t

( tup l e i n t i n t ) ) )
( d e f - f u n c t i o n machine . input_belt ( : params (?m machine ) ) ( : r e s u l t b e l t ) )
( d e f - f u n c t i o n machine . output_belt ( : params (?m machine ) ) ( : r e s u l t b e l t )

)
( d e f - f u n c t i o n machine . p r o c e s s e s _ l i s t ( : params (?m machine ) ) ( : r e s u l t (

l i s t i n t ) ) )
( d e f - f u n c t i o n machine . type ( : params (?m machine ) ) ( : r e s u l t symbol ) )
( d e f - s t a t e - f u n c t i o n machine . progre s s_rate ( : params (?m machine ) ) ( :

r e s u l t f l o a t ) )
( d e f - s t a t e - f u n c t i o n machine . package_processed ( : params (?m machine ) ) ( :

r e s u l t package ) )

; package s t a t e func t i on
( d e f - f u n c t i o n package . i n s t a n c e ( : params ( ?p package ) ) ( : r e s u l t symbol ) )
( d e f - s t a t e - f u n c t i o n package . l o c a t i o n ( : params ( ?p package ) ) ( : r e s u l t

l o c a t i o n ) )
( d e f - s t a t e - f u n c t i o n package . p r o c e s s e s _ l i s t ( : params ( ?p package ) ) ( :

r e s u l t ( l i s t ( tup l e i n t f l o a t ) ) ) )
( d e f - f u n c t i o n package . a l l _ p r o c e s s e s ( : params ( ?p package ) ) ( : r e s u l t (

l i s t ( tup l e i n t f l o a t ) ) ) )
( d e f - s t a t e - f u n c t i o n package . c l o s e s t _ i n t e r a c t _ a r e a ( : params ( ?p package )

) ( : r e s u l t in t e rac t_area ) )

; b e l t s t a t e func t i on
( d e f - f u n c t i o n b e l t . i n s t a n c e ( : params ( ?b b e l t ) ) ( : r e s u l t symbol ) )
( d e f - f u n c t i o n b e l t . belt_type ( : params ( ?b b e l t ) ) ( : r e s u l t symbol ) )
( d e f - f u n c t i o n b e l t . polygons ( : params ( ?b b e l t ) ) ( : r e s u l t ( l i s t ( tup l e

i n t i n t ) ) ) )
( d e f - f u n c t i o n b e l t . c e l l s ( : params ( ?b b e l t ) ) ( : r e s u l t ( l i s t ( tup l e i n t

i n t ) ) ) )
( d e f - f u n c t i o n b e l t . i n t e ra c t_area s ( : params ( ?b b e l t ) ) ( : r e s u l t ( l i s t

in t e rac t_area ) ) )
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( d e f - s t a t e - f u n c t i o n b e l t . package s_ l i s t ( : params ( ?b b e l t ) ) ( : r e s u l t (
l i s t package ) ) )

; parking_area s t a t e f u n c t i o n s
( d e f - f u n c t i o n parking_area . i n s t a n c e ( : params ( ?pa parking_area ) ) ( :

r e s u l t symbol ) )
( d e f - f u n c t i o n parking_area . polygons ( : params ( ?pa parking_area ) ) ( :

r e s u l t ( l i s t ( tup l e i n t i n t ) ) ) )
( d e f - f u n c t i o n parking_area . c e l l s ( : params ( ?pa parking_area ) ) ( : r e s u l t

( l i s t ( tup l e i n t i n t ) ) ) )

; i n t e ra c t_area s s t a t e f u n c t i o n s
( d e f - f u n c t i o n in te rac t_area . i n s t a n c e ( : params ( ?pa parking_area ) ) ( :

r e s u l t symbol ) )
( d e f - f u n c t i o n in te rac t_area . polygons ( : params ( ?pa parking_area ) ) ( :

r e s u l t ( l i s t ( tup l e i n t i n t ) ) ) )
( d e f - f u n c t i o n in te rac t_area . c e l l s ( : params ( ?pa parking_area ) ) ( : r e s u l t

( l i s t ( tup l e i n t i n t ) ) ) )
( d e f - f u n c t i o n in te rac t_area . b e l t ( : params ( ?pa parking_area ) ) ( : r e s u l t

b e l t ) )

; command d e f i n i t i o n
( def-command proce s s ( : params (?m machine ) ( ?p package ) ) )
( def-command pick ( : params ( ?r robot ) ) )
( def-command pick_package ( : params ( ?r robot ) ( ?p package ) ) )
( def-command p lace ( : params ( ?r robot ) ) )
( def-command do_move ( : params ( ?r robot ) ( ?a f l o a t ) ( ?s f l o a t ) ( ?d

f l o a t ) ) )
( def-command navigate_to ( : params ( ?r robot ) ( ?x f l o a t ) ( ?y f l o a t ) ) )
( def-command nav igate_to_ce l l ( : params ( ?r robot ) ( ?cx i n t ) ( ?cy i n t ) ) )
( def-command navigate_to_area ( : params ( ?r robot ) ( ?area o b j e c t ) ) )
( def-command go_charge ( : params ( ?r robot ) ) )
( def-command-om-model go_charge

( : params ( ?r robot ) )
( : body ( s l e e p 15) ) )

( def-command do_rotat ion ( : params ( ?r robot ) ( ?a f l o a t ) (?w f l o a t ) ) )
( def-command face_be l t ( : params ( ?r robot ) ( ?b b e l t ) (?w f l o a t ) ) )
( def-command rotate_to ( : params ( ?r robot ) ( ?a f l o a t ) (?w f l o a t ) ) )

; Lambdas d e f i n i t i o n
( def- lambda go_random ( lambda ( ?r ? l ?u )

( l e t ( ( x ( r a n d - i n t - i n - r a n g e ? l ?u ) )
( y ( r a n d - i n t - i n - r a n g e ? l ?u ) ) )
( navigate_to ?r x y ) ) ) )

( def- lambda
f ind_machines_for_process

( lambda ( ?proce s s )
( begin

( d e f i n e __process__
( lambda ( ?p seq )

( i f ( n u l l ? seq )
n i l
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( i f ( conta in s ( machine . p r o c e s s e s _ l i s t ( car
seq ) ) ?p )
( cons ( car seq ) ( __process__ ?p ( cdr

seq ) ) )
( __process__ ?p ( cdr seq ) ) ) ) ) )

( d e f i n e machines ( i n s t a n c e s machine ) )
( d e f i n e r e s u l t ( __process__ ?proce s s machines ) )
r e s u l t ) ) )

( def- lambda ava i l ab l e_robot s
( lambda n i l

( begin
( d e f i n e __l_available_robots__

( lambda ( l )
( i f ( n u l l ? l )

n i l
( i f ( not ( locked? ( car l ) ) )

( cons ( car l ) ( __l_available_robots__ ( cdr
l ) ) )

( __l_available_robots__ ( cdr l ) ) ) ) ) )
( __l_available_robots__ ( i n s t a n c e s robot ) ) ) ) )

( def- lambda find_output_machine
( lambda n i l

( begin
( d e f i n e __lambda__

( lambda ( seq )
( i f ( n u l l ? seq )

n i l
( i f (= ( machine . type ( car seq ) ) output_machine )

( car seq )
(__lambda__ ( cdr seq ) ) ) ) ) )

(__lambda__ ( i n s t a n c e s machine ) ) ) ) )

( def- lambda t a k e _ f i r s t
( lambda ( seq )

( i f ( n u l l ? seq )
n i l
( cons ( caar seq ) ( t a k e _ f i r s t ( cdr seq ) ) ) ) ) )

)

Listing B.8: gobot_sim_om.scm
( begin

( d e f - t a s k t_posit ion_robot_to_belt ( : params ( ?r robot ) ( ?b b e l t ) ) )
( def-method m_position_robot_to_belt ( : task t_posit ion_robot_to_belt )

( : params ( ?r robot ) ( ?b b e l t ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body ( do
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( navigate_to_area ?r ( car ( b e l t . i n t e ra c t_area s ?b ) ) )
( f ace_be l t ?r ?b 5) ) ) )

( d e f - t a s k t_carry_to_machine ( : params ( ?r robot ) ( ?p package ) (?m
machine ) ) )

( de f - task-om-mode l t_carry_to_machine
( : params ( ?r robot ) ( ?p package ) (?m machine ) )
( : body ( s l e e p 15) ) )

( def-method m_carry_to_machine
( : task t_carry_to_machine )
( : params ( ?r robot ) ( ?p package ) (?m machine ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do
( t_take_package ?r ?p )
( t_del iver_package ?r ?m) ) ) )

( d e f - t a s k t_take_package ( : params ( ?r robot ) ( ?p package ) ) )
( def-method m_take_package ( : task t_take_package )

( : params ( ?r robot ) ( ?p package ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body ( do

( t_posit ion_robot_to_belt ?r ( package . l o c a t i o n ?p ) )
( pick_package ?r ?p ) ) ) )

( d e f - t a s k t_del iver_package ( : params ( ?r robot ) (?m machine ) ) )
( def-method m_deliver_package ( : task t_del iver_package )

( : params ( ?r robot ) (?m machine ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( l e t ( ( ?b ( machine . input_belt ?m) ) )
( do

( t_posit ion_robot_to_belt ?r ?b )
( w a i t - f o r ‘ (< ( l en ( b e l t . package s_ l i s t , ?b ) ) ( l en (

b e l t . c e l l s , ?b ) ) ) )
( p lace ?r ) ) ) ) )

( d e f - t a s k t_check_battery ( : params ( ?r robot ) ) )
( de f - task-om-mode l t_check_battery

( : params ( ?r robot ) )
( : body n i l ) )

( def-method m_check_battery
( : task t_check_battery )

( : params ( ?r robot ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do
( w a i t - f o r ‘ (< ( robot . bat te ry , ? r ) 0 . 4 ) )
( charge_robot ?r )
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( t_check_battery ?r ) ) ) )

( d e f - t a s k charge_robot ( : params ( ?r robot ) ) )
( de f - task-om-mode l charge_robot ( : params ( ?r robot ) ) ( : body n i l ) )
( def-method m_charge_robot

( : task charge_robot )
( : params ( ?r robot ) )
( : body

( do
( d e f i n e h ( acqu i r e ?r ’ ( : p r i o r i t y 1000) ) )
( go_charge ?r )
( w a i t - f o r ‘ (> ( robot . bat te ry , ? r ) 0 . 9 ) )
( r e l e a s e h)

) ) )

( d e f - t a s k t_check_rob_bat )
( de f - task-om-mode l t_check_rob_bat

( : params )
( : body n i l ) )

( def-method m_check_ini t ia l_robots_batter ies
( : task t_check_rob_bat )
( : params )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do
( d e f i n e ta sk s ( mapf ( lambda ( ?r ) ‘ ( t_check_battery , ? r ) ) (

i n s t a n c e s robot ) ) )
( d e f i n e h ( apply par ta sk s ) )
( p r i n t "end check batteries")
) ) )

( d e f - t a s k t_process_packages )
( def-method m_process_init ia l_packages

( : task t_process_packages )
( : params )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do

( d e f i n e l i s t_package s ( i n s t a n c e s package ) )
( d e f i n e l i s t - h ( mapf ( lambda ( ?p ) ( async ( t_process_package

?p ) ) ) l i s t_package s ) )
( mapf await l i s t - h )
) ) )

( d e f - t a s k t_process_package ( : params ( ?p package ) ) )
( def-method m_process_package

( : task t_process_package )
( : params ( ?p package ) )
( : body
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( do
( d e f i n e ta sk s

( mapf
( lambda ( p roce s s )
‘ ( t_process_on_machine ,?p

( a r b i t r a r y ’ , ( f ind_machines_for_process ( car
p roce s s ) ) )

, ( cadr p roce s s )
) )

( package . a l l _ p r o c e s s e s ?p ) ) )
( apply seq ta sk s )
( t_output_package ?p ) ) ) )

( d e f - t a s k t_process ( : params (?m machine ) ( ?p package ) ( ?d i n t ) ) )
( de f - task-om-mode l t_process

( : params (?m machine ) ( ?p package ) ( ?d i n t ) )
( : body

( s l e e p ?d ) ) )

( def-method m_process
( : task t_process )
( : params (?m machine ) ( ?p package ) ( ?d i n t ) )
( : body

( do
( p roce s s ?m ?p )
( w a i t - f o r ‘ ( != ( package . l o c a t i o n ,?p ) ,?m ) ) ) ) )

( d e f - e v e n t on_new_package
( : params ( ?p package ) )
( : t r i g g e r ( once ) )
( : body

( do
( w a i t - f o r ‘ ( i n s t a n c e ( package . l o c a t i o n ,?p ) b e l t ) )
( t_process_package ?p ) ) ) )

( d e f - e v e n t on_battery_low
( : params ( ?r robot ) )
( : t r i g g e r ( whenever (< ( robot . bat te ry ?r ) 0 . 4 ) ) )
( : body ( charge_robot ?r ) ) )

)

Listing B.9: gobot_sim_random.scm
( begin

( load ( concatenate ( g e t - e n v - v a r "OMPAS_PATH") "
/ompas-gobot-sim/domain/om.scm") )

( d e f - t a s k t_process_on_machine ( : params ( ?p package ) (?m machine ) ( ?d
i n t ) ) )

( def-method m_process_on_machine
( : task t_process_on_machine )
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( : params ( ?p package ) (?m machine ) ( ?d i n t ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do
( d e f i n e ?r ( a r b i t r a r y ( i n s t a n c e s robot ) rand-e lement ) )
( d e f i n e h1 ( acqu i r e ?m) )
( d e f i n e h2 ( acqu i r e ?r ) )
( t_carry_to_machine ?r ?p ?m)
( r e l e a s e h2 )
( t_process ?m ?p ?d )

) ) )

( d e f - t a s k t_output_package ( : params ( ?p package ) ) )
( def-method m_output_package

( : task t_output_package )
( : params ( ?p package ) )
( : body

( do
( d e f i n e ?r ( a r b i t r a r y ( i n s t a n c e s robot ) ) )
( d e f i n e h_r ( acqu i r e ?r ) )
( d e f i n e om ( find_output_machine ) )
( t_carry_to_machine ?r ?p om)
( r e l e a s e h_r) ) ) )

)

Listing B.10: gobot_sim_fa.scm
( begin

( load ( concatenate ( g e t - e n v - v a r "OMPAS_PATH") "
/ompas-gobot-sim/domain/om.scm") )

( d e f - t a s k t_process_on_machine ( : params ( ?p package ) (?m machine ) ( ?d
i n t ) ) )

( def-method m_process_on_machine
( : task t_process_on_machine )
( : params ( ?p package ) (?m machine ) ( ?d i n t ) )
( : body

( do
( d e f i n e h_m ( acqu i r e ?m) )
( d e f i n e h_r ( a c q u i r e - i n - l i s t ( i n s t a n c e s robot ) ) )
( d e f i n e ?r ( f i r s t h_r) )
( t_carry_to_machine ?r ?p ?m)
( r e l e a s e ( second h_r) )
( t_process ?m ?p ?d ) ) ) )

( d e f - t a s k t_output_package ( : params ( ?p package ) ) )
( def-method m_output_package

( : task t_output_package )
( : params ( ?p package ) )
( : body
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( do
( d e f i n e h_r ( a c q u i r e - i n - l i s t ( i n s t a n c e s robot ) ) )
( d e f i n e ?r ( f i r s t h_r) )
( d e f i n e om ( find_output_machine ) )
( t_carry_to_machine ?r ?p om)
( r e l e a s e ( second h_r) ) ) ) )

)

Listing B.11: gobot_sim_falrptf.scm
( begin

( load ( concatenate ( g e t - e n v - v a r "OMPAS_PATH") "
/ompas-gobot-sim/domain/om.scm") )

( def- lambda
remain ing-t ime ( lambda ( ?p )

( eva l ( cons ’+ ( cadr ( unzip ( package . p r o c e s s e s _ l i s t ?p ) ) ) ) ) ) )

( d e f - t a s k t_process_on_machine ( : params ( ?p package ) (?m machine ) ( ?d
i n t ) ) )

( def-method m_process_on_machine
( : task t_process_on_machine )
( : params ( ?p package ) (?m machine ) ( ?d i n t ) )
( : p r e - c o n d i t i o n s t rue )
( : s c o r e 0)
( : body

( do
( d e f i n e r - t ime ( remain ing-t ime ?p ) )
( d e f i n e h_m ( acqu i r e ?m ‘ ( : p r i o r i t y , r - t i m e ) ) )
( d e f i n e h_r ( a c q u i r e - i n - l i s t ( i n s t a n c e s robot ) ‘ ( : p r i o r i t y

, r - t i m e ) ) )
( d e f i n e ?r ( f i r s t h_r) )
( t_carry_to_machine ?r ?p ?m)
( r e l e a s e ( second h_r) )
( t_process ?m ?p ?d ) ) ) )

( d e f - t a s k t_output_package ( : params ( ?p package ) ) )
( def-method m_output_package

( : task t_output_package )
( : params ( ?p package ) )
( : body

( do
( d e f i n e h_r ( a c q u i r e - i n - l i s t ( i n s t a n c e s robot ) ) )
( d e f i n e ?r ( f i r s t h_r) )
( d e f i n e om ( find_output_machine ) )
( t_carry_to_machine ?r ?p om)
( r e l e a s e ( second h_r) ) ) ) )

)
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Long résumé en français

Chapitre 1: Introduction
Les récents développements technologiques dans le domaine de la robotique et de l’AI pourraient perme-
ttre l’utilisation de robots dans de nombreux domaines de notre vie. Les applications vont de l’industrie
du future, qui vise à optimiser divers processus à l’aide de flottes d’agents autonomes, aux opéra-
tions de recherche et de sauvetage, sans oublier les robots d’assistance personnelle. L’une des limites
à l’intégration des robots est leur capacité à effectuer des missions de manière autonome. Ici, nous
considérons que l’autonomie d’un agent robotique repose sur trois piliers :

• sa capacité à percevoir le monde,
• sa capacité à agir sur le monde,
• sa capacité à délibérer pour effectuer des missions en fonction de ses capacités de raisonnement.

En particulier, nous nous intéressons au processus de délibération dans un système robotique. Ici nous
nous concentrons sur sa capacité à planifier des tâches, i.e. à générer une séquence d’actions pour
atteindre un but, et à agir en fonction du contexte d’exécution. Cette dernière capacité est ici nommée
l’Acting. Dans sa plus simple expression, l’Acting ne prend en compte que le contexte courant d’exécution
pour adapter son comportement, ce qui ne lui permet pas d’anticiper les effets à long terme de ses choix.

Une manière de pallier à ces limitations est d’interfacer le système d’Acting avec un planificateur
pour guider sa délibération grâce à ses capacités d’anticipation. Or la littérature propose surtout des
approches dans lesquelles les plans générés sont avant tout éxécutés par le système d’Acting, et rarement
pour guider la délibération à un plus bas niveau. Une des limites à une intégration plus poussée entre la
planification et l’Acting est notamment l’utilisation de différents modèles pour planifier et agir, ce qui
rend difficile l’interaction entre les deux systèmes.

Récemment, l’approche proposée par RAE est de définir un système d’Acting dans lequel le modèle
opérationnel hiérarchique peut être directement utilisé pour planifier afin d’anticiper les futurs choix du
système. Ici, nous proposons d’étendre cette approche en ajoutant de nouvelles capacités de délibération
à RAE, et en automatisant la génération de modèles de planification dans un formalisme qui permet
l’utilisation de techniques de planification plus poussées que ce qui est proposé pour les premières versions
de RAE, mais qui nécessitent des modèles formels.

L’ensemble de ces ajouts s’est matérialisé dans OMPAS, un nouveau système d’Acting qui au-delà
des extensions apportés à RAE propose un langage de programmation dédié qui permet notamment la
concurrence dans les programmes exécuter, et dans lequel les choix de délibération sont explicites.

Ainsi, cette thèse est dédiée à la présentation de OMPAS dans les trois premiers chapitres, ainsi
qu’à son évaluation sur différents domaines robotiques.

Chapitre 2: Le système OMPAS (Operational Model Plan-
ning and Acting System): Architecture et Algorithmes
Dans ce chapitre, nous présentons le Operational Model Planning and Acting System (OMPAS), un
nouveau système d’Acting basé sur le système Refinement Acting Engine (RAE) (Ghallab, Nau, and
Traverso 2016). RAE est un sytème d’acting basé sur le raffinement des tâches. Le système reçoit les
missions sous forme de tâches à exécuter, qui sont raffinées en sélectionnant une méthode applicable dans
le contexte courant d’exécution. Une méthode est un programme qui modélise une manière d’effectuer



216 APPENDIX C. LONG RÉSUMÉ EN FRANÇAIS

une tâche. Une méthode peut être composée de tâches de plus bas niveau, ou de commandes qui seront
directement exécutables sur la plateforme robotique. Le but de RAE est donc de raffiner successivement
toutes les tâches jusqu’à arriver à une succession de commandes qui sont exécutables par la plateforme
robotique.

Les commandes, tâches et méthodes sont définies dans ce qu’on appelle un modèle operationnel
hiérarchique, dans lequel les capacités de l’agent robotique sont décrites par un tuple (C, T, M), où:

• C est l’ensemble des commandes primitives du système robotique, comme move(?ra, ?rb),
• T est l’ensemble des tâches de haut niveau que peux effectuer l’agent robotique, comme

putT heT able(),
• M est un ensemble de méthodes qui peuvent être utilisés par RAE pour raffiner une tâche de T .

Une méthode ne peut raffiner qu’une seule tâche.
À partir d’un modèle opérationnel hiérarchique fourni par un programmeur, RAE est capable

d’exécuter et superviser des tâches en parallèle.
Or, une des limites de RAE est sa capacité à gérer des tâches concurrentes, qui ont besoin d’accéder

aux mêmes ressources, par exemple le bras du robot pour manipuler et transporter différents objets. Avec
ses algorithmes de base, RAE ne peut pas garantir que l’exécution de plusieurs tâches concurrentes ne
viendront pas interférer les unes avec les autres. Si l’on regarde les extensions proposées pour améliorer
la délibération de RAE, le planificateur UPOM (Patra, Mason, Ghallab, et al. 2021) permet d’améliorer
le raffinement de tâches en simulant l’exécution des méthodes et en sélectionnant la méthode avec la
plus grande efficacité, mais il ne permet pas d’améliorer l’entrelacement de plusieurs tâches. En effet,
UPOM ne prend en compte que le raffinement d’une unique tâche, sans prendre en compte le contexte
d’exécution des autres tâches.

Au vu des limites de RAE, nous proposons OMPAS, un nouveau système d’Acting basé sur les fonc-
tions de délibération de RAE. Notamment, nous améliorons la capacité de RAE à gérer la concurrence
avec :

• un nouvel algorithme général qui crée un thread pour gérer l’exécution de chaque tâche de haut
niveau indépendamment, à la différence de RAE qui gérait cela dans un boucle à la round robin,

• la gestion native de la concurrence dans le programme des méthodes,
• un système dédié à l’allocation de ressources entre plusieurs tâches concurrentes.
Dans OMPAS, la délibération est gérée par plusieurs managers :
• Le Platform Manager est l’interface entre OMPAS et la plateforme robotique. Notamment, il gère

l’envoi de requêtes d’éxecution de commandes et la supervision de leur exécution. C’est aussi lui
qui mutualise la réception des informations de capteurs et autres venant des couches plus basses
dans l’architecture robotique.

• Le State Manager est le système qui gère la base de connaissances sur l’état du monde connu
comme tel par OMPAS. Il gère les accès asynchrones de lecture et d’écriture sur l’état du monde.
Il propose aussi des fonctions avancées qui permettent des réactions d’OMPAS basées sur des
événements qui sont fonctions de l’état du monde.

• Le Execution Manager est responsable de l’éxecution des tâches et programmes dans OMPAS.
En fonction des programmes robotiques, il va faire le lien avec les autres managers pour profiter
de leurs fonctions de délibération.

• Le Resource Manager est responsable de la sûreté d’accès aux ressources concurrentes. En fonc-
tion de sa stratégie d’allocation, il allouera les ressources pour à la fois éviter des deadlocks, mais
aussi pour améliorer les performances du système de manière opportuniste.

• Le Acting Manager est responsable du raffinement des tâches et de l’instanciation des paramètres
des méthodes. Il tient à jour une base de connaissances représentant la trace d’exécution et de
délibération d’OMPAS sous la forme d’un Acting Tree.

• Le PLanner Manager fait le lien entre OMPAS et un système de planification pour guider la
délibération de OMPAS. Il se sert de l’état du système pour anticiper l’exécution des programmes
dans OMPAS, et informer OMPAS de la meilleur méthode pour raffiner une tâche, des meilleurs
paramètres et de l’ordre d’allocation des ressources.
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Avec cette architecture, OMPAS est capable de gérer l’exécution de plusieurs tâches en parallèle
avec des ressources limitées et est ainsi bien équipé pour être intégré dans des architectures multi-robots.

Chapitre 3: Le Langage d’Acting de OMPAS: Syntaxe, Sé-
mantique et Évaluation
Les systèmes d’Acting basés sur le raffinement utilisent des modèles opérationnels qui sont essentiellement
des programmes exécutables. Ainsi, un système donné n’est pas rattaché à un langage de programmation
en particulier. Dans ce chapitre, nous proposons un nouveau langage d’Acting qui permette de profiter
des capacités de délibération d’OMPAS. Ce langage sera utilisé pour définir le programme des méthodes.
Le langage nommé Scheme OMPAS est un dialect Lisp, basé sur sa variante Scheme (Moretti 1979).
Ici, nous proposons un nouveau langage, dont le coeur a été simplifié au maximum pour permettre par
la suite une analyse automatique des programmes pour en extraire des modèles formels. Le langage
SOMPAS profite d’un interpréteur dédié, ce qui nous permet de faire les ajouts suivants dans le langage:

• Nous ajoutons dans Scheme des primitives pour exécuter des fonctions de manière concurrente,
• Nous ajoutons des primitives inhérentes au contrôle de robots, comme des requêtes pour exécuter

des commandes ou tâches, et lire l’état du monde. De plus nous avons des primitives spécifiques
pour déclarer de nouvelles ressources et pour les acquérir.

Nous utilisons ce même langage pour fournir une interface à un utilisateur extérieur via un REPL.
Via ces interfaces l’utilisateur peut fournir le modèle opérationnel hiérarchique que pourra utiliser le
système pour exécuter des tâches, ainsi que des fonctions pour superviser le fonctionnement interne de
OMPAS.

Chapitre 4: Planification à partir de Modèles Opérationels
pour guider la Délibération de OMPAS
Dans ce chapitre, nous présentons une manière de guider la délibération de OMPAS en utilisant des
techniques de planification. Notamment, nous utilisons le planificateur hiérarchique et temporel Aries
pour anticiper le raffinement des tâches, l’instantiation des paramètres et l’allocation des ressources.
Pour ce faire, nous proposons deux choses.

Premièrement, nous proposons de générer automatiquement les modèles de planification à partir
des programmes des méthodes. Nous définissons une procédure de synthèse en deux étapes :

• Dans un premier temps, le programme est transformé en une représentation intermédiaire, ici
un flow graph. Dans cette représentation, tout le sucre syntaxique est enlevé et le nombre de
primitive est limité.

• Dans un second temps, le flow graph est converti en une chronique, un formalisme de planification
dont pourra se servir Aries pour planifier.

Deuxièmement, nous proposons d’utiliser Aries à différents niveaux de la délibération. De la même
manière que UPOM (Patra, Mason, Ghallab, et al. 2021), nous proposons de guider la sélection d’une
méthode pour raffiner une tâche en utilisant de la planification dite locale. Néanmoins, nous rencon-
trons les mêmes limites qu’en utilisant UPOM, càd la planification ne prend pas en compte le contexte
d’exécution des autres tâches.

Pour y remédier, nous proposons de planifier de manière continue l’exécution globale de OMPAS. Le
planficateur cherche en continu une nouvelle solution en prenant en compte toutes les tâches couramment
exécutées. Ainsi, le planificateur peut trouver des solutions en avance de phase qui seront ensuite
stockées dans l’Acting Tree. Les solutions anticipées pourront ensuite être utilisées lorsque OMPAS
en aura besoin. Ce même Acting Tree est aussi utilisé pour simplifier l’instanciation du problème de
planification. En effet, vu qu’il représente l’exécution globale du système, il sert à définir l’état initial
du système, auquel on ajoute les informations pourvues par le State Manager et le Resource Manager
en ce qui concerne l’état du monde et l’état d’accès aux ressources.
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De cette manière, la planification anticipe l’exécution d’OMPAS, notamment pour éviter des dead-
locks, mais aussi pour optimiser le temps total pour gérer toutes les tâches.

Chapitre 5: Évaluation de OMPAS: Domaines Simulés et
Intégration avec une Plateforme Robotique
Dans ce chapitre, nous fournissions une évaluation des capacités de délibération d’OMPAS sur deux
domaines robotiques:

• Le premier est le domaine Gripper-Door qui est utilisé tout au long de cette thèse pour illustrer
les travaux présentés,

• Le second est Gobot-Sim, un simulateur d’usine dans laquelle une flotte de robot déplace des
paquets entre des machines, chaque machine permettant d’appliquer un process sur le paquet.

Sur ces deux domaines, le but est d’effectuer toutes les tâches d’un problème le plus rapidement
possible. Pour cela, nous définissions le Score d’efficience (ES) qui est défini de la manière suivante :

ES = SR × T

t

Ici, SR est le pourcentage de succès des tâches définies dans le problème, par example 75% si trois tâches
sur quatre ont été exécutées avec succès, T est le temps maximum alloué pour gérer le problème, et t
est le temps pris par le système pour terminer le problème.

Dans l’un ou l’autre des domaines, on voit que l’apport de la planification permet d’avoir le meilleur
ES. Notamment, les stratégies qui profitent de Aries pour raffiner localement une tâche, et de la planifi-
cation continu qui cherche un plan qui optimise le temps total est dans 90% des cas la meilleure stratégie,
et ce, malgré le coût de la planification. Dans le reste des cas, c’est que le problème est si simple qu’il
n’a pas besoin de planification.

Cette évaluation nous permet de voir que la planification permet d’améliorer la qualité des choix
faits par OMPAS. Néanmoins la campagne d’évaluation proposée ici ne permet par forcément de montrer
toutes les capacités d’OMPAS, notamment dans sa gestion des erreurs. De plus, les domaines évalués
ont été créés spécifiquement pour OMPAS, et il manque donc de comparatifs avec d’autres systèmes.

Conclusion
En conclusion, nous proposons ici un nouveau système d’Acting complet. La création de ce système
nous a permis de repousser les limites de l’intégration de la planification dans un système d’exécution.
Quelques limites doivent tout de même être soulevées comme la replanification qui ne prend pas en
compte les solutions précédemment trouvées ou l’explosion de la complexité qui est fonction du nombre
de tâches en parallèle qui doivent être planifiées en même temps. Au dela de ces limitations, nous
pensons que OMPAS est le candidat parfait pour continuer la recherche concernant l’interaction entre
les systèmes d’Acting et de planification, notamment en ajoutant des capacités d’apprentissage pour
améliorer les heuristiques d’OMPAS.
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Titre : Planification à partir de modèles opérationnels pour l'action délibérée en robotique
Mots clés : IA, Robotique, Action délibérée, Planification en continu, Raffinement de tâche, Modèle opérationnel
Résumé : Les récents développements technologiques dans le domaine de la robotique et de l'intelligence artificielle pourraient permettre l'utilisation
de robots dans de nombreux domaines de notre vie.
Les applications vont de l'industrie 4.0, qui vise à optimiser divers processus à l'aide de flottes
d'agents autonomes, aux opérations de recherche et de sauvetage, sans oublier les robots d'assistance personnelle.
À mesure que la complexité des
plateformes robotiques augmente, les algorithmes de délibération doivent être améliorés, notamment pour gérer un nombre croissant d'agents,
pour gérer des objectifs et des tâches complexes, et pour évoluer dans des environnements plus ouverts où les événements imprévus doivent être
traités de manière autonome.
 Le niveau d'autonomie d'un agent dépend de cinq grandes fonctions de délibération : la planification, l'action
délibérée, la surveillance, l'apprentissage et l'observation.
Nous nous concentrons ici sur la fonction de planification, qui indique à l'agent ce qu'il doit
faire pour accomplir ses missions, et sur la fonction d'action délibérée, qui adapte le comportement de l'agent au contexte d'exécution, ce qui le rend
plus robuste face aux imprévus et aux aléas.
Nous étudions en particulier l'interaction entre la planification et l'action délibérée.
Bien qu'elles soient
presque toujours utilisées ensemble, les approches dans la littérature ont tendance à les considérer séparément, ce qui limite leur interaction.
Dans
cette thèse, nous proposons une approche unifiée de la planification et de l'action, dans laquelle les deux systèmes sont en symbiose pour améliorer
leurs performances respectives.
Nous présentons le système OMPAS (Operational Model Acting and Planning System), un moteur d'action basé sur
le raffinement qui exécute plusieurs tâches de haut niveau en parallèle en les raffinant en un ensemble de tâches et de commandes de niveau
inférieur.
OMPAS utilise un dialecte Lisp personnalisé (SOMPAS) pour définir le comportement de l'agent robotique.
SOMPAS fournit des primitives
pour gérer la concurrence et les ressources et, grâce au langage de base restreint et à l'identification explicite des décisions d'action, permet la
synthèse automatique des modèles de planification.
 Le moteur tire parti d'un planificateur temporel et hiérarchique qui utilise les modèles
synthétisés pour anticiper et guider les décisions du système agissant.
Le planificateur est utilisé de manière continue, c'est-à-dire qu'il planifie en
même temps que l'exécution des tâches et s'adapte toujours à l'état actuel de l'exécution pour améliorer les décisions attendues.
Ces décisions
éclairées devraient permettre d'éviter les blocages et d'optimiser de manière opportuniste l'achèvement de multiples tâches parallèles.
 Nous
fournissons une évaluation de l'approche globale sur plusieurs domaines de la robotique.
En particulier, OMPAS a été utilisé pour contrôler une flotte
de robots dans une plateforme logistique simulée.
Les résultats ont montré la capacité du système à gérer plusieurs tâches simultanées grâce à son
système de gestion des ressources dédié.
En outre, la planification continue améliore le temps total nécessaire à l'accomplissement de toutes les
tâches d'une mission.
La planification étant intégrée au cœur du système, aucun effort supplémentaire n'est requis de la part du programmeur du
robot pour tirer parti de cette fonctionnalité.

Title: Planning from operational models for deliberate action in robotics
Key words: AI, Robotics, Deliberate acting, Continuous planning, Task refinement, Operational model
Abstract: Recent technological developments in the field of robotics and artificial intelligence could enable the use of robots in many areas of our
lives.
Applications range from Industry 4.0, which aims to optimize various processes using fleets of autonomous agents, to search and rescue
operations, without forgetting personal assistance robots.
As the complexity of robotic platforms increases, deliberation algorithms need to be
improved, in particular to handle an increasing number of agents, to manage complex goals and tasks, and to evolve in more open environments
where unforeseen events should be dealt with autonomously.
The level of autonomy of an agent depends on five major deliberation functions:
planning, deliberate acting, monitoring, learning, and observing.
 Here we focus on the planning function, which tells the agent what to do to
accomplish its missions, and deliberate acting, which adapts the agent's behavior to the context of execution, making it more robust to
contingencies and hazards.
In particular, we study the interaction between planning and deliberate acting.
Although they are almost always used
together, approaches in the literature tend to consider them separately, which limits their interaction.
In this thesis, we propose a unified approach
to planning and acting, in which both systems are in symbiosis to improve each other's performance.
We present the Operational Model Acting and
Planning System (OMPAS), a refinement based acting engine that executes multiple high-level tasks in parallel by refining them into a set of lower-
level tasks and commands.
OMPAS uses a custom Lisp dialect (SOMPAS) to define the behavior of the robotic agent.
SOMPAS provides primitives for
handling concurrency and resources, and, thanks to the restricted core language and the explicit identification of acting decisions, allows the
automatic synthesis of planning models.
The engine takes advantage of a temporal and hierarchical planner that uses the synthesized models to look
ahead and guide the decisions of the acting system.
The planner is used in a continuous fashion, i.e., it plans concurrently with the execution of tasks
and always adapts to the current state of execution to improve the expected decisions.
 These informed decisions should avoid deadlocks and
opportunistically optimize the completion of multiple parallel tasks.
We provide an evaluation of the overall approach on several robotics domains.
In
particular, OMPAS was used to control a fleet of robots in a simulated logistics platform.
The results showed the ability of the system to handle
several concurrent tasks thanks to its dedicated resource management system.
In addition, continuous planning improves the total time to complete
all tasks of a mission.
Since planning is integrated into the core of the framework, no additional effort is required from the robot programmer to take
advantage of this feature.
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