
HAL Id: tel-04692640
https://laas.hal.science/tel-04692640v1

Submitted on 10 Sep 2024 (v1), last revised 3 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Hierarchical Models from Demonstrations for
Deliberate Planning and Acting

Philippe Hérail

To cite this version:
Philippe Hérail. Learning Hierarchical Models from Demonstrations for Deliberate Planning and
Acting. Robotics [cs.RO]. INSA TOULOUSE, 2024. English. �NNT : �. �tel-04692640v1�

https://laas.hal.science/tel-04692640v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par :
l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 12/06/2024 par :
PHILIPPE HÉRAIL

Learning Hierarchical Models from Demonstrations for Deliberate
Planning and Acting

JURY
Dana S. NAU Professor Emeritus Rapporteur
Damien PELLIER Maître de Conférences Rapporteur
Thierry SIMÉON Directeur de Recherche Président du Jury
Jane Jean KIAM Juniorprofessorin Membre du Jury
Simon LACROIX Directeur de Recherche Directeur de Thèse
Arthur BIT-MONNOT Maître de Conférences Directeur de Thèse

École doctorale et spécialité :
EDSYS : Informatique et Robotique

Unité de Recherche :
LAAS-CNRS

Directeur(s) de Thèse :
Simon LACROIX et Arthur BIT-MONNOT

Rapporteurs :
Dana S. NAU et Damien PELLIER

Abstract

The development of autonomous agents, especially embodied agents such as robots, requires
complex architectures operating at different levels of abstraction. Given the complexity of
real environments, hand-crafting all the models used at the different levels quickly becomes
impractical. In recent years, there has been a growing body of work focusing on learning such
models at the sensorimotor level, i.e. for perception and basic motor capabilities. However, the
same cannot be said for high-level models enabling deliberative functions.

Among such high-level models, we will focus our attention on Hierarchical Task Networks
(HTNs), which are a common planning formalism used in many practical applications, from
video-games to robotic agents. Presently, designing HTN models remains a mostly manual
task, which requires expertise both of the application domain and of the systems used for
hierarchical planning. While some approaches do exist for learning HTNs, they suffer from
some limitations, mainly in the structure of the domains that can be learned or in the required
data annotation.

In this thesis, we will propose a technique for learning HTNs with multiple hierarchy levels
with minimal annotation work required. To this end, we will propose two main contributions:
a procedure for learning HTN structures from demonstrations and one for learning their para-
meters from these same demonstrations.

The structure learning approach will leverage frequent pattern mining to detect interesting
behavioural patterns to abstract in the demonstrations, which we couple with an existing goal
regression algorithm. The quality of a given HTN structure during the search will be evaluated
through a novel metric based on the Minimum Description Length (MDL) principle to use as
an efficient proxy for planning performance.

In addition, we propose a new method for identifying a sensible set of parameters for HTNs,
relying on a MAX-SMT approach, which can be applied to most HTN models. Coupling our
contributions for learning an HTN model structure and the identification of its parameters
allows us to produces complete HTN models which we evaluate on standard benchmarks of the
HTN planning community.

i

Remerciements

Si j’écris ces quelques lignes, c’est que je suis arrivé au terme de ma thèse. Celle-ci n’a pas été une
aventure de tout repos, et je tiens à remercier toutes les personnes qui m’ont accompagnées. Je
resterai bref, les principaux concernés n’ayant pas besoin de lire ces lignes pour se reconnaitre.

En premier lieu, je souhaite remercier ma direction de thèse. Simon, pour m’avoir fait
confiance durant cette thèse et avoir accepté de prendre part à mon encadrement, malgré l’éloi-
gnement entre mon travail et ses thématiques de recherche. Arthur, pour son accompagnement
tout au long de cette aventure, qui lui a parfois couté quelques nuits de sommeil. Merci de
m’avoir poussé à toujours m’améliorer et de m’avoir permis de mettre en avant la valeur de mes
travaux. Merci également d’avoir su voir cette valeur là où j’avais parfois du mal à la trouver.

Je tiens ensuite remercier ma compagne Mathilde, pour m’avoir à la fois soutenu et supporté,
en particulier durant les moments les plus difficiles de ce projet. Promis, je pourrai ressortir de
ma grotte maintenant !

Je voudrais remercier également tous mes collègues du LAAS. Ceux présents au démarrage
et ayant depuis vogué vers de nouveaux horizons, notamment Guilhem, Amandine et Antoine,
qui m’ont permis de m’intégrer à l’équipe. En raison du télétravail imposé par une fameuse
épidémie, dont je ne citerai par le nom, ce n’était pas une mince affaire. Mes camarades de
“génération”, Jérémy, Anthony et Ilinka, qui aujourd’hui ont tous soutenu – avec brio – leurs
travaux. Guillaume, arrivé dans l’équipe bien avant moi et toujours présent lors de mon départ.
Merci pour le soutien, et pour les pauses café pour m’ayant arraché à mon écran quelques
minutes, même dans les périodes les plus intenses. Simon, dont les cheveux ont décidé ne pas le
suivre dans cette aventure, merci pour ton énergie (moins pour tes questions d’automatique).
Merci également à William, Smail, Laure, Bastien, Lou, Stéphy, Rebecca, Yannick, Adrien,
Gianluca, Dario, Phani, Marcel, Léo, Fadma, Marie, Émilie, Roland, Émile et tous les autres
que j’ai rencontrés au cours de ces quelques années.

Merci aussi aux permanents de l’équipe RIS, en particulier Malik, pour avoir pris le temps
de discuter de mes idées et m’avoir aidé à prendre du recul sur celles-ci, et à Félix, grand maitre
de la machine à café sans qui certaines phases de rédaction auraient sans aucun doute trainé
plus en longueur.

J’ai également une pensée pour les personnes qui m’ont permis de découvrir le monde de la
recherche : à la fois mes enseignants de l’INSA, mais surtout Daniela et Gaël qui m’ont permis
d’effectuer un premier stage au LAAS avant ma thèse. Sans cette expérience, je ne me serai
probablement pas lancé dans l’aventure

Merci aussi à tous mes amis de l’INSA, d’avoir été présents pour moi, malgré mes apparitions
parfois un peu rares durant ces quatre années.

Merci également à ma famille, pour m’avoir offert quelques nécessaires bulles d’air afin de
me permettre de souffler un peu au cours de ce marathon.

iii

Contents

Acronyms vii

List of Figures ix

List of Tables xiii

List of Algorithms xv

1 Introduction 1

2 Learning Task Models for Acting in a Robotics Context 5
2.1 Introduction . 5
2.2 Automated Planning: Definitions . 6

2.2.1 Classical Planning . 6
2.2.2 Hierarchical Planning . 9

2.3 A Learner for Parameterized Hierarchical Task Networks from Demonstrations . 17
2.3.1 Learning Problem . 18
2.3.2 The HTN Domains Considered in this Thesis 20

2.4 Related Work . 22
2.4.1 Learning Action Models . 22
2.4.2 Learning Hierarchical Models . 25
2.4.3 Other Hierarchical Models . 30
2.4.4 Generalized Planning . 32
2.4.5 Other Relevant Approaches . 34

2.5 A Multi-Stage Iterative Learning Procedure . 35

3 Learning Hierarchical Task Networks Structure from Demonstrations 37
3.1 Introduction . 37
3.2 Generating Neighbours of HTN Structures . 39

3.2.1 Goal Regression without Explicit Goals 40
3.2.2 Frequent Pattern Mining for Neighbour Generation 46
3.2.3 Simplifying a Candidate Structure . 51

3.3 Evaluating Candidate Models . 53
3.3.1 The MDL Principle for HTN Structures Evaluation 53
3.3.2 Obtaining Decomposition Trees from HTN Structures and Action Se-

quences. 58
3.4 The Complete Structure Search Algorithm . 61
3.5 Conclusion . 62

4 Learning Hierarchical Task Networks Parameters from Demonstrations 65
4.1 Introduction . 65
4.2 Learning Symbolic Parameters: Existing Approaches 67
4.3 Generating Correct and Usable Parameters for a Given HTN Structure 68

4.3.1 Generating a Finite Candidate Parameter Set 69
4.3.2 Simplifying the Generated Candidate Sets 74

vi Contents

4.4 Handling Recursive Task Definitions: the “Loop-Until” Pattern 79
4.4.1 Ensuring Consistency with the HTN Structure 84
4.4.2 Ensuring Compatibility with the Demonstrations 84
4.4.3 Minimizing Method Parameters Through Unification 85

4.5 Conclusion . 86

5 Experimental Evaluation 87
5.1 Introduction . 87
5.2 Planning Domains Presentation . 87
5.3 Environment and Datasets . 88

5.3.1 Environment . 88
5.3.2 Datasets . 90

5.4 Planning Performance . 91
5.4.1 Rovers . 91
5.4.2 Logistics . 96
5.4.3 Childsnack . 99
5.4.4 Satellite . 102
5.4.5 Woodworking . 105

5.5 Learning Times . 108
5.6 Conclusion . 113

6 Conclusion 115

A Résumé en Français 117

B Handling Recursive Task Definitions: Arbitrary Recursive Structures 121
B.1 A New Argument Propagation Procedure . 121

B.1.1 Direct Recursions . 121
B.1.2 Indirect and Independent Recursions . 123

B.2 Parameter Minimization . 126
B.2.1 Required Features in the MAX-SMT Solver 131
B.2.2 Defining Datatypes and Functions . 131
B.2.3 Defining the Constraints . 132
B.2.4 Defining the Optimization Objectives . 137

B.3 Conclusion . 138

C The Minimum Description Length Principle 141

D Notable Domains Used in Experiments 143

References 153

Acronyms

ASP Answer Set Programming. 25

BPMN Business Process Model and Notation. 35

BT Behaviour Tree. 1, 31, 32, 34, 35

CCG Combinatory Categorial Grammar. 31

CFG Context Free Grammar. 29, 31, 32, 36, 47, 141

CNF Chomsky Normal Form. 30

CP Constraint Programming. 25

DSL Domain Specific Language. 31, 34

EM Expectation Maximization. 31

FSM Finite State Machine. 1

GE Grammatical Evolution. 32

GP Genetic Programming. 32

HGN Hierarchical Goal Network. 26, 29, 30

HTN Hierarchical Task Network. i, ix–xiii, 5, 9–12, 14, 16–18, 20, 26–37, 39–56, 58–62, 65–69,
71–77, 79, 81, 86, 87, 89–91, 93, 96, 98, 101, 104, 107, 108, 113, 115, 119–121, 123,
126–129, 131, 141

ILP Inductive Logic Programming. 24

IPC International Planning Competition. xiii, 25, 29, 61, 87, 88, 90, 91, 96, 97, 102

LfD Learning from Demonstration. 22, 32

LTL Linear Temporal Logic. 32, 68

MAX-SAT maximum satisfiability. 28

MDL Minimum Description Length. i, 31, 36, 47, 49, 53, 62, 113, 115, 120, 141, 142

NLP Natural Language Processing. 29–31

PbD Programming by Demonstration. 22, 34

pCCG probabilistic Combinatory Categorial Grammar. 31

viii Acronyms

pCFG probabilistic Context Free Grammar. 31

pHTN probabilistic HTN. 28–30

RL Reinforcement Learning. 28, 34

RRL Relational Reinforcement Learning. 25

SCC Strongly Connected Component. 74, 124

TO totally-ordered. 11, 19, 20, 37, 39

List of Figures

1.1 A simplified view of an actor’s architecture, adapted from [GNT14]. 2
1.2 A simple hierarchical domain for the travel example high-level task. 2

2.1 Location graph for the Logistics planning problem example. 9
2.2 An intuitive view of an HTN hierarchy. Primitives are typeset as action(?x, . . . , ?y). 10
2.3 A task network example. Here, all the ti are task identifiers, and the directed

edges represent the ordering of the task network elements. This ordering can be
written as: {(t1 ≺ t2), (t1 ≺ t3), (t1 ≺ t4), (t2 ≺ t4), (t4 ≺ t5)}. 11

2.5 A visual representation of the task networks of the methods in M 13
2.6 Initial task network tnI for the delivery planning problem. 14
2.8 A possible decomposition for the task deliver(p1, l1), starting in state s0. 16
2.9 A possible decomposition for the initial task network which is not a solution to

the HTN planning problem. 17
2.10 A possible decomposition for the initial task network which is a solution to the

HTN planning problem. 17
2.11 Example of initial task vocabulary and corresponding maximally abstract demon-

stration sets for a deliver task. All the demonstration sets correspond to the same
sequence of primitive actions but are abstracted at different levels. Here, the con-
sidered optimality metric is the number of actions in the plan. Details of states
omitted for clarity. 19

2.12 A simplified graphical representation for an HTN. Parameters, pre-conditions
and effects omitted for clarity. 21

2.13 Illustration of the possible structures of the learned domain for a simple learning
task with two demonstration of how to perform a task t. Note that for conciseness
the parameters and pre-conditions of the task and methods are omitted. 21

3.1 Example of initial task vocabulary and corresponding maximally abstract demon-
stration sets for a deliver task and the corresponding simplified version without
parameters. All the demonstration sets corresponds to the same sequence of
primitive actions but are abstracted at different levels. Here, the considered op-
timality metric is the number of actions in the plan. Note how the removal of
parameters also removes intermediate states, as they then do not contain any
information. 38

3.2 HTN structure for the method group of m2,2. 42
3.3 A possible decomposition of t into the subsequence 〈a2, a3, a4〉. 43
3.4 Demonstration set used as an example, recalled from Figure 2.11. Only actions

are represented, as states are not used in this algorithm. 45
3.6 Possible HTNs generated using the modified HTN-Maker algorithm and ran-

dom sampling. 46
3.7 Grammar for the generated patterns, using BNF syntax. 48
3.8 A HTN without preconditions or parameters and an equivalent grammar. Note

that this grammar is not regular, as can be proved using the pumping lemma for
regular languages. 48

x List of Figures

3.9 Hierarchical representation of the pattern p = 〈a+b〉. Here, len(p) = 2, only
counting the a and b symbols. 49

3.10 Pattern substitution example for a pattern p = 〈a+b〉. 49
3.11 Example of possible HTN structure generation using the HTN-Maker-based

operator on a demonstration with the abstracted frequent patterns as shown in
Figure 3.10. The learned methods are a trivial lookup of all the demonstrations,
but are enough to present the sharing of behaviours afforded by the use of pattern
mining. 50

3.12 HTN before simplification. 52
3.13 HTN after simplification. 52
3.14 An HTN structure and the equivalent set of grammar rules. 54
3.16 Model length calculation for the domain presented in Figure 3.17b. 56
3.17 Illustration of the possible structures of the learned domain for a simple learning

task with two demonstration of how to perform a task t. 57
3.19 Base HTN and the associated one for plan verification. 59
3.21 Base HTN and the associated one for plan verification. 60

4.1 An example of HTN without learned parameters and the same HTN with ideal
parameters. 66

4.2 Example HTN structure and corresponding subhierarchies. Here, ttop is a demon-
strated abstract task and ts is a learned abstract tasks, while the other tasks are
primitive. This example presents the case where we have an incomplete HTN
domain where only the primitive and demonstrated abstract tasks’ arguments
are known, with ? used to denote task and methods where the parameters are
unknown. 69

4.3 Example of argument superset generation for ts. 72
4.4 Extracted parameters for ttop . 72
4.5 Example of argument propagation in a decomposition tree for a demonstration

of ttop(a1, a2) as the sequence 〈tp1(d1), tp2(e1, e2)〉 72
4.6 Propagation graph for an HTN. 73
4.7 A HTN with multiple recursions in different methods, and the corresponding

propagation graph . 74
4.8 An incomplete HTN and the corresponding propagation graph. Colours and

line styles used in all subfigures are used to clarify the edge labelling in the
propagation graph. 75

4.9 Example of decomposition tree with instantiation identifiers for a demonstration
dlv : 〈mv, ld,mv,uld〉 and presented HTN structure. 76

4.10 Example of extended subhierarchy used for downward information propagation. . 79
4.11 Subhierarchy for a goto pattern. Preconditions omitted for clarity. 80
4.12 Possible example trace and corresponding decomposition tree example for the

goto task, with the subhierarchy parameters extracted using the method presen-
ted in previous section. Colours are used to highlight identical constants. 80

4.13 Parameters modification for recursive tasks. 81
4.14 Generic decomposition tree for a recursive hierarchy. 82
4.15 Extracted subhierarchy for a goto task before recursion processing. 82
4.16 Possible example trace and corresponding decomposition tree example for the

goto task. Colours are used to highlight identical constants. 83

List of Figures xi

5.1 Planning time cumulative distribution for the Rovers domain, for the best para-
meterized and non-parameterized domains. 92

5.2 Planning time cumulative distribution for the Rovers domain, focusing on para-
meterized and non-parametrized HTNs. 93

5.3 Planning time box plot, limited to the best and reference models and the instances
solved by both of them. 94

5.4 Plan length box plot, limited to the best and reference models and the instances
solved by both of them. 94

5.5 Impact of training demonstration set size on coverage. Note that the x-axis scale
is not linear. 95

5.6 Planning time cumulative distribution for the Logistics domain, for the best
parameterized and non-parameterized domains. 97

5.7 Planning time cumulative distribution for the Logistics domain, focusing on
parameterized and non-parametrized HTNs. 98

5.8 Distribution of the plan length over the set of commonly solved instances
(100/100) in the Logistics domain. 99

5.9 Scatter plot of the coverage against the number of training demonstrations. Note
that the x-axis scale is not linear. 99

5.10 Planning time cumulative distribution for the Childsnack domain, for the best
parameterized and non-parameterized domains. 100

5.11 Planning time cumulative distribution for the Childsnack domain, focusing on
parameterized and non-parametrized HTNs. 101

5.12 Planning time cumulative distribution for the Satellite domain, for the best
parameterized and non-parameterized domains. 103

5.13 Scatter plot of the coverage against the number of training demonstrations. Note
that the x-axis scale is not linear. 103

5.14 Planning time cumulative distribution for the Satellite domain, focusing on
parameterized and non-parametrized HTNs. 104

5.15 Planning time cumulative distribution for the Woodworking domain, for the
best parameterized and non-parameterized domains. 106

5.16 Scatter plot of the coverage against the number of training demonstrations. Note
that the x-axis scale is not linear. 106

5.17 Planning time cumulative distribution for the Woodworking domain, focusing
on parameterized and non-parametrized HTNs. 107

5.18 Structure learning time for all the tested domains, limited to the most recursive
neighbour generation. 109

5.19 Parameterization time for all the tested domains, limited to the most recursive
neighbour generation. 110

5.20 Structure learning time for all the tested domains, comparing different neighbour
generation modes. 111

5.21 Parameterization time for all the tested domains, comparing different neighbour
generation modes. 112

A.1 Une vue simplifiée de l’architecture d’un acteur, adapté de [GNT14]. 118
A.2 Un domaine hiérarchique simplifié pour la tâche de haut niveau de notre exemple

de voyage. 119

xii List of Figures

B.1 New argument propagation scheme algorithm example on a simple goto task. In
each step, orange arguments are the ones that were propagated upwards and blue
ones the ones that were added by updating the subtasks. 122

B.2 An HTN with an indirect recursion. Here, t is recursive through tr and ts is a
non-recursive abstract task. 123

B.3 Naive application of the propagation algorithm, focusing on the subhierarchy of
task t. 124

B.4 Naive application of the propagation algorithm, focusing on the subhierarchy of
task tr. 124

B.5 Task dependency graph for the hierarchy in Figure B.2. 125
B.6 Base subhierarchies for the recursion group {t, tr} after processing ts and gener-

ating the subtask arguments. 126
B.7 Application of Algorithm B.4 to the HTN structure in Figure B.2, step 1. 126
B.8 Application of Algorithm B.4 to the HTN structure in Figure B.2, step 2. 127
B.9 Application of Algorithm B.4 to the HTN structure in Figure B.2, step 3. 127
B.10 Application of Algorithm B.4 to the HTN structure in Figure B.2, step 4. 127
B.11 Application of Algorithm B.4 to the HTN structure in Figure B.2, step 5. 128
B.12 HTN structure with two independent recursion groups, one of which is indirect,

and associated dependency graphs. 128
B.13 Base subhierarchies for the recursion group {t, tr} after processing goto and gen-

erating the subtask arguments . 128
B.14 The goto task, with its propagated parameters modified to be converted to MAX-

SMT constants. 129
B.15 Possible example trace and corresponding decomposition tree example for the

goto task. Colours are used to highlight identical constants. 130

C.1 C programs to generate the sequences presented earlier. 142

D.1 Graphical representation of the IPC domain in Rovers. 144
D.2 Graphical representation of the best learned domain in Rovers. 145
D.3 Graphical representation of the reference domain in Logistics. 146
D.4 Graphical representation of the adapted IPC domain in Logistics. 147
D.5 Graphical representation of the best learned domain in Logistics. 148
D.6 Graphical representation of the IPC domain in Childsnack. 149
D.7 Graphical representation of the best learned domain in Childsnack. 150
D.8 Graphical representation of the IPC domain in Satellite. 151
D.9 Graphical representation of the best learned domain in Satellite. 152

List of Tables

2.1 Summary of the action model learning approaches. Obs. and ND stand Observ-
ability and Non-Determinism, respectively. 23

2.2 Summary of the main HTN learning approaches and comparison with our pro-
posed approach. 27

3.1 Description length for the examples presented in Figure 3.17. 56

4.1 Constraints used in the MAX-SMT problem. Conditions are fully expanded to
remove quantifiers, and a constraint is added for each expansion of the corres-
ponding condition. Quantifiers are also expanded in each constraint as the chosen
solver does not support optimization with quantifiers. Upper constraints are hard
while the lower one is soft. 78

5.1 The different parameters that govern the search procedure and their domains. . . 89
5.2 Number of International Planning Competition (IPC) planning instances and

generated demonstration traces for each domain. 91
5.3 Learning evaluation parameters for the Rovers domain. 91
5.4 Coverage for the Rovers domain, restricted to the best four parameterized and

non-parameterized domains. 92
5.5 Learning evaluation parameters for the Logistics domain. 96
5.6 Coverage for the Logistics domain, restricted to the best four parameterized

and non-parameterized domains. 96
5.7 Learning evaluation parameters for the Childsnack domain. 100
5.8 Coverage for the Childsnack domain, restricted to the best four parameterized

and non-parameterized domains. 100
5.9 Learning evaluation parameters for the Satellite domain. 102
5.10 Coverage for the Satellite domain, restricted to the best four parameterized

and non-parameterized domains. 102
5.11 Learning evaluation parameters for the Woodworking domain. 105
5.12 Coverage for the Woodworking domain, restricted to the best four parameter-

ized and non-parameterized domains. 105

B.1 Example of direct evidence constraints that can be generated 133
B.2 Example of direct evidence constraints that can be generated 134

List of Algorithms

2.1 HTN Search - High-Level Process . 36
3.1 Extract Methods(t, d) . 40
3.2 Generate Neighbours HTN-Maker(D,H) - Initial Version 43
3.3 Generate Neighbours HTN-Maker(D,H) 44
3.4 Find Best Patterns(Di, k, l,HB) . 51
3.5 Gen Best Neighbour(H,D) . 62
3.6 Find Best Structure(H,D, k, l) . 62
4.1 Parameter Superset Generation . 70
4.2 Propagate Args Upwards(ht) . 71
4.3 Update Subtasks Args(ht,Πnew) . 71
4.4 Parameter Removal . 79
A.1 Processus global d’apprentissage de HTN . 119
B.1 Argument Propagation For Recursion . 122
B.2 Propagate Arguments Upwards(h) . 123
B.3 Update Subtasks Basic(h,A) . 123
B.4 Argument Propagation For Recursion - Improved 125
B.5 Update Subtasks(h,A) . 126

Chapter 1

Introduction

In order to act purposefully within their environment, autonomous agents typically need to
achieve high-level tasks, relying on a set of elementary skills to perform actions in their envir-
onment.

Each skill represents an elementary operation, such as picking up an object or putting it
down. These skills potentially abstract over the lowest levels of control primitives (such as
motor controls in the case of a robot), and need not be a fixed sequence of such primitives.
Indeed, they may have to adapt to their execution context: for example, we can consider using
different movements to pick up an empty cup and a liquid-filled bowl. These skills then need
to be combined to achieve the desired high-level behaviours.

To give a simple example of a high-level task that can be achieved with some combination
of skills, let us consider an agent travelling to a conference in Paris from Toulouse, where going
by train and by plane are the two available options. We can define the following set of skills for
our agent: {BuyTrainTckt,BuyPlaneTckt,WalkTo,TakeCab,TakeTrain,TakePlane}. These
skills can also be parameterized to specify their application context, such as the destination for
the WalkTo skill. We can then imagine choosing the following sequence of skills to achieve our
top-level task of travelling to the conference venue in Paris:

〈BuyTrainTckt(Paris),WalkTo(Station),TakeTrain(Paris),TakeCab(V enue)〉

While the agent skills may simply be combined reactively to obtain such a sequence, using
policies like simple Finite State Machines (FSMs), neural network-based policies or Behaviour
Trees (BTs), this approach may fall short when long horizons have to be considered to achieve a
given task. In our travel example, some of the steps require planning ahead: for example, using
the BuyTrainTckt action requires knowing at least part of the future actions (here, knowing
that we want to take the train and not fly to the conference city). We therefore situate ourselves
within the deliberative acting paradigm, as presented by Ghallab, Nau and Traverso [GNT14].
In this framework, the authors define an action as something the agent does to change its state
or its environment, while deliberating is a reasoning process that leads the agent to choose
to perform one action or the other considering its long term goals, often through the use of
planning techniques.

In essence, we can view an actor interacting with its environment as presented in Figure 1.1.
Here, we can separate an execution platform and a deliberation component. The first one
is tasked with transforming the skill commands coming from the deliberation component into
actuations of the actor’s that allow executing the commands in its environment. It is also tasked
with converting the raw sensor data into representations usable by the deliberation functions.
The deliberation component can be divided into two components, planning and acting. The
planning component mainly receives the high level activities to be performed, and generates
long-term strategies for them, often considering an abstracted environment, in order to guide
the acting component. The acting component is in charge of carrying out the actual execution
of the plan, using the guidance from the planner while monitoring the execution of the actions

2 Introduction

to handle exogenous events and skill failures.

PlanningActing
Plans

Queries

Deliberation

Execution Platform

Commands Percepts

Actor

Environment

Actuations Signals

User
Objectives

Figure 1.1: A simplified view of an actor’s architecture, adapted from [GNT14].

It can be noted that real architectures for an actor are more complex, such as the robotic
architecture presented by Lemaignan et al. [Lem+17], exhibiting multiple components in the
deliberation layer. However, we can still distinguish both layers, as well as the planning and
acting components.

Considering different robotic execution systems [DI00; Ing+96; MCA22; SdSP06; TB22], we
observe that they rely on models of the tasks and actions to be performed, often hierarchical in
nature to efficiently describe complex tasks. Reusing our travel example, models of the skills
would allow specifying applicability conditions and effects. For example, let us consider our
WalkTo(Station) skill. It could be specified to be only applicable if there is a pedestrian path
from our current location to the train station, and that it is less than three kilometres away.
The effects of this skill would be to have the agent be at the train station. If we wanted to
have a model of our top level task, then we could have a hierarchical structure as presented in
Figure 1.2, where we have two different options to achieve the task, travelling either by train
or by plane.

GoToConference
(Paris)

∨

GoByTrain
→

BuyTrainTckt
(Paris)

WalkTo
(Station)

TakeTrain
(Paris)

TakeCab
(Venue)

GoByPlane
→

BuyPlaneTckt
(Paris)

TakeCab
(Airport)

TakePlane
(Paris)

TakeCab
(Venue)

Figure 1.2: A simple hierarchical domain for the travel example high-level task.

Hierarchical formalisms have been developed which provide ways to decompose a top level
task or goal down to the level of the agent’s skills. These models are often complex to specify
by hand, and while learning for autonomous agents has gained a lot of traction in the last dec-
ade, most approaches are focusing on the sensorimotor level [CSL21; Kle+20]. Comparatively,

3

learning complex high-level task models has been less studied. Learning these high-level task
models will be the focus of this thesis, in the following context:

• Skill availability: we assume that the list of available elementary capabilities (skills)
of the agent is known. These can be either learned from existing approaches or hand-
programmed.

• Demonstration based: we assume that the learning agent is given a set of demonstrations
of how to achieve the task to be learned. These demonstrations would take the form of
sequences of skills, showcasing some combination that achieves the desired behaviour in a
given state.

We will specifically focus on learning hierarchical models, due to them being easier to un-
derstand by human experts and for their ability to constrain the (potentially very large) search
space of all the possible plans that an agent may choose to enact, while still reproducing the
demonstrated behaviour. Furthermore, we situate ourselves in a context where demonstra-
tion data is costly to obtain, such as learning for robotic agents, directing our work towards a
sample-efficient method.

Chapter 2

Learning Task Models for Acting in
a Robotics Context

Contents

2.1 Introduction . 5
2.2 Automated Planning: Definitions . 6

2.2.1 Classical Planning . 6
2.2.2 Hierarchical Planning . 9

2.3 A Learner for Parameterized Hierarchical Task Networks from Demonstrations . 17
2.3.1 Learning Problem . 18

2.3.1.1 Inputs . 18
2.3.1.2 Goals . 19

2.3.2 The HTN Domains Considered in this Thesis 20
2.4 Related Work . 22

2.4.1 Learning Action Models . 22
2.4.2 Learning Hierarchical Models . 25

2.4.2.1 Macro Operators . 25
2.4.2.2 Hierarchical Planning Domains 26

2.4.3 Other Hierarchical Models . 30
2.4.3.1 Grammar Inference . 30
2.4.3.2 Behaviour Trees . 31

2.4.4 Generalized Planning . 32
2.4.5 Other Relevant Approaches . 34

2.4.5.1 Programming by Example . 34
2.4.5.2 Process Mining . 35

2.5 A Multi-Stage Iterative Learning Procedure . 35

2.1 Introduction

While we have introduced the idea of hierarchical models in the introduction of this document, let
us now give a more formal definition of these models. Specifically, we want to learn Hierarchical
Task Networks (HTNs), a specific kind of hierarchical planning models. Therefore, we will
present the planning formalism that we use in this document in the next section.

We will then present our learning problem, as well as the scope of our learner, mainly
restricting it to totally-ordered Hierarchical Task Networks (HTNs). Next, we will review the
existing approaches related to our goal, before finally presenting a high-level overview of our
learning procedure.

6 Chapter 2. Learning Task Models for Acting in a Robotics Context

2.2 Automated Planning: Definitions
Let us present some formal definitions of classical and hierarchical task planning. Because our
focus is on learning planning domains in the context of deliberate acting in robotics, we will
mainly adapt the definitions given by Ghallab, Nau and Traverso [GNT14] for classical planning
and the formalism of Alford, Bercher and Aha [ABA15] for hierarchical planning.

Example 2.1 Running example: a LOGISTICS-like domain.
To illustrate this section, we will use as running example a simple Logistics-like planning
domain. This domain can be described in natural language as follows: a truck is tasked
with delivering a package from one location to another. The actions available in this
domain are as follows:

1. A truck t can move from a location l1 to a location l2 provided they are connected
together.

2. A package p can be loaded in a truck t if both are at the same location and t is
empty.

3. A package p can be unloaded from a truck t at the location where it is.

This natural-language definition will be made more formal as we define the relevant
concepts.

2.2.1 Classical Planning
Before outlining the existing algorithms and classical planning systems, we will provide some
definitions of planning domains and planning problems to formalize the notations.

The formalism we use is based on a quantifier-free first-order predicate logic L = (P, T, V, C)

where:

• T is a set of type symbols. These types are used to subdivide the sets of constants C and
variables V , typeset as type-name.

• C is a set of typed constants. Constants are used to refer to objects in the world, and are
typeset const-name. Each constant is associated with at least one type in T . Multiple
types associated with a single constant c ∈ C can be used to create type hierarchies: for
example, c may be associated with types car and vehicle

• V is a set of typed variables. Variables refer to objects that are not yet specified, and are
typeset ?var-name. Each variable is associated with a single type in T , which restricts its
domain (allowed values) to constants of the same type.

• P is a set of predicate symbols1. A predicate has an associated arity n which defines the
number of its parameters variables. Predicates are typeset pred-name. Each parameter
of a predicate is associated with a type.

From this, we can define atoms, literals, states and actions:

1Some formalisms allow state functions instead of predicates. Because only the latter are required to describe
our approach, we restrict our formalism for simplicity.

2.2. Automated Planning: Definitions 7

Definition 2.1 (Atom). An atom is an instantiation of a predicate with its parameters
pred-name(?v1, . . . , ?vn). It is ground if all its parameters are constant and lifted if they con-
tain variables. This definition of ground and lifted can be similarly extended to other construct
using parameters

The set of all ground atoms represents all possible state features

Definition 2.2 (Literal). A literal is an atom or its negation.

Definition 2.3 (State). A state s is a set of ground atoms. It indicates which features of the
state are true. Atoms absent from s are assumed to be false (closed world assumption).

Definition 2.4 (Action Template). An action template is a tuple a = (head(a), pre(a), eff(a)).

• head(a) is the name of the action as well as its typed parameters, such as act-name(?x1 :

type1, . . . , ?xn : typen). We can separate head(a) = (name(a), args(a)), the name of a

and its arguments, respectively. Action names uniquely identify an action.

• pre(a) is a set of atoms called the pre-conditions of a.

• eff(a) is a set of literals called the effects of a. We write eff(a)+ and eff(a)− the subsets
of atoms corresponding respectively to the positive and negative literals.

All the variables used in pre(a) and eff(a) must be in the parameters of a.

Definition 2.5 (Action Instance). An action instance is an action template that has been
grounded, i.e. all its parameters have been replaced with constants. An action instance a is
said to be applicable in a given state s if and only if pre(a) holds in s.

We can now present the definition of a classical planning domain:

Definition 2.6 (Classical Planning Domain). A classical planning domain is a tuple Σ = (L, A),
with A a finite set of action templates. The set of states S is implicitly defined over all subsets
of all ground atoms.

For clarity in the remainder of this document, let us define Ag the set of all ground of actions.
We can then define a partial function γ : S × Ag → S. This function is defined only for each
pair (s, a) ∈ S × Ag where a is applicable (i.e. pre(a) hold in s). s′ = γ(s, a) is the state in
which the agent will end up after applying a, with s′ = (s \ eff(a)−) ∪ eff(a+).

Example 2.2 The planning domain for our LOGISTICS-like domain.
Using the definitions presented up to this point, we can more formally present a planning
domain associated with our Logistics domain. We can define the set of types T :

T =





movable
truck
package
location





From here, assuming that {?o, ?t, ?p, ?l, ?l1, ?l2} ⊂ V we can define the sets of predicates

8 Chapter 2. Learning Task Models for Acting in a Robotics Context

P and actions A:

P =





at(?o : movable, ?l : location)
in(?p : package, ?t : truck)
empty(?t : truck)
connected(?l1 : location, ?l2 : location)





A =





move =




head : move(?t : truck, ?l1 : location, ?l2 : location)
pre : {at(?t, ?l2), connected(?l1, ?l2)}
eff : {at(?t, ?l2),¬at(?t, ?l1)}




load =




head : load(?p : package, ?t : truck, ?l : location)
pre : {at(?t, ?l), at(?p, ?l), empty(?t)}
eff : {in(?p, ?t),¬at(?p, ?l)¬empty(?t)}




unload =




head : unload(?p : package, ?t : truck, ?l : location)
pre : {at(?t, ?l), in(?p, ?t)}
eff : {at(?p, ?l), empty(?t),¬in(?p, ?t)}








Definition 2.7 (Classical Planning Problem). A classical planning problem is a tuple P =

(Σ, s0, g). Σ is a classical planning domain, s0 is the initial state and g is a set of ground atoms
called the goal.

Definition 2.8 (Plan). A plan is a finite sequence of ground actions: π = 〈a0, . . . , an〉. The
length of a plan π is the number of actions in the sequence.

Let us recursively define the successor state of an action ai as si+1 = γ(si, ai).
A plan is said to be applicable (or executable) in a state s0 if, ∀i ∈ [0..n], ai is applicable in

si. As a shorthand, we can write γ(s0, π) = sn+1 for denoting the application of plan π in the
state s0.

A plan π = 〈a0, . . . , an〉 is a solution to a planning problem P if π is applicable and g ⊂

γ(s0, π). For an arbitrary cost function that associates a cost to a given plan, a solution π is
optimal if there exist no other solution plan π′ such that cost(π′) < cost(π). A commonly used
cost metric is the length of the plan.

For clarity in later parts of this document, we similarly define a solution trace as follows:

Definition 2.9 (Solution Trace). A solution trace is a finite sequence of actions and states
σ = 〈s0, a0, s1, . . . , sn, an, sn+1〉, where s0 is the initial state of the corresponding problem and
∀i ∈ [0, n], si+1 = γ(si, ai).

For a given action ai, si is called the pre-state of ai and si+1 is called the post-state.

Example 2.3 A planning problem for our LOGISTICS-like domain.
We can now present a planning problem associated with the Logistics planning domain
presented earlier. Let us start by defining the set C of constants with their types (from
T) for clarity:

C =





t : truck,movable
p1, p2 : package,movable

l0, l1, l2, l3, l4 : location





2.2. Automated Planning: Definitions 9

Using the previously defined sets P and A, assuming V contains all the necessary vari-
ables, we can then write L = (P, T, V, C). We have our planning domain as Σ = (L, A, γ)

Defining a starting state s0 and a goal state g as below, we have P = (Σ, s0, g).

s0 =





connected(l0, l1) connected(l1, l0)
connected(l0, l3) connected(l3, l0)
connected(l1, l4) connected(l4, l1)
connected(l2, l4) connected(l4, l2)
connected(l3, l4) connected(l4, l3)

at(t, l0) empty(t)
at(p1, l3) at(p2, l4)





g = at(p1, l1) ∧ at(p2, l2)

Note the symmetry of the connected predicates, which are used because we consider
two-way roads. This starting state s0 can be viewed as the graph presented in Figure 2.1,
where edges in the graph show the connected predicates, and t, p1 and p2 are shown at
their locations.

l1

l0

l2

l3 l4

t p1 p2

Figure 2.1: Location graph for the Logistics planning problem example.

A possible solution to this problem is the following plan:

π = 〈move(t, l0, l3), load(p1, t, l3),move(t, l3, l0),move(t, l0, l1),unload(p1, t, l1),
→֒ move(t, l1, l4), load(p2, t, l4),move(t, l4, l2),unload(p2, t, l2)〉

Note that this plan is not unique, as it is easy to imagine a plan where we repeatedly
move back and forth between two locations and arbitrary number of times. Such a plan
would obviously achieve the same goal state with a different sequence of actions.

In practice, most classical planning domains and problems are expressed using the PDDL
language [Gha+98].

2.2.2 Hierarchical Planning

Hierarchical planning reuses state and actions representation from classical planning for rep-
resenting the world, and mainly differs on the way planning for a solution is done. The main
formalism is Hierarchical Task Network (HTN) [EHN94] planning. Here, the idea is not to
achieve some set of goals, but rather to perform a set of tasks, which need to be refined into

10 Chapter 2. Learning Task Models for Acting in a Robotics Context

primitive actions through the use of methods.
We focus on lifted HTNs, and base our formalism on the one described by Alford, Bercher

and Aha [ABA15].
We reuse the same logic L as presented in the previous section on classical planning. How-

ever, in a Hierarchical Task Network, we can distinguish two kinds of tasks: primitive tasks
(also called actions, identical to the ones used in the classical planning setting) and abstract
tasks (also called non-primitive tasks or compound tasks).

Example 2.4 An intuitive hierarchical version of the LOGISTICS domain example.
Before detailing the formalism, let us give an intuitive idea of what an HTN domain could
look like, with a hierarchical view presented in Figure 2.2, reusing the actions defined in
the classical planning example as primitive tasks.

deliver(?p, ?ld)

mdeliver(?p, ?ld , ?t, ?lp)
→

goto(?t, ?lp)
⊕

mmove(?t, ?lx , ?lp)
→

move(?t, ?lx , ?lp) goto(?t, ?lp)

mnop

load(?p, ?t, ?lp) goto(?t, ?ld)
⊕

mmove(?t, ?ly, ?ld)
→

move(?t, ?ly, ?ld) goto(?t, ?ld)

mnop

unload(?p, ?t, ?ld)

Figure 2.2: An intuitive view of an HTN hierarchy. Primitives are typeset as
action(?x, . . . , ?y).

At the top level of this hierarchy is an abstract deliver task, representing the activity
that we want to achieve. This task is decomposed into lower level tasks with the single
method mdeliver , where all its subtasks are executed in left-to-right order.
However, we note that this decomposition relies on two instantiations of the goto task
goto is not an action, but rather another abstract task, representing the activity of going
from the truck’s current location to another location, possibly with intermediate steps.
Because it is abstract, it needs to be refined further. This is achieved with two methods
among which the planner will have to choose: one to actually move and the other to end
the decomposition of the goto task.

Let us start with the definition of the primitive and abstract tasks:

Definition 2.10 (Primitive Task). A primitive task is an action, as defined in classical planning.

Definition 2.11 (Abstract Task). An abstract task t is similar to an action, but is simply
defined with head(t). Contrary to actions, it does not induce state transitions but rather is
used to reference a mapping to one or more task networks which can be used to refine t. This
mapping is given by a given set M of methods.

Similar to the actions, all the variables in pre(t) and post(t) must be parameters of t.

2.2. Automated Planning: Definitions 11

We can now define the structure of an HTN, called a task network, which represents partially
ordered multi-sets of tasks.

Definition 2.12 (Task Network). A task network tn over a set of parameterized task names
X is a tuple (I,≺, α) such that:

• I is a (possibly empty) set of task identifiers.

• ≺ is a strict partial order over I.

• α : I → X maps identifiers to task heads.

It is possible to restrict ≺ to be a total order. To distinguish both versions of the formalism,
we will use the names totally ordered (TO) HTNs and partially ordered HTNs.

Task identifiers are arbitrary symbols that serve as placeholders for the actual task they
represent. Identifiers are necessary because a task can occur multiple times within the same
network.

A task network is primitive if all the task identifiers map to primitive tasks. It is ground
if all its parameters are bound to constants in C, and lifted otherwise. If a task network tn is
ground and primitive, tn is executable in a state s0 if there is a linearization of its tasks that
is executable s. This is similar to saying that tn can be converted to an executable plan in the
classical planning sense.

Figure 2.3 illustrates how a task network could be represented graphically.

t1

t2

t3

t4 t5

Figure 2.3: A task network example. Here, all the ti are task identifiers, and the directed
edges represent the ordering of the task network elements. This ordering can be written as:
{(t1 ≺ t2), (t1 ≺ t3), (t1 ≺ t4), (t2 ≺ t4), (t4 ≺ t5)}.

Definition 2.13 (Method). A method m ∈ M is a tuple (c, tn, pre(m)), where c, called the
method head, is an abstract task’s head and tn is a task network called the method’s subtasks.

• The parameters of m is a set of parameter symbols (variables or constants) associated with
parameters of c or of the tasks in tn. A single parameter of m may be associated with
several parameters of c or its subtasks in order to enforce their unification. Additionally,
a method is ground if and only if all its parameters are all constants.

• pre(m) is the (possibly empty) set of pre-conditions of the method. It is defined similarly
to the pre-conditions of an action: they determine when a decomposition method can be
applied1, and all the variables in pre(m) must be parameters of the method.

1Checking the validity of a method’s preconditions is not a trivial task [Höl+20], especially in the context of
partially ordered domains. In this work, we make the same assumption as in the HDDL language specification
[Höl+20] and assume they are compiled as a primitive task ordered before the other method subtasks.

12 Chapter 2. Learning Task Models for Acting in a Robotics Context

For example, an always applicable method to decompose a task t(?x, ?y) into a task network
tn would be written m = (t(?x, ?y), tn, ∅).

Analogously to a classical planning domain, we can now define a hierarchical planing domain:

Definition 2.14 (Hierarchical Planning Domain). A hierarchical planning domain H is a tuple
(L, TC , TP ,M) defined as follows:

• L is the underlying predicate logic.

• TP and TC are the sets of primitive and compound tasks.

• M is a set of decomposition methods with heads from TC and task networks over the
parameterized names TC ∪ TP .

Definition 2.15 (Hierarchical Planning Problem). A hierarchical planning problem Ph is a
tuple (H, s0, tnI , g) where:

• H is a hierarchical planning domain.

• s0 ∈ S is the initial state.

• tnI is the initial task network. It represents the top-level activities to be achieved.

• g is a possibly empty set of goal atoms that must hold in the final state.

While HTN planning is not about achieving a state based goal, adding it allows specifying
problems closer to the PDDL specification. It is used to ensure that all the desired state features
hold together, i.e. that none was undone by another execution. This is especially useful in cases
where the hierarchy is used to model advice and not dynamics of the environment [Beh+19;
McD00]. Furthermore, it can be left empty if unused.

Example 2.5 A hierarchical planning domain and problem for our LOGISTICS-like do-
main.
With these definitions, we can define the same Logistics-like domain and problem that
we described in the previous section in a hierarchical way. Please note that in this ex-
ample, task networks will be presented as graphs using task heads instead of identifiers
to give a more human-readable description. Nodes in the graph will allow distinguishing
task instantiations.
To define our hierarchical domain H = (L, TA, TP ,M), we use the same logic L as in the
classical planning case, and we introduce two abstract tasks: deliver and goto. deliver
represents our high-level delivery activity, while goto represents the act of getting from
one location to another while possibly requiring intermediate steps. We can therefore
define TC as:

TC =

{
deliver(?p : package, ?l : location)
goto(?t : truck, ?l : location)

}

Because we use the same primitive tasks as in the classical planning case, the set TP is
the same as the set of actions in this previous case:

2.2. Automated Planning: Definitions 13

TP =





move =




head : move(?t : truck, ?l1 : location, ?l2 : location)
pre : {at(?t, ?l2), connected(?l1, ?l2)}
eff : {at(?t, ?l2),¬at(?t, ?l1)}




load =




head : load(?p : package, ?t : truck, ?l : location)
pre : {at(?t, ?l), at(?p, ?l), empty(?t)}
eff : {in(?p, ?t),¬at(?p, ?l)¬empty(?t)}




unload =




head : unload(?p : package, ?t : truck, ?l : location)
pre : {at(?t, ?l), in(?p, ?t)}
eff : {at(?p, ?l), empty(?t),¬in(?p, ?t)}








We define the set of methods M as in the equation below. The task networks in the
methods in M can also be represented graphically as in Figure 2.5.

M =





mdeliver =




cdeliver = deliver(?p : package, ?ld : location),

tndeliver =





(goto(?t, ?lp)1 ≺ load(?p, ?t, ?lp)2)
(load(?p, ?t, ?lp)2 ≺ goto(?t, ?ld)3)
(goto(?t, ?ld)3 ≺ unload(?p, ?t, ?ld)4)








mmove
goto =

(
cmove

goto = goto(?t : truck, ?ld : location),

tnmove
goto = {(move(?t, ?l, ?li)5 ≺ goto(?t, ?ld)6)}

)

m
nop
goto =

(
c

nop
goto = goto(?t : truck, ld : location),

tnnop
goto = ∅

)





goto(?t, ?lp) load(?p, ?t, ?lp) goto(?t, ?ld) unload(?p, ?t, ?ld)

(a) Task network for the method mdeliver .

move(?t, ?l, ?li) goto(?t, ?ld)

(b) Task network for the method mmove
goto .

Figure 2.5: A visual representation of the task networks of the methods in M .

The planning problem Ph = (H, s0, tnI , g) uses the same s0 and g as in the classical
planning example presented earlier, in order to solve an equivalent problem:

14 Chapter 2. Learning Task Models for Acting in a Robotics Context

s0 =





connected(l0, l1) connected(l1, l0)
connected(l0, l3) connected(l3, l0)
connected(l1, l4) connected(l4, l1)
connected(l2, l4) connected(l4, l2)
connected(l3, l4) connected(l4, l3)

at(t, l0) empty(t)
at(p1, l3) at(p2, l4)





g = at(p1, l1) ∧ at(p2, l2)

The initial task network tnI only contains two instantiations of the deliver task, and is
presented as a graph in Figure 2.6.

deliver(p1, l1) deliver(p2, l2)

Figure 2.6: Initial task network tnI for the delivery planning problem.

Solutions to an HTN are typically obtained by iteratively substituting abstract tasks through
method decomposition until we obtain an executable primitive task network. Such solutions can
be obtained from the problem’s initial task network, through grounding, application of methods
and addition of ordering constraints.

More formally, methods are applied through decomposition, which transforms one task net-
work into another: a task decomposed through a method is removed from the network and
replaced with its subtasks, inheriting the ordering relations that held for the abstract task.

Definition 2.16 (Decomposition). Let m = (c, (Im,≺m, αm)) be a ground method, and tn1 =

(I1,≺1, α1) a task network such that Im ∩ I1 = ∅ (which can be achieved through renaming).
Then, m decomposes a task identifier i ∈ I1 into a task network tn2 = (I2,≺2, α2) if and only
if α1(i) = c and:

I2 = (I1 \ {i}) ∪ Im

≺2 =



≺1 ∪ ≺m

∪ {(i1, im) ∈ I1 × Im | (i1, i) ∈≺1}

∪ {(im, i1) ∈ Im × I1 | (i, i1) ∈≺1}


 \

{
(i′, i′′) ∈ I21 | i

′ = i ∨ i′′ = i
}

α2 = (α1 ∪ αm) \ {(i, c)}

Definition 2.17 (Solution). Let P = (H, s0, tnI , g) be a planning problem with H =

(L, TP , TC ,M) and tnS = (IS ,≺S , αS). tnS is a solution to an HTN planning problem if
and only if the following conditions hold:

• There exists a sequence of decompositions from tnI resulting in a task network tn =

(I, ≺, α) such that I = IS , ≺⊆≺S , and α = αS .

• tnS is primitive, ground and ≺S is a strict total order1.

• The plan πS corresponding to tnS is applicable and g ⊂ γ(s0, πS)

1Some formalisms [ABA15] only require that such ordering exist for tnS to be a solution.

2.2. Automated Planning: Definitions 15

Example 2.6 Applying decomposition rules to solve our example.
Let us now apply decomposition rules to obtain a solution to the planning problem presen-
ted in the previous example. In this example, arrows represent the precedence constraints,
as in Figure 2.3 shown earlier. While both decompositions cannot be completely inde-
pendent of one another, as will be shown later, let us first focus on the decomposition of
deliver(p1, l1) to have a clearer illustration.

goto(t, l3)

load(p1, t, l3)

goto(t, l1)

unload(p1, t, l1)

(a) Task network after decomposing
deliver(p

1
, l1) using mdeliver.

move(t, l0, l3)

goto(t, l3)

load(p1, t, l3)

goto(t, l1)

unload(p1, t, l1)

(b) Task network after decomposing
goto(t, l3) using mmove

goto .

move(t, l0, l3)

load(p1, t, l3)

goto(t, l1)

unload(p1, t, l1)

(c) Task network after decomposing
goto(t, l3) using m

nop
goto.

move(t, l0, l3)

load(p1, t, l3)

move(t, l3, l0)

goto(t, l1)

unload(p1, t, l1)

(d) Task network after decomposing
goto(t, l1) using mmove

goto .

16 Chapter 2. Learning Task Models for Acting in a Robotics Context

move(t, l0, l3)

load(p1, t, l3)

move(t, l3, l0)

move(t, l0, l1)

goto(t, l1)

unload(p1, t, l1)

(e) Task network after decomposing goto(t, l1) using mmove
goto .

move(t, l0, l3)

load(p1, t, l3)

move(t, l3, l0)

move(t, l0, l1)

unload(p1, t, l1)

(f) Task network after decomposing
goto(t, l1) using m

nop
goto.

move(t, l0, l3)

load(p1, t, l3)

move(t, l3, l0)

move(t, l0, l1)

unload(p1, t, l1)

(g) Task network after removing redundant
edges.

Figure 2.8: A possible decomposition for the task deliver(p1, l1), starting in state s0.
Here, for each decomposition of a task with identifier i:

• Blue edges are the ones that are part of the method task network (≺m in Def. 2.16).

• Orange edges are the ones newly created to satisfy the ordering of i with regard to
the rest of the network.

If one were to now try and decompose the second task deliver(p2, l2) starting from s0,
one possible decomposition of the global initial task network could be the one presented
in Figure 2.9. However, this decomposition would not lead to a solution to HTN plan-
ning problem: while it is primitive, it cannot be totally ordered such that the resulting
linearization is executable and achieves the goal.

2.3. A Learner for Parameterized Hierarchical Task Networks from
Demonstrations 17

move(t, l0, l3)

move(t, l3, l4)

load(p2, t, l4)

move(t, l4, l2)

unload(p2, t, l2)

move(t, l0, l3)

load(p1, t, l3)

move(t, l3, l0)

move(t, l0, l1)

unload(p1, t, l1)

Figure 2.9: A possible decomposition for the initial task network which is not a solution
to the HTN planning problem.

However, the decomposition presented in Figure 2.10 (solid lines only), can be turned
into a solution, as it can trivially be totally ordered by adding the precedence constraint
represented by the dashed line, resulting in the solution plan presented in the earlier
classical planning example.

move(t, l1, l4)

load(p2, t, l4)

move(t, l4, l2)

unload(p2, t, l2)

move(t, l0, l3)

load(p1, t, l3)

move(t, l3, l0)

move(t, l0, l1)

unload(p1, t, l1)

Figure 2.10: A possible decomposition for the initial task network which is a solution to
the HTN planning problem.

2.3 A Learner for Parameterized Hierarchical Task Networks
from Demonstrations

Let us now present an overview of the problem tackled in this thesis: the learning of HTN do-
mains from non-hierarchical demonstration traces given by a tutor. While the next chapters will
focus on specific parts of this system, this overview will help give the reader an understanding
of the interaction of the different parts of our system.

18 Chapter 2. Learning Task Models for Acting in a Robotics Context

2.3.1 Learning Problem
At a high level, we wish to learn HTN domains from a set of demonstrations such that the
learned domains can be efficiently used by an off-the-shelf HTN planner. We consider that
the learned hierarchical structure models advice and not dynamics of the environment. In a
nutshell, we consider that the primitive tasks pre-conditions and effects will accurately reflect
dynamics in the planning world, while the hierarchical structure should provide guidance to
the planner. This specifically means that every planning problem associated with a learned
hierarchical planning domain HL must specify a goal state.

2.3.1.1 Inputs

We consider as learning problem a tuple L = (TP , TI ,MI , D, post).

• TP is a set of primitive tasks, as defined for hierarchical task networks, representing the
primitives of the agent. Each action in TP is completely defined. Its head (name and
parameters) will be used by our learner, while the preconditions and effects are required
to correctly consider the dynamics of our planning environment.

• TI is a set of abstract tasks, representing the initial vocabulary of high level tasks which
we want to learn to decompose.

• MI is a potentially empty initial set of methods. It is used to consider pre-existing
knowledge as a starting point for the learner.

• post is a function that associates with every task t ∈ TI a (possibly empty) goal g. For a
goal g = post(t), the parameters of the predicates in g are included in the parameters of
t. We call this goal the post-conditions of t.

• D is a set of demonstrations. A demonstration is an alternating sequence of states and
tasks, similar to a solution trace, with the difference that the tasks can be either primitive
or abstract. Each demonstration is associated with an instantiation of a task t ∈ TI and
ends in a state sf where t has been successfully achieved (i.e. post(t) ⊆ sf).

The demonstrations are considered optimal and maximally abstract with regard to the initial
task vocabulary and a chosen metric. Therefore, there exists no other demonstration which has
a strictly lower cost. In a case where actions are uniform in cost, one may naturally consider the
total number of primitive actions required to achieve the demonstrated task as the optimality
metric.

Definition 2.18 (Maximally Abstract Demonstration). A maximally abstract demonstration d

with regard to a set of abstract tasks TI is such that no task in t ∈ TI can be used to abstract
a subsequence of d.

Figure 2.11 shows an example of two different maximally abstract demonstration sets on
our simple Logistics-like domain for demonstrating the deliver task. In both cases, the set
of primitive actions TP is the one presented in Figure 2.11a, and the delivery task is always
decomposed in the same manner: the package is recovered from its original location and then
dropped off at the target location.

In the first case (Figure 2.11b), the behaviour is demonstrated using only the primitive
actions, as it is the maximal level of abstraction that can be achieved using TP and T 1

I . In
the second case, the demonstrations make use of the known abstract tasks get and dropoff to

2.3. A Learner for Parameterized Hierarchical Task Networks from
Demonstrations 19

provide a maximally abstract demonstration for the deliver task. Information on how to achieve
these intermediate tasks is provided as two other separate demonstrations.

TP =





move(?t : truck, ?l1 : location, ?l2 : location)
load(?t : truck, ?l : location, ?p : package)
unload(?t : truck, ?l : location, ?p : package)





(a) Initial set of primitive actions.
T 1
I =

{
deliver(?t : truck, ?l : location, ?p : package)

}

D1 =

{
deliver(t1, l3, p1) : 〈s0 → move(t1, l1, l2)→ s1 → load(t1, l2, p1)→ s2

→֒ move(t1, l2, l3)→ s3 → unload(t1, l3, p1)→ s4〉

}

(b) A first set of initial vocabulary with an associated set of demonstrations.

T 2
I =





get(?t : truck, ?l : location, ?p : package)
dropoff(?t : truck, ?l : location, ?p : package)
deliver(?t : truck, ?l : location, ?p : package)





D2 =





deliver(t1, l3, p1) : 〈s0 → get(t1, l2, p1)→ s2 → dropoff(t1, l3, p1)→ s4〉

get(t1, l2, p1) : 〈s0 → move(t1, l1, l2)→ s1 → load(t1, l2, p1)→ s2〉

dropoff(t1, l2, p1) : 〈s2 → move(t1, l2, l3)→ s3 → unload(t1, l3, p1)→ s4〉





(c) A second set of initial vocabulary with an associated set of demonstrations. Note how the demon-
strations make use of the additional abstraction levels to remain maximally abstract.

Figure 2.11: Example of initial task vocabulary and corresponding maximally abstract demon-
stration sets for a deliver task. All the demonstration sets correspond to the same sequence of
primitive actions but are abstracted at different levels. Here, the considered optimality metric
is the number of actions in the plan. Details of states omitted for clarity.

2.3.1.2 Goals

The primary objective of our learner is to be able to produce a hierarchical planning domain
H that is both complete and sound. To formally define these properties, let us first define
Decs(H, tn) the set of all the ground, primitive and totally-ordered (TO) task networks that tn
can be decomposed into with H. We write Decss(H, tn) to denote the same set restricted to a
decomposition starting in state s.

Because a ground primitive TO task network can trivially be converted to a classical plan,
for a given n ∈ Decs(H, tn), with πn the corresponding plan, we will write πn ∈ Decs(H, tn) to
denote the fact that πn is a plan that can be obtained by decomposition. For a task t, we also
write Decs(H, t) as a shorthand for Decs(H, tn) when tn only contains t.

Furthermore, for an instantiation of a task t ∈ TI , we write Pt = (H, s0, t, post(t)) the
planning problem corresponding to decomposing t using H in state s0.

Definition 2.19 (Completeness). We say that a hierarchical planning domain H is complete if
every task can be decomposed in any state:

∀t ∈ TI , Decs(H, t) 6= ∅

20 Chapter 2. Learning Task Models for Acting in a Robotics Context

Definition 2.20 (Soundness). We say that a hierarchical planning domain H is sound if every
decomposition of a task results in a valid plan that achieves its postconditions:

∀t ∈ TI , ∀s0 ∈ S,Pt = (H, s0, t, post(t))
∀π ∈ Decss0(H, t), π is a valid solution to Pt

To learn such a model, considering a learning problem L = (TP , TI ,MI , D) as defined
previously, we want to produce a set of compound tasks TL and a set of methods ML such that
H = (L, TP , TI ∪ TL,MI ∪ML), such that H satisfies these properties.

Note however that the soundness of an HTN must be considered in combination with an
automated planner that exploits it: the hierarchical structure itself may allow generating un-
sound plans, but the planner should be able to filter them out using the actions pre-conditions.
Similarly, a complete model may be so permissive that it does not provide guidance to the
planner, and therefore not be of interest. We can therefore say that the quality of a planning
domain H is tightly coupled with the ability of an automated planner to exploit it to quickly
derive solution plans.

In particular, for any given planner we are aiming at maximizing the efficiency of the planner
for solving a planning problem given H, which is typically measured as the runtime of the
planner. This leads to defining the coverage of domain as the ratio of solved problems by a
given planner under computational limits. Furthermore, we would like the plans generated with
our learned domains to approach the underlying optimality metric in the demonstrations, which
leads to the definition of the quality gap as the ratio between the cost of the plan generated
using our domain and one generated using an optimal oracle.

2.3.2 The HTN Domains Considered in this Thesis

First, let us note that we restrict ourselves to learning totally-ordered (TO) HTNs decomposition
methods. This restriction will allow us to learn the structure and the parameters of an HTN
domain in two separate steps. While these two steps will be presented in more details later in
this chapter, let us simply say that the structure-learning component ignores all parameters.
This would then make it difficult to separate interleaved primitive tasks in our demonstrations
sequences that are actually part of different (intermediate) high-level behaviours. This issue is
not as prevalent in the TO case, as we can assume that such interleaving does not often happen.

Note that whenever the context is clear enough, in the remainder of this document, we will
call a hierarchical planning domain simply an HTN. Because subtasks are always sequentially
ordered in this case, we can provide a simpler graphical representation for an HTN, as presented
in Figure 2.12, in which the order of a method’s subtasks is implicitly represented through their
left to right ordering.

Let us now present an initial intuition about the shape of the task networks that could be
learned and the implications for the learning process. Let us assume that we have a planning
domain with a set of four primitive actions TP = {a, b, c, d} and single demonstrated compound
task t. Figure 2.13 presents several possible networks (figures 2.13b-2.13e) that could be gener-
ated based on two example sequences (figure 2.13a). These four domains are just a handful of
examples among the many possible ones that could be generated.

The first domain (2.13b) allows the choice of any of the four primitive actions {a, b, c, d},
each placed in a specific method. This domain relies on a recursive call to t to repropose the
same choice until the task’s post-conditions are achieved. While this domain allows building
any sequence of actions (it is therefore intrinsically complete) it does not help the agent towards

2.3. A Learner for Parameterized Hierarchical Task Networks from
Demonstrations 21

H =




TP = {a, b, c, d}

TC = {t}

M =





m1 =

(
c1 = t

tn1 = {a ≺ b ≺ c}

)

m2 =

(
c2 = t

tn2 = {a ≺ b ≺ d}

)








(a) HTN definition.

t

m1

ba c

m2

ba d

(b) HTN graphical representation.

Figure 2.12: A simplified graphical representation for an HTN. Parameters, pre-conditions and
effects omitted for clarity.

t→ 〈a, b, c〉 t→ 〈a, b, d〉

(a) Available demonstrations, showing that t was once achieved with the 〈a, b, c〉 action sequence and
once with the 〈a, b, d〉 action sequence. Intermediate states omitted for brevity.

t

m3

c t

m2

b t

m1

a t

m4

d t

m5

(b) Generic domain where the planner might pick any of the primitive actions and rely on the recursive
call to t to continue if needed.

t

m1

ba c

m2

ba d

(c) Domain where each demonstration is fully encoded into a dedicated method.

t

m1

ba t

m2

c

m3

d

(d) Intermediate domain the common 〈a, b〉 sequence is
grouped. It relies on the recursive call to t in m1 to pro-
duce a full sequence.

t

m1

ba ts

m2

c

m3

d

(e) Domain where the 〈a, b〉 sequence is
shared, requiring a new abstract task ts

Figure 2.13: Illustration of the possible structures of the learned domain for a simple learning
task with two demonstration of how to perform a task t. Note that for conciseness the para-
meters and pre-conditions of the task and methods are omitted.

22 Chapter 2. Learning Task Models for Acting in a Robotics Context

a meaningful sequence based on demonstrations.
The second domain (2.13c) takes the opposite approach and records each known trace into

a method. This domain is obviously strongly tied to the demonstration set: it covers only
planning problems where the plan structure matches exactly that of the demonstrations, and
therefore does not exhibit any generalization capabilities.

In between these two extremes, we have the domains (2.13d) and (2.13e) that present differ-
ent options to abstract common subsequences. The former encodes the repeated 〈a, b〉 sequence
in a single method and relies on the recursive call to complete the sequence. The latter delays
the choice between c and d to after the execution of a and b, using a new abstract task ts.

Denoting as Θ the set of possible domains, the objective of a learning system is to find, or
at least approach, the optimal domain H∗ ∈ Θ

H∗ = arg min
H∈Θ

cost(H) (2.1)

where cost(H) is a function that measures the cost of a particular domain and should typically
account for the size of the domain as well as its capacity to solve both demonstrated and unseen
problems.

2.4 Related Work
Let us now review the works relating to our proposed approach. Before focusing on learning
hierarchical models of tasks, we will start with methods for learning skill models in the form of
classical planning operators, only then gradually moving towards hierarchical models, in order
to give the reader an overview of the landscape of learning for automated planning. While
we will focus on hierarchical planning domains, we will extend our review to encompass other
approaches with a hierarchical structure, such as grammars and hierarchical policies.

We will also present work done on Programming by Demonstration (PbD), due to its inclu-
sion in the larger field of Learning from Demonstration (LfD), and work on process mining, given
our focus on learning higher level behaviour from sequences of basic primitives. Finally, we will
also present the work done on generalized planning, highlighting the intersection between this
research domain and that of learning policies, hierarchical planning knowledge and programming
by demonstration.

2.4.1 Learning Action Models
In a robotics system, skills can be learned by the agent. One of the common approaches to
combine these skills to achieve a goal is to use them with a planning system, abstracting them
as planning actions. However, this requires that models of these actions are available, so that
the planner can reason on their pre-conditions and effects. Let us therefore focus on the systems
that learn such models, first focusing on ones that conform closely to the definition of actions in
classical planning (deterministic effects and fully observable environment), before extending it
to broader action types. We present a summary of these model-learning approaches in Table 2.1.

EXPO [Gil94] is one of the first action model learning system, trying to complete the domain
knowledge available to a planner, adding missing pre-conditions or effects to existing planning
operators. It does so by monitoring the real world during plan execution, ensuring that expected
outcomes match the state of the real world.

The OBSERVER system [Wan95], on the other hand, leverages expert-generated solution
traces and practice problems available on a simulator to learn its operators. The global idea is

2.4.
R

elated
W

ork
23

Approach Input Output Obs. Noise ND
EXPO [Gil94] Incomplete action models

Action execution results
Pre-conditions and effects Full ✗ ✗

OBSERVER [Wan95] Expert solution traces
Simulator for executing actions

Pre-conditions and condi-
tional effects

Full ✗ ✗

TRAIL [Ben95] Simulator for executing actions
Oracle for action choice requests

Pre-conditions and probabil-
istic effects

Full1 ✓ ✓

ARMS [YWJ07] Plans with initial and goal states Pre-conditions and effects Partial ✗ ✗

FAMA [AJO19] Partial plans with initial and goal states Pre-conditions and effects Partial ✗ ✗

[Mou+12] Partial and noisy action execution results Pre-conditions and effects Partial ✓ ✗

[OC96]2 Simulator for executing actions Pre-conditions and probabil-
istic effects

Full ✗ ✓

[PZK07] Noisy action execution results Pre-conditions and probabil-
istic effects

Full ✓ ✓

[MAT15] Simulator for executing actions
Oracle for action choice requests

Pre-conditions and probabil-
istic effects

Full ✓ ✓

SAM [JS22] Solution traces Conservative pre-conditions
and effects

Full ✗ ✓

[GJ20]3 Partial solution traces Pre-conditions, effects and
temporal annotations

Partial ✗ ✗

[BG20] Transition graphs between black box states, with edges
labelled with action names

Pre-conditions and effects Partial4 ✓4 ✗

Table 2.1: Summary of the action model learning approaches. Obs. and ND stand Observability and Non-Determinism, respectively.

1 Partial observation of the state features may be considered as noise in this approach.
2 Limited to 0-ary actions and predicates.
3 Temporal planning framework.
4 In extension [Rod+21]

24 Chapter 2. Learning Task Models for Acting in a Robotics Context

to find the difference between pre- and post-states in the expert trajectories, giving an initial
set of pre-conditions and effects, which are then refined through the automated generation of
new (non-expert) trajectories using the simulator.

The learner integrated in the TRAIL system [Ben95] attempts to learn pre-conditions for
slightly different action types, called teleo-operators, and focuses on reactive models, rather
than planning ones. However, these teleo-operators are similar enough to planning operators,
for model-learning purposes, to be included here. This learner takes an Inductive Logic Pro-
gramming (ILP)-based approach in order to handle noise in the demonstration data, which also
allows the learner to consider negative examples (i.e. examples of failed actions) to learn more
efficiently. The example used as inputs are either sequences of states and actions similar to
solution traces, or simple tuples of the form (si, ai, si+1), leveraging both random exploration
and tutor guidance. These examples are then converted into a set of background facts, repres-
enting what holds in a given state, and a set of foreground facts, which represents positive and
negative examples. It learns clauses that can be used to determine whether a conjunction of
literals is a pre-condition or an effect for an operator.

The ARMS system [YWJ07] relaxes the full observability assumption of the previous ap-
proaches, allowing incomplete pre- and post-states in the given solution traces. It uses a MAX-
SAT-based approach, adding weighted constraints to encode that a literal precedes or follows
a given action. It leverages the fact that literals relevant to the pre-conditions (respectively
effects) of an action are likely to appear in a pre-state (respectively a post-state) more often
than irrelevant ones. A larger weight will be attributed to frequently encountered constraints,
and the MAX-SAT solver will therefore favour them when solving the constraint system. The
set of satisfied constraints at the end of the procedure can then be used to extract the pre-
conditions and effects: if a precedence (resp. succession) constraint is satisfied, then the literal
is a pre-condition (resp. effect).

These observability constraints are further relaxed in the FAMA [AJO19] system, which
allows partial observability not only in the states of the solution traces, but also allows missing
actions. However, no noise is tolerated in the traces. This approach uses planning to build
the planning domain, compiling the learning task into a planning one. This new planning task
replaces the original actions set with three new ones:

• A set to program actions, adding preconditions or effects to a given original action.

• One to apply a programmed action in the world, considering the programmed pre-
conditions and effects.

• A set of validating actions, to ensure that the programmed actions are able to produce
the example traces.

This planning problem is then solved, and the action model is extracted from the solution, using
the programmed actions.

The work by Mourao et al. [Mou+12] handles both noise and partial observability through a
two-part approach: first, an implicit action model is learnt, and then explicit rules are extracted
from it. The implicit models are learned using classifiers which learn whether an action a changes
a literal when applied in a given context, and are used to learn independent rules for each effect
of a. These independent rules are then combined to end up with a single rule for each action.

Extending the scope from deterministic planning domains to non-deterministic ones, several
other approaches can be cited, such as the work by Oates and Cohen [OC96] who propose an
algorithm to learn probabilistic action pre-conditions and effects models. It relies on random

2.4. Related Work 25

exploration of the state space, detecting dependencies between pre- and post-states literals.
However, the presented domain does not have any variables (only 0-ary predicates and actions),
which, coupled with the random exploration procedure, questions whether this approach can
be extended to more complex domains.

The approach by Pasula, Zettlemoyer and Kaelbling [PZK07] learns much richer probabilistic
models, allowing the use of parameters in the operators’ descriptions. This system is robust
to noise but requires a fully observable environment. The algorithm uses a greedy local search
algorithm to find the action model that best fits the provided examples, using a penalty on
model complexity to avoid overfitting. It is able to learn new predicates, leveraging the use of
deictic references to limit the space of possible models. Deictic references are variables that are
uniquely defined in terms of predicates parameterized with other variables.

To improve the sample efficiency of model learning algorithms, some approaches leverage
active tutor requests to reduce the search space. One such approach is the one by Martínez,
Alenyà and Torras [MAT15]. It uses the same model representation as the previously presented
work [PZK07], but integrates it within the Relational Reinforcement Learning (RRL) approach
REX [LTK12]. The tutor’s burden is limited through the use of autonomous exploration and
the use of an excuses [Goe+10] framework to determine which part of the model is most likely
in need of correction.

The SAM algorithm [JLS21] focuses on the safety properties of the learned models in a
deterministic case. It does so by constructing the action model through an iterative restriction
of the pre-conditions and an iterative construction of the effects, which ensures that the learned
action model is more restrictive than the real one. This algorithm was later extended to deal
with non-deterministic domains [JS22], bounding the probability of different effects for any
action.

Model learning is not limited to classical planning, as the approach by Garrido and Jimenez
[GJ20] uses Constraint Programming (CP) to learn temporal action models, allowing to use
both (partial) observations and additional expert knowledge easily.

While all the approaches presented up to this point focus on learning action models from
symbolic data, research has been done on trying to learn these models without requiring to
first extract this symbolic representation from the states. The approach by Bonet and Geffner
[BG20] relies on graphs representing the structure of the state space (i.e. the transitions from
one state to another using an action), without any information on the content of the states, using
a SAT approach. This approach is able to learn models in several simple International Planning
Competition (IPC) domains, and was later improved [Rod+21] using Answer Set Programming
(ASP) to obtain better models at a lower computational cost.

2.4.2 Learning Hierarchical Models

Moving away from classical planning action models, we now focus on hierarchical models. This
section will not focus solely on planning domains, but will encompass other classes of hierarchical
models as well.

2.4.2.1 Macro Operators

While not hierarchical models per se, macro operators can be seen as sequences of planning
operators abstracted as single higher level operator in order to provide shortcuts through the
search space to speed up planning. Therefore, they also leverage the concept of abstraction that

26 Chapter 2. Learning Task Models for Acting in a Robotics Context

we are looking for in our compound tasks. For this reason, we will present a brief overview of
the work done on learning such macro operators.

We can find early mentions of this idea in the work of Fikes, Hart and Nilsson [FHN72],
motivated by the idea of reusing plans generated using STRIPS in the context of controlling a
mobile robot. As this system may learn a very large number of operators, which may actually
hamper the search of the planning system, the MORRIS [Min85] learner limits the maximal
number of macro operators that can be memorized at any given time. Furthermore, this work
was further extended [Moo88] to support partial ordering of actions in a macro operator.

While the previously presented methods learn macro operators leveraging domain and/or
planner knowledge, a more general approach by Newton et al. [New+07] uses genetic algorithms
to learn such operators from solution traces. MUM [CVM14] employs a different technique to
learn similar macro operators with much lower learning times, guiding its search using outer
entanglements, that is causal relations between planning operators and initial/goal state pre-
dicates. Pushing the reduction of learning times further, the OMA learner [CVM15] does away
with the online training phase and quickly extracts macro operators from domain and problem
couples before using a planner. Its performance remains competitive with offline approaches.

2.4.2.2 Hierarchical Planning Domains

In order to give an overview of the different approaches for learning HTN domains, and to
situate our proposed approach in this context, we present a summary of the characteristics of
the main approaches in Table 2.2.

Early Works We can find the idea of learning hierarchical domain knowledge as far back
as the work on the X-Learn system [RT97]. This system learns from exercises, i.e. problems
of increasing difficulty, generalizing its solutions to extract d-rules relating goals, subgoals and
conditions. In a d-rule, a top level goal and a set of conditions that determine its applicability
in a given state are associated with a (possibly recursive) totally ordered decomposition into
subgoals. This is similar to the structure of HTNs, but the use of goals instead of tasks pushes
it closer to Hierarchical Goal Networks (HGNs)1[Shi+12].

The work by Nejati, Langley and Konik [NLK06] introduces the idea of leveraging goal
regression2, to learn hierarchical domain knowledge in the form of teleoreactive logic programs
from demonstration traces. This approach uses a different terminology than our HTN formalism:
in this framework, primitive skills represent sequences of actions, with pre-conditions and effects,
abstracting over lower level actions. They can be seen as primitive actions in our formalism.
High-level skills are similar to methods in HTNs, but the head of a method is the goal achieved
by it rather than the task achieved, which also pushes this approach towards HGNs.

Using goal regression, the learner tries to chain skills together to explain and generalize the
demonstrated traces, iteratively achieving (sub)goals and outstanding skill pre-conditions. This
approach heavily relies on the decomposition structure bias given by the set of concepts which
are given as input to the learning problem, thus requiring non-negligible domain expertise,
similar to giving annotated tasks as input in other approaches.

1For an overview of HGNs, see Background A on page 30.
2In a nutshell, goal regression is the act of finding an action a that achieves part of a goal g, then finding

another action a
′ that achieves the remaining parts of g as well as the preconditions of a, and repeating this

process until nothing is left to achieve.

2.4.
R

elated
W

ork
27

Output HTN

Approach Input New Tasks Lifted
Method

Pre-Conditions Noise Observability Non-Determinism
[NLK06] Solution traces

Goals
✗ ✓ ✓ ✗ Full ✗

HTN-Maker [HMK08] Solution traces
Annotated abstract tasks

✗ ✓ ✓ ✗ Full ✓1

HTNLearn [ZMY14] Partial decomposition trees
Annotated abstract tasks

✗ ✓ ✓ ✗ Partial ✗

HierAMLSI [GPF22] Random Walks ✗ ✓ ✓ ✓ Partial ✗

Word2HTN [GMK18] Solution traces ~2 ✓ ✓ ✗ Full ✗

[LJ16] PDDL domain & instance ~2 ✓ ✓ ✗ – ✗

[SPF17] Solution traces ~3 ✓ ✓ ✓ Partial ✗

pHTN [Li+14] Solution traces ✓ ✗ ✗ ✗ Full ✗

CircuitHTN [Che+21] Solution traces ✓ ✗ ✗ ✗ Full ✗

CC-HTN [HS16] Solution traces ✓ ✗ ✗ ✗ Full ✗

Ours Solution traces
Top level task with effects

✓ ✓ ✗ ✗ Full ✗

Table 2.2: Summary of the main HTN learning approaches and comparison with our proposed approach.

1 In extended version [HKM09].
2 Limited to single predicate goals.
3 Handling of recursion and parameterization scaling unclear.

28 Chapter 2. Learning Task Models for Acting in a Robotics Context

Learning Parameterized HTNs Let us now present approaches that learn HTN structures
closer to our presented formalism, starting with approaches that learn HTNs where tasks,
methods and actions are parameterized using variables.

The HTN-Maker [HMK08] algorithm learns HTNs from solution traces and tasks annot-
ated with pre- and post-conditions, leveraging again goal regression. These annotated tasks
constrain the possible HTN structures that can be learned, similarly to concepts in the previ-
ously presented approach, as no new abstract tasks will be generated by the algorithm. The
HTN-Maker learner consider subsequences in the set of input plans, and traverse each of these
subsequences from the end, detecting whenever a task t’s post-conditions are achieved in a state
sf that comes after a state si where t’s pre-conditions are holding. This subsequence can then be
considered as a method that achieves t in the context of the state si. One of the innovations pro-
posed by this algorithm is to not only use goal regression through the actions in a plan trace,
but also through the set of previously learned methods. This regression through previously
learned methods is made possible by keeping track of the encountered method instantiations,
and reusing them through a recursive call to the parent task of such an instantiation.

One downside is that the resulting HTN structures end up highly recursive, which is hard to
use for automated planners in practice, as shown for example by Fine-Morris et al. [Fin+22]. The
HTN recursivity is even more pronounced in the extension of HTN-Maker to nondeterministic
domains [HKM09], as a right recursive structure is enforced to handle the potential nondetermin-
istic effects of the actions. A further extension of this algorithm has seen it coupled it with
Reinforcement Learning (RL) [HKM10] to determine quality values for each method in a given
state, with the intent of finding a way to generate not only valid plans, but also good plans.
This notion of plan quality can be related to encoding user preferences in HTNs, as done in
other works dedicated to learning probabilistic HTNs (pHTNs) [Che+21; Li+14].

With the HTNLearn algorithm, Zhuo, Muñoz-Avila and Yang [ZMY14] propose an ap-
proach that is able to learn both the HTN (its structure and method pre-conditions) as well as
the primitive action models, using a weighted MAX-SAT approach similar to the one presented
in ARMS [YWJ07]. It extends the author’s own work on the HTN-Learner [Zhu+09] algorithm
which was limited to learning method preconditions and action models.

This approach takes as input solution traces and annotated tasks, as does HTN-Maker,
but also partial decomposition trees, which requires knowing at least part of the hierarchical
structure to generate the input data, requiring more work than flat solution traces. While still
focusing on deterministic domains, this approach is able to handle partially observable states in
the demonstration traces. The learning procedure is mapped to a maximum satisfiability (MAX-
SAT) problem, where the partial decomposition trees impose hard constraints on the structure of
the resulting HTN, and the demonstration traces provide soft constraints. These soft constraints
encode facts such as “a predicate that precedes a given action may be a precondition of this
action”. If this precedence is observed often, this soft constraint will be given a larger weight,
making it more important to satisfy than other, less frequently observed, similar constraints,
which allows the algorithm to handle partial observability.

The HierAMLSI approach [GPF22] also requires knowing all the abstract tasks in the hier-
archy, but does not require their pre- or post-conditions. However, they require an oracle able
to output a plan corresponding to a decomposition of the task if any exists, randomly sampling
tasks to decompose. This oracle, however, may output partial and noisy sequences. This ap-
proach then learns an automaton modelling state transitions (induced by both primitive and
non-primitive tasks) from which methods can be extracted. The set of methods is built from an
initial set of methods with primitive subtasks only, iteratively trying to integrate the hierarch-

2.4. Related Work 29

ical information in the automaton to efficiently minimize the final set of methods. The system
then learns the action models as well as the method preconditions using the AMLSI approach
[GPF20].

Doing away with the requirement for annotated tasks as input, the Word2HTN system
[GMK18] uses word embeddings, from the field of Natural Language Processing (NLP), and more
precisely the Word2Vec [Mik+13] system, generating vectors that allow situating predicates
and actions in a latent space. Clustering these atoms according to their distance in this latent
space allows finding bridge atoms, which allows determining subgoals that must be achieved
to achieve a task. Doing this clustering hierarchically generates decompositions of goals into
subgoals, putting the learned models more towards the HGN formalism [Shi+12]. The structures
elicited by this approach are however highly constrained by the size of the clusters given as an
input parameter, leading to methods which always decompose into two subtasks in the author’s
paper, which may limit the quality of learned HTNs domains. A very similar approach has
been applied to a simplified Minecraft-based domain [Ngu+17], moving the learning of HTNs
from domains specific to the planning community to ones inspired from video games, which are
a common real world application of HTNs [KBK07].

To further reduce the need for human annotated tasks given as input, the learner by Segura-
Muros, Pérez and Fernández-Olivares [SPF17] leverages process mining1 techniques, specifically
the approach by Leemans, Fahland and van der Aalst [LFvdA13a]. This algorithm uses a process
miner to generate a process tree that is then converted to an HTN structure. Parameters are
then propagated upwards from the primitive task up the hierarchy. This approach does not
however exploit knowledge of the top level task achieved by a given trace, and it is unclear how
the argument propagation works in case of recursive tasks and how well it scales to larger HTN
domains.

Focusing on learning domain with numerical state variable, the T2N [Fin+22] algorithm
pushes further the work done on Word2HTN [GMK18]. Instead of learning binary methods,
landmark goals are extracted using a similar technique, and then methods are learned to de-
compose each landmark, either with a structure similar to HTN-Maker or as flat sequences
of primitives. Multiple method structures are compared, and the results show that purely
right-recursive method perform poorly, showing the limits of HTN-Maker-like methods.

The approach presented by Lotinac and Jonsson [LJ16] learns HTNs from PDDL domains
and a single associated planning problem, without the need for solution examples nor additional
knowledge about the structure of the domain. It uses invariant graphs, which are, broadly, lifted
transition graphs between mutually exclusive fluents, to generate tasks and methods to achieve
some of these fluents. While this method produces solid results on some domains, enough for
the resulting HTNs to be included as benchmark instances in the 2020 IPC [BHB21], the quality
of the resulting hierarchies is highly dependent on the structure of the invariant graphs of a
given domain. Furthermore, the resulting domains do not feel natural compared to one written
by a human expert and are hard to interpret.

Learning Grounded HTNs While the previously presented approaches learn parameterized
HTNs, some approaches only learn grounded HTNs, that is HTNs with no variable parameters.

Li et al. [Li+14] propose learning probabilistic HTNs (pHTNs), which are used to consider
user preferences, as a probabilistic Context Free Grammar (CFG). The algorithm works first by
finding the structure of the grammar with a crude version of pattern mining, and then applies

1Process mining [Van12] is the extraction of data from real world processes, often through the analysis of
event logs.

30 Chapter 2. Learning Task Models for Acting in a Robotics Context

expectation maximization to learn the probability associated with each method. This approach,
however suffers from a limitation inherent to grounded HTNs: it requires manually selecting
relevant parameters in the ground actions to avoid an exponential explosion of the number of
actions. Furthermore, it limits the HTN structures to be similar to Chomsky Normal Form
(CNF) grammars in order to efficiently extract the most probable parse of a sentence as part of
the learning procedure. These structural limitations will generate hard to understand models
and may render the learned HTN inefficient when used with an automated planner.

The CircuitHTN [Che+21] system learns similar grounded pHTN. However, the approach
used is based around the fact that demonstrations can be used to build action graphs which
represent the possible paths through all the demonstration set. These action graphs are then
considered as an electrical circuit, with each action represented by a resistance, and the problem
of learning the HTN is cast as reducing all the resistances in the network to a single equivalent
resistance. According to the authors’ evaluation, on the considered domains, their method
learns smaller and more correct domains than the approach by Li et al. [Li+14].

The CC-HTN approach [HS16] also relies on the structure of action transitions to learn
grounded HTNs, finding chains and cliques in the graph, allowing a partial order of tasks. While
this algorithm does not rely on specific symbolic representations for states and actions, subgoals
reached in any given state must be known in the task graph, and obtaining the grounded actions
require work similar to the other approaches to select relevant parameters.

Background A: Hierarchical Goal Networks
While HTNs is the most used framework for planning, Hierarchical Goal Networks
(HGNs) [Shi+12] is another possibility. Contrary to HTNs, methods are defined as with
subgoals instead of subtasks. A method m is then defined with:

• A head head(m), similar to that of an action.

• A sequence of subgoals sub(m) = 〈g1, . . . , gk〉, with each g a set of literals.

• Pre-conditions, as in the HTN case.

• Post-conditions, defined as post(m) = gk.

Method or action instances are said relevant for a (sub-)goal g if their postconditions or
effects entail at least one literal in g. Instead of classical planning method chaining or
HTN decomposition rules, methods or actions can only be applied if they are relevant to
the currently solved goal.

2.4.3 Other Hierarchical Models

Besides HTN domains (and HTN-like models), other approaches share some characteristics, in
their structure, their goal or both.

2.4.3.1 Grammar Inference

Due to their similarities with HTNs [EHN94], it is not surprising that grammar learning ap-
proaches are of interest. While most of this work is done in the context of NLP, where the
amount of data available is vastly superior to what is available in the context of robotics,
grammars are also used in other contexts, such as goal recognition [GG11] and plan validation

2.4. Related Work 31

[BMC19]. These are contexts where planning-based approaches are also used [Höl+18; SRU16].
The use of planning techniques in these contexts where grammars are used, as well as the use
of grammar learning for learning HTNs [Li+14] and the similarity between HTNs and formal
grammars highlights the relevance of the field of grammar inference for HTN learning.

As it has been shown that even relatively simple grammars (in the Chomsky hierarchy)
cannot be learned from positive examples alone [AK95; Gol67], using negative examples for
grammar inference seems natural. However, it is more difficult to obtain negative examples
rather than positive examples, in the context of NLP, as there exists large bodies of correct
text that are readily available, but no such amount of data is available for incorrect text. This
difficulty to leverage negative example is visible in the survey by D’Ulizia, Ferri and Grifoni
[DFG11], where eleven out of the fourteen listed approaches rely on positive examples only.
Therefore, some approaches have leveraged a simplicity bias to learn grammars from positive
examples only, leveraging the idea that between multiple possible grammars, the simplest one
that is able to generate the target language should be preferred. Among such approaches, we can
cite the work of Grünwald [Grü96] and the GRIDS algorithm [LS00], which use a metric based
on the Minimum Description Length (MDL) principle coupled with a local search mechanism.
The work by Sapkota, Bryant and Sprague [SBS12] applies the e-GRIDS algorithm [Pet+04] to
a real world Domain Specific Language (DSL) to generate the corresponding grammar

While the previously cited works learn Context Free Grammars (CFGs), more recent ap-
proaches focus on Combinatory Categorial Grammar (CCG), a more expressive class of gram-
mars, which have been used in the context of plan and goal recognition [GG11]. In this research
avenue, we can cite the GENLEX algorithm [ZC05] which learns probabilistic CCGs (pCCGs)
in the context of matching sentences and logical meaning. Learning is done by alternating
structure hypothesis, to generate grammatical categories, and parameter estimation to assign
probabilities to these categories. Bisk and Hockenmaier [BH12] propose another approach for
pCCG induction, but they leverage the availability of well-defined atomic categories in the con-
text NLP and tagged sentences to learn complex categories, following this grammar learning
with Expectation Maximization (EM) parameter estimation. It should be noted that this struc-
ture hypothesis followed with EM parameter estimation is used similarly for learning HTNs as
probabilistic CFGs (pCFGs) [Li+14].

More recently, the LEXlearn family of approaches [GK18; KOG19] propose to learn pCCGs
specifically in the context of plan recognition. The original approach [GK18] used a structurally
restricted exhaustive generation of complex categories from plan examples, in order to avoid
overfitting grammars, estimating the parameters using gradient ascent. A more recent version,
LEXgreedy [KOG19], uses very simple pattern mining for finding frequent sequences of actions
in order to extract the grammar’s categories. This is similar to the work by Li et al. [Li+14].
This pattern mining relaxes the necessary structural constraints put on the learned grammar
and allows the approach to scale to longer plan traces.

2.4.3.2 Behaviour Trees

Let us now turn our attention to Behaviour Trees (BTs), a kind of transparent hierarchical policy.
Contrary to HTNs, they are providing a reactive way to use skills, and would therefore be part
of the acting component in the architecture of our deliberate actor, lacking the deliberation
capabilities intrinsic to planning models. While BTs are modular and human-understandable,
it is still a difficult task to design a good BT for an agent, hence why several approaches have
been developed for learning or synthesizing them automatically.

Because BTs share a tree-like structure with HTNs, we include techniques for their acquisi-

32 Chapter 2. Learning Task Models for Acting in a Robotics Context

tions in this survey section. These similarities between HTNs and BTs have been noted before in
the literature [RGK17; RW15], with work going as far as combining both approaches [NMB18],
using BTs as the primitive actions of an HTN.

Genetic Programming (GP) techniques are commonly used for learning these structures,
starting with the work of Perez et al. [Per+11] using Grammatical Evolution (GE), which uses
a hand-designed CFG grammar to constrain the evolution of the individuals during the search,
to learn BTs controlling a video game agent. Their results show particularly good reactive
behaviour encoding, however the authors note that long-term decision capabilities are better
handled by planning systems. Other approaches also use GP algorithms, such as the work by
Colledanchise and Ögren [CÖ18] and Zhang et al. [Zha+18]. The first approach [CÖ18] uses a
combination of greedy modifications of the BTs and GP-based evolution to learn more efficiently,
and provides some safety guarantees due to the way BTs are composed together during learning.
The second approach [Zha+18] focuses on the constraints used to learn BT, proposing to add
dynamic constraints on the structure of the learned BTs, contrasting with the static constraints
used in the previously highlighted approaches. These dynamic constraints are generated by
identifying and preserving frequent subtrees in the population, following the rationale that
these subtrees must encode behaviour that has a beneficial effect on an individual’s fitness, and
thus should help the search converge to a good solution more efficiently.

Approaches based on the Learning from Demonstration (LfD) paradigm have also been
used for the learning of BTs, such as the BT-Espresso algorithm [Fre+19]. This algorithm
first converts the demonstrations into decision trees using the C4.5 algorithm [Qui93] to learn
decision trees from teacher demonstrations, before converting them into BTs.

Aside from learning to automatically acquire BTs, synthesis approaches have also been
proposed. One of these approach uses Linear Temporal Logic (LTL) [CMÖ17] to specify the
desired behaviour that the policy has to achieve, before synthesizing a BT conforming to this
specification. Another approach uses automated planning [CAÖ16; RGK17] to build the tree:
starting with an empty tree, each time we cannot achieve a goal, the tree structure is updated
from the plans in order to handle this situation directly in the BT next time.

2.4.4 Generalized Planning

Following the definitions given in recent works [HD11; JSJ19; Lot17; SIZ11], we consider gen-
eralized planning as the problem of finding plans that work for several instances. This notion is
generic and does not rely on a specific planning framework, and we propose to present it using
an adapted version of Hu and De Giacomo [HD11]’s formalism. Our goal is here to give the
reader an intuition of the generalized planning problem, with a focus on making a link with
the planning formalisms that we use, rather than developing a complete generalized planning
framework.

We first need to consider an agent with a set of actions and observation A = (Act,Obs)
where Act is the set of actions our agent can perform and Obs is the set of observations it can
make. An agent’s plan is defined as p : Obs ×Act ∪ {stop}, a function that maps observations
to actions, where stop stands for plan termination.

We also consider a deterministic environment E = (Events,S , s0 , δ) in which the agent’s
actions are executed such that:

• Events is the set of all events in the environment.

• S is the set of possible spaces in the environment.

2.4. Related Work 33

• s0 ∈ S is the initial state of the environment.

• δ = S × Events→ S is the (partial) transition function.

To execute the agent’s plan in the environment, we define two functions to determine how the
agent’s actions and observations are related to the environment’s events and state respectively:

• obs : S → Obs determines how much of the environment the agent can observe.

• exec : Acts → Events maps the agent’s actions to the events they cause in the environment.

These functions allow handling partial observability through the obs function, but also non-
determinism. Indeed, even if the environment itself is deterministic, the obs mapping may hide
some context, which may in turn make the transition appear non-deterministic to the agent
[Sri10].

A basic planning problem is then defined as a tuple Pb = (A, E , obs, exec, G), where G is a
goal, i.e. a partial state specification1. The agent has to find a solution plan so that the last
state after executing this plan fulfils G.

A generalized planning problem is then a set of basic planning problems Pg = {P1
b ,P

2
b , . . . }

where the P i
b share the same agent. The goal of this generalized planning problem is then to

find a plan pg that is a solution for every P i
b ∈ Pg.

To give an intuition of what this means, we apply this definition to the case of classical
planning problems and domains. Because of the absence of exogenous events and in the case
of full observability, we have Act = Events = A, the set of planning actions, and Obs = S, our
classical state space. We can therefore roughly consider that the agent is a given domain, and
that the environment is a planning instance2, with it its initial state and goal. A generalized
plan pg is therefore, in this case, one that can solve every classical planning instance associated
with a given domain. In this sense, a classical planner is a generalized plan, albeit an inefficient
one.

Given this definition of a generalized plan, we can easily notice that it encompasses many
approaches, with different levels of constraint imposed on the next action to choose at any given
time. On one end of the spectrum, we have deterministic policies and computer programs,
fully specifying the next action, while on the other end, we have classical planners, which do
not specify the actions to apply at all. In between these extremes, we find partially specified
solutions, requiring a search mechanism to produce a solution, but constraining the search space
with domain specific knowledge. It is easy to notice that HTN domains (with a hierarchical
planner) therefore can be seen as generalized plans. We will therefore present an overview of
the approaches that exist to obtain these generalized plans, especially in relation with our goal
of automatically acquiring domain knowledge. We refer the reader to the survey by Jiménez,
Segovia-Aguas and Jonsson [JSJ19] for a more complete overview.

In the fully-specified category, we can cite generalized policies [MG04], which are rule sets
extracted from demonstrated instances. The authors note that their approach can learn com-
plete plans given enough training instances, as it does an exhaustive search over the possible
rule sets, but tends to not find optimal solution. Furthermore, the exhaustive search limit the
scalability of the approach. Another fully-specified solution learns features and abstract actions
before synthesizing a policy [BFG19].

1The original formalism [HD11] provides a more general definition of a goal, not required for our presentation
purpose.

2To conform to the definition, the environment would need to be supplemented with the transition function.
This would, however, make the equivalence less intuitive, defeating the purpose of this paragraph.

34 Chapter 2. Learning Task Models for Acting in a Robotics Context

Moving away from learning and towards synthesis, we can note the planning programs ap-
proach [JJ15]. Here, classical planning domains and sets of instances are compiled to program-
like constructs with control-flow operators and procedures. This approach is a good way to
understand how Programming by Demonstration (PbD) can also find its place in the context
of generalized planning.

We also note that RL-based policies also fit in this context, especially considering the recent
advances using graph neural networks to apply deep learning techniques to symbolic domains
[KS20; SBG22]. The automatic acquisition of BTs, presented earlier, can also be considered
as solving a generalized planning problem, as do planning techniques dealing with multiple
contingencies, such as conformant and contingent planning.

Finally, let us note that HTN learning has already been considered in the framework of
generalized learning: in his thesis, Lotinac [Lot17] argues that HTNs are used to reduce the
complexity of the search space, and thus permits to reusing the same knowledge to solve prob-
lems that would be too difficult to solve using only classical planning. The learning approach
used by the author is the invariant graphs-based one [LJ16] presented earlier.

2.4.5 Other Relevant Approaches

2.4.5.1 Programming by Example

Another approach that relates to our goal is that of Programming by Demonstration (PbD),
where the goal is to obtain a computer program from a set of user-given examples. Real world
examples can be found in tools such as Microsoft Excel’s FlashFill, which provides automated
text completion after typing a few examples of the desired output.

As mentioned in the section on generalized planning, programs are similar to policies, and are
therefore more situated in the acting module of our actor rather the planning one. Nonetheless,
we mention these approaches here due to the fact that they potentially have to handle different
abstraction levels and to compose basic primitives.

Most PbD approaches use techniques to reduce the search-space to something manageable:
in most cases, it uses some form of templating or Domain Specific Language (DSL), which
can be seen as similar to giving annotated abstract tasks in approaches such as HTN-Maker
[HMK08] and HTNLearn [ZMY14] or selecting action parameters for groundings [Che+21;
Li+14]. All these techniques therefore require non-negligible effort from a domain expert before
programs can be learned.

A well-known approach in programming by demonstration is the SKETCH [Sol09] algorithm.
It uses sketches, a form of program with boolean and integer holes, written in a C-like language
as templates to constrain the space of possible programs. From a sketch and set of input/output
examples, the algorithm generates an equivalent set of constraints, such that solving the set of
constraints is equivalent to filling the holes in the sketch. It then calls a validating oracle to
check whether the synthesized program is valid for every possible input, which must returns
a counterexample if this is not the case. While the approach works well, it has only been
tested on low level tasks and obviously requires both work from a non-expert tutor, providing
demonstrations and a domain expert to provide the sketches.

The OGIS [Jha+10] system is similar: it also requires input/output examples (in the form of
queries to an oracle) and a validation oracle to determine if a program is correct or not. However,
instead of sketches, the program uses a library of base components, that can be assembled into
a program by solving an SMT problem. This system has similar requirements as the previous
one: it requires demonstrations from a non-expert user as well as input from a domain expert,

2.5. A Multi-Stage Iterative Learning Procedure 35

choosing which components can be considered by the algorithm.

2.4.5.2 Process Mining

Process mining is a field of research mainly focused on discovering, monitoring and improving
processes from event logs [Van12], where events may be at different abstraction levels. This
area of research is mainly focused on real business processes, with the intention of extracting
actionable insights for human analysts.

In this research field, process discovery focuses on extracting new processes from event logs,
often in a format such as Petri nets for earlier works [Van12] or Business Process Model and
Notation (BPMN) [CT12] for more recent works [vZel+21]. Another representation for process
models is that of process trees [LFvdA13b], which are very similar to BTs. Improving processes
is very similar, but starts with a model instead of building one from scratch. Monitoring of
processes is used to assess the conformance to actual processes to a model, trying to determine
the deviation from this model. This part is less relevant with regard to our goal of learning
HTNs.

While processes are more rigid models than HTNs, being closer to policies, extracting them
from event logs aligns with our goal of learning HTNs from demonstrations. A recent survey
[Aug+19] highlights that most process mining algorithm have a focus on handling concurrent
subtasks, which is less relevant with regard to our learning goal, given that we restrict ourselves
to totally-ordered HTN formalism. Furthermore, abstraction extraction is still relatively recent
and mostly relies on domain knowledge given by an expert [vZel+21]. Interestingly, we can
observe that among the approaches that use process trees as a representation, evolutionary
algorithms are highly represented [Aug+19].

Finally, it should be noted that most of these algorithms have a different focus than the
work we present in this thesis:

• Recent approaches focus on handling very large event logs, which is antithetic to our goal
of learning from sparse demonstrations.

• In most cases, these models are created to be used as a tool for human analysis, to obtain
insights on some given process. Therefore, models do not have to be complete, Leemans,
Fahland and Aalst [LFA14] citing models that cover 80% of the data while being only 20%
of the true model. While this is good for process analysis, providing high level insights,
this is not ideal for models used for planning.

• They do not deal with symbolic task and action parameters as is done in the HTN frame-
work.

2.5 A Multi-Stage Iterative Learning Procedure
Let us now present the main components and ideas behind our proposed learning procedure to
give the reader a better understanding of the interplay between the different components.

Algorithm 2.1 presents the base idea for the search. We first start from a base domain,
either given as input, or a basic one automatically generated, which could be as simple as a
useless domain without any method, unable to match any demonstration. We then generate
the neighbouring domain structures, and evaluate them to find the best one. This process is
repeated while the quality of the domain improves. Finally, we learn the parameters for the
best HTN structure.

36 Chapter 2. Learning Task Models for Acting in a Robotics Context

Algorithm 2.1 HTN Search - High-Level Process
1: H∗ ← Generate Base Domain
2: while Quality(H∗) improves do
3: Θc ← Gen Candidate Domain Structures(H∗, D)
4: H∗ ← Find Best Domain(Θc ∪ {H

∗})
5: H∗ ← Extract Domain Parameters(H∗, D)

While most HTN-learning approaches learn structure and parameters simultaneously, one
can view approaches that learn grounded HTNs [Che+21; HS16; Li+14] as learning only the
structure of the HTNs, albeit with a larger number of actions. Furthermore, as cited earlier,
one approach leveraging process mining techniques [SPF17], learns the structure of the HTNs
and then adds parameters. Similarly to this work, this separation allows our work to draw on
insights from other research domains, namely that of grammar learning and process mining.
One key difference, however, is that our approach propose a much more comprehensive method
for adding parameters to the learned HTN structure.

We now turn our attention to each of the steps of this process, summarizing them before
going into more details in the next chapters.

HTN Structure Learning Because of the size of the space of structurally valid HTNs, the
candidate generation should skew toward relevant structures while still being able to escape
local optima.

To this end, we leverage techniques from pattern mining [ABH14] to abstract frequently
co-occurring behaviours that can be used as subtasks to bootstrap the candidate generation,
especially using an adapted version of the HTN-Maker algorithm [HMK08].

HTN Parameters Learning In order to parameterize the HTN structure resulting from the
previous stage, a straightforward intuition is that parameters can be propagated through the
hierarchy both from the primitive tasks and the demonstrated ones. However, it is easy to see
that most of these naively propagated parameters will actually not propagate much information,
neither horizontally across the methods’ subtasks nor vertically across the tasks. Therefore, we
propose a MAX-SMT-based approach to try and unify parameters to improve the situation.

Evaluating Candidate HTN Domains While the most natural way to evaluate the quality
of a given HTN would be to evaluate its planning capabilities, and is indeed one of the metric
that will be used to evaluate the global approach, it is prohibitively expensive to run during the
structure phase search. We will therefore use a surrogate metric based on the Minimum De-
scription Length (MDL) principle, which is easy to express given the similarities between HTNs
and CFGs. Therefore, we will be able to search towards efficient domains able to reproduce the
demonstrated behaviours for a relatively low computational cost.

Chapter 3

Learning Hierarchical Task Networks
Structure from Demonstrations

Contents

3.1 Introduction . 37
3.2 Generating Neighbours of HTN Structures . 39

3.2.1 Goal Regression without Explicit Goals 40
3.2.1.1 The HTN-Maker Algorithm 40
3.2.1.2 HTN-Maker Without Arguments: Simplifying the Original Al-

gorithm . 43
3.2.2 Frequent Pattern Mining for Neighbour Generation 46

3.2.2.1 The Considered Patterns . 47
3.2.2.2 Substituting Patterns in Demonstrations and Extracting Neigh-

bours . 48
3.2.2.3 Building a Set of Compressing Patterns 49
3.2.2.4 Searching for the Best Abstraction Set 50

3.2.3 Simplifying a Candidate Structure . 51
3.3 Evaluating Candidate Models . 53

3.3.1 The MDL Principle for HTN Structures Evaluation 53
3.3.2 Obtaining Decomposition Trees from HTN Structures and Action Se-

quences. 58
3.4 The Complete Structure Search Algorithm . 61
3.5 Conclusion . 62

3.1 Introduction
As was presented earlier in Chapter 2, Section 2.3, our proposed approach splits the learning of
the HTNs domains into two steps, first learning the structure and then the parameters. This
chapter will focus on the first stage.

Because we focus on learning the structure of HTNs domains, we will only consider structural
information from our learning problem. In this context, the learning dataset can be simplified by
removing all parameters. Let us reuse the one presented in the previous chapter (Figure 2.11),
and highlight the differences this simplification makes in Figure 3.1, mainly allowing to also
remove the intermediate states. While it is not shown on the figure for clarity, every precondition
and effect is also removed, even the ones that rely on 0-ary predicates.

Because we are working with TO HTNs, we do not deal with interleaved tasks belonging to
the same high-level tasks. We therefore assume that there exists an underlying TO hierarchical
structure behind the generation process of the demonstrations. This is trivially the case if they

38 Chapter 3. Structure Learning

TP =





move(?t : truck, ?l1 : location, ?l2 : location)
load(?t : truck, ?l : location, ?p : package)
unload(?t : truck, ?l : location, ?p : package)




7→





move
load
unload





(a) Initial set of primitive actions and simplified version with removed parameters.
T 1
I =

{
deliver(?t : truck, ?l : location, ?p : package)

}
7→
{

deliver
}

D1 =

{
deliver(t1, l3, p1) : 〈s0 → move(t1, l1, l2)→ s1 → load(t1, l2, p1)→ s2

→֒ move(t1, l2, l3)→ s3 → unload(t1, l3, p1)→ s4〉

}

7→ {deliver : 〈move→ load→ move→ unload〉}

(b) A first set of initial vocabulary with an associated set of demonstrations and the corresponding
simplified version with removed parameters.

T 2
I =





get(?t : truck, ?l : location, ?p : package)
dropoff(?t : truck, ?l : location, ?p : package)
deliver(?t : truck, ?l : location, ?p : package)




7→





get
dropoff
deliver





D2 =





deliver(t1, l3, p1) : 〈s0 → get(t1, l2, p1)→ s2 → dropoff(t1, l3, p1)→ s4〉

get(t1, l2, p1) : 〈s0 → move(t1, l1, l2)→ s1 → load(t1, l2, p1)→ s2〉

dropoff(t1, l2, p1) : 〈s2 → move(t1, l2, l3)→ s3 → unload(t1, l3, p1)→ s4〉





7→





deliver : 〈get→ dropoff〉
get : 〈move→ load〉

dropoff : 〈move→ unload〉





(c) A second set of initial vocabulary with an associated set of demonstrations and the corresponding
simplified version with removed parameters. Note how the demonstrations make use of the additional
abstraction levels to remain maximally abstract.

Figure 3.1: Example of initial task vocabulary and corresponding maximally abstract demon-
stration sets for a deliver task and the corresponding simplified version without parameters.
All the demonstration sets corresponds to the same sequence of primitive actions but are ab-
stracted at different levels. Here, the considered optimality metric is the number of actions in
the plan. Note how the removal of parameters also removes intermediate states, as they then
do not contain any information.

3.2. Generating Neighbours of HTN Structures 39

are generated using an oracle TO HTN domain, and can be considered as true if they are given
by a human tutor to explicitly teach the agent. If a classical planner is used as an oracle,
note that this assumption does not always hold, which may lead to suboptimal structures being
generated. It is especially true if the goal associated with a given task can be decomposed into
multiple independent subgoals: the planner may interleave tasks to solve these subgoals.

We define an HTN structure as:

Definition 3.1 (HTN Structure). An HTN structure is a hierarchical planning domain without
any arguments. This means that the head of a task is restricted to its name, and that pre-
conditions and effects are empty.

Additionally, we say that for a domain H, the corresponding HTN structure H matches a
plan π (as defined in the classical planning sense) if and only if, ignoring the parameters of the
actions in π, there is a decomposition of H into a solution such that its linearization is equal to
π.

Unless otherwise specified we are considering HTN structures in this chapter. Therefore,
tasks and methods do not have parameters and will be represented only through their symbols.

Because the space of possible HTNs is extremely large, we want to be able to focus our
search on promising regions of this space. To this end, we will use a local search algorithm,
with the goal of iteratively improving the coverage of the demonstration set, while still keeping
generalization capabilities and not degenerating into a lookup of the demonstration set.

Because we are working with a local search algorithm, we need to define the neighbourhood
of a given HTN structure and the operators to generate it, which will be the focus of the next
section. The following section will then focus on a method to efficiently evaluate the quality of
a given structure with regard to the previously stated goal. Finally, we will present the global
structure search algorithm and the constraints that led to its current version.

3.2 Generating Neighbours of HTN Structures

As stated earlier, we assume that we start with a vocabulary of TI of initial tasks, a set D of
demonstrations of the tasks in TI , and an initial set of methods MI . This initial set of methods
may have been given by a human expert or be the result of a previous learning attempt. In the
most trivial case, MI may be empty.

Our goal here is to generate a set of abstract tasks TL and a set of methods ML such
that the resulting HTN structure is able to efficiently match the demonstrations in D. More
details on this matching process will be given in Section 3.3.2 of this document. Learning new
abstract tasks, and not only methods for the tasks in TI , is a way to share behaviours across
the hierarchy.

It should also be noted that we do not aim to find a structure that is able to only decompose
into the sequences present in the demonstration set. Because we are learning with HTN domains
that are intended to be used with planners, not simple reactive policies, we only wish to restrict
the search space of these planners to limit the effort required to obtain a plan, but can rely
on their ability to efficiently explore the space of possible decompositions. In this sense, our
hierarchies aim to model advice and not dynamics of the environment [McD00], the latter being
handled by the (known) preconditions and effects of the primitive actions.

We can divide the possibly generated neighbourhoods into two categories, which will each
be detailed in the following subsections:

40 Chapter 3. Structure Learning

• Learn new methods from a single trace, through an adapted version of the HTN-Maker
[HMK08] algorithm.

• Learn new abstract tasks and associated methods for frequent patterns, possibly abstract-
ing behaviours across multiple demonstrations.

3.2.1 Goal Regression without Explicit Goals

In order to quickly generate neighbours that improve the coverage of a given candidate, we
decided to adapt the goal regression algorithm found in HTN-Maker [HMK08].

We will start by presenting this algorithm, applied in the context of our search of HTN
structures, before highlighting how this context impacts it, as well as the possible modifications
it allows.

3.2.1.1 The HTN-MAKER Algorithm

At a high level, the HTN-Maker algorithm uses abstract tasks annotated with pre- and post-
conditions to determine subsequences in a given demonstration that achieves these tasks. These
subsequences are then used to generate new methods, which are added to a given HTN to
increase its coverage of the demonstrations tasks. For a single demonstration d which achieves
task t, let us first present how we can extract methods from this demonstration using the same
technique as in HTN-Maker. Here, for a demonstration d of a task t, we want to learn a set
Md of sets of new methods for t that covers d.

Algorithm 3.1 shows this procedure, which represents the application of the HTN-Maker
algorithm, as described in the original paper [HMK08], in our simplified context without para-
meters and states. Thanks to this simplified context, the Learn subprocedure presented in
the original paper becomes simple enough to be directly integrated in this algorithm, in the
conditional statement.

Algorithm 3.1 Extract Methods(t, d)
Input: t is the currently demonstrated task

d = 〈a0, a1, . . . , an〉
1: MI ← ∅ ⊲ Set of method instantiations, indexed by starting index
2: Md ← ∅ ⊲ Set of learned method sets for demonstration d

3: for i ∈ n down to 0 do
4: for j ∈ n down to i do
5: if j = n then
6: m← NewMethod(ai, ai+1, . . . aj)
7: R← ∅
8: else
9: m← NewMethod(ai, ai+1, . . . aj , t)

10: R← {MI [x] | x ∈ [j + 1, n]} ⊲ Store required associated methods
11: MI [i]←MI [i] ∪ {m}
12: Md ←Md ∪ {{m} ∪R}
13: return Md

In our application of the algorithm, we consider increasingly large subsequences starting
from the end of the sequence (line 3). Note that the original algorithm also considers additional
subsequences that can be detected through the pre- and post-conditions of t.

3.2. Generating Neighbours of HTN Structures 41

For each possible subsequence, we generate the methods m that correspond to parts of this
subsequence (line 4): here, we either construct a trivial method containing the whole currently
considered subsequence as subtasks (line 5) or we build methods that contain a shortened
subsequence and a recursive call to the demonstrated task t (line 8). This generation of recursive
methods is one of the main parts of the original HTN-Maker algorithm, using previously
encountered method instantiations to insert calls to their parent tasks in order to regress goals
through the hierarchy.

When learning this recursive structure, we also store a set R of associated methods to keep
track of which methods are required in order to finish the recursive call to the demonstrated
task, leveraging the set MI of method instantiations, reasoning using indices to find the required
methods. We need to store this set R with each learned method, because the candidate HTN
is not built iteratively after each extraction, contrary to the original algorithm, so that we can
generate multiple candidates from a single method search.

We then store the set {m}∪R in the set Md of learned method groups, and update MI with
m. Example 3.1 presents the methods that can be generated using this procedure.

Example 3.1 Method generation structure.
Assuming we have a demonstration d = 〈a0, a1, . . . , a4〉, the set of generated methods has
the form:

j\i 4 3 2 1 0






4 〈a4〉

3 〈a3, a4〉 〈a3, t〉

2 〈a2, a3, a4〉 〈a2, a3, t〉 〈a2, t〉

1 〈a1, a2, a3, a4〉 〈a1, a2, a3, t〉 〈a1, a2, t〉 〈a1, t〉

0 〈a0, a1, a2, a3, a4〉 〈a0, a1, a2, a3, t〉 〈a0, a1, a2, t〉 〈a0, a1, t〉 〈a0, t〉

As can be seen, indexing methods by row and column (respectively j and i in the al-
gorithm), m2,2 = 〈a2, t〉 depends either on m3,4 = 〈a3, a4〉 or on m3,3 = 〈a3, t〉 which itself
depends on m4,4 = 〈a4〉. In this example, the required methods set R2,2 would be:

R2,2 = {m3,3,m3,4,m4,4}

Slightly less trivially, m0,1 depends on either one of the m2,i methods. These methods
obviously in turn have their own dependencies, yielding R0,1 as follows:

R0,1 = {m2,2,m2,3,m2,4,m3,3,m3,4,m4,4}

Below is a reproduction of the previous array, highlighting the first level of dependencies
for m0,1 to clarify the example.

j\i 4 3 2 1 0






4 〈a4〉

3 〈a3, a4〉 〈a3, t〉

2 〈a2, a3, a4〉 〈a2, a3, t〉 〈a2, t〉

1 〈a1, a2, a3, a4〉 〈a1, a2, a3, t〉 〈a1, a2, t〉 〈a1, t〉

0 〈a0, a1, a2, a3, a4〉 〈a0, a1, a2, a3, t〉 〈a0, a1, a2, t〉 〈a0, a1, t〉 〈a0, t〉

Comparing our algorithm to the original one, we conserve the increasingly large subsequences

42 Chapter 3. Structure Learning

and the use of recursive calls to reuse already found methods, but the main modification is
that we are reasoning with indices rather than outstanding pre-conditions and achieved post-
conditions. Indeed, because we are only interested in the structure of the HTNs, it would be
unnatural to rely on pre- and post-conditions which require the use of parameters. Furthermore,
because we consider that our demonstrations are optimal, this means that for a demonstration
d = 〈s0, a0, s1, . . . , an, sn+1〉 of a task t, any subsequence starting at index i and going up to n

has the following properties :

• It achieves the task t starting in state si.

• There is no strictly better subsequence that starts in si−1 to achieve the task t.

Because of our assumption that the demonstrations are maximally abstract, if another sub-
sequence of d achieved the task t, then this subsequence would already have been replaced by an
instantiation of t. Therefore, we do not need to determine if another subsequence could achieve
t This is what allows us to simplify the original Learn procedure to reason only with indices.

While in the previous example, we have explained that for a given method, we have a choice
of methods on which to depend, we have also shown that our algorithm considers the set of
all the potential dependencies to construct R (Alg. 3.1, line 10). Note that R may include
redundant methods. This choice was motivated by two reasons:

• As we will show later, there is an exponential number of minimal subsets with no redund-
ancies.

• Redundant methods can trivially be removed in a post-processing step thanks to our
demonstration matching process.

With this set of learned method groups Md, for a given demonstration d of task t, and
considering an initial HTN structure H with a set of learned methods ML, for each group of
methods Mg ∈Md, we can create a new candidate H ′ associated with the set of learned methods
M ′

L = ML ∪Mg. Example 3.2 shows the generated HTN structures with the method groups
presented in Example 3.1.

Example 3.2 Generated HTN structures.
Here, we present the corresponding HTN structure for the method group for m2,2, as-
suming with started with an empty structure. Only a subset of the methods is actually
required to decompose t to obtain the demonstrated subsequence 〈a2, a3, a4〉, as shown
in Figure 3.3.

t

m2,2

a2 t
m3,4

a3 a4

m3,3

a3 t
m4,4

a4

Figure 3.2: HTN structure for the method group of m2,2.

3.2. Generating Neighbours of HTN Structures 43

t

m2,2

a2

t

m3,4

a3 a4

Figure 3.3: A possible decomposition of t into the subsequence 〈a2, a3, a4〉.

We can now present the global procedure used to generate neighbouring HTN structures,
as presented in Algorithm 3.2, which simply extracts all possible groups of methods from the
set of demonstrations D, and then create all the possible neighbours. Because we only reason
on HTN structures, duplicate methods can be easily detected and not added.

Algorithm 3.2 Generate Neighbours HTN-Maker(D,H) - Initial Version
Input: D the set of demonstrations, with associated tasks

H a base domain structure from which to generate neighbours
1: HN ← ∅ ⊲ Set of neighbours
2: M← ∅ ⊲ Set of groups of methods
3: for all (t, d) ∈ D do
4: Md ← Extract Methods(t, d)
5: M←M∪Md

6: for all M ∈M do
7: H ′ ← H +M ⊲ Add the methods from M to create the new neighbour
8: HN ← HN ∪ {H

′}
9: return HN

Using this algorithm, the generated neighbours will add one set of methods for each task t,
always providing at least one new way of decomposing the task to achieve the corresponding
demonstrations if one exist. The added methods will always be either flat or right recursive, as
in the original HTN-Maker algorithm.

By construction, each new candidate HTN structure H ′ will cover the demonstration d from
which the methods were learned, while still covering any previously covered trace, as we only
add new knowledge.

3.2.1.2 HTN-MAKER Without Arguments: Simplifying the Original Algorithm

As can be observed in Example 3.1 (presented previously), the set of generated methods has
a particular structure which exhibits a certain regularity. Therefore, for a demonstration d =

44 Chapter 3. Structure Learning

〈a0, . . . , an〉, reordering the previous indices i and j, we can generalize this structure as follows:

0 1 . . . n− 1 n






0 〈a0, t〉 〈a0, a1, t〉 〈a0, . . . , t〉 〈a0, . . . , an−1, t〉 〈a0, . . . , an〉

1 〈a1, t〉 〈a1, . . . , t〉 〈a1, . . . , an−1, t〉 〈a1, . . . , an〉
... 〈. . . , t〉 〈. . . , an−1, t〉 〈. . . , an〉

n− 1 〈an−1, t〉 〈an−1, an〉

n 〈an〉

(3.1)

Therefore, writing r and c the indices for row and columns, with r ∈ [0, n] and c ∈ [r, n], we
can write:

mr,c =





〈an〉 if r = n ∧ c = n

〈ar, . . . , an〉 if r < n ∧ c = n

〈ar, . . . , ac, t〉 if r < n ∧ c < n

(3.2)

From, this we can easily define the method group gr,c associated with a given method as
in Equation 3.3 below, which is a group containing the method mr,c and all the methods from
previous levels that can be used to finish the end of the subsequence abstracted in mr,c. As
mr,c is structured as 〈ar, . . . , ac, t〉, this means all the methods that can be used to reconstruct
the subsequence 〈ac+1, . . . , an〉. Remember that we are not trying to generate a minimal set of
methods that can achieve, but rather an overestimation of this set to limit the complexity.

gr,c = {mr,c} ∪
n⋃

i=c+1

n⋃

j=i

{mi,j} (3.3)

Therefore, the neighbour generation algorithm presented earlier in Algorithm 3.2 can be
rewritten as Algorithm 3.3. Because methods and tasks do not have parameters, and method
ordering does not matter with regard to the semantics of the HTN, duplicate neighbours can
be easily removed by introducing a canonical ordering of tasks and decomposition methods.

Algorithm 3.3 Generate Neighbours HTN-Maker(D,H)

Input: D the set of demonstrations with associated tasks
H a base domain structure from which to generate neighbours

Output: HN the set of generated neighbouring structures
1: HN ← ∅
2: for all (t, d) ∈ D do
3: n← Length(d)
4: for r ∈ [0, n] do
5: for c ∈ [r, n] do
6: H ′ ← Add Methods(H, t, gr,c) ⊲ Add the methods from the group to t

7: HN ← HN ∪ {H
′}

8: return HN

Using the direct formulation presented earlier and choosing any valid (r, c) tuple, it is also
possible to generate an arbitrary valid HTN structure for decomposing a given task t associated
with a given demonstration d without relying on the superset of possible methods. Equation 3.4
shows the formulation that allows to generate the set of all such groups of method G′

r,n, where

3.2. Generating Neighbours of HTN Structures 45

each group can be considered minimal in comparison to the previous one.

G′
r,c =





{{mr,c}} if c = n

{{mr,c,mn,n}} if c = n− 1{
{mr,c ∪ g} | g ∈

n⋃
i=c+1

G′
c+1,i

}
if 0 ≤ c ≤ n− 2

(3.4)

However, the number of HTNs generated for a given demonstration d containing actions
numbered from 0 to n is wildly different depending on the chosen method. Writing Gn the set
of possible structures generated in the overestimation case and G′

n the one in the minimized
case, their cardinality can be expressed as in Equations 3.5a and 3.5b. Here, the exponential size
of |G′

n| clearly shows the impracticality of generating an exhaustive set of neighbours relying
on the minimal method groups. The minimized HTN generation can however be used when
combined with random sampling.

|Gn| =
n∑

r=0

n∑

c=r

1 = O(n2) (3.5a)

|G′
n| =

n∑

r=0

(
1 +

n−1∑

c=r

2n−c−1

)
= O(2n) (3.5b)

While we only considered the number of groups that can be generated in the previous
equation, we must not forget that each group contains a certain number of methods which must
also be generated. Fortunately, even considering the generation of all the possible methods in
the case of Gn, the number of generated methods |G′m

n | remains polynomial, as presented in
Equation 3.6. This allows an algorithm that generates the different associated candidates to
remain tractable.

|G
′m
n | =

n∑

r=0

r∑

c=0

(
1 +

n−c∑

k=1

k

)
= O(n4) (3.6)

Example 3.3 presents HTNs structures that can be generated with a concrete demonstration,
comparing the overestimated and the minimal method groups.

Example 3.3 Methods and task hierarchies generated using the adapted HTN-MAKER
algorithm.
Let us present a quick example of the structure of domains that can be generated using
simply this algorithm for neighbour generation. In this example, will reuse the data
presented in Figure 2.11, demonstrating the task deliver, and considering as demonstra-
tions the set D, presented below. We will assume that we start with an empty HTN.

D = {deliver : 〈move→ move→ load→ move→ unload〉}

Figure 3.4: Demonstration set used as an example, recalled from Figure 2.11. Only
actions are represented, as states are not used in this algorithm.

46 Chapter 3. Structure Learning

From this demonstration (n = 4), 15 HTNs could be generated using the overestimation
method and 31 using the minimized version. Even though this number includes potential
duplicates, we will only show a few of them to give an intuition about the shape of the
domains that can be generated using the presented method.

deliver

m4,4

unload

(a) HTN for r = 4, c = 4.

m1,2 m2,2 m3,4

deliver

loadmove deliver move deliver move unload
m4,4

unload

(b) HTN for r = 1, c = 2 using the overestimation of required methods. Here, we can observe
that m3,4 is not strictly necessary when m2,2 and m4,4 are present.

m0,0/2,2 m1,2

deliver

move deliver loadmove deliver
m4,4

unload

(c) A possible HTN for r = 0, c = 0 using the minimized required method sets. Here we can
observe that m0,0 and m2,2 would have been duplicates and only one version is required.

Figure 3.6: Possible HTNs generated using the modified HTN-Maker algorithm and
random sampling.

3.2.2 Frequent Pattern Mining for Neighbour Generation
The HTN-Maker algorithm however suffers from several limitations:

• It cannot learn new intermediate tasks, preventing the system from abstracting common
behavioural patterns.

• The learned models are highly recursive.

• In our application, it essentially learns different methods for each demonstration1, with
potentially little overlap.

This means that, assuming the only known abstract tasks that we have in our learning
problem represent independent high-level behaviours for which we want to learn a hierarchy,
HTN-Maker is only capable of generating hierarchies with a single level of methods, relying
on recursive calls to achieve the task. However, this kind of hierarchy will quickly grow wide,

1In the original algorithm, this is somehow mitigated through method subsumption detection.

3.2. Generating Neighbours of HTN Structures 47

with many methods decomposing a given task, and will not encode behaviour in a manner that
is both natural to understand and easy to use for an automated planner, as a large number of
possible method instantiations will have to be considered for each recursion. If a multi-level
hierarchy is desired with the HTN-Maker-based approach, all the intermediate tasks must be
given as part of the set of annotated tasks, which requires effort from a human expert.

To generate more interesting hierarchies, we turn to pattern mining and propose an approach
to find frequent patterns that is inspired by the GoKrimp algorithm [Lam+14], exploiting
the MDL principle [Grü07]. This approach generates a set of candidate patterns and greedily
selects the one that compresses the most the set of sequences. Subsequences covered by the
chosen pattern are then replaced with a new symbol, and this process is repeated until the
compression stops improving. It is easy to see how this approach can be transposed to our sets
of demonstration sequences.

The reasoning behind the use of frequent patterns is that in many domains, an abstract
task encodes some sub-activity that is carried out to achieve the higher level task. Obviously,
encoding a given activity as a reusable task will be most useful to the domain if it is occurring
frequently and in several high level activities. Frequent patterns are therefore a way to find
common blocks of activity that occur in a set of demonstrations, which should therefore be
good candidates for generating new intermediate abstract tasks.

From a set of demonstrations in which frequent patterns have been abstracted, we then
will be able to apply the previously presented HTN-Maker to generate neighbours, which will
naturally contain multiple levels of hierarchy.

Background B: Frequent Pattern Mining
Using the definition from Aggarwal [Agg14], frequent pattern mining is the problem of
finding relationships between items in a dataset, and sequential pattern mining is that
of finding relationships given an ordering of the items in the dataset. As we are focusing
on learning from sequences of actions, we will focus on this second part of the definition.

Background C: The Minimum Description Length Principle
The Minimum Description Length (MDL) principle [Grü07], comes from information
theory and states that learning can be viewed as a form of data compression, as both
intend to find some regularity in some source material. Therefore, in this framework, the
best model is the one that can compress the data the most. Furthermore, as the total
size of the compressed data includes the size of the model itself, used to reconstruct this
data, this principle naturally guards against overly specific models.
Example uses of this technique range from learning CFGs [SBS12] (of which HTNs are
close) to finding common graph patterns [BCF20].
More details are given in Appendix C.

3.2.2.1 The Considered Patterns

Let us start by describing the patterns that we wish to generate. They are a subset of the valid
regular expressions, and are defined using the grammar presented in Figure 3.7. This grammar
recognizes two types of patterns:

• Sequences of task symbols with optional quantifiers ({?, ∗,+}), such as 〈ab〉, 〈a+b〉 or
〈aa?bc∗〉. These are naturally called sequence patterns and are used to abstract repeated

48 Chapter 3. Structure Learning

(∗ and + quantifiers) or optional (? quantifier) behaviours. A common example of such
behaviour is the “repeat until” pattern.

• Alternations between sequences of task symbols, such as 〈a|b〉, 〈(aa)|(bc)〉 or 〈a|b|(cc)〉.
These are called choice patterns, generating alternative methods for abstracting over some
specific activity.

〈symbol〉 ::= any task symbol
〈sym-seq〉 ::= 〈sym-seq〉〈sym-seq〉 | 〈symbol〉

〈choice-base〉 ::= 〈choice〉 | 〈sym-seq〉
〈choice〉 ::= 〈choice-base〉"|"〈choice-base〉
〈star〉 ::= 〈symbol〉"∗"
〈plus〉 ::= 〈symbol〉"+"

〈seq-base〉 ::= 〈symbol〉 | 〈star〉 | 〈plus〉
〈seq〉 ::= 〈seq〉〈seq〉 | 〈seq-base〉

〈pattern〉 ::= 〈seq〉 | 〈choice〉

Figure 3.7: Grammar for the generated patterns, using BNF syntax.

Note that an HTN, even without preconditions or parameters, is still more expressive than
regular languages (as presented in Figure 3.8), and thus are more expressive than what our
patterns can express. However, remember that this pattern extraction is only a single step in a
larger process.

S

m1

Sa b

m2

a b

(a) HTN structure.

〈S〉 ::= 〈a〉〈S〉〈b〉 | 〈a〉〈b〉

(b) Equivalent CFG grammar.

Figure 3.8: A HTN without preconditions or parameters and an equivalent grammar. Note that
this grammar is not regular, as can be proved using the pumping lemma for regular languages.

Note that it is trivial to map from a regular expression to a hierarchical task decomposition,
as presented in Figure 3.9.

3.2.2.2 Substituting Patterns in Demonstrations and Extracting Neighbours

Before describing how patterns are built and selected, we need to explain how they can be in-
tegrated in the set of demonstrations and how we can extract HTN candidates taking advantage
of them.

The choice of regular expressions as patterns has an advantage from an implementation point
of view, as it is easy to use regular expression matching to find and substitute patterns in the
demonstration set using off-the-shelf software components. This substitution is therefore simply
done using the find and replace operation of a regular expression engine, as shown in Figure 3.10.
Here, for a pattern p = 〈a+b〉, every instantiation of the pattern in the demonstration set D

3.2. Generating Neighbours of HTN Structures 49

m

ma+
2

p

a+ b

ma+
1

a a a+

Figure 3.9: Hierarchical representation of the pattern p = 〈a+b〉. Here, len(p) = 2, only counting
the a and b symbols.

is then replaced by the symbol corresponding to p. This will allow us to build new patterns
iteratively, reusing the previous patterns as building blocks for new ones.

D :





d1 : a b c d

d2 : a b d

d3 : a b c

d4 : d a a b




7→
p





d1 : p c d

d2 : p d

d3 : p c

d4 : d p





Figure 3.10: Pattern substitution example for a pattern p = 〈a+b〉.

These patterns can then be used in conjunction with the previously presented HTN-Maker-
based operator, applying it on the substituted demonstration set. This allows generating new
HTN structures that could not have been generated with only the base demonstrations, as
presented in Figure 3.11. Here, we have added a new task p in our hierarchy, whose methods
and subtasks have been generated as part of our frequent pattern search.

3.2.2.3 Building a Set of Compressing Patterns

While the first approach that we implemented [HB23] generated a single set of patterns from
which to generate neighbours using the HTN-Maker algorithm. However, this relied on an
ad-hoc metric of pattern complexity, which was used a proxy for our MDL-based metric (which
is itself a proxy for planning performances).

Thanks to improvements in our implementation of the trace matching process used to com-
pute neighbour quality, it became possible to evaluate the quality of a pattern through the
quality of the best neighbour that can be generated from this pattern.

We therefore will present how we can build such a set of candidate patterns to be evaluated.
For a set of demonstrations D, let us write Di a set of demonstrations abstracted i times,

with D0 = D, and with pi, i > 0 the associated pattern. Let us also write TD the set of all the
primitive and synthetic tasks in D and wink(d), d ∈ D, k > 2 the function that generates the
set of all sliding windows of size k over a trace d.

The different sets of basic patterns we generate are presented below. Note that every pattern
is written as a sequence 〈. . . 〉 to avoid any confusion between multiple patterns and sequential
patterns.

50 Chapter 3. Structure Learning

m1 m2 m3 m4

t

b ca d ba d ba c a ad b

(a) A possible HTN using the basic demonstration set.

m1 m2 m3 m4

t

cp d p d p c d p

m

ma+
2

p

a+ b

ma+
1

a a a+

(b) A possible HTN using the abstracted demonstration set. t and p presented as separate subhierarchies
for simplicity.

Figure 3.11: Example of possible HTN structure generation using the HTN-Maker-based
operator on a demonstration with the abstracted frequent patterns as shown in Figure 3.10.
The learned methods are a trivial lookup of all the demonstrations, but are enough to present
the sharing of behaviours afforded by the use of pattern mining.

• P b
Di

is the set of all basic patterns, that is any primitive with a modifier.

P b
Di

=
{
〈a?〉, 〈a∗〉, 〈a+〉 | a ∈ TDi

}

• P
c,k
Di

is the set of all choices with k alternatives.

P
c,k
Di

=
{
〈a1 | · · · | ak〉 | (a1, . . . , ak) ∈ T

k
Di
∧ ∀(i, j) ∈ [1, k]2, i 6= j ⇒ ai 6= aj

}

• P
s,l
Di

is the set of sequence patterns of length l, l > 2.

It is generated from the set of all possible subsequences encountered in the demonstrations,
where each element may have a modifier.

P
s,l
D =





〈a′1, . . . , a
′
k〉 | (a

′
1, . . . , a

′
k) ∈

∏

A∈A

A,

A =



A1 = {a1, a

?
1, a

∗
1, a

+
1 }

. . .

Al = {ak, a
?
k, a

∗
k, a

+
k }


 , (a1, . . . , ak) ∈ wind

k, (d, k) ∈ Di × [2, l]





3.2.2.4 Searching for the Best Abstraction Set

Let us now turn our attention to the process of finding the best pattern set. Similarly to the
GoKrimp algorithm [Lam+14] that we used for inspiration, we use a greedy search algorithm,
as described in Algorithm 3.4. In this algorithm, assume that we have access to a function
Gen Best Neighbour that we can use to generate the best HTN given a set of abstracted

3.2. Generating Neighbours of HTN Structures 51

demonstrations. This function will be detailed at the end of this chapter, and can for now
be considered as a subprocedure that uses the previously described HTN-Maker neighbour
generation in a greedy local search algorithm to find the best HTN.

Algorithm 3.4 Find Best Patterns(Di, k, l,HB)

Input: Di set of traces, possibly abstracted
k maximal number of choices for a pattern
l maximal length of a sequence pattern
HB a possibly empty HTN to use as a starting point

1: PD ← ∅
2: HPD

← HB

3: D′ ← Di

4: repeat
5: Pc ← P b

D′ ∪ P
c,k
D′ ∪ P

s,l
D′

6: Hc ← ∅
7: for all p ∈ Pc do
8: DH ← Abstract Demos(D′, p)
9: H ← Gen Best Neighbour(DH , HPD

)
10: Hc ← Hc ∪ {(H, p)}
11: (Hc, p

∗)← Find Best HTN(Hc)
12: if Quality(HPD

) < Quality(Hc) then
13: HPD

← Hc

14: PD ← PD ∪ {p
∗}

15: D′ ← Abstract Demos(D′, p)
16: until Quality(HPD

) stops improving

17: return (PD, HPD
)

In the pattern search procedure, we generate, from the current set of demonstrations D′,
the set of all possible candidate patterns Pc, as described earlier. Then, for each pattern p,
we abstract the current set of demonstrations using p, and we try and find the best HTN that
can be generated using this new set of demonstrations. The best pattern p∗ is then chosen as
the one that can generate the best HTN and stored in the set PD. Once found, we update the
current set of demonstrations D′, abstracting it using p∗.

This process is repeated until we can no longer generated better HTNs, and we finally return
the set of patterns that we built, along with the associated HTN1.

Note that it is necessary to limit the number of choices k and the length of sequential
patterns l so that the problem remains tractable. We can still generate interesting behaviours,
especially as more choices can be built hierarchically, with other choices being used as one of the
options in further abstraction iterations. Similarly, longer sequences can be generated through
multiple abstraction steps, assuming that the subsequence has been selected in a previous step.

3.2.3 Simplifying a Candidate Structure
During the search procedure, it is entirely possible that we end up with complex structures that
can produce the same decompositions as simpler ones. The needlessly complex structures that
we consider are as follows:

1Returning the best HTN is simply a convenience for later in this document.

52 Chapter 3. Structure Learning

1. Duplicate tasks with identical decompositions1.

2. Tasks decomposing into a single method with a single subtask.

3. Duplicate methods.

4. Tasks with only empty methods.

We therefore introduce an HTN simplification operator that handles all these cases, with
an application presented in Example 3.4. It merges duplicates tasks into a single one, collapses
single tasks methods into their parent method, deduplicates methods of a given task and removes
tasks with only empty methods.

Example 3.4 Example of HTN simplification.
In this example, each simplification case is presented:

1. tdup and t′dup are deduplicated as a single task t.

2. tsingle is collapsed into its parent method.

3. m1
dup and m2

dup are deduplicated by keeping only one of them.

4. t∅ is removed.

m1 m2

m m1
mdup m2

mdup

m5

ttop

tdup a t′dup b

m1
dup
a

m2
dup
b

m′ 1
dup
a

m′ 2
dup
b

m3

tsingle

a b

m4

tmdup

c d c d

m3
mdup
a

a t∅

m∅

Figure 3.12: HTN before simplification.

m1 m2 m3

m1
mdup

ttop

t a t b

m1
t
a

m2
t
b

m1
t
a

m2
t
b

a b

m4

tmdup

c d

m3
mdup
a

m5

a

Figure 3.13: HTN after simplification.

It may be argued that empty method tasks could be used to verify that a given set of
preconditions hold, as is done for example in HTN-Maker [HMK08] with the introduction of

1This first case should not happen with the currently presented algorithm, however it has been considered as
it is easy to introduce with random modifications of the structure, for example.

3.3. Evaluating Candidate Models 53

verification tasks. However, because we do not learn parameter at this point in our procedure,
this kind of tasks cannot be considered as such. Furthermore, if pre- and post-conditions are
learned for some tasks later, this kind of validation tasks can trivially be added as a post-
processing step.

3.3 Evaluating Candidate Models
While we have presented the process allowing to generate candidate domain structures and
hinted at a process to extract their parameters, we need to address the evaluation of the quality
of a domain. An obvious solution would be to attempt planning with our candidate domains,
in order to find domains that can solve all the problems in a representative test set in the most
efficient manner. However, this approach would be too costly to be integrated in the global
pipeline: even relatively simple real world problems can require tens or hundreds of seconds to
be solved, even with good handcrafted domains. Therefore, each iteration with its hundreds of
neighbours would require thousands of seconds to run, and even with techniques to focus the
search on relevant parts of the space of possible HTN structures, a domain would not be found
in a reasonable time.

Therefore, we need to determine a surrogate metric that will favour general and efficient
planning domains. We can have the intuition that such domains will need to be able to generalize
to new unseen instances while constraining the possibilities to guide an automated planner’s
search. As we are working from positive examples only, we took insight from the learning of
grammars, and decided to add a simplicity bias. Indeed, our issue is similar, as we can equate
the search constraining properties of our domain with limiting incorrect parses in a learned
grammar

3.3.1 The MDL Principle for HTN Structures Evaluation
We decided to frame this problem in the context of the Minimum Description Length (MDL)
principle1, as has been done for grammar learning. Note that we use crude MDL with an
arbitrary two part code. With this vision, we can say that a desirable domain should be
able to “compress” the demonstrations, i.e. the domain is able to reproduce the presented
demonstrations with a minimal search effort. However, if we only considered this part as our
surrogate metric, we would end up with overfitting domains. In the worst case scenario, the
domain would end up similar to a lookup table, similar to the one presented in Figure 2.13c,
which would obviously have a very poor generalizability. Fortunately, as explained earlier, the
MDL principle takes into account the size of the domain in addition to its capability to generate
the source data. This will limit the complexity of the domain, and therefore push it towards
regions of the space where common patterns are abstracted.

Assuming we have generated a domain candidate Hc as part of our search process, we define:

• The description length of the model Lmod(Hc). This represents the size of the HTN, and
will increase as we add new methods and tasks to the model.

• The description length of the demonstrations in D knowing Hc Ldem(D | Hc). This
represents the difficulty of reconstructing the demonstration traces using Hc.

1Overview of the MDL principle given in Appendix C.

54 Chapter 3. Structure Learning

In order to compute the global description length of the domain and the demonstration set,
we combine these two metrics, using a factor α to balance their relative importance, as defined
in Equation 3.7.

L(Hc, D) = αLmod(Hc) + Ldem(D | Hc) (3.7)

The Model Description Length To compute Lmod(Hc), we will use information theory to
compute a bound on the length of an optimal encoding of our domain. We propose an encoding
of an HTN structure as a set of grammar rules, using a symbol for each task (primitive and
abstract), using the symbol | to separate methods and ; to mark the end of the decomposition of
task. An example is shown in Figure 3.14. From this, we will be able to compute the frequency
of each symbol in the alphabet used to describe these rules in order to extract bounds on the
length of a codeword used in the optimal encoding of these rules. This codeword length will be
used to compute the global domain description length.

S

m1

Sa b

m2

a b

(a) HTN structure.

S → aSb | ab ;

(b) Equivalent grammar rule set.

Figure 3.14: An HTN structure and the equivalent set of grammar rules.

Considering a random variable XHc that takes as possible values the symbols in our alphabet,
information theory tells us that the entropy H(XHc) of this variable bounds the expected
codeword length L of our optimal code as in the equation below:

H(XHc) ≤ E(L) ≤ H(XHc) + 1 (3.8)

Noting x1, . . . , xn the symbols of our alphabet, and their occurrence probability
P (x1), . . . , P (xn), the entropy formula is:

H(XHc) = −
n∑

i=1

P (xi) log(P (xi)) (3.9)

As we know the frequency of each symbol in our domain as well as their total number, we can
therefore compute P (xi) and thus compute a bound on the optimal domain encoding length.
Because we only want to use this metric to compare two domains, we arbitrarily choose to use
the lower bound as the model description length. Considering that a message for describing our
given HTN is composed of k symbols, then we have:

Lmod(Hc) = k ×H(XHc) (3.10)

The Demonstration Set Description Length To compute Ldem(D | Hc), we need to
evaluate the cost of encoding a trace d ∈ D based on our HTN domain. We assume that we
have access to a decomposition tree that allows mapping a demonstration can be mapped to
a sequence of refinements from the original task to the primitive sequence. Each refinement

3.3. Evaluating Candidate Models 55

of a task constitutes a choice point at which the engine must select one method among the
applicable ones in the current state.

We define Ldem(D | Hc) as the encoding size of all choice points (Equation 3.11), where C is
the set of choices one has to make to reconstruct d from Hc, and Mapp,cp is the set of applicable
methods at a choice point cp.

Ldem(D|h) =
∑

d∈D

∑

cp∈C

log (|Mapp,cp|) (3.11)

Because we actually do not want to compress a dataset, but rather find a good HTN model,
we will make several modifications to the Ldem term based on our practical observations, presen-
ted in Equation 3.12. The 1

|D| and 1
len(d) factors are used to be more robust to the length of the

demonstrations and their number, while the removal of the logarithm tends to favour models
with less complex method choices, leading to simpler planning models in practice.

Ldem(D|h) =
1

|D|

∑

d∈D

1

len(d)
∑

cp∈C

|Mapp,cp| (3.12)

The consideration of the applicable methods at each choice point instead of all the possible
ones allows to consider the pruning of the search tree imposed by the pre-conditions during the
use of the domain, which is mainly relevant if we want to use this metric in a more general
setting rather than simply learning HTN structures, which do not have any pre-conditions by
definition.

Let us now present an example of the computation of this description length for the HTNs
presented in the introductory chapter, recalled here in Figure 3.17 for simplicity.

Example 3.5 Computing the description length of an HTN and associated demonstration
set.
Considering the HTN presented in Figure 3.17b decomposing a task t, we can view this
domain as a grammar-like structure, which we can describe with the following rule:

t : at | bt | ct | dt | ;

The frequency table of each symbol is given in the table in figure 3.15a, giving us the
entropy H(XHc). Here, H(XHc) = 2.40 bits, which means that to encode our model,
each symbol in an optimized encoding contains on average this quantity of information.
This is mainly influenced by the total number of symbols, as well as the number of unique
symbols in our domain.
Given that there are fifteen symbol occurrences in the rule, this bounds the optimal value
of Lmod(Hc) as shown in the equation in Figure 3.15b. As this value will only be used
for comparison, we arbitrarily choose the lower bound as Lmod.

Symbol t a b c d | ; Total

Frequency 5 1 1 1 1 4 1 14
(a) Frequency table.

56 Chapter 3. Structure Learning

H(XHc) = −

[
5

(
1

14
log
(

1

14

))
+

4

14
log
(

4

14

)
+

5

14
log
(

5

14

)]

= 2.40 bits
Lmod(Hc) ∈ [14× 2.40, 14× 3.40] = [33.6, 47.6] bits

(b) Entropy and domain length bounds.

Figure 3.16: Model length calculation for the domain presented in Figure 3.17b.

As an example, we will study the set of demonstration presented in Figure 3.17a using
again the domain of Figure 3.17b. For each of the sequences in the demonstration set,
we know that we have to choose three times among five methods, therefore:

Ldem =
1

2

(
1

3
× 4× 5 +

1

3
× 4× 5

)
= 6.67 (3.13)

To show how this metric can be used, Table 3.1 presents the different values computed
for the examples presented in Figure 3.17, for two different values of α

L(Hc, D)

Hc Lmod(Hc) Ldem(D|Hc) α = 1 α = 0.1

Fig. 3.17b 33.6 6.67 40.27 10.03
Fig. 3.17c 24.57 0.67 25.24 3.13
Fig. 3.17d 24.57 4.5 29.07 6.96
Fig. 3.17e 29.2 1 30.2 3.92

Table 3.1: Description length for the examples presented in Figure 3.17.

We can observe that the best model is always the “lookup” one. This is due to the fact
that it is a toy example with a very simple set of demonstrations, and this behaviour does
not show on real domains with a more complex structure. Observe however that when
considering the other domains, changing α changes which model may be considered the
best by changing the focus from the size of the model to the efficiency with which we can
reconstruct the demonstrations.

In the example presented previously, we can observe that the size of the domain will be
highly correlated with the complexity of the target behaviour. However, the length of the
demonstration will be less influenced by the domain complexity. In order to alleviate this
problem, we propose to define the normalized description length of an HTN, where for a given
reference model Href :

Lnorm(Hc, D) = αLnorm
mod (Hc) + Lnorm

dem (D | Hc)

= α
Lmod(Hc)

Lmod(Href)
+

Ldem(D | Hc)

Ldem(D | Href)

(3.14)

This normalized description length can be interpreted as allowing to improve the quality of
one term in some proportion as long as the other term is not worsened by a larger proportion,

3.3. Evaluating Candidate Models 57

t→ 〈a, b, c〉 t→ 〈a, b, d〉

(a) Available demonstrations, showing that t was once achieved with the 〈a, b, c〉 action sequence and
once with the 〈a, b, d〉 action sequence. Intermediate states as we are considering HTN structures only.

t

m3

c t

m2

b t

m1

a t

m4

d t

m5

(b) Generic domain where the planner might pick any of the primitive actions and rely on the recursive
call to t to continue if needed.

t

m1

ba c

m2

ba d

(c) Domain where each demonstration is fully encoded into a dedicated method.

t

m1

ba t

m2

c

m3

d

(d) Intermediate domain the common 〈a, b〉 sequence is
grouped. It relies on the recursive call to t in m1 to pro-
duce a full sequence.

t

m1

ba ts

m2

c

m3

d

(e) Domain where the 〈a, b〉 sequence is
shared, requiring a new abstract task ts

Figure 3.17: Illustration of the possible structures of the learned domain for a simple learning
task with two demonstration of how to perform a task t.

58 Chapter 3. Structure Learning

modulated by the α factor. A good reference model is the fully recursive model (as presented
in Figure 3.17b), as it can be trivially constructed for any set of primitives and is intrinsically
complete.

3.3.2 Obtaining Decomposition Trees from HTN Structures and Action Se-
quences.

As stated earlier, we need to know the choices that are required while using a candidate domain
Hc in order to generate a given demonstration trace d. This means that we need to know the
decomposition tree that a planner would have generated using our domain and planning for the
task demonstrated in the trace. To this end, we use the technique presented by Höller et al.
[Höl+21] for plan verification. With plan verification, we share a common goal: we first need
to know if a sequence of actions (the demonstration) is a solution to a given HTN planning
problem (the currently considered candidate domain). However, we additionally need to know
the full decomposition tree.

Let us briefly present the technique mentioned previously [Höl+21] where the authors pro-
pose to compile the plan verification problem to a HTN planning problem by modifying the
primitive actions present in the original planning domain. Because we are only concerned with
the structure of HTNs, we will not focus on the modifications pertaining to pre-conditions
and effects, and instead redirect the reader to the original paper for this information. In
this paragraph, let us consider a demonstration d = 〈a0, a1, . . . , an〉 and an HTN structure
H = (L, TP , TC ,M) to match with d.

In order to determine which action is to be executed at any given point in the decom-
position process, the compilation defines a logic L′ by adding new state predicate symbols
f0, f1, . . . fn, fn+1 to L. We then define a planning problem H = (L′, T obs

P , T ′
C ,M

′):

• T obs
P is the new set of primitive tasks, and is composed of technical actions. One technical

action aobs
i is generated for each action ai ∈ d, i ∈ [0, n]. Their effects and preconditions

are defined as
pre(aobs

i) = {fi}

eff(aobs
i) = {¬fi, fi+1}

We also add a technical action obs⊥ to handle the case where a primitive task was not
used, defined as

pre(obs⊥) = {⊥}
eff(obs⊥) = ∅

• T ′
C is the new set of compound tasks, created by adding one new abstract task acmp for

each primitive a ∈ TP and adding them to TC

• M ′ the set of methods is generated by modifying all the methods in m ∈M so that:

– Every decomposition into a subtask a ∈ TP is replaced by the corresponding acmp.

– For each technical action aobs
i , adding a method that decomposes the corresponding

task acmp into aobs
i .

– If a primitive a ∈ TP does not have any technical action associated with it, add a
method that decomposes the corresponding task acmp into obs⊥.

3.3. Evaluating Candidate Models 59

We then define a corresponding planning problem P = (H, s0, g), with s0 = {f0} and
g = {fn+1}. The goal is necessary to ensure that the solution to the planning problem reproduces
the whole demonstration.

We can then obtain the decomposition tree by using an off-the-shelf planner, adding a simple
post-processing step to undo the changes pertaining to technical actions and recover the choices
that would have been made for planning originally.

Example 3.6 HTN structure matching using plan verification techniques.
Let us consider a demonstration d = 〈a, a, b, c〉 of a task t and a candidate HTN structure
as presented in Figure 3.18a. Rewriting the demonstration in terms of indexed obser-
vations, we have d = 〈aobs

0 , aobs
1 , bobs

2 , cobs
3 〉, and we can build the HTN with technical

actions corresponding to our candidate as presented in Figure 3.18b, with the associated
preconditions, effects presented in Figure 3.18c. This last figure also presents the initial
and goal state of the planning problem corresponding to our demonstration matching
problem.

t

m1

a ba t

m2

c

m3

d

(a) Base HTN structure candidate.

t

m1

a ba t

m2

c

m3

d

m0
obs

aobs
0

m1
obs

aobs
1

m0
obs

aobs
0

m1
obs

aobs
1

m2
obs

bobs
2

m3
obs

cobs
3

md
obs

obs⊥

(b) Corresponding HTN structure used in the plan verification problem.

s0 = {f0}

g = {f4}




pre(aobs
0) = {f0} eff(aobs

0) = {¬f0, f1}

pre(aobs
1) = {f1} eff(aobs

1) = {¬f1, f2}

pre(bobs
2) = {f2} eff(bobs

2) = {¬f2, f3}

pre(cobs
3) = {f3} eff(cobs

3) = {¬f3, f4}





(c) Initial (s0) and goal (g) states with preconditions of methods and effects of actions in the plan
verification HTN.

Figure 3.19: Base HTN and the associated one for plan verification.

60 Chapter 3. Structure Learning

Solving this planning problem, we obtain the decomposition tree presented in Fig-
ure 3.20a, which can be trivially mapped to a decomposition tree corresponding to the
original HTN, as shown in Figure 3.20b. In this decomposition tree, we would have two
choice points as described in the previous section, namely where m1 and m2 are selected
among the applicable methods. In the plan verification HTN, we would have six of these
choice points.

t

m1

a

m0
obs

aobs
0

a

m1
obs

aobs
1

b

m2
obs

bobs
2

t

m2

c

m3
obs

cobs
3

(a) Decomposition tree for the plan verification.

t

m1

a a b

t

m2

c

(b) Corresponding decomposition tree reverting to the original HTN.

Figure 3.21: Base HTN and the associated one for plan verification.

Note that in this setting, the choices made by the planner during the matching planning
process may not be optimal in terms of number of choices. Considering the optimal decompos-
ition tree, the computed demonstration length will be the true value of Ldem(D | Hc), while a
non-optimal tree one may lead to an overestimation of this value.

A decomposition with a minimal number of choices could easily be obtained using an optimal
planner [BHB19; Bit23] by adding fake actions in each method without any preconditions or
effects, and optimizing for the solution length. Considering that some choices may be “easier”
than others, as they may choose among a smaller set of methods, the number of fake actions for

3.4. The Complete Structure Search Algorithm 61

each method may even be proportional to the choice complexity. However, in practical cases,
using satisficing planners is considerably faster than optimal ones. We therefore decided to use a
satisficing planner with an option for best-effort plan optimization [Sch21] to obtain reasonable
decomposition trees.

Furthermore, parsing based approaches [Li+14; PB23], could help obtain better decompos-
itions, considering the problem of finding an optimal decomposition as that of finding the most
probable parse tree. A recent approach [PB23] has shown that for plan recognition, parsing
may be faster than using a planning based approach. These results hold particularly well when
the unknown suffix of the plan is short, which aligns well with our use case, where it is empty
because we are working with complete plans.

3.4 The Complete Structure Search Algorithm
Let us now present the whole structure search algorithm.

Our early work [HB23] showed that a basic greedy hill-climbing search relying only on the
HTN-Maker-based candidate generation, a set of frequent patterns extracted using an ad-hoc
metric and a simplification procedure to remove unused methods is able to learn good planning
models on simple domains from the IPC, requiring only the evaluation of a few thousands of
candidates. However, this same work showed that these results were conditioned on the quality
of the mined frequent patterns, which requires non-negligible effort from a human expert. Simply
adding some random mutation operators to the process obviously did not improve the results,
due to the greedy nature of the original algorithm, and moving to stochastic hill-climbing did
not either.

However, in this same work we noted that learning parameters during the search process
did not improve the results (due to the limited pre-conditions that were extracted), while it
incurred a severe computational cost. Removing this step allowed us to consider evaluating a
much larger set of possible planning domains, and finding frequent patterns without relying on
another surrogate metric, as described earlier.

We then obtained vastly improved results simply finding this set of patterns and keeping as a
result the final HTN associated with the best pattern. In the section on pattern finding, we used
a black-box function Gen Best Neighbour(D,H) that returned the best HTN for a given set
of demonstrations. This function is actually implemented as described in Algorithm 3.5. Note
that this procedure should not be too expensive to call compared to the number of patterns to
evaluate, as it will be called once for every considered patterns1.

Here, we generate a set of neighbours using the HTN-Maker algorithm, which we then
simplify in two steps:

1. Remove all the methods that are actually unused when matching the traces.

2. Simplify the HTNs using the structure simplification operator presented earlier.

Remember that unused methods may be introduced by our simplified version of the HTN-
Maker as detailed in the dedicated section of this chapter. Detecting these methods is straight-
forward using the decompositions trees generated for the evaluation of the quality of the different
HTNs, removing any method that never appears in the decomposition tree.

1In practice, because some patterns may be generated several times, our implementation makes heavy use of
caching when computing the decomposition trees for evaluating the quality of a given HTN. This caching is also
helpful when learning HTNs with several top-level tasks, as some modifications may only affect one task and not
the others.

62 Chapter 3. Structure Learning

Algorithm 3.5 Gen Best Neighbour(H,D)

Input: H initial (possibly empty) HTN
D set of demonstration traces

1: H∗ ← H

2: while Quality(H∗) improves do
3: H ← Generate Neighbours HTN-Maker(Hc, D)
4: H ← {Remove Unused Methods(H ′) | H ′ ∈ H}
5: H ← {Simplify Structure(H ′) | H ′ ∈ H}
6: Hc ← Find Best HTN(H)
7: if Quality(H∗) < Quality(Hc) then
8: H∗ ← Hc

9: return Hc

We can then easily write the global HTN structure search algorithm as in Algorithm 3.6.
Note that this algorithm adds a run of a Gen Best Neighbour∗ function as a last step, which
is a function that is similar to the Gen Best Neighbour, as described earlier, but may use
more costly operations, as it only has to be run once. In the currently presented version, this
optional additional step is not used, as the tried options did not provide better models.

Algorithm 3.6 Find Best Structure(H,D, k, l)

Input: H initial (possibly empty) HTN
D set of demonstration traces
k maximal number of choices for a pattern
l maximal length of a sequence pattern

1: (PD, H
∗)← Find Best Patterns(D, k, l,H)

2: optional
3: D′ ← Abstract Demos(D,PD)
4: Hc ← D′ ← Gen Best Neighbour(D ∪D′, H∗)
5: if Quality(H∗) < Quality(Hc) then
6: H∗ ← Hc

7: return H∗

3.5 Conclusion

In this chapter, we presented a system for learning HTN structures from demonstration traces
of action symbols using a greedy search algorithm.

As part of this system, we presented how to adapt the HTN-Maker algorithm [HMK08]
to demonstrations without parameters, and analysed the complexity of generating sets of can-
didate HTNs using this method. Highlighting the limitations of this approach for generating
HTN structures, we proposed an approach leveraging frequent pattern mining for generating
multi-level hierarchies using the previously presented operator. We also proposed a procedure
to simplify an HTN to an equivalent one by removing redundancies and useless hierarchical
features.

In order to evaluate the quality of a given HTN during the search procedure, we designed
an MDL-based metric as a computationally efficient proxy.

We finally detailed a complete procedure for generating HTNs combining these different

3.5. Conclusion 63

components. However, when detailing this procedure, we presented an optional search step,
allowing for more expensive operations. While it is not used in the implemented version due to
unsatisfying results, we tried leveraging it, both through an implementation of a stochastic hill-
climbing algorithm and a population-based evolutionary algorithm. The rationale behind this
would be to add randomness into our search, in the hope of escaping local optima, even though
we did not obtain better results, even at the cost of vastly longer learning times. However,
given the success of evolutionary approaches for learning tree-like structures, as presented in
the introductory chapter, we expect it to be a promising avenue for improving our search
algorithm.

Another promising avenue concerns the pattern generation. While the current approach
limits itself to patterns expressible as regular expressions, this is mainly due to the simplicity
of using find and replace operations with regular expressions. However, using more complex
systems for these find and replace operations, it would be possible to use non-regular patterns,
such as the “balanced parenthesis” pattern, which would allow generating new hierarchical
structures not reachable in the current implementation.

Lastly, we now generate alternation patterns by enumerating all possible combinations,
which obviously quickly becomes costly. An option for generating candidates for choices in
a smarter way would be to use the · (any) regular expression operator in other sequential
patterns, using the different subsequences matched by the · part of the pattern as elements of
an alternation pattern.

Chapter 4

Learning Hierarchical Task Networks
Parameters from Demonstrations

Contents

4.1 Introduction . 65
4.2 Learning Symbolic Parameters: Existing Approaches 67
4.3 Generating Correct and Usable Parameters for a Given HTN Structure 68

4.3.1 Generating a Finite Candidate Parameter Set 69
4.3.1.1 Algorithm for Generating a Candidate Parameter Set 69
4.3.1.2 Candidate Parameter Set Generation as Walks on a Graph . . . 73

4.3.2 Simplifying the Generated Candidate Sets 74
4.3.2.1 Parameter Unification . 74
4.3.2.2 Parameter Removal . 77

4.4 Handling Recursive Task Definitions: the “Loop-Until” Pattern 79
4.4.1 Ensuring Consistency with the HTN Structure 84
4.4.2 Ensuring Compatibility with the Demonstrations 84
4.4.3 Minimizing Method Parameters Through Unification 85

4.5 Conclusion . 86

4.1 Introduction

As we have highlighted in our survey of the HTN learning systems, approaches that introduce
new abstract tasks are either limited to grounded HTNs [Che+21; HS16; Li+14], have strong
limitations on the structure of the learned tasks [GMK18; LJ16] or have scalability issues with
the size or structure of the domain [SPF17]. However, lifted models are necessary to generalize
the learned knowledge to new objects, and therefore we want to learn parameters for the newly
added tasks and methods. The goal of our parameter learner will be to capture the relationship
between the arguments of the subtasks of the hierarchy, both vertically (across levels) and
horizontally (between siblings tasks in a single method), in an idea similar to generalization as
described by Plotkin [Plo70]. This will in turn enable a solver to efficiently use the model for
planning, and may even be used to extract useful preconditions.

Note that because we consider that the primitive tasks and the demonstration tasks are
known, a domain with a trivial parameterization can always be generated from an HTN structure
as described in the previous chapter. An example of the difference between an HTN with such
trivial parameterization and one with ideally learned parameters is presented in Figure 4.1.
Note that for the sake of conciseness, whenever the context is unambiguous in this chapter,
we will use “HTN without parameters” or “non-parameterized HTN” instead of “HTN without
learned parameters”.

66 Chapter 4. Learning Parameters

mdeliver(p
l, tl, llp, p

u, tu, lup)

mmove
goto (t1, l11, l

1
2) mmove

goto (t2, l21, l
2
2)

deliver(p, ld)

load(pl, tl, llp)goto goto unload(pu, tu, lup)

move(t1, l11, l12) goto
m

nop
goto

move(t2, l21, l22) goto
m

nop
goto

(a) HTN without learned parameters. The only parameters present are the ones in the primitive tasks
and in the demonstrated top-level tasks, as well as parameters trivially added to the methods to stay
consistent with our earlier definitions.

mdeliver(p, t, lp, ld)

mmove
goto (t, ls, l

1
i , lp) mmove

goto (t, lp, l
2
i , ld)

deliver(p, ld)

load(p, t, lp)goto(t, ls, lp) goto(t, lp, ld) unload(p, t, ld)

move(t, ls, l1i) goto(t, l1i , lp)
m

nop
goto

move(t, lp, l2i) goto(t, l2i , ld)
m

nop
goto

(b) HTN with ideal parameters. Note how these parameters transfer information both horizontally and
vertically in the hierarchy.

Figure 4.1: An example of HTN without learned parameters and the same HTN with ideal
parameters.

4.2. Learning Symbolic Parameters: Existing Approaches 67

In this chapter, we consider as input an incomplete HTN model HS and a set of demonstra-
tions D:

• HS is a tuple (L, TI ∪ TL, TP ,MI ∪ML), similar to a hierarchical planning domain.

– L is the associated logic.
– TP is the set of (known) primitive tasks, with their parameters, preconditions and

effects.
– TI ∪ TL is the set of abstract tasks, with TI the set of initially known tasks and TL

the set of learned tasks. The tasks in TI are complete (known parameters and post-
conditions if any), while only the names of the tasks in TL are known. For clarity,
we will call the additional tasks in TL synthetic tasks.

– MI ∪ML is the set of methods. Similarly, MI is a (potentially empty) set of methods
to decompose TI , and both their pre-conditions and parameters are fixed. On the
other hand, for the methods in ML, only their parent task and their subtasks are
known, with the parameters to be determined

• D is a set of solution traces with associated top-level task instance, as defined in the
overview section of this manuscript.

Furthermore, we also consider that for each demonstration d ∈ D, we can obtain a decom-
position tree that shows how the HTN structure HS can match the demonstration d, ignoring
any parameters. The preceding chapter detailed in Section 3.3.2 how such decomposition trees
can be obtained from the input data. For simplicity in this chapter, we will also use args(·) to
designate the set of parameters of a task or method.

This chapter will be structured as follows: first, we will detail how other HTN-learning
approaches deal with this issue, and present some other related approaches. Then, we will
present a first approach to learn the parameters before addressing its limitations in the face of
recursive tasks. We will therefore propose a solution to deal with these issues in the case of a
specific but frequent recursion pattern.

For simplicity, we will consider that the structure of the HTN model is non-recursive in the
demonstrated tasks, except for HTN-Maker-induced direct recursions.

4.2 Learning Symbolic Parameters: Existing Approaches
In previous HTN learning approaches, parameter learning remains an unaddressed issue.

In the case of grounded HTN learning [Che+21; HS16; Li+14], it is obviously considered
a non-issue, at the cost of a loss of generalization power. Similarly, when all the possible
intermediate abstract tasks are given as input [HMK08; ZMY14], parameters are obviously
already given for the abstract tasks, and only their unification with the method parameters is
to be found. HTNLearn [ZMY14] uses a very simple form of anti-unification1, mainly targeted
towards finding method pre-conditions, replacing constants by variables and removing duplicate
predicates. HTN-Maker [Hog11] uses unification to map method parameters with task and
precondition parameters.

The approach by [SPF17] does not require intermediate abstract tasks as input, propagating
parameters from the primitives, but does not study how well this approach scales in larger
domains nor how to handle recursive task definitions. On the other hand, approaches that

1The process of generalizing two symbolic expressions.

68 Chapter 4. Learning Parameters

learn goal-equivalent tasks [GMK18; LJ16] have their parameters intrinsically defined by their
definitions of the learned tasks and methods, making the problem similar to when abstract tasks
are given.

In the context of learning lifted Linear Temporal Logic (LTL) formulas from natural language
[Hsi+22], assuming a contextual query similar to a top level abstract tasks in our context,
the anti-unification is done through a simple lifting procedure similar to that in HTNLearn
[ZMY14].

In our case, because our new abstract tasks may represent arbitrary behaviours, we need to
both learn the structure of the parameters of the tasks and methods, and how they can be unified
together to avoid tasks with hundreds of parameters. It can be noted that all these approaches
(ours included) are domain specific. This issue plagues generalization, which lacks a common
formal framework, as highlighted in a recent survey [CK23]. Classifying these approaches and
ours in the author’s proposed framework could lead to more efficient methods. However, the
inherent structural variadicity and interdependence of our symbols’ parameterizations makes
this a non-trivial task.

4.3 Generating Correct and Usable Parameters for a Given
HTN Structure

The two main roles of parameters in a HTN can be seen as:

• Passing values from the top down to the bottom of the hierarchy.

• Restrict the possibilities of instantiation across siblings, in particular across subtasks of a
given method.

One could argue that a third property should be added: the parameters of a method should
allow for the extraction of useful pre-conditions. However, this is out of the scope of our current
approach and is left for future works.

Of course, the parameterization should remain simple enough so that an automated planner
does not run into a non-tractable combinatorial explosion of method instantiations.

These high-level properties led us to propose a two-step algorithm for parameter learning:

1. Identify the set of candidate parameters for all non-parameterized abstract tasks and
methods in the domain.

2. Simplify this set of parameters. This step is itself subdivided in two sub-steps:

(a) Extract possible unifications of candidate parameters from the usage patterns of the
hierarchy.

(b) Remove useless parameters from the hierarchy.

The first step allows finding parameters that can propagate information in the hierarchy,
especially vertically. However, this may lead to numerous parameters, which contradicts our
second property, hence the second step. The unification procedure will also provide the addi-
tional benefit of propagating information horizontally across sibling tasks.

4.3. Generating Correct and Usable Parameters for a Given HTN Structure 69

4.3.1 Generating a Finite Candidate Parameter Set

To identify the superset of possible parameters, we define the following properties to determine
this set:

• The set of parameters of a method m must contain the parameters of all its subtasks and
must be finite. This comes naturally from the definition of an HTN method where the
parameters of each task are imposed.

• Each parameter of a synthetic task t must be used in at least one of its methods. This
property is used to ensure that all the parameters of t are actually useful to pass inform-
ation down the hierarchy.

4.3.1.1 Algorithm for Generating a Candidate Parameter Set

In order to extract a set satisfying these conditions, we propose to reuse the idea of propagat-
ing arguments upwards from the primitives presented by Segura-Muros, Pérez and Fernández-
Olivares [SPF17]. However, this approach clearly requires defining a single top-level task for
the whole HTN, which is difficult, if not impossible, in the presence of recursive task defini-
tions. To solve this issue, we propose to split our HTN into subhierarchies, which are HTN-like
structures limited to a top-level task and its associated methods. This equivalence between
HTN and subhierarchies is presented graphically in Figure 4.2, and is defined more formally in
Definition 4.1.

m1(?) m2(?)

ms
1(?)

ttop(A1, A2)

tp1(B1) ts(?) tp1(D1) tp2(E1, E2)

tp1(F1) ts(?)

ms
2(?)

(a) Example task hierarchy, showing how ttop can be decomposed using the methods m1 and m2.

m1(?) m2(?)

ttop(A1, A2)

tp1(B1) ts(?) tp1(D1) tp2(E1, E2)

(b) Subhierarchy for ttop.

ms
1(?)

ts(?)

tp1(F1) ts(?)

ms
2(?)

(c) Subhierarchy for ts.

Figure 4.2: Example HTN structure and corresponding subhierarchies. Here, ttop is a demon-
strated abstract task and ts is a learned abstract tasks, while the other tasks are primitive. This
example presents the case where we have an incomplete HTN domain where only the primitive
and demonstrated abstract tasks’ arguments are known, with ? used to denote task and meth-
ods where the parameters are unknown.

Definition 4.1 (Subhierarchy). For a given HTN H = (L, TC , TP ,M), the subhierarchy asso-
ciated with task t ∈ TC is defined as a tuple ht = (L, T ht

C , T ht

P ,Mht) where:

70 Chapter 4. Learning Parameters

• Mht = {m = (c, tnm, pre(m) ∈M | c = head(t))} is the set of methods that refine t.

• T ht

C = {t′ ∈ TC | t
′ = t∨∃m ∈Mht , t′ ∈ tnm} is the set of compound tasks that appear in

the subtasks of the methods decomposing t.

• T ht

P = {t′ ∈ TP | ∃m ∈ Mht , t′ ∈ tnm} is the set of primitive tasks that appear in the
subtasks of the methods decomposing t.

With this definition of subhierarchies, we can express the properties required of our candidate
set in a more concise manner. For a given subhierarchy ht:

• For a given method m of t, we have:

args(m) =
⋃

ts∈subtasks(m)

args(ts)

• If t is a synthetic tasks, then:
args(t) ⊂

⋃

m∈Mht

args(m)

Note that this leaves the ability have methods parameters that are not bound to a para-
meter of the top level task t.

Furthermore, thanks to this decomposition of a structure with a single top-level task for
each subhierarchy, the definition of a bottom and a top for these structures is trivial. Note that
we can see each subhierarchy with top level task t as a kind of reference definition for t, with
its parameters and the parameters of its methods. We can therefore develop a procedure for
propagating the arguments upwards in these new structures: instead of propagating from the
bottom of the hierarchy, we take each subhierarchy independently and propagate the arguments
upwards in this structure and update the methods and top-level task’s arguments accordingly.
Then, we update all the instantiations of an abstract task as a subtask in a subhierarchy
according to their now updated definition in their reference subhierarchy. This process can then
be repeated until it reaches a fixed point, as presented in Algorithm 4.1. Note that we never
modify the definition of a demonstrated task (the arguments of its methods may be modified,
however).

Algorithm 4.1 Parameter Superset Generation
Input: HS an incomplete HTN model

1: Hsubs ← the subhierarchies from HS

2: repeat
3: Π← args(Hsubs) ⊲ Existing parameters
4: for all h ∈ Hsubs do
5: Propagate Args Upwards(h)
6: Πnew ← args(Hsubs) \Π ⊲ New parameters
7: for all h ∈ Hsubs do
8: Update Subtasks Args(h,Πnew)
9: until Pnew = ∅

However, note that in the presence of recursive tasks, such as ts in our example, this process
would never terminate, because new parameters would be created at each iteration. To enforce
termination of the algorithm, we need to detect this behaviour during the propagation, including

4.3. Generating Correct and Usable Parameters for a Given HTN Structure 71

when the recursions are indirect. To this end, we need to keep track of which methods a
parameter has been propagated through during the propagation process. Then, we can limit
the number of times a parameter can cross a given method to solve the issue. To this end, we
augment each parameter p of a task or method in a subhierarchy with the set M̂p of methods
through which it has been propagated upwards, so that p̂ = (p, M̂p).

This extended propagation process is presented in Algorithm 4.2. The mapping between this
algorithm and the high level explanation is straightforward: line 3 propagates all the arguments
from the subtasks of m into args(m), while line 6 propagates the arguments of the methods into
the top level task’s, provided it satisfies the method’s filtering condition (line 4).

Algorithm 4.2 Propagate Args Upwards(ht)
Input: ht a subhierarchy with top-level task t

1: for all m ∈Mht do
2: for all p̂ ∈ args(Subtasks(m)) do
3: args(m)← args(m) ∪ {p̂}

4: if m /∈ M̂p then
5: p̂′ ← (p, M̂p ∪ {m})
6: args(t)← args(t) ∪ {p̂′}

The filtering condition guarantees the termination of the algorithm because a parameter
can only be added to a top level task by going through a method. This filtering is motivated
by the idea that a given task can only set the parameters of its direct subtasks, but in case of
a recursive call, the method must be able to handle the parameters of the next instantiation
of the subtask. Because there is a finite number of methods in our set of subhierarchies, after
some number of iterations, a given parameter will be stopped by the filter even in the presence
of recursive tasks. This remains true even if this recursion is indirect. We argue that it is a
reasonable limitation as an HTN planner can:

1. Parameterize all the non-recursive subtasks.

2. For each recursive subtask instantiation, choose whether the parameters are the same as
the parent task or not.

Finally, Algorithm 4.3 presents the procedure to update the subtasks, called after each round
of argument propagation. It is a straightforward procedure that is used to keep a consistent
parameterization of every abstract task.

Algorithm 4.3 Update Subtasks Args(ht,Πnew)

1: for all ts ∈ Subtasks(ht) do
2: Πts

new ← {p̂
′ = (p′, M̂p) | p̂ ∈ args(ts) ∧ p̂ ∈ Πnew, with p′ a new variable}

3: args(ts)← args(ts) ∪Πts
new

Figure 4.3 illustrates the parameter generation using Algorithm 4.1, focusing specifically
on the subhierarchy for ts from the example presented Figure 4.2, as it is independent of any
other subhierarchies. Figures 4.3a and 4.3b shows the effect of the function Propagate Args
Upwards while Figure 4.3c shows the update of the subtasks. Note that due to the recursive
nature of ts, the added parameter during the subtasks update is F ′

1, as it may or may not be
bound to F1. This process is then repeated, as shown in Figure 4.3d. This time however, the
filtering condition for the argument propagation (Alg. 4.2, line 4) is triggered by F ′

1, preventing

72 Chapter 4. Learning Parameters

it from being added to the parameters of ts. As no new changes can be made to the subtasks of
ts (even considering the subhierarchy for ttop), all the possible arguments of this subhierarchy
have been extracted.

Figure 4.4 shows the resulting parameters for the task ttop after applying the same parameter
extraction procedure.

ms
1(F1)

ts(?)

tp1(F1) ts(?)

ms
2

(a) Iter. 1, upwards propagation, step 1.

ms
1(F1)

ts(F1)

tp1(F1) ts(?)

ms
2

(b) Iter. 1, upwards propagation, step 2.

ms
1(F1)

ts(F1)

tp1(F1) ts(F
′
1)

ms
2

(c) Iter. 1, subtasks update.

ms
1(F1, F

′
1)

ts(F1)

tp1(F1) ts(F
′
1)

ms
2

(d) Iter. 2, upwards propagation, step 1.
Final subhierarchy for ts.

Figure 4.3: Example of argument superset generation for ts.

m1(B1, F1) m2(D1, E1, E2)

ttop(A1, A2)

tp1(B1) ts(F1) tp1(D1) tp2(E1, E2)

Figure 4.4: Extracted parameters for ttop

From this parameterized HTN and the structure of the decomposition trees mapping them to
the demonstration traces, we can easily extract parameterized decomposition trees by replacing
argument instantiations in the primitive actions and the demonstrated top level tasks and
propagating these substitutions throughout the tree. A basic example of decomposition tree
is given in Figure 4.5, where a1, a2, d1, e1 and e2 represent constants. These decomposition
trees will be used to simplify the set of task and method parameters from the demonstration
examples.

ttop(a1, a2)

m2(?, ?, ?)

tp1(d1) tp2(e1, e2)

(a) Before substitutions.

ttop(a1, a2)

m2(d1, e1, e2)

tp1(d1) tp2(e1, e2)

(b) After substitutions.

Figure 4.5: Example of argument propagation in a decomposition tree for a demonstration of
ttop(a1, a2) as the sequence 〈tp1(d1), tp2(e1, e2)〉

4.3. Generating Correct and Usable Parameters for a Given HTN Structure 73

4.3.1.2 Candidate Parameter Set Generation as Walks on a Graph

We can observe that this propagation procedure can be represented as a directed graph, where
each task in the HTN model is a node, and methods are mapped to labelled edges such that for
(t, t′) ∈ (TP ∪ TC)

2, there is an edge labelled m from t to t′ if and only if t is a subtask of t′.
We will call this graph the propagation graph. Considering the HTN presented in Figure 4.6a
(repeated from Figure 4.2a), the corresponding propagation graph is presented in Figure 4.6b.

m1(?) m2(?)

ms
1(?)

ttop(A1, A2)

tp1(B1) ts(?) tp1(D1) tp2(E1, E2)

tp1(F1) ts(?)

ms
2(?)

(a) HTN structure.

ts

tp1

tp2

ttop
m1

ms
1

m1

m2
ms

1

m2

(b) Propagation graph.

Figure 4.6: Propagation graph for an HTN.

Using this graph, it is possible to compute the number of arguments that a task or method
will have at the end of the propagation. For a task, this can be achieved by counting the number
of walks1 from a primitive task to a target task where all labels are distinct. For a method m,
after computing the number of arguments of all tasks, we can sum the number of arguments of
all source tasks for the edges labelled m.

This observation allows us to compute bounds on the number of parameters in a given task.
In the absence of any recursions, our graph is directed and acyclic, and for any abstract task t

we can extract a directed graph G the node t is a source and the sinks are the primitive tasks
with known parameters. Given an (incomplete) HTN H = (L, TC , TP ,M), in the worst case,
the internal nodes of G are comprised of all the compound tasks except t, and the maximum
number of edges from one node to another is the maximum number of methods, written mmax .
Then, the maximal length of any path is |TC | + 1, and each node may at most generate mmax
subpaths, which gives:

max
t∈TC

| args(t)| = (|TC |+ 1)mmax = O(|TC |
mmax) (4.1)

However, in practice, this bound is rarely reached and the number of arguments remains tract-
able.

When recursions are involved, this bound does not remain valid, as it was built on the fact
that G was acyclic. Let us focus on an example, where we have a task as shown in Figure 4.7,
where we have k different methods that are recursive and a method with a single primitive
subtask a. It is easy to see that we have k walks of length two with distinct edge labels. Then,
for each of these walks, we can add any k− 1 more edges to generate walks of length three, and
so on until we reach walks of length k+1. It is thus easy to see that the number of parameters
in this simple case is O(k!). However, this bound is in practice not an issue, as such problematic
structures do not tend to appear in planning domains.

1A sequence of edges which joins a sequence of vertices.

74 Chapter 4. Learning Parameters

t

m1

t

m...

t

m0

a(A)

mk

t

(a) HTN structure.

a t
m0

m1

m...

mk

(b) Propagation graph.

Figure 4.7: A HTN with multiple recursions in different methods, and the corresponding
propagation graph

However, we can analyse the cause for this number of path: it stems from the fact we decided
that a task must be able to set the parameters for the next instantiation of a given subtask.
It should therefore be possible to limit this phenomenon by considering that a task must only
be able to set parameters for the subtasks in its own direct next instantiation, not that of
its subtasks’. This would probably have a limited impact on the parameterization quality, as
recursive tasks handling with our current method presents issues anyway, as will be detailed in
Section 4.4.

Using another example (Figure 4.8), we can also observe that direct recursions appear as
self-loops in the graph, and indirect recursions as Strongly Connected Components (SCCs). We
can also detect a layered structure to this graph, which is especially apparent after condensing
the SCC formed by the indirect recursion t1, t2, as shown in Figure 4.8c: here, we can see that
the parameters of ttop depend on the parameters of b, t1 and t2, the latter depending on a.
This observation will be useful in the part of our work dedicated to improving the handling of
recursions, currently still in progress at the time of writing this manuscript and presented in
Appendix B.

4.3.2 Simplifying the Generated Candidate Sets

Now that we have described a way to extract a set of possible parameters for a given HTN, we
need to identify how parameters are passed to its methods and from a method to its subtasks.
This is done in a simplification step where we unify parameters from distinct sources.

We wish for the set of parameters to be general enough to be able to cover all the examples
(and hopefully generalize well to new instances) while still restricting the decomposition possib-
ilities to limit the search effort required of the solver. We propose to achieve this simplification
through two main procedures:

1. Parameter unification, where parameters are unified with one another according to the
examples.

2. Parameter removal, where parameters that do not propagate information (either vertically
or horizontally) are dropped.

4.3.2.1 Parameter Unification

We want to unify as many parameters as possible from the examples given as input. This is
motivated by the fact that it will i) reduce the number of parameters to instantiate in the model
and ii) constrain the parameters of the subtask of a given method, allowing them to refer to

4.3. Generating Correct and Usable Parameters for a Given HTN Structure 75

ttop(?)

m
top
2 (?)
t2(?)

m
top
1 (?)
t1(?)

m
top
3 (?)

b(B1, B2)

mt1
1 (?)

a(A) t2(?)

mt1
2 (?)

t2(?)

mt2
2 (?)

t1(?)

mt2
1 (?)

t1(?)

mt2
3 (?)

t2(?)

(a) An example incomplete HTN. This structure presents an indirect recursion, with t1 and t2, as well
as two an abstract task ttop that uses the recursive tasks. No parameters are known here except the ones
in the primitive tasks a and b.

t1 t2

a

ttop

b

m
top
1

mt2
1

mt2
2

m
top
2

mt1
1

mt1
2

mt2
3

mt1
1

m
top
3

(b) The propagation graph corresponding to the HTN.

ttop

{t1, t2}

a

b

m
top
1 m

top
2

mt1
1

m
top
3

(c) Condensed graph correspond-
ing to the propagation graph.

Figure 4.8: An incomplete HTN and the corresponding propagation graph. Colours and line
styles used in all subfigures are used to clarify the edge labelling in the propagation graph.

76 Chapter 4. Learning Parameters

the same constant for the whole method without requiring the planner to infer that this is the
best parameterization.

To achieve this unification, we frame the problem as MAX-SMT with the theory of equality
and uninterpreted functions. We define args(x) as the function that returns the ordered set of
arguments of x, where x may be a method, a task, a subhierarchy or a set of subhierarchies and
argi(x) the function that returns the ith argument of x.

Let us write Hsubs the set of subhierarchies corresponding to a HTN candidate HC , and
h ∈ Hsubs a single subhierarchy. We define, for every demonstration d ∈ D and corresponding
decomposition tree, the set Id of identifiers for the instantiations of the subhierarchies h ∈ Hsubs
in the corresponding decomposition tree. Similarly to an HTN, we define the sets of compound
tasks T h

C , primitive tasks T h
P and methods Mh. We additionally write th ∈ T h

C the top level
abstract in a subhierarchy h.

Furthermore, for a variable ?p, its grounding in the instantiation i ∈ Id is written as pi,
which is defined only if such a grounding exists. If a subtask t is abstract and appears in an
instantiation i ∈ Id, we note

¯
it the next instantiation through t. For example, in Figure 4.9,

i = 2 implies that
¯
igo = 3.

dlv | 1

m | 1

go |
1

2

mmv | 2

mv | 2 go |
2

3

m∅ | 3

ld | 1 go |
1

4

mmv | 4

mv | 4 go |
4

5

m∅ | 5

uld | 1

(a) Decomposition tree with identifiers.

m

ld gogo uld

dlv

mmv

mv go
m∅ mmv

mv go
m∅

(b) Corresponding HTN.

Figure 4.9: Example of decomposition tree with instantiation identifiers for a demonstration
dlv : 〈mv, ld,mv,uld〉 and presented HTN structure.

In order to express our MAX-SMT problem, we introduce the following data types and
function:

• h ∈ Hsubs, a set Vh of uninterpreted constants corresponding to args(h), the argument
variables in h.

• ∀d ∈ D, an enumerated data type Gd corresponding to ∪t∈d args(t), the constants in a
given example.

• For each couple (h, d) ∈ Hsubs ×D:

4.3. Generating Correct and Usable Parameters for a Given HTN Structure 77

– An enumerated data type Ihd to represent which instantiation of h in d is currently
considered. It is a restriction of Id to the instantiations of h.

– A function gndh
d : Vh × I

h
d → Gd which associates an argument with a grounding in

an instantiation of h.

Thanks to the one-to-one mapping from base elements (HTN variables, example constants and
instantiations identifiers) to elements of the sets of SMT data types (V, G and I), we use
notations from the original sets to define the constraints for simplicity.

The system of constraints is presented in Table 4.1. Each constraint can be seen has fulfilling
a specific role: the No-Inst constraint states that an argument that has never been instantiated
in the demonstrations should not be unified with any other, to limit overzealous simplifications.
The Def-Consistency constraint is used to ensure that if we unify two parameters in the ref-
erence definition of a synthetic task t, then they must be unified in every instantiation of t

as a subtask. Gnd-Evidence and Gnd-Consistency are used to consider the grounding of the
arguments. The first one simply associates an argument with its grounding in the instantiation
i of the subhierarchy hi, while the second one ensures that we do not have inconsistency at the
boundary between two instantiations. Finally, Unif-Examples is used to add soft constraints
(our optimization objective) to try and satisfy as many encountered unifications as possible.

4.3.2.2 Parameter Removal

Once the unification process has taken place, the HTN model may still contain abstract tasks
with a large number of parameters, leading to methods with many parameters which will be
difficult to instantiate for the solver. Therefore, we propose to remove the parameters that will
hinder a solver’s performance rather than improve it. We propose to define “useful” parameters
as:

1. Parameters enabling the transfer of information from the top of the hierarchy down to-
wards the primitive tasks.

2. Parameters enabling parameter unification across sibling subtasks.

To determine which arguments to remove, we define two functions: Parents(p) and
Has Siblings(p).

Parents(p) returns the set of parameters that are used as parents of a given parameter p

in method’s subtask, allowing to implement rule 1. Using the examples in Figure 4.10, we can
give the set of parents for the parameters of the task t, in the different structures presented. In
the structure Figure 4.10a, we can see that Parents(X) = ∅ and Parents(X) = ∅, while in
Figure 4.10b, Parents(Z) = {Zttop}.

Has Siblings(p) returns True or False depending on whether p is used in two subtasks
of the same method, allowing to implement rule 2.

We also define a set of protected parameters for a given set of subhierarchies H, P †
H , which

contains all the parameters of the primitive and of the demonstrated tasks, which can obviously
never be removed. We can then define the set of simplified arguments of the subhierarchies as:

∀h ∈ Hsubs, args(h) =




p ∈ args(h)

∣∣∣∣∣∣∣

Parents(p) 6= ∅
∨Has Siblings(p)

∨ p ∈ P
†
H





(4.2)

78
C

hapter
4.

Learning
P

aram
eters

Name Condition Constraint

H
ar

d

No-Inst ∀h ∈ Hsubs, ∀ ?p ∈ args(h), ∀d ∈ D, ∀i ∈ Id, ∄pi ∀ ?p′ ∈
⋃

h′∈S

args(h′) \ {?p}, ?p 6= ?p′

Def-Consistency ∀h ∈ Hsubs, T =

{
t ∈

⋃
h′∈S

T h′

C | sym(t) = sym(th)

}
, ∀t ∈ T \ th ∀(i, j) ∈ | args(th)|2, argi(th) = argj(th)

⇒ argi(t) = argj(t)

Gnd-Evidence ∀d ∈ D, ∀i ∈ Id, ∀ ?p ∈ args(hi), ∃pi
with hi ∈ S the subhierarchy instantiated at i

gndhi

d (?p, i) = pi

Gnd-Consistency ∀d ∈ D, ∀i ∈ Id, ∀t ∈ T hi

C \ t
hi ,

ht ∈ S, sym(t) = sym(tht), ∀
¯
it, ∀j ∈ | args(t)|

gndhi

d (argj(t), i) = gndht

d (argj(tht),
¯
it)

So
ft Unif-Examples ∀h ∈ Hsubs, ∀(?p, ?q) ∈ args(h)2, ?p 6= ?q,
∀d ∈ D, ∀i ∈ Id, ∃pi, ∃qi, pi = qi

?p = ?q

Table 4.1: Constraints used in the MAX-SMT problem. Conditions are fully expanded to remove quantifiers, and a constraint is added for each
expansion of the corresponding condition. Quantifiers are also expanded in each constraint as the chosen solver does not support optimization
with quantifiers. Upper constraints are hard while the lower one is soft.

4.4. Handling Recursive Task Definitions: the “Loop-Until” Pattern 79

ttop(Z)

mtop(X,Y)

t(X,Y)

m1(X)

a1(X)

m2(Y)

a2(Y)

(a) Before unification.

ttop(Z)

mtop(Z)

t(Z)

m1(Z)

a1(Z)

m2(Z)

a2(Z)

(b) After unification.

Figure 4.10: Example of extended subhierarchy used for downward information propagation.

Algorithm 4.4 implements the simplification procedure, where parameters are removed from
the tasks and methods until a fixed point is reached.

Algorithm 4.4 Parameter Removal
1: repeat
2: Pdrop ← ∅
3: for all p ∈ args(Hsubs) do
4: if Parents(p) = ∅ ∧ ¬Has Siblings(p) ∧ p /∈ P

†
H then

5: Pdrop ← Pdrop ∪ {p}
6: args(Hsubs)← args(Hsubs) \ Pdrop
7: until Pdrop = ∅

4.4 Handling Recursive Task Definitions: the “Loop-Until”
Pattern

The extraction and substitution procedure described in the previous section would actually
lead to poor parameterization in the case of recursive tasks definitions, allowing the top level
arguments to only refer to the first or second instantiation in the recursion. Therefore, we will
discuss a generalization of this procedure, starting with a common pattern used to encode loops.

A common usage of recursive task definitions in HTN domains is to encode the “do something
until condition” pattern, which would be difficult to parameterize without considering the last
step of the recursion. The ubiquitous goto(L1, Ld) pattern, presented Figure 4.11, is an example
of such a pattern used in many planning domains, used to move an agent from a location L1

to a location Ld. This is done recursively by chaining move actions through intermediate
locations until the agent arrives at Ld, mainly to obey location connection preconditions. As
can be seen in this example, the Li parameter is used to constrain the next instantiation of
goto and the Ld parameter constrains all of them. However, our original method for argument
unification cannot generate this parameterization: Figure 4.12 shows the parameter set that we
can generate (Figure 4.12b) and the decomposition trees that we could obtain for a given trace
(Figure 4.12c), which highlights the impossibility to refer to the end of the decomposition.

To solve this issue, we propose a small modification of the extracted parameters for re-
cursive subhierarchies, presented Figure 4.13, as well as a preprocessing step leveraging the
demonstrations, before extracting the full parameterized decomposition trees presented earlier.

80 Chapter 4. Learning Parameters

mmove(L1, Li, Ld)

goto(L1, Ld)

move(L1, Li) goto(Li, Ld)

mthere(L1, Ld)

Figure 4.11: Subhierarchy for a goto pattern. Preconditions omitted for clarity.

move(l1, l2) move(l2, l3) move(l3, ld)

(a) Demonstration trace.

m1(X,Y,X ′, Y ′)

goto(X,Y)

move(X,Y) goto(X ′, Y ′)

m2

(b) Structure with parameters candidate set generated using the presented method.

goto(l1, l2)

m1(l1, l2, l2, l3)

move(l1, l2) goto(l2, l3)

m1(l2, l3, l3, ld)

move(l2, l3) goto(l3, ld)

m1(l3, ld, X, Y)

move(l3, ld) goto(X,Y)

m2

(c) Decomposition tree.

Figure 4.12: Possible example trace and corresponding decomposition tree example for the
goto task, with the subhierarchy parameters extracted using the method presented in previous
section. Colours are used to highlight identical constants.

4.4. Handling Recursive Task Definitions: the “Loop-Until” Pattern 81

This process will be illustrated using a simple subhierarchy structure, but could be easily gen-
eralized to any task with a single recursive subtask. While this covers many of the use cases,
more work is needed for this to work on arbitrary task hierarchies. The main idea is to be able
to map parameters of the top task of a given recursive subhierarchy to parameters from the
demonstrations’ primitive actions, while considering that recursive tasks should be able to refer
to parameters at the end of a recursion.

m1(P1, . . . , Pn, P
′
1, . . . , P

′
n)

ttop(P1, . . . , Pn)

tp(P1, . . . , Pn) ttop(P ′
1, . . . , P

′
n)

m2

(a) Basic recursive hierarchy.

m1(P1, . . . , Pn, P
′
1, . . . , P

′
n)

ttop(P t
1, . . . , P

t
n)

tp(P1, . . . , Pn) ttop(P ′
1, . . . , P

′
n)

m2(P
t
1, . . . , P

t
n)

(b) Modified recursive hierarchy.

Figure 4.13: Parameters modification for recursive tasks.

We first modify the parameters to keep track of the non-recursive parameters from which
the recursive one has been generated, modifying the extracted structures from the previously
extracted one, presented Figure 4.13a, into the one presented in Figure 4.13b. In this example
the P t

i parameters shows that this parameter originated from the Pi parameter of the task tp,
but we do not know whether it should refer to the immediate instantiation of Pi or if it needs
to refer to its last instantiation. The P ′

i are the instantiation of the parameters of the task ttop
in the recursion chain, generated in the same way as in the example Figure 4.3.

We then can substitute the ground parameters in the non-recursive subtasks in each recursion
chain, as presented in Figure 4.14 where all the p

j
i represent constants.

Applying this process to a goto task for which we want to learn the parameters, we obtain the
subhierarchy presented in Figure 4.15. A decomposition tree for a given example demonstration
trace is given in Figure 4.16. This task will be used as a running example to illustrate the
remainder of this section.

From this new set of parameters, we then need to determine, ∀i ∈ [1, n], if P t
i is bound to

Pi or P ′
i , or to the parameters of the last step of the chain, noted PL

i . Furthermore, we want
to know if some parameters are bound together in the method, transferring information from
one step of the chain to the next. We note P+

i the instantiation of the parameter Pi in the next
step and P the set of all arguments in the example and the subhierarchy. Pm ⊂ P represents
the set of arguments of a method m in the considered subhierarchy and Ptop ⊂ P the set of
arguments of the top level task.

Leveraging the structure of the subhierarchies and the demonstrations, we cast the problem
of grouping parameters together as a MAX-SMT problem with the goal of optimizing the size
of the groupings of method parameters and the number of top level task parameters bound to
their last instantiation in a recursion chain. We can divide the set of constraints that will define
our SMT problem into two categories: constraints that ensure consistency with the previously
defined HTN structure, and constraints that ensure consistency with the given examples.

82 Chapter 4. Learning Parameters

ttop(P 0
1 , . . . , P

0
n)

m1(p
0
1, . . . , p

0
n, P

1
1 , . . . , P

1
n)

tp(p
0
1, . . . , p

0
n) ttop(P 1

1 , . . . , P
1
n)

m1(p
1
1, . . . , p

1
n, P

2
1 , . . . , P

2
n)

tp(p
1
1, . . . , p

1
n) ttop(P 2

1 , . . . , P
2
n)

· · ·

ttop(P k
1 , . . . , P

k
n)

m1(p
k
1, . . . , p

k
n, P

k+1
1 , . . . , P k+1

n)

tp(p
k
1, . . . , p

k
n) ttop(P

k+1
1 , . . . , P k+1

n)

m2(P
k+1
1 , . . . , P k+1

n)

Figure 4.14: Generic decomposition tree for a recursive hierarchy.

m1(X,Y,X ′, Y ′)

goto(Xt, Y t)

move(X,Y) goto(X ′, Y ′)

m2(X
t, Y t)

Figure 4.15: Extracted subhierarchy for a goto task before recursion processing.

4.4. Handling Recursive Task Definitions: the “Loop-Until” Pattern 83

move(l1, l2) move(l2, l3) move(l3, ld)

(a) Demonstration trace.

goto(X0, Y 0)

m1(l1, l2, X
1, Y 1)

move(l1, l2) goto(X1, Y 1)

m1(l2, l3, X
2, Y 2)

move(l2, l3) goto(X2, Y 2)

m1(l3, ld, X
3, Y 3)

move(l3, ld) goto(X3, Y 3)

m2(X
3, Y 3)

(b) Decomposition tree.

Figure 4.16: Possible example trace and corresponding decomposition tree example for the goto
task. Colours are used to highlight identical constants.

84 Chapter 4. Learning Parameters

4.4.1 Ensuring Consistency with the HTN Structure

From the presented model in Figure 4.13b, we can extract the following structural constraints
where hard constraints represent properties that must hold for the model to be consistent:

∀i ∈ [1, n]

HARD(P t
i = Pi ∨ P t

i = P ′
i) (4.3a)

HARD(P t
i = P ′

i ⇒ (P t
i = PL

i ∨ P ′
i = P+

i)) (4.3b)
HARD(P t

i = PL
i ⇔ P ′

i = PL
i) (4.3c)

HARD(P t
i = Pi ⇔ P ′

i = P+
i) (4.3d)

SOFT(P t
i = PL

i) (4.3e)

Constraints 4.3a and 4.3b are used to enforce consistency with the origin of a top task
parameter P t

i . Constraint 4.3a enforces the fact that the top level task argument either comes
from the non-recursive subtasks (left) or the recursive instantiation (right) while constraint 4.3b
enforces the fact that a top level parameter may only propagate information towards the next
step in a recursion or towards the last one.

The constraints 4.3c and 4.3d are used to enforce consistency within the model generated
by the constraint satisfaction solver.

The soft constraint 4.3e encodes the desirable, but not necessary, property that an argument
is always passed recursively which avoids the need for the planner to non-deterministically choose
its value.

4.4.2 Ensuring Compatibility with the Demonstrations

Let us now turn our attention to the constraints that must hold to ensure that parameter
passing is consistent with the demonstrations in a given hierarchy.

We can also extract the constraints defined in Equations 4.4∗ from each example with a
structure as presented in Figure 4.14. We note ∀i ∈ [1, n], ∀s, s′ ∈ [0, k]∪{L}, ps

′,s
i the argument

ps
′

i considered at step s, in order to allow parameters to refer to independent constants at each
step.

∀i ∈ [1, n]

HARD(PL
i = p

k,L
i) (4.4a)

∀s ∈ [0, k[,HARD(P+
i = p

s+1,s
i) (4.4b)

∀s ∈ [0, k]

HARD(Pi = p
s,s
i) (4.4c)

HARD
(
∀s′ ∈ [0, k] ∪ {L}, ∀j ∈ [1, n],

sym(pk,Li) 6= sym(ps,s
′

j)⇒ p
k,L
j 6= p

s,s′

j

)
(4.4d)

HARD
(
∀s′, s′′ ∈ [0, k], ∀j ∈ [1, n],

sym(ps
′,s
i) 6= sym(ps

′′,s
j)⇒ p

s′,s
i 6= p

s′′,s
j

)
(4.4e)

When considering our goto task, some possible constraints that ensure consistency with the
example presented in Figure 4.16 are presented in Example 4.1.

4.4. Handling Recursive Task Definitions: the “Loop-Until” Pattern 85

Example 4.1 Some Instantiations of the Demonstration-Based Constraints
Equation 4.4a defines the binding for the last instantiation of each top task parameter
as presented in the following equation:

{
XL = lL3 Y L = lLd

}
(4.5)

Equation 4.6 shows the bindings from steps 0 and 1 in the decomposition tree, showcasing
the effect of the equations 4.4b and 4.4c.

{
X = l01 X ′ = l02

Y = l02 Y ′ = l03

}

0

{
X = l12 X ′ = l13

Y = l13 Y ′ = l1d

}

1

(4.6)

Finally, equation 4.7 shows the action of constraint 4.4d, preventing unsound unifications
involving the last instantiation of a given task parameter.

{
lL3 6= l01 lL3 6= l02 lL3 6= l12 lL3 6= l1d lL3 6= lLd

}
(4.7)

4.4.3 Minimizing Method Parameters Through Unification

To determine which parameters are bound together during the optimization process, we define
a set G of potential groups for each p ∈ P and a function PGroup (equation 4.8a) which maps
each unique parameter to a single group (equation 4.8c). We also define a function NotCountG
(equation 4.8b) which will be used in the definition of the optimization objectives and is defined
through the constraint presented in equation 4.8d.

PGroup : P → G (4.8a)
NotCountGroup : G → {0, 1} (4.8b)

HARD
(
∀p1, p2 ∈ P

PGroup(p1) = PGroup(p2)⇒ p1 = p2

)
(4.8c)

HARD



∀g ∈ G,NotCountG(g)

⇔

{
∄p ∈ Pm1

,PGroup(p) = g

∨∃p ∈ Ptop,PGroup(p) = g




(4.8d)

We define the objectives for our optimization problem in equation 4.9 with CSoft designating
the set of soft constraints. These objectives are considered in lexicographic order.

The first optimization objective (Eq. 4.9a) is used to satisfy two of our objectives: i) grouping
method arguments together, to allow transferring information from one step of the recursion to
the next and ii) binding subtask arguments to top level tasks arguments.

The second optimization objective (Eq. 4.9b) is used to satisfy the constraints binding top
level arguments to the instantiation of arguments in the last step of recursion (Eq. 4.3e) in order
to transfer information throughout the recursion.

86 Chapter 4. Learning Parameters

max
∑

p∈Pm1

NotCountG(PGroup(p)) (4.9a)

max
∑

c∈CSoft

Satisfied(c) (4.9b)

Solving this problem will generate a set of equivalence classes. We then replace each of
these classes in the modified subhierarchy with a single new parameter, unifying parameters
with their right instantiation.

Considering again our goto task example, solving the associated MAX-SMT problem will
produce the equivalence classes presented equation 4.10. Replacing each equivalence class in the
subhierarchy Figure 4.15 with a parameter using the naming scheme shown under the classes
will yield the same structure as presented in Figure 4.11, which is the expected result.

{X,Xt}︸ ︷︷ ︸
L1

{Y,X ′}︸ ︷︷ ︸
Li

{Y ′, Y t, Y L}︸ ︷︷ ︸
Ld

{XL} (4.10)

While we tried to expand these ideas to arbitrary recursive structures, such as ones con-
taining indirect and multiple recursions, this work is not yet complete. An overview of what
has been achieved, some preliminary results as well as the remaining challenges is given in
Appendix B.

4.5 Conclusion
In this chapter, we presented a MAX-SMT approach for learning the parameters for a given
HTN for which we only know the parameters of the primitive actions and potentially some
abstract tasks.

In the process, we first highlighted the difficulty of propagating the parameters in the pres-
ence of recursive methods and proposed a solution to this problem that generates a correct set
of parameters.

We then proposed to use a MAX-SMT approach to unify parameters together using evidence
from the demonstration in order to provide guidance to an automated planner using the HTN.
However, we noted the limitations of this approach, in terms of parameterization quality, in
the presence of recursions in the hierarchy. We then proposed to detail how these issues could
be solved in the case of a specific recursive structure, the loop until construct, using a similar
MAX-SMT approach to the previously presented one.

A promising avenue for future research would be to try and adapt this procedure to any
arbitrary recursive structure. While we have given some thought to the subject, with some
insights presented in Appendix B, this problem remains unsolved. The two main challenges
that we still face are to handle the large number of candidate parameters that can be generated,
as well as expressing the problem as a set of constraints that an optimizing SMT solver can
handle.

Chapter 5

Experimental Evaluation

Contents

5.1 Introduction . 87
5.2 Planning Domains Presentation . 87
5.3 Environment and Datasets . 88

5.3.1 Environment . 88
5.3.2 Datasets . 90

5.4 Planning Performance . 91
5.4.1 Rovers . 91
5.4.2 Logistics . 96
5.4.3 Childsnack . 99
5.4.4 Satellite . 102
5.4.5 Woodworking . 105

5.5 Learning Times . 108
5.6 Conclusion . 113

5.1 Introduction
In order to evaluate the performance of the learned models, we have performed an experimental
analysis on several planning domains, mainly from the International Planning Competition
(IPC). We will start this chapter by presenting the domains from which we will learn, before
focusing on different metrics for evaluating the quality of the learned models, namely coverage,
planning speed and plan length.

The code and experimental data are available as a repository in the PLAN@LAAS GitHub
organization (https://github.com/plaans).

5.2 Planning Domains Presentation
Let us now present the domains that we evaluated our learner on, with their main characteristics
as well as that of the training and test sets for each. In every domain, demonstration traces
where obtained using the Lilotane planner [Sch21] with a time limit of five minutes and the
optimization setting turned on with a factor of ten. This means that for every plan found in n

seconds, the planner was free to spend 10n seconds searching for an optimal plan. While this
does not guarantee that an optimal plan will be generated, we always manually inspected some
of the generated plans and never found a non-optimal one.

Each of the domains considered will have a reference model, which will be used to compare
our learned Hierarchical Task Networks (HTNs) against. In domains from the IPC, it will be
the HTN from the competition and otherwise a handcrafted one.

https://github.com/plaans
https://github.com/plaans

88 Chapter 5. Experimental Evaluation

Reference domains, example instances and notable learned domains are presented in Ap-
pendix D.

LOGISTICS Logistics is a delivery domain, where packages can be transported in a city
using trucks, and across cities using planes. Note that we are using the version from the HTN-
Maker evaluation dataset rather that ones from the IPC. This version was modified to use
types rather than predicates, so that it would be closer to the hierarchical IPC version and our
parameterization procedure would be able to use it. For simplicity reasons, the airport location
where left as being specified using predicates. We however modified the IPC domain to be
usable on the HTN-Maker instances in order to use it for comparison.

We initially intended to use the original HTN-Maker-learned domains for comparison, but
were not able to convert it to be compatible with planners that take HDDL as input in a timely
fashion.

ROVERS The Rovers domain models problems where rovers have to obtain samples and
communicate associated data as part of three distinct tasks: sample rock, sample soil or get
image data. We are using instances from the IPC, which have the particularity of including
several features used to model advice, including in the primitive actions. These “advising”
actions can be divided into two categories:

• No-ops that do not affect the state of the world (namely nop, visit and unvisit), which
are removed from demonstrations and plan cost calculation in the evaluation.

• Different versions of actual actions with specific parameterization used to guide the planner
(such as communicate_rock_data1 and communicate_rock_data2). These are kept-as
is, in order to be able to use the reference model unmodified.

SATELLITE Satellite is a domain where the agent has to use a set of satellites to gather
some information. This information gathering involves turning the satellite towards a target
object and then using an instrument with the right capabilities to gather the information. Not
all satellites are equipped with the same instruments.

CHILDSNACK Childsnack is a domain where the goal is to make and serve sandwiches to
children, taking into consideration a possible gluten allergy. It is a simple domain for which
the reference domain contains a single task that can be achieved with one of two non-recursive
methods.

WOODWORKING Woodworking is a domain where the goal is to process wooden planks.
The main difficulty stems from the large number of possible values that the parameters can
take.

5.3 Environment and Datasets

5.3.1 Environment

All the experiments in this section were run on the LAAS-CNRS HPC cluster, with each run
task being allocated 12 CPU cores and 32 GB of RAM. Each task was run in an Ubuntu

5.3. Environment and Datasets 89

20.04-based Apptainer container. Learned models planning capabilities were evaluated using
the Lilotane planner with plan length optimization disabled.

Note that during the learning phase, for all the domains, the trace matching algorithm
presented in Chapter 3 leverages multiple cores, matching up to 12 traces in parallel. The
parameter learning phase is single threaded, and the multiple cores were instead leveraged to
run multiple parameterization instances in parallel to reduce experiment time. As most of the
structure learning time is spent matching the demonstrations, this should be kept in mind when
considering the results presented in this chapter.

Learning Hyperparameters Let us briefly present the different learning parameters that
will define the different possible configurations in Table 5.1. The symbols presented in this table
will be used to generate unique labels to name different combinations of parameters, especially
useful in graphics presenting results for different parameterizations.

Parameter Sym. Domain Description
α α R∗

+ α factor in the description length.
Simplify HTN S B Apply the simplification operator to the

generated HTNs.
Allow Repeated Patterns ∗ B Allow generating patterns containing the

∗ and + modifiers.
Generate Choice Patterns C B Allow generating choice patterns.
Sequence Pattern Max
Length

Kk N+ Maximal length k of the generated se-
quential patterns.

HTN-Maker Method
Generation Mode

Nbx




Rec,
Lge,
RcLge





Set of methods generated using our
HTN-Maker-based algorithm.

Table 5.1: The different parameters that govern the search procedure and their domains.

Before going moving to the labelling process, let us detail some more the “HTN-MAKER
Method Generation Mode” parameter. Remember how in Chapter 3, we showed that the set
of possible methods generated using an adapted HTN-Maker algorithm to structure-only
demonstrations can be represented as a triangular matrix, reproduced in Equation 5.1 for clarity.

0 1 . . . n− 1 n






0 〈a0, t〉 〈a0, a1, t〉 〈a0, . . . , t〉 〈a0, . . . , an−1, t〉 〈a0, . . . , an〉

1 〈a1, t〉 〈a1, . . . , t〉 〈a1, . . . , an−1, t〉 〈a1, . . . , an〉
... 〈. . . , t〉 〈. . . , an−1, t〉 〈. . . , an〉

n− 1 〈an−1, t〉 〈an−1, an〉

n 〈an〉

(5.1)

In our implementation, in order to reduce candidate HTN structure trace matching-time,
and thus model learning time1, we only generate one or two neighbours per (abstracted) trace,
as follows:

Most Recursive This corresponds to the value Rec, where we generate the neighbour that
correspond to the set of all methods on the diagonal of the matrix.

1A more detailed analysis of learning times is given in Section 5.5.

90 Chapter 5. Experimental Evaluation

Largest This corresponds to the value Lge. Here, we generate a neighbour that contains all
possible methods in the matrix (ignoring duplicates), assuming that we will be able to
filter out unused methods if need be.

Most Recursive and Largest Corresponding to the value RcLge, we generate both the pre-
viously presented neighbours for each abstracted trace.

Let us now detail how the labels will be formed using the symbols presented earlier. For
symbols representing boolean values, the symbol will be absent if the parameter is set to false.
Let us take as example a model learned with α = 0.1, with unused method filtering and repeated
patterns, sequential patterns of maximal length k = 3 and no choice patterns, with neighbours
generated using the most recursive mode. The label would then be α0.1_F_∗_K3_NbRec. Note
that whenever the neighbour generation is limited to a single mode, the corresponding symbol
will be omitted for clarity.

We also append some details to the label. The first labels that we can append are related
to the learned parameters of the model: if the model has learned parameters, we append Prm
to the previous label. If the parameters where learned in such a way that a direct recursion to
a known abstract task was enforced to keep the same parameters as the parameters, the label
Prm_Rec is added instead.

Note that when presenting the results, the reference HTN will always be presented for
comparison under the label REF. For the Logistics domain, we have two reference domains:
a handmade one, which leverages the structure of the domain to be as efficient as possible,
and the learned model that was present in the dataset from IPC 2020. These models will be
respectively labelled REF and REF_LEARNED when presenting the results.

Number of Training Demonstrations and Neighbour Generation Mode We also
append the label NTk to show the number of training demonstrations used to learn this domain,
where k is the number of demonstrations. For every domain, learning was attempted with
k ∈ [5, 10, 20, 40, 80, 160], limited to the maximal number of generated demonstrations.

Neighbour generation modes other than most recursive were only used with k ≤ 10, in order
to keep computation times reasonable.

5.3.2 Datasets

For the domains presented earlier, let us describe the datasets: how they were generated, and
how they were used for training and evaluation.

For every domain, we generated demonstrations using the Lilotane planner with optimization
turned on and a time limit of 10 seconds, using the reference domain as a source. Every solved
instance solution was then split in order to generate one trace per task. Sets of k training
instances were then generated through random sampling of the generated demonstrations.

Furthermore, for every domain from the totally ordered track of the hierarchical 2020 IPC
(i.e. every domain but Logistics), we increased the number of instances by shuffling the tasks
in the initial task network, once for each instance. The set of testing instances is then always
taken as the whole set of base and augmented IPC instances. Note that due to the limited
number of instances in the IPC domains, when a large number of training instances was used,
the learned models may exhibit some degree of overfitting.

The number of generated demonstrations for each domain is presented in Table 5.2.

5.4. Planning Performance 91

Instances

Domain Base Augmented
Generated

demonstrations
Childsnack 30 30 600
Logistics 100 − 162
Rovers 30 30 74
Satellite 20 20 323
Woodworking 29 29 812

Table 5.2: Number of IPC planning instances and generated demonstration traces for each
domain.

5.4 Planning Performance

In this section, whenever HTNs are ranked against one another, the metric used for ranking
was the coverage of the HTN, with ties broken by the cumulative planning time on successful
instances.

5.4.1 ROVERS
Let us first focus on the Rovers domain. We evaluated learning with the set of parameters
presented in Table 5.3.

Parameter Possible Values
α 0.001, 0.01, 0.1
Filter Unused Methods ⊤
Simplify Structure ⊥,⊤
∗ ⊥,⊤
Gen. Choice Patterns ⊥,⊤
Seq. Pattern Max Length 3, 4

Planning 120s, 2500 MB

Table 5.3: Learning evaluation parameters for the Rovers domain.

The resulting coverage percentage from this learning phase is given in Table 5.4, limited to
the best models for clarity.

In order to obtain more insight into the performance of the different models, let us look at
the empirical cumulative distributions of the planning times presented in Figures 5.1 and 5.2.

We can observe that parameterized domains present better performances, both in terms of
coverage and planning time. We can more specifically note that parameterized domains tend
to be faster than the reference domain, while non-parameterized ones tend to not scale to the
more complex instances.

Analysing the domains in a more qualitative manner, we can observe that the best
structure (Appendix D, Figure D.2) does make little use of recursions: only in the navig-
ate_one_or_more synthetic task (pattern navigate+), which is a task with a very local effect
and few instantiations in the whole model. Due to this limited use of recursions, our parameter
learning algorithm is able to unify many parameters among sibling tasks, as well as transfer

92 Chapter 5. Experimental Evaluation

Label Solved Instances (%)
REF 61.7
α0.001_*_K4_C_NbRec_Prm_Rec_NT74 75.0
α0.01_S_*_K4_C_NbRec_Prm_NT74 75.0
α0.1_S_*_K4_C_NbRec_Prm_Rec_NT60 73.3
α0.1_S_*_K4_C_NbRec_Prm_NT60 73.3
α0.1_S_K3_NbRec_NT74 56.7
α0.001_*_K4_NbRec_NT74 56.7
α0.001_K3_NbRec_NT74 56.7
α0.1_K4_NbRec_NT74 56.7

Table 5.4: Coverage for the Rovers domain, restricted to the best four parameterized and
non-parameterized domains.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.001_*_K4_C
_NbRec_Prm_Rec_NT74

0.1_S_K3
_NbRec_NT74

Figure 5.1: Planning time cumulative distribution for the Rovers domain, for the best para-
meterized and non-parameterized domains.

5.4. Planning Performance 93

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.001_*_K4_C
_NbRec_Prm_Rec_NT74

0.01_S_*_K4_C
_NbRec_Prm_NT74

0.1_S_*_K4_C
_NbRec_Prm_Rec_NT60

0.1_S_*_K4_C
_NbRec_Prm_NT60

(a) Planning time distribution, limited to parameterized models.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.1_S_K3
_NbRec_NT74

0.001_*_K4
_NbRec_NT74

0.001_K3
_NbRec_NT74

0.1_K4
_NbRec_NT74

(b) Planning time distribution, limited to non-parameterized models.

Figure 5.2: Planning time cumulative distribution for the Rovers domain, focusing on para-
meterized and non-parametrized HTNs.

94 Chapter 5. Experimental Evaluation

information from the top-level tasks down to the primitives.
Focusing on the best and the reference models only, we can compare their planning per-

formances on the set of commonly solved instances (37/60). Figure 5.3 shows that the planning
time is consistently better for the learned models.

10 1 100 101 102

Planning time (s)

Lilotane

Model Label
REF

0.001_*_K4_C
_NbRec_Prm_Rec_NT74

Figure 5.3: Planning time box plot, limited to the best and reference models and the instances
solved by both of them.

We can do a similar analysis on the plan length: our learned models tend to consistently gen-
erate shorted plans, as presented in Figure 5.4. This which may be explained by the limitation
imposed by the sequential structures found in the learned method, where unified parameters
allow the planner to quickly progress towards relevant solutions. We conjecture that this is es-
pecially due to the more limited navigation capabilities of our model, which allows the planner
to avoid useless movement actions.

0 50 100 150 200 250
Actions in plan

Lilotane

Model Label
REF

0.001_*_K4_C
_NbRec_Prm_Rec_NT74

Figure 5.4: Plan length box plot, limited to the best and reference models and the instances
solved by both of them.

Let us now focus on the impact of the number of demonstrations1 on the planning perform-
ances, as presented Figure 5.5.

We can observe on Figure 5.5 that while the best models make use of all 74 demonstrations,
the reference model is outperformed by the best model learned with as little as 20 demonstra-
tions. Furthermore, focusing on Figure 5.5c, we observe that the non-parameterized models
tend to exhibit a similar improvement trend as the parameterized ones, however with a distri-
bution that has less great and poor models bur rather unremarkable ones. We conjecture that

1Due to a crash during the experimental run, no data is available for a training set containing 40 demonstra-
tions.

5.4. Planning Performance 95

5 10 20 60 74
Number of demonstrations

0%

20%

40%

60%

80%

100%

So
lv

ed
 in

st
an

ce
s

REF

(a) Coverage against number of training demonstra-
tions for all models. Limited to parameterized mod-
els.

5 10 20 60 74
Number of demonstrations

0%

20%

40%

60%

80%

100%

So
lv

ed
 in

st
an

ce
s

REF

(b) Coverage against number of training demon-
strations for the top 10% learned models. Limited
to parameterized models.

5 10 20 60 74
Number of demonstrations

0%

20%

40%

60%

80%

100%

So
lv

ed
 in

st
an

ce
s

REF

Parameters
No Parameters

(c) Scatter plot of the coverage against the number of training demonstrations.

Figure 5.5: Impact of training demonstration set size on coverage. Note that the x-axis scale is
not linear.

96 Chapter 5. Experimental Evaluation

this behaviour is due to the fact that the absence of parameterization allows for more flexibil-
ity at the cost of a more expensive search procedure. This flexibility allows poor structure to
generalize well-enough, but the search cost associated with the larger search space causes the
planner to fail on complex instances.

5.4.2 LOGISTICS
Let us now turn our attention to the Logistics domain. Learning parameters and coverage
results are presented in Tables 5.5 & 5.6, respectively.

Parameter Possible Values
α 0.001, 0.01, 0.1
Filter Unused Methods ⊤
Simplify Structure ⊥,⊤
∗ ⊥,⊤
Gen. Choice Patterns ⊥,⊤
Seq. Pattern Max Length 3, 4

Planning 10s, 2500 MB

Table 5.5: Learning evaluation parameters for the Logistics domain.

Label Solved Instances (%)
REF 100.0
IPC_LEARNED 100.0
α0.1_S_*_K3 _NbRec_Prm_Rec_NT20 100.0
α0.1_S_*_K3 _NbRec_Prm_Rec_NT40 100.0
α0.1_S_*_K3 _NbRec_Prm_NT60 100.0
α0.1_S_*_K3 _NbRec_Prm_Rec_NT160 100.0
α0.1_S_*_K3_C _NbLge_NT10 100.0
α0.1_S_K4_C _NbRcLg_NT10 100.0
α0.1_S_*_K3_C _NbRcLg_NT10 100.0
α0.01_S_*_K3_C _NbLge_NT10 100.0

Table 5.6: Coverage for the Logistics domain, restricted to the best four parameterized and
non-parameterized domains.

Observing the planning time distribution in Figures 5.6 and 5.7, we notice that the impact
of parameterization is similar to that observed in the Rovers domain: they perform better
than the non parameterized ones and scale better to more complex instances.

Focusing now on the best domains, both parameterized and non parameterized, in Figure 5.6,
we can make several finer observations:

• The best learned models (parameterized or not) outperform the learned model from the
IPC.

• No model outperforms the reference handmade HTN.

Interestingly, we can also note that the best non-parameterized model was generated using the
Large neighbour generation mode, whereas the best parameterized model was generated using

5.4. Planning Performance 97

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101
Pl

an
ni

ng
 ti

m
e

(s
)

Lilotane

Model Label
REF
IPC_LEARNED

0.1_S_*_K3
_NbRec_Prm_Rec_NT20

0.1_S_*_K3_C
_NbLge_NT10

Figure 5.6: Planning time cumulative distribution for the Logistics domain, for the best
parameterized and non-parameterized domains.

the recursive neighbour generation1. This is not surprising: the Large generation will tend
to favour models that are flatter, with highly sequential methods and therefore a low number
of possible choices, even without a good parameterization. On the other hand, the models
generated using the Most Recursive mode will often offer more freedom when not constrained
by their parameters, thus increasing the search effort.

The performance of the best parameterized one (Appendix B, Figure D.5) appears to be
due to its highly sequential structure, with little recursivity, which similarly to the Rovers
case, allows for numerous unification across the parameters and therefore good information
propagation in the hierarchy.

We can also note that both our best learned domain tend to present a sharp increase in
planning time for some specific instance of our test set. Analysing the raw data more finely
shows that this spike is caused by a different instance for each learned model. They all are
among the largest instances in our set, and therefore running the same tests on these models
with more complex instances would be interesting to better assess the scaling behaviour of each
model.

Let us now move on to the analysis of the plan length, comparing the two best domains
(parameterized and non-parametrized) with the reference domains, as presented in Figure 5.8.
We can observe that our best parameterized learned model consistently produces shorter plans
than the IPC domain, mostly on par with the handmade domain, and that a similar behaviour
can be observed for the non-parameterized domains. This is easily explained by their sequential
structure which make it difficult to add useless actions in the plan.

Finally, let us analyse the impact of the number of training demonstrations on the per-

1This remains true even if we restrict ourselves to models learned with up to 10 demonstrations.

98 Chapter 5. Experimental Evaluation

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF
IPC_LEARNED

0.1_S_*_K3
_NbRec_Prm_Rec_NT20

0.1_S_*_K3
_NbRec_Prm_Rec_NT40

0.1_S_*_K3
_NbRec_Prm_NT60

0.1_S_*_K3
_NbRec_Prm_Rec_NT160

(a) Planning time distribution, limited to parameterized models.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF
IPC_LEARNED

0.1_S_*_K3_C
_NbLge_NT10

0.1_S_K4_C
_NbRcLg_NT10

0.1_S_*_K3_C
_NbRcLg_NT10

0.01_S_*_K3_C
_NbLge_NT10

(b) Planning time distribution, limited to non-parameterized models.

Figure 5.7: Planning time cumulative distribution for the Logistics domain, focusing on para-
meterized and non-parametrized HTNs.

5.4. Planning Performance 99

0 10 20 30 40 50 60 70
Actions in plan

Lilotane

Model Label
REF
IPC_LEARNED

0.1_S_*_K3
_NbRec_Prm_Rec_NT10

0.1_S_*_K3_C
_NbLge_NT10

Figure 5.8: Distribution of the plan length over the set of commonly solved instances (100/100)
in the Logistics domain.

formances of the learned models, presented in Figure 5.9. This figure shows us the structural
simplicity of this domain: even though the global coverage of the learned models improves when
going from 5 to 10 training demonstrations, we observe that at least one domain solves all the
instances in every case, even in the non parameterized one.

5 10 20 40 60 80 160
Number of demonstrations

0%

20%

40%

60%

80%

100%

So
lv

ed
 in

st
an

ce
s

REF

Parameters
No Parameters

Figure 5.9: Scatter plot of the coverage against the number of training demonstrations. Note
that the x-axis scale is not linear.

5.4.3 CHILDSNACK

Learning parameters and coverage results for the Childsnack domain are presented in
Tables 5.7 & 5.8, while Figures 5.10 & 5.11 present the distribution of planning times for
the different instances.

Once again, we can observe that parameterization is what allows the learned models to
scale to more complex instances. Interestingly, we note that the best performing models, even
parameterized are the one generated using modes that included the creation of large neighbours.
This can easily be explained by the simple structure of the domain, where the original model
only has two methods, which is a structure that can be more easily reached by generating all

100 Chapter 5. Experimental Evaluation

Parameter Possible Values
α 0.001, 0.01, 0.1
Filter Unused Methods ⊤
Simplify Structure ⊥,⊤
∗ ⊥,⊤
Gen. Choice Patterns ⊥,⊤
Seq. Pattern Max Length 3, 4

Planning 40s, 2500 MB

Table 5.7: Learning evaluation parameters for the Childsnack domain.

Label Solved Instances (%)
REF 85.0
α0.01_S_K4_C _NbLge_Prm_NT5 76.7
α0.1_S_*_K3 _NbRcLg_Prm_NT5 76.7
α0.01_S_*_K4_C _NbLge_Prm_Rec_NT5 76.7
α0.1_S_*_K4 _NbRec_Prm_Rec_NT80 76.7
α0.01_S_*_K3_C _NbRcLg_NT5 68.3
α0.001_S_K4 _NbLge_NT5 66.7
α0.1_S_*_K4_C _NbLge_NT5 66.7
α0.01_S_K4_C _NbLge_NT5 66.7

Table 5.8: Coverage for the Childsnack domain, restricted to the best four parameterized and
non-parameterized domains.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.01_S_K4_C
_NbLge_Prm_NT5

0.01_S_*_K3_C
_NbRcLg_NT5

Figure 5.10: Planning time cumulative distribution for the Childsnack domain, for the best
parameterized and non-parameterized domains.

5.4. Planning Performance 101

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.01_S_K4_C
_NbLge_Prm_NT5

0.1_S_*_K3
_NbRcLg_Prm_NT5

0.01_S_*_K4_C
_NbLge_Prm_Rec_NT5

0.1_S_*_K4
_NbRec_Prm_Rec_NT80

(a) Planning time distribution, limited to parameterized models.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.01_S_*_K3_C
_NbRcLg_NT5

0.001_S_K4
_NbLge_NT5

0.1_S_*_K4_C
_NbLge_NT5

0.01_S_K4_C
_NbLge_NT5

(b) Planning time distribution, limited to non-parameterized models.

Figure 5.11: Planning time cumulative distribution for the Childsnack domain, focusing on
parameterized and non-parametrized HTNs.

102 Chapter 5. Experimental Evaluation

the (two) possible structures in the demonstrations, rather than building the model abstraction
after abstraction step.

Note that we are able to attain exactly the structure of the original domain (Appendix D,
Figure D.7). Because we have the same structure and still do not scale as well as the reference
domain, we conjecture that this difference is due to the lack of method preconditions in our
learned domains.

We do not present the effect of the training instances on the planning performance for this
domain, as it is identical for all sets of demonstrations due to the simplicity of the domain.

5.4.4 SATELLITE
Learning parameters and coverage results for the Satellite domain are presented in
Tables 5.9 & 5.10. Figures 5.12 & 5.14 present the distribution of the planning times over
the instances.

Parameter Possible Values
α 0.001, 0.01, 0.1
Filter Unused Methods ⊤
Simplify Structure ⊥,⊤
∗ ⊥,⊤
Gen. Choice Patterns ⊥,⊤
Seq. Pattern Max Length 3, 4

Planning 30s, 2500 MB

Table 5.9: Learning evaluation parameters for the Satellite domain.

Label Solved Instances (%)
REF 60.0
α0.1_S_*_K4_C _NbRec_Prm_NT80 70.0
α0.1_S_*_K4_C _NbRec_Prm_Rec_NT80 70.0
α0.01_S_K4_C _NbRec_Prm_Rec_NT20 67.5
α0.01_S_K4 _NbRec_Prm_NT20 67.5
α0.1_S_K3_C _NbRec_NT80 40.0
α0.1_S_K3 _NbRec_NT40 40.0
α0.001_S_*_K3_C _NbRec_NT80 40.0
α0.001_S_*_K4_C _NbRcLg_NT5 40.0

Table 5.10: Coverage for the Satellite domain, restricted to the best four parameterized and
non-parameterized domains.

We note once again that parameterization is required to scale to more complex instances.
However, we note that Satellite is also a very simple domain to learn, with as little as 5

demonstrations being required to learn a model able to outperform the reference domain from
the IPC.

The dip in performance observed when learning with 10 demonstrations is due to an issue
with training demonstration set generation, where one task (do_turning) had no demonstra-
tions in the resulting set. It can therefore safely be ignored.

5.4. Planning Performance 103

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.1_S_*_K4_C
_NbRec_Prm_NT80

0.1_S_K3_C
_NbRec_NT80

Figure 5.12: Planning time cumulative distribution for the Satellite domain, for the best
parameterized and non-parameterized domains.

5 10 20 40 60 80 160
Number of demonstrations

0%

20%

40%

60%

80%

100%

So
lv

ed
 in

st
an

ce
s

REF

Parameters
No Parameters

Figure 5.13: Scatter plot of the coverage against the number of training demonstrations. Note
that the x-axis scale is not linear.

104 Chapter 5. Experimental Evaluation

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.1_S_*_K4_C
_NbRec_Prm_NT80

0.1_S_*_K4_C
_NbRec_Prm_Rec_NT80

0.01_S_K4_C
_NbRec_Prm_Rec_NT20

0.01_S_K4
_NbRec_Prm_NT20

(a) Planning time distribution, limited to parameterized models.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.1_S_K3_C
_NbRec_NT80

0.1_S_K3
_NbRec_NT40

0.001_S_*_K3_C
_NbRec_NT80

0.001_S_*_K4_C
_NbRcLg_NT5

(b) Planning time distribution, limited to non-parameterized models.

Figure 5.14: Planning time cumulative distribution for the Satellite domain, focusing on
parameterized and non-parametrized HTNs.

5.4. Planning Performance 105

5.4.5 WOODWORKING
Learning parameters and coverage results for the Woodworking domain are presented in
Tables 5.11 & 5.12, while Figures 5.15 & 5.17 present the distribution of planning times for the
different instances.

Due to identical results for parameterizing with recursion detection or without it in this
domain, we only show the best models for the one without direct recursion detection, in order
to showcase more diverse models.

Parameter Possible Values
α 0.0001, 0.001, 0.01
Filter Unused Methods ⊤
Simplify Structure ⊤
∗ ⊥,⊤
Gen. Choice Patterns ⊥,⊤
Seq. Pattern Max Length 3, 4

Planning 60s, 2500 MB

Table 5.11: Learning evaluation parameters for the Woodworking domain.

Label Solved Instances (%)
REF 72.4
α0.0001_S_*_K3_C _NbRec_Prm_NT20 75.9
α0.001_S_K3_C _NbRec_Prm_NT20 75.9
α0.01_S_K4 _NbRec_Prm_NT40 72.4
α0.0001_S_*_K4 _NbRcLg_Prm_NT10 72.4
α0.0001_S_*_K4_C _NbLge_NT10 36.2
α0.001_S_K4_C _NbLge_NT10 34.5
α0.001_S_K4_C _NbRcLg_NT10 34.5
α0.01_S_K3 _NbRec_NT10 32.8

Table 5.12: Coverage for the Woodworking domain, restricted to the best four parameterized
and non-parameterized domains.

We again obtain similar results as in the other domains, with parameters being necessary
to scale to more complex instances.

Observing the coverage compared to the number of training demonstrations (Figure 5.16),
we observe that we reach the performance of the reference domain with as little as 10 demon-
strations.

106 Chapter 5. Experimental Evaluation

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.0001_S_*_K3_C
_NbRec_Prm_NT20

0.0001_S_*_K4_C
_NbLge_NT10

Figure 5.15: Planning time cumulative distribution for the Woodworking domain, for the
best parameterized and non-parameterized domains.

5 10 20 40 60 80 160
Number of demonstrations

0%

20%

40%

60%

80%

100%

So
lv

ed
 in

st
an

ce
s REF

Parameters
No Parameters

Figure 5.16: Scatter plot of the coverage against the number of training demonstrations. Note
that the x-axis scale is not linear.

5.4. Planning Performance 107

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.0001_S_*_K3_C
_NbRec_Prm_NT20

0.001_S_K3_C
_NbRec_Prm_NT20

0.01_S_K4
_NbRec_Prm_NT40

0.0001_S_*_K4
_NbRcLg_Prm_NT10

(a) Planning time distribution, limited to parameterized models.

0% 25% 50% 75% 100%
Proportion of solved instances

10 2

10 1

100

101

102

Pl
an

ni
ng

 ti
m

e
(s

)

Lilotane

Model Label
REF

0.0001_S_*_K4_C
_NbLge_NT10

0.001_S_K4_C
_NbLge_NT10

0.001_S_K4_C
_NbRcLg_NT10

0.01_S_K3
_NbRec_NT10

(b) Planning time distribution, limited to non-parameterized models.

Figure 5.17: Planning time cumulative distribution for the Woodworking domain, focusing
on parameterized and non-parametrized HTNs.

108 Chapter 5. Experimental Evaluation

5.5 Learning Times
Figures 5.18 & 5.19 present the structure learning and parameterization times for every domain,
for the recursive neighbour generation mode only. Figures 5.20 & 5.21 present the same results
but for every neighbour generation mode where applicable. Because the Rovers domain has at
most 74 demonstrations, we grouped it with the 80 demonstrations results of the other domains
for comparison.

The first insight that can be obtained from these results is that structure learning is a lot more
expensive than parameter learning. Furthermore, the structure learning and parameterization
times appear loosely correlated: domains with a difficult to learn structure tend to require more
time for parameterization.

More qualitatively, the difficulty to learn a given domain structure is linked to the:

• The number of candidate HTN structures that can be generated during the search.

• The difficulty of matching these candidate structures to the demonstrations.

This possibly explains why the Logistics domain is more complex to learn even though the
Rovers final domain is more complex: the large number of optional actions in the Logistics
lead to a large number of possible matchings (without parameters) compared to the more focused
structure in the Rovers domains.

Focusing now on the large neighbour generation mode learning times, we observe that this
mode is often ten times slower than the recursive mode. As it only appears useful when we have
very simple domain structures, and as even in these cases the recursive mode comes close to its
performance, we argue that this cost is not worth it.

Globally, the learning times are relatively fast: less than an hour in the worst case, often
in the range of a few minutes for complex domains with numerous demonstrations. This could
be taken advantage of in order to search over the space of hyperparameters, learning multiple
models and then evaluating them on a set of test instances.

5.5. Learning Times 109

100

101

102

103

Le
ar

n
Ti

m
e

(s
)

Demonstrations = 5 # Demonstrations = 10

100

101

102

103

Le
ar

n
Ti

m
e

(s
)

Demonstrations = 20 # Demonstrations = 40

100

101

102

103

Le
ar

n
Ti

m
e

(s
)

Demonstrations = 60 # Demonstrations = {74,80}

100

101

102

103

Le
ar

n
Ti

m
e

(s
)

Demonstrations = 160

Domain
Childsnack
Logistics
Rovers
Satellite
Woodworking

Figure 5.18: Structure learning time for all the tested domains, limited to the most recursive
neighbour generation.

110 Chapter 5. Experimental Evaluation

10 1

100

101

102

103
Pa

ra
m

 T
im

e
(s

)
Demonstrations = 5 # Demonstrations = 10

10 1

100

101

102

103

Pa
ra

m
 T

im
e

(s
)

Demonstrations = 20 # Demonstrations = 40

10 1

100

101

102

103

Pa
ra

m
 T

im
e

(s
)

Demonstrations = 60 # Demonstrations = {74,80}

10 1

100

101

102

103

Pa
ra

m
 T

im
e

(s
)

Demonstrations = 160

Domain
Childsnack
Logistics
Rovers
Satellite
Woodworking

Figure 5.19: Parameterization time for all the tested domains, limited to the most recursive
neighbour generation.

5.5.
Learning

T
im

es
111

100

101

102

103

104

Le
ar

n
Ti

m
e

(s
)

OneMostRecursive | # Demos = 5 OneLarge | # Demos = 5 OneRecOneLarge | # Demos = 5

100

101

102

103

104

Le
ar

n
Ti

m
e

(s
)

OneMostRecursive | # Demos = 10 OneLarge | # Demos = 10 OneRecOneLarge | # Demos = 10

Domain
Childsnack
Logistics
Rovers
Satellite
Woodworking

Figure 5.20: Structure learning time for all the tested domains, comparing different neighbour generation modes.

112
C

hapter
5.

E
xperim

entalE
valuation

10 1

100

101

102

Pa
ra

m
 T

im
e

(s
)

OneMostRecursive | # Demos = 5 OneLarge | # Demos = 5 OneRecOneLarge | # Demos = 5

10 1

100

101

102

Pa
ra

m
 T

im
e

(s
)

OneMostRecursive | # Demos = 10 OneLarge | # Demos = 10 OneRecOneLarge | # Demos = 10

Domain
Childsnack
Logistics
Rovers
Satellite
Woodworking

Figure 5.21: Parameterization time for all the tested domains, comparing different neighbour generation modes.

5.6. Conclusion 113

5.6 Conclusion
In this chapter, we have analysed the performance of our learned domains in five well-known
planning domains, comparing them with handmade domains that include advice to guide the
planner as well as a domain obtained from another learning approach in the case of the Lo-
gistics domain.

The main insights that we can obtain from these experiments are as follows:

• Our approach to learning from demonstrations allows learning models that are competitive
with the state of the art in largely reasonable times and with a small set of demonstrations.

• A good parameterization is important for the model to scale to more complex instances,
however parameterizing a low quality model may have the opposite effect.

• As was expected when developing our Minimum Description Length (MDL)-based metric,
model quality weight should be given less importance compared to the demonstration cost.

While these results are highly encouraging, a more in-depth analysis would be interesting.
First, the analysis should be run on the same domains under more generous computational
limits and with even larger instances, in order to better assess the scalability capabilities of the
learned domains. Furthermore, we would like to include more domains in our analysis to better
assess the generalizability of our observations. Finally, it would be instructive to study in more
details the impact of each learning hyperparameter on the quality of the resulting models.

Note also that, we have only presented the evaluation of our learned models using a single
planner, namely Lilotane [Sch21], as it was used in other parts of our pipeline for its optimization
feature. Trying to evaluate the learned models with another planner (HyperTensioN [MMdS21]),
we obtained abysmal results on every domain but Satellite, where we easily outperformed
the reference model, even more so than with Lilotane. However, the fact that even on the
Childsnack domain we had poor performances – even though we learned the same structure,
with similar parameters but without preconditions – tells us that this kind of models does not
work well with this planner. A more in-depth analysis of this planner-dependent performance
would be interesting, first to improve our learner, but also possibly to help assess the impact of
different kind of models on the performances of different HTN planners.

Chapter 6

Conclusion

In this thesis, we have developed a system for learning Hierarchical Task Networks (HTNs)
from a small set of demonstrations. We have presented how such a system can be split into two
parts, separating the learning of the structure of the HTN from its parameters.

In order to build such a system, we developed a novel metric based on the Minimum De-
scription Length (MDL) principle to use as an efficient proxy for planning performance. This
allowed us to develop a greedy search algorithm leveraging frequent pattern mining, which we
coupled with the HTN-Maker learning algorithm to learn HTN structures.

On the topic of parameter learning, we proposed a system to learn a sensible parameteriz-
ation of an HTN, provided we know at least the definition of its subtasks. This procedure is
based on argument propagation from the subtasks, to generate a set of parameters that can be
useful for constraining the search space of planner, and a MAX-SMT approach for argument
unification, where the unification allows to actually transfer information across the hierarchy to
guide the planner’s search.

Future Works Several possibilities for extending this work come to mind.
Firstly, the structure search relies on a set of generated patterns to generate good candidate

HTNs. This generation is for now done using exhaustive generation over a set of specific
patterns, which was mainly designed to accommodate implementation constraints. It would be
interesting to explore the possibility of generating this set of patterns in a smarter way, in order
to balance the possibly generated HTNs and the computational cost of learning, for example by
leveraging information given by the arguments of the actions. Furthermore, considering more
expressive patterns may pave the road towards better learned models.

It should also be noted that the bottleneck of the structure learning algorithm is the cost of
matching candidate structures and demonstration traces. Given the recent success of parsing-
based approaches for plan recognition, these may be better suited to this goal than the current
planning-based approaches.

Secondly, regarding parameter learning, while the proposed approach is correct and usable
in the presence of recursions in the HTN, the resulting parameterization is of low quality and
may hinder a planner more than help it. While we have provided potential pointers on how to
better handle recursive structures, this remains an open problem. Furthermore, the parameters
could be used to extract method pre-conditions, which may improve the performance of the
learned domains.

Finally, we have only considered totally-ordered, deterministic domains. While our al-
gorithm should easily be applicable to non-deterministic domains, thanks to its ability to detect
looping constructs and its ability to build decomposition trees, the absence of method pre-
conditions and task post-conditions to assess a decomposition’s success may lead to poorly
performing models in the current state. The extension to partially-ordered domains appears
trickier, as the demonstrations may contain interleaved actions from other tasks, and could
therefore be an interesting research topic.

Annexe A

Résumé en Français

Pour agir de façon délibérée dans leur environnement, les agents autonomes ont généralement
besoin d’effectuer des tâches de haut niveau en s’appuyant sur un ensemble de skills leur per-
mettant d’effectuer des actions dans leur environnement.

Chaque skill représente une opération élémentaire, comme attraper un objet ou le déposer.
Ces skills peuvent potentiellement abstraire les plus basses couches des primitives de contrôle de
l’agent (comme les commandes envoyées aux moteurs dans le cas d’un robot). Il ne s’agit donc
pas nécessairement d’une séquence fixe de ces primitives. En effet, il peut être nécessaire qu’un
skill s’adapte à son contexte d’exécution : à titre d’exemple, nous pouvons considérer utiliser
différents mouvements pour attraper une tasse vide ou bien un bol rempli de liquide. Ces skills
doivent ensuite être combinés afin de réaliser les comportements de haut niveau souhaités.

Pour donner un exemple de tâche de haut-niveau qui peut être réalisée par
une combinaison de skills, considérons un agent voyageant de Paris à Toulouse pour
se rendre à une conférence. Deux options sont disponibles : voyager en train ou
en avion. Nous pouvons définir l’ensemble de skills suivant pour notre agent :
{BuyTrainTckt,BuyPlaneTckt,WalkTo,TakeCab,TakeTrain,TakePlane}. Ces skills peuvent
être paramétrisés afin de spécifier leur contexte d’application, par exemple la destination pour
le skill WalkTo.

Nous pouvons donc imaginer choisir la séquence de skills suivante pour atteindre notre but
de haut niveau, à savoir se rendre sur le site de la conférence à Paris :

〈BuyTrainTckt(Paris),WalkTo(Station),TakeTrain(Paris),TakeCab(V enue)〉

S’il est possible de simplement combiner les skills de notre agent de manière réactive pour
obtenir une telle séquence, en utilisant par exemple de simples politiques comme des machines
à états, des réseaux de neurones ou des behaviour trees, cette approche peut s’avérer inefficace
dans le cas où il est nécessaire de considérer un horizon éloigné pour effectuer une certaine tâche.

Dans notre exemple de voyage, certaines étapes nécessitent de planifier la suite des actions
avant de les exécuter : par exemple, utiliser l’action d’acheter un billet de train nécessite de
connaitre certaines futures actions, comme savoir que l’on ne prendra pas ici l’avion pour se
rendre à la conférence. Nous nous plaçons donc dans le paradigme de l’action délibérée, telle que
présenté par Ghallab, Nau et Traverso [GNT14]. Dans ce cadre, les auteurs définissent une
action comme quelque chose que l’agent effectue pour changer son état ou son environnement,
tandis que la délibération est un processus de raisonnement qui mène l’agent à choisir une action
plutôt qu’une autre en considérant ses buts à long terme, souvent au travers de techniques de
planification.

Dans l’absolu, nous pouvons considérer un acteur interagissant avec son environnement de
la manière présentée en Figure A.1. Ici, nous pouvons séparer une plateforme d’exécution et
un composant de délibération. Cette plateforme a pour rôle de transformer les commandes des
skills venant du composant de délibération en primitives de l’acteur pour permettre d’exécuter
ces commandes dans son environnement. Elle est aussi chargée de convertir les données brutes

118 Annexe A. Résumé en Français

des capteurs en représentations utilisables par les fonctions de délibération.
Le composant de délibération peut être divisé en deux sous-composantes : planification

et action. Le composant de planification principalement reçoit les activités de haut-niveau à
réaliser et génère des stratégies à long terme pour les mener à bien, dans le but de guider
le composant d’action. Il considère généralement un environnement abstrait. Le composant
d’action est chargé de réaliser l’exécution des stratégies générées par la planification, surveillant
l’exécution des actions pour faire face aux événements extérieurs et aux échecs dans l’exécution
des skills.

PlanningActing
Plans

Queries

Deliberation

Execution Platform

Commands Percepts

Actor

Environment

Actuations Signals

User
Objectives

Figure A.1 : Une vue simplifiée de l’architecture d’un acteur, adapté de [GNT14].

Notons que les architectures réellement utilisées pour un acteur sont généralement plus
complexes. Par exemple, l’architecture présentée par Lemaignan et al. [Lem+17], possédant
plusieurs composants dans la couche de délibération. Nous pouvons toutefois toujours distinguer
les deux couches, ainsi que les composants de planification et d’action.

En observant différents systèmes d’exécution pour la robotique [DI00 ; Ing+96 ; MCA22 ;
SdSP06 ; TB22], nous pouvons noter qu’ils s’appuient sur des modèles des tâches et des actions
à réaliser. Ces modèles sont bien souvent de nature hiérarchique, de façon à décrire efficacement
des tâches complexes. Réutilisant notre exemple de voyage, des modèles des skills pourraient être
utilisés pour spécifier leurs conditions d’applicabilité et leurs effets. Considérons par exemple
notre skill WalkTo(Station). Il pourrait être défini de manière à n’être applicable seulement s’il
existe un cheminement piéton pour se rendre à la gare, et que celle-ci soit située à moins de
trois kilomètres du point de départ de notre agent. L’effet de ce skill serait défini tel que notre
agent se trouve à la gare à la fin de son exécution. Si nous voulions un modèle de notre tâche
de haut niveau, nous pourrions considérer une structure telle que présentée en Figure A.2, dans
laquelle nous avons deux options différentes pour réaliser la tâche, à savoir voyager en train ou
en avion.

Des formalismes hiérarchiques ont été développés pour décomposer une tâche (ou un but) de
haut niveau en skills disponibles pour un agent. Ces modèles sont cependant complexes à définir
manuellement. Si l’apprentissage pour les agents autonomes s’est grandement développé ces
dernières années, la plupart des approches restent focalisées sur la couche d’exécution [CSL21 ;
Kle+20]. En comparaison, l’apprentissage de modèles pour des tâches complexes de haut niveau
n’a pas reçu la même attention. L’apprentissage de ces modèles sera le cœur de cette thèse,

119

GoToConference
(Paris)

∨

GoByTrain
→

BuyTrainTckt
(Paris)

WalkTo
(Station)

TakeTrain
(Paris)

TakeCab
(Venue)

GoByPlane
→

BuyPlaneTckt
(Paris)

TakeCab
(Airport)

TakePlane
(Paris)

TakeCab
(Venue)

Figure A.2 : Un domaine hiérarchique simplifié pour la tâche de haut niveau de notre exemple
de voyage.

spécifiquement dans le contexte suivant :

• Disponibilité des skills : nous supposerons que l’ensemble des capacités primaires de l’agent
(skills) est connue. Ces skills peuvent être appris par des approches de l’état de l’art, ou
bien programmés manuellement.

• Basé démonstration : nous supposerons qu’un ensemble de démonstrations de la manière
d’effectuer la tâche à apprendre est donné à l’agent. Ces démonstrations prendront la
forme de séquences de skills, montrant une combinaison donnée de ceux-ci réalisant la
tâche à apprendre dans un certain état.

Nous nous focaliserons spécifiquement sur l’apprentissage de modèles hiérarchiques, ceux-ci
étant plus aisés à comprendre pour des experts humains. De plus, ils permettent de contraindre
l’espace – potentiellement immense – de tous les plans possibles qu’un agent pourrait choisir
de suivre, tout en permettant de reproduire les comportements démontrés. De plus, nous nous
placerons dans un contexte où les démonstrations sont couteuses à obtenir, comme dans le cas de
l’apprentissage pour des agents robotiques, ce qui nous orientera vers des approches demandant
peu de données.

Présentons désormais, de façon succincte, l’approche développée dans le cadre de cette thèse,
focalisées sur l’apprentissage de réseaux de tâches hiérarchiques (Hierarchical Task Networks,
HTN).

L’Algorithme A.1 présente la procédure globale. À partir d’un HTN de base (donné en entrée
ou généré automatiquement), nous générons un voisinage de structures de HTN similaires, avant
de les évaluer pour obtenir la meilleure. Ce processus est répété jusqu’à ce que les structures
obtenues cessent de s’améliorer. Une fois la meilleure structure obtenue, nous optimisons ces
paramètres pour améliorer ses capacités de planification. Chacune des étapes est détaillée ci-
après, de manière à faire ressortir les contributions principales de cette thèse.

Algorithm A.1 Processus global d’apprentissage de HTN
1 : H∗ ← Generer HTN de Base
2 : while Qualité(H∗) s’améliore do
3 : Θc ← Gen Candidats Structure HTN(H∗, D)
4 : H∗ ← Trouver Meilleur HTN(Θc ∪ {H

∗})
5 : H∗ ← Extraire Paramètres HTN(H∗, D)

Apprentissage de la structure d’un HTN La taille de l’espace des HTN structurellement
valides étant très grande, la génération des candidats devrait être biaisée vers des structures

120 Annexe A. Résumé en Français

pertinentes, tout en conservant la possibilité d’échapper aux optima locaux.
Pour ce faire, nous présenterons une approche novatrice basée sur l’extraction de motifs

[ABH14] afin d’abstraire les comportements apparaissant fréquemment ensemble de manière
à amorcer la génération de candidats, utilisant ensuite une version adaptée de l’algorithme
HTN-Maker [HMK08].

Optimisation des paramètres d’un HTN Pour obtenir une paramétrisation pertinente
d’une structure de HTN, une intuition simple est de propager les paramètres dans la hiérarchie,
à la fois depuis les primitives et les tâches démontrées.

Cependant, nous nous rendrons rapidement compte que cette propagation naïve ne transmet-
tra en réalité que peu d’informations. Nous proposerons donc une approche basée MAX-SMT
pour unifier les paramètres et résoudre ce problème.

Évaluation efficace d’un HTN Si l’approche la plus naturelle pour évaluer la qualité d’un
HTN serait d’évaluer ses capacités de planification, cette approche est bien trop couteuse pour
être utilisée durant la phase de recherche de la meilleure structure.

Nous présenterons donc une nouvelle métrique basée sur le principe de longueur de des-
cription minimale (Minimum Description Length, MDL), assez naturel à appliquer à notre cas
étant donné les similitudes entre les HTN et les grammaires formelles. Cette métrique nous
permettra d’orienter la recherche vers des modèles capables de reproduire de façon efficace les
comportements démontrés, le tout pour un coût de calcul relativement faible.

Appendix B

Handling Recursive Task Definitions:
Arbitrary Recursive Structures

Contents

B.1 A New Argument Propagation Procedure . 121
B.1.1 Direct Recursions . 121
B.1.2 Indirect and Independent Recursions . 123

B.2 Parameter Minimization . 126
B.2.1 Required Features in the MAX-SMT Solver 131
B.2.2 Defining Datatypes and Functions . 131
B.2.3 Defining the Constraints . 132

B.2.3.1 Evidence from the Demonstrations 132
B.2.3.2 Grouping Constraints . 133

B.2.4 Defining the Optimization Objectives . 137
B.3 Conclusion . 138

While Chapter 4 presented a solution to handle a specific recursive pattern, we wish for
our parameterization algorithm to work efficiently on every valid HTN structure. For that, we
need to consider that we can have task parameters that can refer to a next step in a recursive
decomposition, similar to this previous chapter. However, instead of having a single parameter
that we need to chose whether it should be bound to the current or the next step, we introduce
two separate parameters, one for each case. While these parameters may be unified together,
they do not have to be.

B.1 A New Argument Propagation Procedure
In order to obtain such a parameterization, we need to make a change to the way we propagate
arguments upwards, as the current filter in the methods is not appropriate to generate the
argument structure we wish to obtain. Instead of keeping track of the methods a parameter
X has been propagated through during the propagation phase, we define a source subhierarchy
for X and increment an instantiation counter each time a new parameter X ′, based on X, is
added to a subtask in this source subhierarchy. To represent this counter easily in the examples,
we will use a ·+ (counter of 1) and ·++ (counter of 2). Furthermore, it should be noted that
three parameters X, X+ and X++ do represent three different parameters, their common name
mainly highlighting their common origin.

B.1.1 Direct Recursions

Before detailing further this new procedure and the associated algorithm, let us provide an
example on a simple goto task structure, identical to the one presented in Chapter 4 and

122
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

presented in Figure B.1. Algorithm B.1 presents the basic algorithm that was used to propagate
the arguments in this example. A more general version will be presented later in this section.

m1()

goto()

move(X,Y) goto()
m2()

(a) Base hierarchy.

m1(X,Y)

goto(X,Y)

move(X,Y) goto(X+, Y +)

m2()

(b) Propagation step 1.

m1(X,Y,X+, Y +)

goto(X,Y,X+, Y +)

move(X,Y) goto(X+, Y +, X++, Y ++)

m2()

(c) Propagation step 2.

m1(X,Y,X+, Y +, X++, X++)

goto(X,Y,X+, Y +)

move(X,Y) goto(X+, Y +, X++, Y ++)

m2()

(d) Propagation step 3.

Figure B.1: New argument propagation scheme algorithm example on a simple goto task. In
each step, orange arguments are the ones that were propagated upwards and blue ones the ones
that were added by updating the subtasks.

Algorithm B.1 Argument Propagation For Recursion
Input: H the set of subhierarchies

⊲ Arguments to propagate upwards.
1: repeat
2: A← ∅ ⊲ The arguments that will be used to update the subtasks, indexed by task symbol
3: for all h ∈ H do
4: A← A ∪ Propagate Arguments Upwards(h)
5: for all h ∈ H do
6: Update Subtasks Basic(h,A)
7: until fixed point reached

As can be seen in this example and in the algorithm, at each iteration, we propagate yet
unprogapated arguments from the leaf tasks (here, starting with the move task) up to the top
level task, similar to what we were doing in the original version of the argument propagation
procedure. However, when updating the subtasks of a subhierarchy h, for each parameter P̃

added to a subtask, if its source argument P is an argument of a subtask of h, then we increment
its iteration counter by one. This is denoted by writing the argument as P+ in the example,
and incrementing the counter of P , as seen line 3. However, if an argument’s instantiation
counter is equal to two, then we do not propagate it upwards from a method anymore, which

B.1. A New Argument Propagation Procedure 123

Algorithm B.2 Propagate Arguments Upwards(h)
Input: h a subhierarchy
Output: At the set of newly added arguments to the top level task of h

1: th ← ttop(h)
2: At ← ∅ ⊲ Arguments to add to th
3: for all m ∈Methods(h) do
4: As ← the arguments of all the subtasks of m
5: Am ← As \ args(m)
6: At ← At ∪ {X ∈ Am | Counter(X) < 2}
7: args(m)← As

8: args(t)← args(t) ∪At∪

Algorithm B.3 Update Subtasks Basic(h,A)
Input: h a subhierarchy

A the set of newly added parameters to the abstract tasks
1: for all ts ∈ Subtasks(h) do
2: if As = New Args(A, ts) is not empty then
3: A+

s ← {Y | Counter(Y) = Counter(X) + 1, ∀X ∈ As}
4: args(ts)← args(ts) ∪A+

s

corresponds to the filter line 6 in the algorithm. In the example, this is shown in Figure B.1d,
where X++ and Y ++ are not propagated upwards from m1. While this filter is arbitrary, as
we could stop at a counter greater than two, this limit presents two advantages: i) generating
parameters that can refer both to the current instantiation of P (the source argument) and to
a next instantiation of P in the top level task and ii) limiting the total number of arguments
that are generated in our model. The ability to refer to the next instantiation of a parameter
will be used to either link two steps of a recursion or to find bindings to a “last instantiation”
of this parameter, as was done in the previous section.

B.1.2 Indirect and Independent Recursions
One may naturally wonder what happens in the case of indirect recursions, or if a recursion has
another independent recursive task as subtask. Figure B.2 shows an example hierarchy with an
indirect recursion.

m1

mr

t

a(A) tr

m2

ts

ms

c(C)b(B) t

Figure B.2: An HTN with an indirect recursion. Here, t is recursive through tr and ts is a
non-recursive abstract task.

Figures B.3 and B.4 present a naive application of the algorithm to this hierarchy (the task

124
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

ts is not detailed as it is trivial). To apply it to this structure, we add as a subscript to a given
propagated parameter the subtasks to which it was added in the update step and increase a
parameter counter each time we add it again to a task present in the subscript. However, this
present an issue at the third iteration of the algorithm, where simply applying this technique
will lead to having parameters B++

rtr and A++
trt , without a valid B+ or A+ to refer to the next

instantiation.

m1(A)

t(A)

a(A) tr(Br)

m2

ts(Cr)

(a) Step 1.

m1(A,Br, Cs)

t(A,Br, Cs)

a(A) tr(Br, A
+
tr)

m2(Cs)

ts(Cr)

(b) Step 2.

m1(A,Br, Cs, A
+
tr)

t(A,Br, Cs, A
+
tr)

a(A) tr(Br, A
+
tr, B

?
rtr, C

+
st,)

m2(Cs)

ts(Cr)

(c) Step 3. Here, the problematic parameter is Brtr.

Figure B.3: Naive application of the propagation algorithm, focusing on the subhierarchy of
task t.

mr(B)

tr(B)

b(B) t(At)

(a) Step 1.

mr(A,At)

tr(B,At)

b(B) t(At, B
+
rt, Cst)

(b) Step 2.

mr(A,At, B
+
rt, Cst)

tr(B,At, B
+
rt, Cst)

b(B) t(At, B
+
rt, Cst, A

?
trt)

(c) Step 3. Here, the problematic parameter is Atrt.

Figure B.4: Naive application of the propagation algorithm, focusing on the subhierarchy of
task tr.

We therefore added the concept of a source parameter to our set of subhierarchy. The source
parameters in a given recursion are the ones that are from the leaf tasks not participating in
the recursion. We therefore need to define which task are part of a given recursion or not.
Intuitively, in the subhierarchy presented in Figure B.2, t and tr are part of a recursion, while
ts should not be. However, the parameters of t should still be able to set the parameters of
a potential next instantiation of ts. To determine which tasks are part of which recursion,
we can build a directed graph of the task dependency and then extract its Strongly Connected
Components (SCCs) to obtain the condensed graph, as presented in Figure B.5. In these graphs,

B.1. A New Argument Propagation Procedure 125

an arrow from node n to n′ means that n′ depends on n, in the sense that the arguments of
n′ are a function of the arguments of n Furthermore, the primitives actions (a, b, and c) are
represented for clarity but do not play a role in the graph structure because they do not have
an associated subhierarchy.

t

tr

tsa

b

c

(a) Raw task dependency graph.

{t,tr}

tsa b

c

(b) Condensed task dependency graph.

Figure B.5: Task dependency graph for the hierarchy in Figure B.2.

The condensed graph shows that t and tr are part of a recursion, and that ts is not. However,
the parameters of t and tr depend on that of ts. Therefore, we process the tasks in this graph
(and their associated subhierarchies) in topological order, ensuring that all the dependencies of
a given task t have had their parameters generated before t’s own arguments are generated.

We can therefore present a new version of Algorithm B.1, adding the separation into different
recursion groups processed in a specific order and the concept of source subhierarchies for the
arguments. In this algorithm, presented in Algorithm B.4, the function Generate Args(t)
generate new variables for each argument of t, with a counter of 0. It is initially only defined
on primitive tasks, and is updated each time a set of subhierarchies is processed.

Algorithm B.4 Argument Propagation For Recursion - Improved
Input: Hg the graph of subhierarchies recursion groups

1: for all H ∈ Hg sorted in topological order do
2: for all h ∈ H do
3: for all ts ∈ Subtasks(H) do
4: args(ts)← Generate Args(ts) ⊲ Parameters from previous iteration
5: for all x ∈ args(ts) do
6: Source(x)← h

7: repeat
8: A← ∅ ⊲ The arguments that will be used to update the subtasks
9: for all h ∈ H do

10: A← A ∪ Propagate Arguments Upwards(h)
11: for all h ∈ H do
12: Update Subtasks(h,A)
13: until fixed point reached
14: for all h ∈ Hg do
15: Define Generate Args(ttop(h))

Let us now present the application of this improved algorithm on the same structure as
presented previously (Figure B.2). According to the graph presented Figure B.5b, we will first
process the subhierarchy of ts, trivially obtaining the parameterization ts(C). Therefore, we can
then process the recursion group {t, tr}. After applying the first part of the process (Alg. B.4,
line 2), we obtain the subhierarchies presented in Figure B.6.

126
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

Algorithm B.5 Update Subtasks(h,A)
Input: h a subhierarchy

A the set of newly added parameters to the abstract tasks
1: for all ts ∈ Subtasks(h) do
2: if Anew = New Args(A, ts) is not empty then
3: A+

s ← {y | Counter(y) = Counter(x) + 1, ∀x ∈ Anew,Source(x) = h}
4: As ← {y | Counter(y) = Counter(x), ∀x ∈ {Anew \A+

s }}
5: args(ts)← args(ts) ∪A+

s ∪As

m1

t

a(A) tr

m2

ts(C)

(a) Base subhierarchy for t.

mr

tr

b(B) t

(b) Base subhierarchy for tr.

Figure B.6: Base subhierarchies for the recursion group {t, tr} after processing ts and generating
the subtask arguments.

We then enter the main argument propagation loop (Alg. B.4, line 2), in which we can
propagate the arguments as presented in Figures B.7 to B.11. Here, the previous issue is natur-
ally avoided, and we can see that t is able to refer to the direct instantiation of its parameters
A, B and C, as well as a future one. When considering a recursion instantiation starting with
t, even though B is an argument tr, the first time we encounter the primitive action b, B is
correctly the argument of the first instantiation of the argument that we encounter.

m1(A)

t(A,C)

a(A) tr(B)

m2(C)

ts(C)

(a) Subhierarchy for t.

mr(B)

tr(B)

b(B) t(A,C)

(b) Subhierarchy for tr.

Figure B.7: Application of Algorithm B.4 to the HTN structure in Figure B.2, step 1.

Furthermore, we this new propagation methods also naturally handles the presence of in-
dependent recursions in the hierarchy. Modifying the previous subhierarchy as presented in
Figure B.12, the new process will not change the parameterization of the goto task presented
earlier (Figure B.1). Therefore, assuming that the parameters {X ′, Y ′, X ′′, Y ′′} have been gen-
erated through a call to Generate Args(goto), it is easy to see that the previously presented
procedure can be applied to this set of subhierarchies and will give a result close to the one
presented in Figure B.11.

B.2 Parameter Minimization
Let us now focus on the processing applied to the propagated arguments in this general case
through a formulation as a MAX-SMT problem. Before formulating the problem, some changes
have to be made to the arguments of the hierarchy extracted using the previously presented

B.2. Parameter Minimization 127

m1(A,B)

t(A,C,B)

a(A) tr(B,A+, C+)

m2(C)

ts(C)

(a) Subhierarchy for t.

mr(B,A,C)

tr(B,A,C)

b(B) t(A,C,B+)

(b) Subhierarchy for tr.

Figure B.8: Application of Algorithm B.4 to the HTN structure in Figure B.2, step 2.

m1(A,B,A+, C+)

t(A,C,B,A+, C+)

a(A) tr(B,A+, C+, B+)

m2(C)

ts(C)

(a) Subhierarchy for t.

mr(B,A,C,B+)

tr(B,A,C,B+)

b(B) t(A,C,B+, A+, C+)

(b) Subhierarchy for tr.

Figure B.9: Application of Algorithm B.4 to the HTN structure in Figure B.2, step 3.

m1(A,B,A+, C+, B+)

t(A,C,B,A+, C+, B+)

a(A) tr(B,A+, C+, B+, A++, C++)

m2(C)

ts(C)

(a) Subhierarchy for t.

mr(B,A,C,B+, A+, C+)

tr(B,A,C,B+, A+, C+)

b(B) t(A,C,B+, A+, C+, B++)

(b) Subhierarchy for tr.

Figure B.10: Application of Algorithm B.4 to the HTN structure in Figure B.2, step 4.

128
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

m1(A,B,A+, C+, B+, A++, C++)

t(A,C,B,A+, C+, B+)

a(A) tr(B,A+, C+, B+, A++, C++)

m2(C)

ts(C)

(a) Subhierarchy for t.

mr(B,A,C,B+, A+, C+, B++)

tr(B,A,C,B+, A+, C+)

b(B) t(A,C,B+, A+, C+, B++)

(b) Subhierarchy for tr.

Figure B.11: Application of Algorithm B.4 to the HTN structure in Figure B.2, step 5.

m1

m1mr

t

a(A) tr

m2

goto

move(X,Y) goto
m2

b(B) t

(a) HTN structure.

t

tr

gotoa

b

move

(b) Raw task dependency graph.

{t,tr}

gotoa b

move

(c) Condensed task dependency graph.

Figure B.12: HTN structure with two independent recursion groups, one of which is indirect,
and associated dependency graphs.

m1

t

a(A) tr

m2

goto(X ′, Y ′, X ′′, Y ′′)

(a) Base subhierarchy for t.

mr

tr

b(B) t

(b) Base subhierarchy for tr.

Figure B.13: Base subhierarchies for the recursion group {t, tr} after processing goto and gen-
erating the subtask arguments

B.2. Parameter Minimization 129

algorithms, to convert between hierarchy arguments and constants used in the MAX-SMT
problem.

Focusing once again on the goto task presented Figure B.1, we mainly generate different
constants for parameters in a top level task from parameters in a method or subtask. To make
the distinction, considering a parameter P , we will write P̄ to denote the constant representing
the parameter in the top task, and

¯
P to denote the constant representing the parameter in a

method or subtask, as presented in Figure B.14. We will also introduce the notation P 0, to
denote an argument that is specifically not a next instantiation, i.e. not P+ nor P++.

m1(
¯
L0
1, ¯
L0
2, ¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
1)

goto(L̄0
1, L̄

0
2, L̄

+
1 , L̄

+
2)

move(
¯
L0
1, ¯
L0
2) goto(

¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2)

m2

Figure B.14: The goto task, with its propagated parameters modified to be converted to MAX-
SMT constants.

Using these new notations, we can now write an example of decomposition for a given
demonstration, as shown in the example Figure B.15. In this example, the notation · | xN
is used to indicate the node identifier, unique across all decomposition, which will be used to
define the constraints later in this section. Furthermore, some abstract nodes (such as 3N , 6N
and 9N) have two lines, because they can be seen both as a subtask or a top level task. In
that case, the first one shows what happens when viewing this node as a subtask (for example,
considering 3N as a subtask in the subhierarchy with the top level in node 0N), and the second
one when viewing it as a top level task.

Here, the example is simple enough to have a single recursion chain. However, as more
complex examples will potentially have several ones, such as in the case of a task which decom-
position relies on multiple independent instantiations of the goto task. In that case, we will
write R the set of all the possible chains, and assign them similar identifiers xR, x ∈ N as done
previously. In order to determine when we are in a given recursion chain and when we exit it,
we reuse the tasks dependency graphs presented earlier (e.g. Figures B.13b), and consider that
we change out of a recursion each time the decomposition requires us to move out of the current
condensed node.

We will now propose a MAX-SMT formulation for simplifying the set of arguments in a
given HTN, replacing the procedure presented in Section 4.3.2. At a high level, this procedure
is similar, trying to unify arguments when supported by some evidence found in the demon-
strations. However, we will consider that we can have recursion chains, which will be used to
determine potential evidence pertaining to the last instantiation of a given argument, as well
as the next step constraints between some arguments, drawing on the insights provided by the
work presented in Section 4.4.

It should be noted that even though we use the MAX-SMT terminology, our formulation will
depart from the traditional setting, in the sense that we do not limit our optimization objective
to the maximal satisfaction of some soft constraints. We rather try and optimize arbitrary
cardinality constraints.

130
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

move(l1, l2) move(l2, l3) move(l3, ld)

(a) Demonstration trace.

goto(L̄0
1, L̄

0
2, L̄

+
1 , L̄

+
2) | 0N

m1(
¯
L0
1, ¯
L0
2, ¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2) | 1N

move(
¯
L0
1 7→ l1,

¯
L0
2 7→ l2) | 2N

goto(
¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2)

goto(L̄0
1, L̄

0
2, L̄

+
1 , L̄

+
2)

∣∣∣∣∣ 3N

m1(
¯
L0
1, ¯
L0
2, ¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2) | 4N

move(
¯
L0
1 7→ l2,

¯
L0
2 7→ l3) | 5N

goto(
¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2)

goto(L̄0
1, L̄

0
2, L̄

+
1 , L̄

+
2)

∣∣∣∣∣ 6N

m1(
¯
L0
1, ¯
L0
2, ¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2) | 7N

move(
¯
L0
1 7→ l3,

¯
L0
2 7→ ld) | 8N

goto(
¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2)

goto(L̄0
1, L̄

0
2, L̄

+
1 , L̄

+
2)

∣∣∣∣∣ 9N

m2 | 10N

(b) Decomposition tree.

Figure B.15: Possible example trace and corresponding decomposition tree example for the goto
task. Colours are used to highlight identical constants.

B.2. Parameter Minimization 131

B.2.1 Required Features in the MAX-SMT Solver

Before presenting the details of the constraints that we use, let us define the features that the
used solver should support.

Uninterpreted functions and variables with equality This is the base on which we can
build our unification constraints.

Optimization of arbitrary cardinality constraints This is used to propose natural optim-
ization objectives.

Algebraic datatypes Because we will want to differentiate between arguments, ground con-
stants and several kinds of unique identifiers, this feature is required to remove large
inequality constraints.

B.2.2 Defining Datatypes and Functions

In order to express the constraints that will form the satisfaction problem that we will solve,
we must define some datatypes and uninterpreted functions.

All the datatypes that we use are simple enumerations. All the types will be illustrated
using the structure and decomposition examples presented in Figures B.14 and B.15.

The first datatype that we define is the Parameter type, whose domain is written P, which
comprises all our parameters. Furthermore, it is augmented with a set of parameters that
are constant across a recursion chain, and noted ·C , such as the destination location in a
goto task. For simplicity, we will write P∗ = P \

{
P ∈ P|¬PC

}
. One constant parameter

is generated for each ·++ parameter in the original propagated arguments. In our example,
P =

{
L̄
0
1, L̄

0
2, L̄

+
1 , L̄

+
2 , ¯

L0
1, ¯
L0
2, ¯
L+
1 , ¯

L+
2 , ¯

L++
1 ,

¯
L++
2 , LC

1 , L
C
1

}
.

The second one is the Ground Constant type, noted C, which contains all the constants.
The constants are unique to a given example, that is two constants with the same name c in
two distinct demonstrations d and d′ will be mapped to two different objects cd and cd′ . It is
augmented by the symbol ξ, used to denote the free variable, which will be used as a placeholder
in case we do not have evidence of a given binding. In our example, C = {l1, l2, l3, ld, ξ}. For
simplicity, we will use Cd, d ∈ D to denote the set of constants restricted to a given demonstration
d.

We also define the Node Identifier type, noted N , which contains all the node iden-
tifiers in all the decompositions that are part of our demonstration set. In our example,
N = {xN |x ∈ [0, 10]}.

We also define a Parameter Group type, noted G, which will be mainly used to constrain the
possible unifications of parameters and express cardinality constraints to be optimized. These
groups will be used to generate the set of simplified parameters. Additionally, we consider a
special group δ containing all the arguments that should be removed from the HTN.

Let us now define some uninterpreted functions that will be required, specifying their do-
mains and codomains, as well as the reasoning behind their existence, to make the interpretation
of the constraints easier.

Equations (B.1a) to (B.1c) shows the definitions of these functions. Here, PGroup maps a
given parameter to each group. GndParam is used to assert that a given parameter is mapped
to a specific constant in a specific node of the decomposition, allowing us to introduce the
evidence given by the demonstrations in our set of constraints. The GndGroup is similar but
applied to parameter groups instead. It will be used to express the fact that sometimes it may

132
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

be possible to define a grounding for a given parameter group even though some of the group’s
parameters are free according the initial evidence.

PGroup : P → G (B.1a)
GndParam : P ×N → C (B.1b)
GndGroup : G ×N → C (B.1c)

B.2.3 Defining the Constraints

We will now define the constraints to solve to obtain a valid parameterization, grouped ac-
cording to the idea behind them for clarity. Because we are using optimization objectives,
which will be defined later, all the constraints presented are hard constraints. For illustrating
these constraints, unless explicitly specified, we will continue to refer to the example presented
Figure B.15. Because of limitations in the SMT engine used, some preprocessing is done be-
fore generating the actual constraints, particularly in order to eliminate quantifiers. Therefore,
whenever an equation is not numbered, it means that this part is actually handled as part of
the preprocessing. For example, the equation below should be read as an instantiation of all
the possible couples (P,N) for which we add the constraint in Equation B.2.

∀(P,N) ∈ P ×N

GndParam(P,N) = ξ (B.2)

B.2.3.1 Evidence from the Demonstrations

Let us describe the most basic set of constraints, the ones that are a direct translation of the
basic evidence in our example, presented in Equations (B.3a) to (B.3c). In order to conserve
a clear definition of the constraints, let use write Type(X) the function that returns the type
(as defined in the planning domain) of an argument or ground constant. Let us also write
IsFixed(P) the functions that returns whether a parameter is fixed in the given demonstration
of a task, and cannot be removed.

∀(P,N) ∈ P∗ ×N

if ∃C ∈ C, P 7→
N

C

GndParam(P,N) = C (B.3a)
else

if IsFixed(P)

CP =
{
C ∈ Cd | d ∈ D ∧Type(C) = Type(P)

}
∪ {ξ}

∨

C∈CP

GndParam(P,N) = C (B.3b)

else
GndParam(P,N) = ξ (B.3c)

Applying these constraints to our example, Table B.1 presents a subset of the constraints
that can be obtained, highlighting which part of the previous equation is their source.

B.2. Parameter Minimization 133

Constraint Source
GndParam(

¯
L0
1, 2N) = l1 (B.3a)

GndParam(
¯
L0
1, 5N) = l2 (B.3a)

GndParam(
¯
L0
1, 1N) = ξ (B.3c)

GndParam(L̄
+
1 , 3N) = ξ (B.3c)

Table B.1: Example of direct evidence constraints that can be generated

Using the demonstrations, we can add another set of constraints, setting the possible values
that a constant value parameter PC can take, in order to avoid irrelevant parameterization. To
this end, let us define Source(PC) the function that returns the source argument P of PC .
Let us also write PC = P \

{
P ∈ P|PC

}
. Finally, let us write N∗

R as the node identifier of the
start of the recursion chain.

∀(PC , R) ∈ PC ×R

if PC is part of R

CP =

{
C ∈ CR | ∃N ∈ NR,Source(PC) 7→

N
C

}

if CP = ∅

GndParam(PC , N∗
R) = ξ (B.4a)

else
{∨

C∈CP GndParam(PC , N∗
R) = C if PGroup(PC) 6= δ

GndParam(PC , N∗
R) = ξ otherwise

(B.4b)

else
GndParam(PC , N∗

R) = ξ (B.4c)

∧

N∈NR

GndParam(PC , N) = GndParam(PC , N∗
R) (B.4d)

Here, Equations (B.4a) to (B.4c) are used to limit the possible groundings of a given constant
argument PC . Equation B.4b enforces that if PC is not dropped, then it must be grounded with
one of the possible constants in the recursion chain R, otherwise it must be free. Equation B.4a
allows to handle the case where we have no instantiation of the source argument in the currently
considered recursion chain R. Similarly, Equation B.4c handles the case where PC is not part
of R. Finally, Equation B.4d is used to enforce that in a given recursion chain R, the constant
associated with PC is unique.

Table B.2 presents a subset of the constraints that can be obtained with these new con-
straints, as shown previously.

B.2.3.2 Grouping Constraints

We will now describe the constraints that are used to govern the grouping of the parameters.
This will cover both structural constraints, as not any parameter can be unified with another
one, and evidence-based constraints, where the previously presented grounding constraints will
be used to build more complex ones.

134
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

Constraint Source




GndParam(
¯
LC
1 , 0N) = l1

∨GndParam(
¯
LC
1 , 0N) = l2

∨GndParam(
¯
LC
1 , 0N) = l3

if PGroup(PC) 6= δ

GndParam(
¯
LC
1 , 0N) = ξ otherwise

(B.4b)

∧

xN ,∀x∈[1,10]

GndParam(PC , N) = GndParam(PC , 0N) (B.4d)

Table B.2: Example of direct evidence constraints that can be generated

The first, most basic group of constraints is the one that governs which groups a given
argument may be associated with. Because the grouping of arguments is local to a given
subhierarchy h ∈ H, we will consider a specific h in the following paragraphs.

To identify the possible groups that a parameter may be part of, for every subhierarchy
h ∈ H, we generate a set of unique identifiers Gh ⊂ G, one for each parameter in Ph, so that
we can define a bijective function PGroupbase : Ph → Gh. The group G associated with a
parameter P will be called the base group of P , and will be written GP as a shorthand.

∀G ∈ Gh

GContainsTopArg(G) =
∨

P∈P̄
h

PGroup(P) = G (B.5)

Constraint B.5 is a constraint placed on the uninterpreted function GContainsTopArg, which
will be used in later constraints.

We can now define the possible groups for the top arguments of h. In order to break
symmetries, we need to order the parameters, for which we use their appearance order in the
top level task, from left to right, indexed from 0 to n.

∀Pi ∈ P̄
h

PGroup(Pi) = GPi ∨
i−1∨

j=0

(
PGroup(Pj) = GPj ∧ PGroup(Pi) = GPj

)
(B.6)

The constraint defined in Equation B.6 shows that a given parameter is either associated
with its base group, or with one of the preceding groups, provided this preceding group is not
empty and a unification is possible.

Similarly, we define the possible groups for the bottom arguments of h. We keep a similar
ordering of the parameters as previously for the same reason. To clarify the following con-
straints, let us write Ḡh the set of the base groups for all the top parameters of h. Let us also
write ArgsFixed(h), h ∈ H the set of arguments that are fixed, and cannot be removed in a

B.2. Parameter Minimization 135

subhierarchy, that is the argument of the primitive tasks or of the demonstrated tasks.

∀Pi ∈
¯
Ph

PGroup(Pi) = GPi

∨
∨

GP̄∈Ḡ
h

(
PGroup(P̄) = GP̄ ∧ PGroup(Pi) = GP̄

)

∨

{
PGroup(Pi) = δ if Pi /∈ ArgsFixed
⊥ otherwise

∨
i−1∨

j=0





(
PGroup(Pj) = GPj

∧ PGroup(Pi) = GPj

)
if Method(Pj) = Method(Pi)




PGroup(Pj) = GPj

∧ PGroup(Pi) = GPj

∧GContainsTopArg(GPj)


 otherwise

(B.7)

Here, Equation B.7 shows that we have a parameter either associated with its base group
or one of the preceding ones (as in Equation B.6), but also maybe any of the (non-empty)top
argument group, to handle the case where a bottom argument is unified with one (or several)
top arguments. In case a bottom argument is not coming from a fixed argument task, we add
the δ group as a possibility, to be able to remove it. Lastly, while we can unify it with any other
parameter in the same method, this constraint enforces that parameters can be unified across
method if and only if there is a top argument acting as a bridge.

Focusing now on the constant-valued arguments Ph,C , and writing PC
b the source of PC we

have the following constraint:

∀PC ∈ Ph,C

GP
C

=





{
PGroupbase(P) | P ∈ P ∗,

ArgType(P) is a subtype of ArgType(PC
b)

}
if PC

b ∈ ArgsFixed




PGroupbase(P) | P ∈ P ∗,{
ArgType(P)

ArgType(PC
b)

}
have a common ancestor



 otherwise

∨

G∈GPC

PGroup(PC) = G (B.8)

Now that we described the possible groups associated with a given parameter, let us describe
the structural constraints that will govern the unification of several parameters in a single
group. Because groups are local to a given subhierarchy, we will still keep focusing on h. These
constraints only apply to subhierarchies where the top tasks are not fixed, as they are mainly
a translation of the origin of the argument after the propagation process.

136
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

∀P 0 ∈ P0,h

PGroup(P̄ 0
) 6= δ ⇒ PGroup(P̄ 0

) = PGroup(
¯
P 0) (B.9a)

∀PC ∈ PC , and corresponding Ph
b =

{
(P̄

+
0 , ¯

P+
0 , ¯

P++
0), . . . , (P̄

+
n , ¯

P+
n , ¯

P++
n)
}

∀(P̄
+
,
¯
P+,

¯
P++) ∈ Ph

b


PGroup(P̄+
) 6= PGroup(PC)⇒ PGroup(PC) = δ

∧ PGroup(P̄+
) = PGroup(PC)⇔ PGroup(

¯
P++) = PGroup(PC)

∧ PGroup(P̄+
) 6= PGroup(PC)⇔ PGroup(P̄+

) = PGroup(
¯
P+)


 (B.9b)

∀P+ ∈ P+,h \ P+,h
b

PGroup(P̄+
) = PGroup(

¯
P+) (B.9c)

The first constraint (Equation B.9a) simply is used to enforce that both the top and bottom
versions of a non-next argument are always in the same group if the top version is not removed.
The second one (Equation B.9b) applies only to PC where there is at least one corresponding
tuple (P̄

+
,
¯
P+,

¯
P++). It enforces that constant-valued parameters and next versions of argu-

ments are unified in a way consistent with their intended meaning, that is that a P+ refers to
P 0 in the next step of a recursion chain, and that similarly P++ refers to P+ and PC is the
same throughout the chain. Finally, Equation B.9c has a similar role, in the simple case where
the current subhierarchy is not the source of the P+ parameter, and therefore does not have to
enforce the consistency with the corresponding PC .

Up to this point, we were only focusing on constraints limited to a single subhierarchy.
However, we obviously need to keep a consistent parameterization at the boundaries between
them, such as when an abstract task is used as a subtask of another one. Indeed, we do not
want to have, for example, a parameter removed in the reference definition of a task, and still
use it in the parameterization when it is instantiated as a subtask. To define these consistency
constraints for a given task t, let us define tref the version of t as a top level task, and T t

sub the
set of all the instantiations of t as a subtask. Let us also write Pz = zip(args(tref), args(tsub)).

∀t ∈ T , ∀tsub ∈ T
t

sub

∀(Pref , Psub) ∈ Pz

PGroup(Pref) = δ ⇔ PGroup(Psub) = δ (B.10a)

∀
(
(P 0

ref , P
0
sub), (P

1
ref , P

1
sub)
)
∈

(
Pz
2

)

(
PGroup(P 0

ref) = PGroup(P 1
ref)
)
⇒
(
PGroup(P 0

sub) = PGroup(P 1
sub)
)

(B.10b)

Let us now move to the use of the grounding for constraining the unification of parameters
into groups. This grounding information will rely on the information from the demonstrations
applied to each parameter previously.

First, we need to add constraints to avoid unifying parameters together without having a
positive example, as was done in the initial formulation. Let us then define a logic formula that
is true if and only if a given parameter can be used to provide a positive example for unification
in a group. Let us define:

B.2. Parameter Minimization 137

• PA = P∗, restricted to the parameters in the abstract tasks.

• For a given recursion chain block, with node identifier N , the node identifier of the parent
task is written N↑ while the similar set of all child identifiers for the subtasks is written
N ↓

N .

• For a given top level parameter P̄ ∈ PA in a node with identifier N , the corresponding
bottom parameter in the subtask with node identifier N↑ is written

¯
P

↑
N .

• Similarly, for a given bottom level parameter
¯
P ∈ PA in a node with identifier N ,the

corresponding top parameter is written P̄
↓
N .

Edir : PA ×N → G

(P,N) 7→ GndParam(P,N)
(B.11a)

Eind : PA ×N → G

(P,N) 7→

{
GndGroup

(
PGroup(

¯
PN↑), N↑

)
if ∃(N↑,

¯
PN↑)

GndGroup
(
PGroup(P̄N↓), N↓

)
if ∃(N↓, P̄N↓)

(B.11b)

Here, the function E returns the grounding evidence associated with a parameter P in a
node with identifier N . It should be noted that even though we are talking about grounding
evidence, any member of this tuple may be the free (ξ) grounding.

More precisely, Edir (Equation B.11a) returns the direct evidence from the demonstrations,
and is therefore always defined for every couple (P,N). Eind (Equation B.11b) returns indirect
evidence, based on the evidence from parameter groupings in the parent or children decom-
position from a given one with identifier N . The first case should be interpreted as “if P is
a top argument and there is a parent task to the decomposition N , then this parent decom-
position provides as a potential positive example the grounding of the group associated with
the corresponding bottom argument to P in the parent decomposition”. The second case is
similar, but with P being a bottom argument and relying on the example provided by the child
decomposition.

Using this function, we can define constraints that enforce consistent grounding between
parameters and their groups:

∀(P,N) ∈ PA ×N

G∗(P,N) 6= ξ ⇒ GndGroup(PGroup(P), N) = G∗(P,N) (B.12)

B.2.4 Defining the Optimization Objectives

Similar to the original formulation of the constraint satisfaction problem, we wish to obtain a
“good” parameterization, and therefore need to define some metric to optimize and go beyond
simply satisfying the previously presented constraints.

We therefore define four objectives, to be optimized in lexicographic order.

Minimizing Unused Top Level Arguments For each subhierarchy, we wish to minimize
the number of top level arguments that are not unified with at least one bottom parameter. The
idea is that such arguments will only cause the planner to consider a larger parameterization
space when instantiating a method containing such task, while this argument will never provide

138
Appendix B. Handling Recursive Task Definitions: Arbitrary Recursive

Structures

additional information. This objective can be expressed as a pseudo-Boolean function to be
minimized, as presented in Equation B.13b.

∀h ∈ H, ∀P̄ ∈ P̄
h

BP̄
h =


 ∧

¯
P∈

¯
Ph

PGroup(P̄) 6= PGroup(
¯
P)


 ∨ PGroup(P̄) 6= δ (B.13a)

O1 = min
∑

∀BP̄
h

BP̄
h (B.13b)

Minimizing the Number of Groups Containing Bottom Parameters While this ob-
jective may appear counter-intuitive at first, because the bottom parameters must be part of
a group, this will push the resulting parameterization towards a state where multiple bottom
parameters are part of a single group, thus improving their unification.

∀G ∈ G, BG =
∨

∀
¯
P∈

¯
P

PGroup
¯
P = G (B.14a)

O2 = min
∑

∀BG

BG (B.14b)

Maximizing Horizontal Unification Across Methods This objective is rather straight-
forward, unifying as many arguments across methods if possible (remember that we have a
constraint to limit these possible unifications).

∀h ∈ H, ∀G ∈ G

Bm = ∃(m1,m2) ∈Methods(h)2,m1 6= m2

∃(P1, P2) ∈ (args(m1), args(m2)),

PGroup(P1) = G ∧ PGroup(P2) = G

(B.15a)

O3 = min
∑

Bm

Bm (B.15b)

Maximizing Horizontal Unification Across Subtasks This objective is basically the
same as previous one, but operating at the method level instead of the subhierarchy level.

∀h ∈ H, ∀m ∈Methods(h), ∀G ∈ G
Bst = ∃(st1, st2) ∈ Subtasks(m)2, st1 6= st2

∃(P1, P2) ∈ (args(st1), args(st2)),
PGroup(P1) = G ∧ PGroup(P2) = G

(B.16a)

O4 = min
∑

Bst

Bst (B.16b)

B.3 Conclusion

In this appendix, we have presented some ideas on how our parameter learning algorithm could
be adapted to better handle arbitrary recursive structures. While these ideas stem from our

B.3. Conclusion 139

work on this topic, we were not able to bring it to a complete state at the time of writing the
manuscript.

The proposed constraint system was implemented as a prototype, and was able to give the
expected results on the Logistics domain, but only if given a small set of demonstration. In
every other case (more demonstrations or other domains), the approach does not scale, and the
solver used (Z3 [dMB08]) runs out of memory before being able to output a solution.

Therefore, this remains an open subject, and we hope that the ideas presented in this section
may be of use for future research in this avenue.

Appendix C

The Minimum Description Length
Principle

As we have hinted at in the introductory chapter of this manuscript, learning grammars from
positive examples often leverages a simplicity bias. A common one is the MDL principle, which
we will detail here as it is used prominently in our work, summarizing the definitions given by
Grünwald [Grü07].

The MDL principle, stemming from information theory, is a model selection tool, dating
back to the work of Rissanen [Ris78]. This principle states that learning can be viewed as a
form of data compression, as both intend to find some regularity in some source material. It
can be summarized as follows: The best model of some set of data is the one that minimizes the
sum of:

• The length of the model.

• The length of the data reconstructed using the model.

This technique has already been used in several works, ranging from learning Context Free
Grammars (CFGs) [SBS12], of which HTNs are close [EHN94], to finding common graph pat-
terns [BCF20].

To better understand it, let us use the common example of encoding different strings. Con-
sider the sequences below:

abbabb . . . abbabb (C.1)
mskldj . . . vapwgf (C.2)

Sequence C.1 is a repetition of the pattern abb 5 000 times, while sequence C.2 is a string of
15 000 random characters. Intuitively, the first sequence appears ‘simpler’ than the second, in
that their seems to be a regularity to it which can easily be described. On the other hand,
the second sequence appears a lot more complex, without a clear intuition of how it could be
described short of reproducing the whole sequence.

Going back to compression, we need to agree on description method, as this will obviously
impact the size of our description. An intuitive choice would be a general purpose computer
language. Choosing C as a language, we can write the programs that produce our two sequences,
as presented in Figure C.1.

Clearly, the first program, in terms of number of characters, is a lot smaller than the 15 000
characters of the first sequence, which is therefore efficiently compressed using this description.
However, the second program is roughly the same size as the original sequence.

More formally, when considering a computer language as the description system for a set
of data, we lean towards the Kolmogorov complexity [LV90] of the data. Without going into
many details about this complexity, it is the size of the shortest program in a given language
that is able to produce the data as output. It should be noted that given sufficient data length,

142 Appendix C. The Minimum Description Length Principle

int main() {
for (int i = 0; i < 5000; ++i){

printf("abb");
}

}

(a) Sequence C.1.
int main() {

printf("mskldj...vapwgf");
}

(b) Sequence C.2.

Figure C.1: C programs to generate the sequences presented earlier.

the invariance theorem states that the language used to compute the Kolmogorov complexity
is irrelevant. Indeed, given two languages L1 and L2 and a dataset D, assuming that the
Kolmogorov complexity of D described using language L1 is noted K1 (respectively L2 and
K2), we have the relation in Equation C.3, where the constant c is independent on the length
of the data.

|K1 −K2| ≤ c c ∈ R+ (C.3)

As stated in the paper written by Li and Vitányi [LV90], the Kolmogorov complexity can
be used to find the MDL of some data, by considering that the best model of this data is the
shortest program that can be used to describe it.

However, the Kolmogorov complexity is actually uncomputable if we consider every possible
dataset. Furthermore, in practical cases, the data from which we intend to extract a model is
too small for the invariance theorem to apply, and thus the programming language considered
would have an important impact on the determination of the best model for the data.

We will therefore focus on practical MDL versions, which fall into two main families: crude
and refined MDL. The crude MDL approach use two-part codes, where the total description
length of some data is the sum of the model M length and the data encoded using the model.
However, it is necessary to choose an arbitrary representation for the model, which may bias the
resulting description lengths. The refined part is using one-part codes, which do not exhibit such
bias, but are harder to determine and sometimes downright uncomputable. In practice, most
approaches use crude MDL. Furthermore, some approaches use only MDL-inspired approaches,
departing from its formal information theory formulation to apply practical alternatives based
on this principle, such as the work of Lam et al. [Lam+14].

Appendix D

Notable Domains Used in
Experiments

We present here graphical representations of the reference domains used for evaluating our
approach, as well as some notable learned domains.

These graphical representations are mainly intended to be viewed in the electronic version
of this manuscript, due to the small size of certain elements.

Domains from Woodworking are not presented as they would be illegible, even with high
zoom levels on a screen.

144
A

ppendix
D

.
N

otable
D

om
ains

U
sed

in
E

xperim
ents

navigate ?x ?p1 ?p2

(rover ?x)
(waypoint ?p1)
(waypoint ?p2)
(available ?x)
(at ?x ?p1)
(can_traverse ?x ?p1 ?p2)
(visible ?p1 ?p2)

(at ?x ?p2)
not (at ?x ?p1)

sample_soil ?x ?s ?p

(rover ?x)
(store ?s)
(waypoint ?p)
(at ?x ?p)
(at_soil_sample ?p)
(equipped_for_soil_analysis ?x)
(store_of ?s ?x)
(empty ?s)

(full ?s)
(have_soil_analysis ?x ?p)
not (empty ?s)
not (at_soil_sample ?p)

sample_rock ?x ?s ?p

(rover ?x)
(store ?s)
(waypoint ?p)
(at ?x ?p)
(at_rock_sample ?p)
(equipped_for_rock_analysis ?x)
(store_of ?s ?x)
(empty ?s)

(full ?s)
(have_rock_analysis ?x ?p)
not (empty ?s)
not (at_rock_sample ?p)

drop ?x ?s

(rover ?x)
(store ?s)
(store_of ?s ?x)
(full ?s)

(empty ?s)
not (full ?s)

calibrate ?x ?c ?o ?p

(rover ?x)
(camera ?c)
(objective ?o)
(waypoint ?p)
(equipped_for_imaging ?x)
(calibration_target ?c ?o)
(at ?x ?p)
(visible_from ?o ?p)
(on_board ?c ?x)

(calibrated ?c ?x)

take_image ?x ?p ?o ?c ?m

(rover ?x)
(waypoint ?p)
(objective ?o)
(camera ?c)
(mode ?m)
(calibrated ?c ?x)
(on_board ?c ?x)
(equipped_for_imaging ?x)
(supports ?c ?m)
(at ?x ?p)
(visible_from ?o ?p)

(have_image ?x ?o ?m)
not (calibrated ?c ?x)

communicate_soil_data1 ?x ?l ?p1 ?p2 ?p3

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(waypoint ?p3)
(at ?x ?p2)
(at_lander ?l ?p3)
(have_soil_analysis ?x ?p1)
(visible ?p2 ?p3)
(available ?x)
(channel_free ?l)

(communicated_soil_data ?p1)
(available ?x)

communicate_soil_data2 ?x ?l ?p1 ?p2

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(at ?x ?p1)
(at_lander ?l ?p2)
(have_soil_analysis ?x ?p1)
(visible ?p1 ?p2)
(available ?x)
(channel_free ?l)

(communicated_soil_data ?p1)
(available ?x)

communicate_rock_data1 ?x ?l ?p1 ?p2 ?p3

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(waypoint ?p3)
(at ?x ?p2)
(at_lander ?l ?p3)
(have_rock_analysis ?x ?p1)
(visible ?p2 ?p3)
(available ?x)
(channel_free ?l)

(communicated_rock_data ?p1)
(available ?x)

communicate_rock_data2 ?x ?l ?p1 ?p2

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(at ?x ?p1)
(at_lander ?l ?p2)
(have_rock_analysis ?x ?p1)
(visible ?p1 ?p2)
(available ?x)
(channel_free ?l)

(communicated_rock_data ?p1)
(available ?x)

communicate_image_data ?x ?l ?o ?m ?p1 ?p2

(rover ?x)
(lander ?l)
(objective ?o)
(mode ?m)
(waypoint ?p1)
(waypoint ?p2)
(at ?x ?p1)
(at_lander ?l ?p2)
(have_image ?x ?o ?m)
(visible ?p1 ?p2)
(available ?x)
(channel_free ?l)

(communicated_image_data ?o ?m)
(available ?x)
(channel_free ?l)

visit ?p

(waypoint ?p) (visited ?p)

unvisit ?p

(waypoint ?p)
(visited ?p)

not (visited ?p)

nop

do_navigate1 ?x ?to

do_navigate1_m0_do_navigate1 do_navigate1_m1_do_navigate1

do_navigate1_m0_do_navigate1

(rover ?x)
(waypoint ?to)
(at ?x ?to)

nop

do_navigate1_m1_do_navigate1 ?from

(rover ?x)
(waypoint ?to)
(waypoint ?from)
(at ?x ?from)

visit ?from

do_navigate2 ?x ?from ?to

unvisit ?from

do_navigate2 ?x ?from ?to

do_navigate2_m4_do_navigate2 do_navigate2_m2_do_navigate2 do_navigate2_m3_do_navigate2

do_navigate2_m4_do_navigate2 ?mid

(rover ?x)
(waypoint ?from)
(waypoint ?to)
(waypoint ?mid)
(can_traverse ?x ?from ?mid)
not (can_traverse ?x ?from ?to)
not (visited ?mid)

navigate ?x ?from ?mid

visit ?mid

do_navigate2 ?x ?mid ?to

unvisit ?mid

do_navigate2_m2_do_navigate2

(rover ?x)
(waypoint ?from)
(waypoint ?to)
(at ?x ?to)

nop

do_navigate2_m3_do_navigate2

(rover ?x)
(waypoint ?from)
(waypoint ?to)
(can_traverse ?x ?from ?to)

navigate ?x ?from ?to

empty_store ?s ?x

empty_store_m5_empty_store empty_store_m6_empty_store

empty_store_m5_empty_store

(store ?s)
(rover ?x)
(empty ?s)

nop

empty_store_m6_empty_store

(store ?s)
(rover ?x)
not (empty ?s)

drop ?x ?s

get_soil_data ?from

get_soil_data_m7_get_soil_data

get_soil_data_m7_get_soil_data ?x ?s

(waypoint ?from)
(rover ?x)
(store ?s)
(store_of ?s ?x)
(equipped_for_soil_analysis ?x)

do_navigate1 ?x ?from

empty_store ?s ?x

sample_soil ?x ?s ?from

send_soil_data ?x ?from

send_soil_data ?x ?from

send_soil_data_m8_send_soil_data send_soil_data_m9_send_soil_data

send_soil_data_m8_send_soil_data ?l ?w1 ?w2

(rover ?x)
(waypoint ?from)
(lander ?l)
(waypoint ?w1)
(waypoint ?w2)
(at_lander ?l ?w2)
(visible ?w1 ?w2)

do_navigate1 ?x ?w1

communicate_soil_data1 ?x ?l ?from ?w1 ?w2

send_soil_data_m9_send_soil_data ?l ?w1

(rover ?x)
(waypoint ?from)
(lander ?l)
(waypoint ?w1)
(at_lander ?l ?w1)
(visible ?from ?w1)
(at ?x ?from)

communicate_soil_data2 ?x ?l ?from ?w1

get_rock_data ?from

get_rock_data_m10_get_rock_data

get_rock_data_m10_get_rock_data ?x ?s

(waypoint ?from)
(rover ?x)
(store ?s)
(store_of ?s ?x)
(equipped_for_rock_analysis ?x)

do_navigate1 ?x ?from

empty_store ?s ?x

sample_rock ?x ?s ?from

send_rock_data ?x ?from

send_rock_data ?x ?from

send_rock_data_m11_send_rock_data send_rock_data_m12_send_rock_data

send_rock_data_m11_send_rock_data ?l ?w1 ?w2

(rover ?x)
(waypoint ?from)
(lander ?l)
(waypoint ?w1)
(waypoint ?w2)
(at_lander ?l ?w2)
(visible ?w1 ?w2)

do_navigate1 ?x ?w1

communicate_rock_data1 ?x ?l ?from ?w1 ?w2

send_rock_data_m12_send_rock_data ?l ?w1

(rover ?x)
(waypoint ?from)
(lander ?l)
(waypoint ?w1)
(at_lander ?l ?w1)
(visible ?from ?w1)
(at ?x ?from)

communicate_rock_data2 ?x ?l ?from ?w1

get_image_data ?o ?m

get_image_data_m13_get_image_data

get_image_data_m13_get_image_data ?x ?c ?w

(objective ?o)
(mode ?m)
(rover ?x)
(camera ?c)
(waypoint ?w)
(equipped_for_imaging ?x)
(on_board ?c ?x)
(supports ?c ?m)
(visible_from ?o ?w)

do_calibrate ?x ?c

do_navigate1 ?x ?w

take_image ?x ?w ?o ?c ?m

send_image_data ?x ?o ?m

do_calibrate ?x ?c

do_calibrate_m15_do_calibrate

send_image_data ?x ?o ?m

send_image_data_m14_send_image_data

do_calibrate_m15_do_calibrate ?o ?w

(rover ?x)
(camera ?c)
(objective ?o)
(waypoint ?w)
(calibration_target ?c ?o)
(visible_from ?o ?w)

do_navigate1 ?x ?w

calibrate ?x ?c ?o ?w

send_image_data_m14_send_image_data ?l ?w1 ?w2

(rover ?x)
(objective ?o)
(mode ?m)
(lander ?l)
(waypoint ?w1)
(waypoint ?w2)
(at_lander ?l ?w2)
(visible ?w1 ?w2)

do_navigate1 ?x ?w1

communicate_image_data ?x ?l ?o ?m ?w1 ?w2

Figure D.1: Graphical representation of the IPC domain in Rovers.

145

navigate ?x ?p1 ?p2

(rover ?x)
(waypoint ?p1)
(waypoint ?p2)
(available ?x)
(at ?x ?p1)
(can_traverse ?x ?p1 ?p2)
(visible ?p1 ?p2)

(at ?x ?p2)
not (at ?x ?p1)

sample_soil ?x ?s ?p

(rover ?x)
(store ?s)
(waypoint ?p)
(at ?x ?p)
(at_soil_sample ?p)
(equipped_for_soil_analysis ?x)
(store_of ?s ?x)
(empty ?s)

(full ?s)
(have_soil_analysis ?x ?p)
not (empty ?s)
not (at_soil_sample ?p)

sample_rock ?x ?s ?p

(rover ?x)
(store ?s)
(waypoint ?p)
(at ?x ?p)
(at_rock_sample ?p)
(equipped_for_rock_analysis ?x)
(store_of ?s ?x)
(empty ?s)

(full ?s)
(have_rock_analysis ?x ?p)
not (empty ?s)
not (at_rock_sample ?p)

drop ?x ?s

(rover ?x)
(store ?s)
(store_of ?s ?x)
(full ?s)

(empty ?s)
not (full ?s)

calibrate ?x ?c ?o ?p

(rover ?x)
(camera ?c)
(objective ?o)
(waypoint ?p)
(equipped_for_imaging ?x)
(calibration_target ?c ?o)
(at ?x ?p)
(visible_from ?o ?p)
(on_board ?c ?x)

(calibrated ?c ?x)

take_image ?x ?p ?o ?c ?m

(rover ?x)
(waypoint ?p)
(objective ?o)
(camera ?c)
(mode ?m)
(calibrated ?c ?x)
(on_board ?c ?x)
(equipped_for_imaging ?x)
(supports ?c ?m)
(at ?x ?p)
(visible_from ?o ?p)

(have_image ?x ?o ?m)
not (calibrated ?c ?x)

communicate_soil_data1 ?x ?l ?p1 ?p2 ?p3

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(waypoint ?p3)
(at ?x ?p2)
(at_lander ?l ?p3)
(have_soil_analysis ?x ?p1)
(visible ?p2 ?p3)
(available ?x)
(channel_free ?l)

(communicated_soil_data ?p1)
(available ?x)

communicate_soil_data2 ?x ?l ?p1 ?p2

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(at ?x ?p1)
(at_lander ?l ?p2)
(have_soil_analysis ?x ?p1)
(visible ?p1 ?p2)
(available ?x)
(channel_free ?l)

(communicated_soil_data ?p1)
(available ?x)

communicate_rock_data1 ?x ?l ?p1 ?p2 ?p3

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(waypoint ?p3)
(at ?x ?p2)
(at_lander ?l ?p3)
(have_rock_analysis ?x ?p1)
(visible ?p2 ?p3)
(available ?x)
(channel_free ?l)

(communicated_rock_data ?p1)
(available ?x)

communicate_rock_data2 ?x ?l ?p1 ?p2

(rover ?x)
(lander ?l)
(waypoint ?p1)
(waypoint ?p2)
(at ?x ?p1)
(at_lander ?l ?p2)
(have_rock_analysis ?x ?p1)
(visible ?p1 ?p2)
(available ?x)
(channel_free ?l)

(communicated_rock_data ?p1)
(available ?x)

communicate_image_data ?x ?l ?o ?m ?p1 ?p2

(rover ?x)
(lander ?l)
(objective ?o)
(mode ?m)
(waypoint ?p1)
(waypoint ?p2)
(at ?x ?p1)
(at_lander ?l ?p2)
(have_image ?x ?o ?m)
(visible ?p1 ?p2)
(available ?x)
(channel_free ?l)

(communicated_image_data ?o ?m)
(available ?x)
(channel_free ?l)

visit ?p

(waypoint ?p) (visited ?p)

unvisit ?p

(waypoint ?p)
(visited ?p)

not (visited ?p)

nop

get_rock_data ?a

get_rock_data_m_n29

get_rock_data_m_n29

(waypoint ?a)

t_patextract_id2893 ?a

t_patextract_id2893 ?a

t_patextract_id2893_m_n31

t_patextract_id2893_m_n31 ?b ?c ?d

(rover ?b)
(waypoint ?c)
(waypoint ?d)
(waypoint ?a)

navigate_zero_or_one ?b ?c ?d

t_patextract_id2828 ?a ?b ?c

t_patextract_id2851 ?a ?b

t_patextract_id2851_m_n55

t_patextract_id2851_m_n55 ?c ?d

(camera ?c)
(rover ?d)
(mode ?b)
(objective ?a)

t_patextract_id1684 ?c ?d

t_patextract_id1141 ?b ?d ?c ?a

t_patextract_id1684 ?a ?b

t_patextract_id1684_m_n57

t_patextract_id1141 ?a ?b ?c ?d

t_patextract_id1141_m_n46

t_patextract_id1684_m_n57 ?c ?d ?e ?f ?g ?h ?i ?j ?k ?l ?m ?n ?o

(rover ?b)
(waypoint ?c)
(rover ?d)
(waypoint ?e)
(waypoint ?f)
(waypoint ?g)
(camera ?a)
(objective ?h)
(rover ?i)
(waypoint ?j)
(rover ?k)
(waypoint ?l)
(waypoint ?m)
(waypoint ?n)
(waypoint ?o)

navigate_one_or_more ?b ?c ?d ?e ?e ?f ?f ?g ?b

calibrate ?b ?a ?h ?f

navigate_one_or_more ?i ?j ?k ?l ?m ?n ?f ?o ?b

t_patextract_id1141_m_n46 ?e ?f ?g

(rover ?b)
(waypoint ?e)
(objective ?d)
(camera ?c)
(mode ?a)
(lander ?f)
(waypoint ?g)

calibrate_zero_or_one

take_image ?b ?e ?d ?c ?a

communicate_image_data ?b ?f ?d ?a ?e ?g

t_patextract_id2863 ?a

t_patextract_id2863_m_n5

t_patextract_id2863_m_n5 ?b ?c ?d

(rover ?b)
(waypoint ?c)
(waypoint ?d)
(waypoint ?a)

navigate_zero_or_one ?b ?c ?d

t_patextract_id2809 ?c ?a ?b

navigate_zero_or_one ?a ?b ?c

navigate_zero_or_one_m_n8 navigate_zero_or_one_m_n9

t_patextract_id2809 ?a ?b ?c

t_patextract_id2809_m_n11 t_patextract_id2809_m_n13

navigate_zero_or_one_m_n8

(rover ?a)
(waypoint ?b)
(waypoint ?c)

navigate_zero_or_one_m_n9

(rover ?a)
(waypoint ?c)
(waypoint ?b)

navigate ?a ?c ?b

t_patextract_id2809_m_n11

(waypoint ?b)
(waypoint ?a)
(rover ?c)

t_patextract_id2436 ?b ?a ?c

t_patextract_id2809_m_n13

(waypoint ?a)
(rover ?c)
(waypoint ?b)

t_patextract_id2720 ?a ?c ?b

t_patextract_id2436 ?a ?b ?c

t_patextract_id2436_m_n15

t_patextract_id2436_m_n15 ?d ?e

(waypoint ?b)
(rover ?c)
(waypoint ?a)
(lander ?d)
(waypoint ?e)

t_patextract_id617 ?b ?c ?a

communicate_soil_data2 ?c ?d ?a ?e

t_patextract_id617 ?a ?b ?c

t_patextract_id617_m_n18

t_patextract_id617_m_n18 ?d

(rover ?b)
(waypoint ?c)
(waypoint ?a)
(store ?d)

navigate_zero_or_one ?b ?c ?a

drop_zero_or_one ?b ?d

sample_soil ?b ?d ?c

drop_zero_or_one ?a ?b

drop_zero_or_one_m_n22 drop_zero_or_one_m_n21

drop_zero_or_one_m_n22

(rover ?a)
(store ?b)

drop ?a ?b

drop_zero_or_one_m_n21

(rover ?a)
(store ?b)

navigate_one_or_more ?a ?b ?c ?d ?e ?f ?g ?h ?i

navigate_one_or_more_m_n28 navigate_one_or_more_m_n27

navigate_one_or_more_m_n28 ?j ?k

(rover ?i)
(waypoint ?g)
(waypoint ?d)
(waypoint ?e)
(rover ?a)
(waypoint ?j)
(waypoint ?k)
(waypoint ?f)
(waypoint ?b)
(rover ?c)
(waypoint ?h)

navigate ?i ?g ?d

navigate_one_or_more ?i ?e ?a ?j ?j ?k ?d ?f ?i

navigate_one_or_more_m_n27

(rover ?c)
(waypoint ?b)
(waypoint ?h)
(rover ?a)
(waypoint ?d)
(waypoint ?e)
(waypoint ?f)
(waypoint ?g)
(rover ?i)

navigate ?c ?b ?h

t_patextract_id2828 ?a ?b ?c

t_patextract_id2828_m_n33 t_patextract_id2828_m_n35

t_patextract_id2828_m_n33

(rover ?b)
(waypoint ?a)
(waypoint ?c)

t_patextract_id2137 ?b ?a ?c

t_patextract_id2828_m_n35

(waypoint ?c)
(rover ?b)
(waypoint ?a)

t_patextract_id2277 ?c ?b ?a

t_patextract_id2720 ?a ?b ?c

t_patextract_id2720_m_n24

t_patextract_id2720_m_n24 ?d ?e ?f

(waypoint ?a)
(rover ?b)
(waypoint ?c)
(waypoint ?d)
(lander ?e)
(waypoint ?f)

t_patextract_id617 ?a ?b ?c

navigate_one_or_more ?b ?c ?b ?a ?a ?d ?c ?d ?b

communicate_soil_data1 ?b ?e ?c ?d ?f

t_patextract_id473 ?a ?b ?c

t_patextract_id473_m_n40

t_patextract_id473_m_n40 ?d

(rover ?c)
(waypoint ?a)
(waypoint ?b)
(store ?d)

navigate_zero_or_one ?c ?a ?b

drop_zero_or_one ?c ?d

sample_rock ?c ?d ?a

t_patextract_id2137 ?a ?b ?c

t_patextract_id2137_m_n37

t_patextract_id2137_m_n37 ?d ?e

(waypoint ?b)
(waypoint ?c)
(rover ?a)
(lander ?d)
(waypoint ?e)

t_patextract_id473 ?b ?c ?a

communicate_rock_data2 ?a ?d ?b ?e

t_patextract_id2277 ?a ?b ?c

t_patextract_id2277_m_n42

t_patextract_id2277_m_n42 ?d ?e ?f ?g

(waypoint ?c)
(waypoint ?d)
(rover ?b)
(waypoint ?a)
(waypoint ?e)
(lander ?f)
(waypoint ?g)

t_patextract_id473 ?c ?d ?b

navigate_one_or_more ?b ?c ?b ?a ?a ?e ?c ?d ?b

communicate_rock_data1 ?b ?f ?c ?e ?g

calibrate_zero_or_one

calibrate_zero_or_one_m_n50 calibrate_zero_or_one_m_n51

calibrate_zero_or_one_m_n50

calibrate_zero_or_one_m_n51 ?a ?b ?c ?d

(rover ?a)
(camera ?b)
(objective ?c)
(waypoint ?d)

calibrate ?a ?b ?c ?d

get_soil_data ?a

get_soil_data_m_n3

get_soil_data_m_n3

(waypoint ?a)

t_patextract_id2863 ?a

get_image_data ?a ?b

get_image_data_m_n53 get_image_data_m_n44

get_image_data_m_n53

(objective ?a)
(mode ?b)

t_patextract_id2851 ?a ?b

get_image_data_m_n44 ?c ?d

(mode ?b)
(rover ?c)
(camera ?d)
(objective ?a)

t_patextract_id1141 ?b ?c ?d ?a

Figure D.2: Graphical representation of the best learned domain in Rovers.

146
A

ppendix
D

.
N

otable
D

om
ains

U
sed

in
E

xperim
ents

load-truck ?obj ?truck ?loc

(package ?obj)
(truck ?truck)
(location ?loc)
(at_ ?truck ?loc)
(at_ ?obj ?loc)

(in ?obj ?truck)
not (at_ ?obj ?loc)

load-airplane ?obj ?airplane ?loc

(package ?obj)
(airplane ?airplane)
(location ?loc)
(at_ ?obj ?loc)
(at_ ?airplane ?loc)

(in ?obj ?airplane)
not (at_ ?obj ?loc)

unload-truck ?obj ?truck ?loc

(package ?obj)
(truck ?truck)
(location ?loc)
(at_ ?truck ?loc)
(in ?obj ?truck)

(at_ ?obj ?loc)
not (in ?obj ?truck)

unload-airplane ?obj ?airplane ?loc

(package ?obj)
(airplane ?airplane)
(location ?loc)
(in ?obj ?airplane)
(at_ ?airplane ?loc)

(at_ ?obj ?loc)
not (in ?obj ?airplane)

drive-truck ?truck ?loc-from ?loc-to ?city

(truck ?truck)
(location ?loc-from)
(location ?loc-to)
(city ?city)
(at_ ?truck ?loc-from)
(in_city ?loc-from ?city)
(in_city ?loc-to ?city)
(different ?loc-to ?loc-from)

(at_ ?truck ?loc-to)
not (at_ ?truck ?loc-from)

fly-airplane ?airplane ?loc-from ?loc-to

(airplane ?airplane)
(location ?loc-from)
(location ?loc-to)
(airport ?loc-from)
(airport ?loc-to)
(at_ ?airplane ?loc-from)
(different ?loc-to ?loc-from)

(at_ ?airplane ?loc-to)
not (at_ ?airplane ?loc-from)

deliver-pkg ?a ?b

deliver-pkg_deliver-same-city deliver-pkg_deliver-diff-city

deliver-pkg_deliver-same-city

(package ?a)
(location ?b)

deliver-pkg-in-city ?a ?b

deliver-pkg_deliver-diff-city ?airplane ?airport1 ?airport2

(package ?a)
(airplane ?airplane)
(location ?airport1)
(location ?airport2)
(location ?b)
(airport ?airport1)

deliver-pkg-in-city ?a ?airport1

move-airplane ?airplane ?airport1

load-airplane ?a ?airplane ?airport1

fly-airplane ?airplane ?airport1 ?airport2

unload-airplane ?a ?airplane ?airport2

deliver-pkg-in-city ?a ?b

deliver-pkg-in-city ?a ?b

deliver-pkg-in-city_deliver-noop deliver-pkg-in-city_deliver-by-truck

deliver-pkg-in-city_deliver-noop

(package ?a)
(location ?b)
(at_ ?a ?b)

deliver-pkg-in-city_deliver-by-truck ?truck ?current_loc

(package ?a)
(truck ?truck)
(location ?current_loc)
(location ?b)
(at_ ?a ?current_loc)

move-truck ?truck ?current_loc

load-truck ?a ?truck ?current_loc

move-truck ?truck ?b

unload-truck ?a ?truck ?b

move-airplane ?airplane ?l

move-airplane_move-airplane-noop move-airplane_move-airplane-once

move-airplane_move-airplane-noop

(airplane ?airplane)
(location ?l)
(at_ ?airplane ?l)

move-airplane_move-airplane-once ?current_loc

(airplane ?airplane)
(location ?current_loc)
(location ?l)
(at_ ?airplane ?current_loc)

fly-airplane ?airplane ?current_loc ?l

move-truck ?truck ?l

move-truck_move-noop move-truck_move-once

move-truck_move-noop

(truck ?truck)
(location ?l)
(at_ ?truck ?l)

move-truck_move-once ?current_loc ?city

(truck ?truck)
(location ?current_loc)
(location ?l)
(city ?city)
(at_ ?truck ?current_loc)
(in_city ?current_loc ?city)
(in_city ?l ?city)

drive-truck ?truck ?current_loc ?l ?city

Figure D.3: Graphical representation of the reference domain in Logistics.

147

load-truck ?package0 ?truck1 ?place2

(package ?package0)
(truck ?truck1)
(place ?place2)
(at_ ?truck1 ?place2)
(at_ ?package0 ?place2)
not (locked_at ?package0 ?place2)

(in ?package0 ?truck1)
not (at_ ?package0 ?place2)

load-airplane ?package0 ?airplane1 ?place2

(package ?package0)
(airplane ?airplane1)
(place ?place2)
(at_ ?package0 ?place2)
(at_ ?airplane1 ?place2)
not (locked_at ?package0 ?place2)

(in ?package0 ?airplane1)
not (at_ ?package0 ?place2)

unload-truck ?package0 ?truck1 ?place2

(package ?package0)
(truck ?truck1)
(place ?place2)
(at_ ?truck1 ?place2)
(in ?package0 ?truck1)
not (locked_in ?package0 ?truck1)

(at_ ?package0 ?place2)
not (in ?package0 ?truck1)

unload-airplane ?package0 ?airplane1 ?place2

(package ?package0)
(airplane ?airplane1)
(place ?place2)
(in ?package0 ?airplane1)
(at_ ?airplane1 ?place2)
not (locked_in ?package0 ?airplane1)

(at_ ?package0 ?place2)
not (in ?package0 ?airplane1)

drive-truck ?truck0 ?place1 ?place2 ?city3

(truck ?truck0)
(place ?place1)
(place ?place2)
(city ?city3)
(at_ ?truck0 ?place1)
(in_city ?place1 ?city3)
(in_city ?place2 ?city3)
not (locked_at ?truck0 ?place1)

(at_ ?truck0 ?place2)
not (at_ ?truck0 ?place1)

fly-airplane ?airplane0 ?airport1 ?airport2

(airplane ?airplane0)
(place ?airport1)
(place ?airport2)
(airport ?airport1)
(airport ?airport2)
(at_ ?airplane0 ?airport1)
not (locked_at ?airplane0 ?airport1)

(at_ ?airplane0 ?airport2)
not (at_ ?airplane0 ?airport1)

i-lock_at ?physobj0 ?place1

(physobj ?physobj0)
(place ?place1)

(locked_at ?physobj0 ?place1)

i-unlock_at ?physobj0 ?place1

(physobj ?physobj0)
(place ?place1)

not (locked_at ?physobj0 ?place1)

i-flag_at ?physobj0 ?place1

(physobj ?physobj0)
(place ?place1)

(flagged_at ?physobj0 ?place1)

i-unflag_at ?physobj0 ?place1

(physobj ?physobj0)
(place ?place1)

not (flagged_at ?physobj0 ?place1)

i-lock_in ?package0 ?vehicle1

(package ?package0)
(vehicle ?vehicle1)

(locked_in ?package0 ?vehicle1)

i-unlock_in ?package0 ?vehicle1

(package ?package0)
(vehicle ?vehicle1)

not (locked_in ?package0 ?vehicle1)

i-flag_in ?package0 ?vehicle1

(package ?package0)
(vehicle ?vehicle1)

(flagged_in ?package0 ?vehicle1)

i-unflag_in ?package0 ?vehicle1

(package ?package0)
(vehicle ?vehicle1)

not (flagged_in ?package0 ?vehicle1)

deliver-pkg ?p ?l

deliver-pkg_do-deliver

deliver-pkg_do-deliver

(package ?p)
(place ?l)

achieve_at ?p ?l

achieve_at ?package0 ?place1

achieve_at_m8-achieve_at achieve_at_m9-achieve_at achieve_at_m10-achieve_at

achieve_at_m8-achieve_at

(package ?package0)
(place ?place1)
(locked_at ?package0 ?place1)

i-flag_at ?package0 ?place1

achieve_at_m9-achieve_at

(package ?package0)
(place ?place1)
(at_ ?package0 ?place1)
not (locked_at ?package0 ?place1)

i-lock_at ?package0 ?place1

achieve_at_m10-achieve_at

(package ?package0)
(place ?place1)
not (locked_at ?package0 ?place1)
not (at_ ?package0 ?place1)

achieve_at0 ?package0 ?place1

i-lock_at ?package0 ?place1

ifunlock_at ?physobj0 ?place1

ifunlock_at_ifunlock0_at ifunlock_at_ifunlock1_at

ifunlock_at_ifunlock0_at

(physobj ?physobj0)
(place ?place1)
(flagged_at ?physobj0 ?place1)

i-unflag_at ?physobj0 ?place1

ifunlock_at_ifunlock1_at

(physobj ?physobj0)
(place ?place1)
not (flagged_at ?physobj0 ?place1)

i-unlock_at ?physobj0 ?place1

ifunlock_in ?package0 ?vehicle1

ifunlock_in_ifunlock2_in ifunlock_in_ifunlock3_in

ifunlock_in_ifunlock2_in

(package ?package0)
(vehicle ?vehicle1)
(flagged_in ?package0 ?vehicle1)

i-unflag_in ?package0 ?vehicle1

ifunlock_in_ifunlock3_in

(package ?package0)
(vehicle ?vehicle1)
not (flagged_in ?package0 ?vehicle1)

i-unlock_in ?package0 ?vehicle1

do_at-load-truck0 ?package0 ?truck1 ?place2

do_at-load-truck0_m4-do_at-load-truck0

do_at-load-truck0_m4-do_at-load-truck0

(package ?package0)
(truck ?truck1)
(place ?place2)
(at_ ?package0 ?place2)

achieve_at-trk ?truck1 ?place2

ifunlock_at ?truck1 ?place2

load-truck ?package0 ?truck1 ?place2

achieve_at-trk ?truck0 ?place1

achieve_at-trk_m32-achieve_at achieve_at-trk_m33-achieve_at achieve_at-trk_m34-achieve_at

achieve_at-trk_m32-achieve_at

(truck ?truck0)
(place ?place1)
(locked_at ?truck0 ?place1)

i-flag_at ?truck0 ?place1

achieve_at-trk_m33-achieve_at

(truck ?truck0)
(place ?place1)
(at_ ?truck0 ?place1)
not (locked_at ?truck0 ?place1)

i-lock_at ?truck0 ?place1

achieve_at-trk_m34-achieve_at

(truck ?truck0)
(place ?place1)
not (locked_at ?truck0 ?place1)
not (at_ ?truck0 ?place1)

achieve_at1 ?truck0 ?place1

i-lock_at ?truck0 ?place1

do_at-load-airplane0 ?package0 ?airplane1 ?place2

do_at-load-airplane0_m5-do_at-load-airplane0

do_at-load-airplane0_m5-do_at-load-airplane0

(package ?package0)
(airplane ?airplane1)
(place ?place2)
(at_ ?package0 ?place2)
(airport ?place2)

achieve_at-air ?airplane1 ?place2

ifunlock_at ?airplane1 ?place2

load-airplane ?package0 ?airplane1 ?place2

achieve_at-air ?airplane0 ?airport1

achieve_at-air_m37-achieve_at achieve_at-air_m38-achieve_at achieve_at-air_m39-achieve_at

achieve_at-air_m37-achieve_at

(airplane ?airplane0)
(place ?airport1)
(locked_at ?airplane0 ?airport1)
(airport ?airport1)

i-flag_at ?airplane0 ?airport1

achieve_at-air_m38-achieve_at

(airplane ?airplane0)
(place ?airport1)
(airport ?airport1)
(at_ ?airplane0 ?airport1)
not (locked_at ?airplane0 ?airport1)

i-lock_at ?airplane0 ?airport1

achieve_at-air_m39-achieve_at

(airplane ?airplane0)
(place ?airport1)
(airport ?airport1)
not (locked_at ?airplane0 ?airport1)
not (at_ ?airplane0 ?airport1)

achieve_at2 ?airplane0 ?airport1

i-lock_at ?airplane0 ?airport1

do_in-unload-truck0 ?package0 ?truck1 ?place2

do_in-unload-truck0_m6-do_in-unload-truck0

do_in-unload-truck0_m6-do_in-unload-truck0

(package ?package0)
(truck ?truck1)
(place ?place2)
(in ?package0 ?truck1)

achieve_at-trk ?truck1 ?place2

ifunlock_at ?truck1 ?place2

unload-truck ?package0 ?truck1 ?place2

do_in-unload-airplane0 ?package0 ?airplane1 ?place2

do_in-unload-airplane0_m7-do_in-unload-airplane0

do_in-unload-airplane0_m7-do_in-unload-airplane0

(package ?package0)
(airplane ?airplane1)
(place ?place2)
(in ?package0 ?airplane1)
(airport ?place2)

achieve_at-air ?airplane1 ?place2

ifunlock_at ?airplane1 ?place2

unload-airplane ?package0 ?airplane1 ?place2

achieve_at0 ?package0 ?place1

achieve_at0_m12-achieve_at0 achieve_at0_m13-achieve_at0 achieve_at0_m14-achieve_at0 achieve_at0_m15-achieve_at0 achieve_at0_m11-achieve_at0

achieve_at0_m12-achieve_at0 ?place3 ?truck5

(package ?package0)
(place ?place1)
(place ?place3)
(truck ?truck5)
(at_ ?package0 ?place3)
not (at_ ?package0 ?place1)

do_at-load-truck0 ?package0 ?truck5 ?place3

achieve_at0 ?package0 ?place1

achieve_at0_m13-achieve_at0 ?airplane5 ?place3

(airplane ?airplane5)
(package ?package0)
(place ?place1)
(place ?place3)
(at_ ?package0 ?place3)
not (at_ ?package0 ?place1)

do_at-load-airplane0 ?package0 ?airplane5 ?place3

achieve_at0 ?package0 ?place1

achieve_at0_m14-achieve_at0 ?place6 ?truck3

(package ?package0)
(place ?place1)
(place ?place6)
(truck ?truck3)
(in ?package0 ?truck3)
not (at_ ?package0 ?place1)

do_in-unload-truck0 ?package0 ?truck3 ?place6

achieve_at0 ?package0 ?place1

achieve_at0_m15-achieve_at0 ?airplane3 ?place6

(airplane ?airplane3)
(package ?package0)
(place ?place1)
(place ?place6)
(in ?package0 ?airplane3)
not (at_ ?package0 ?place1)

do_in-unload-airplane0 ?package0 ?airplane3 ?place6

achieve_at0 ?package0 ?place1

achieve_at0_m11-achieve_at0

(package ?package0)
(place ?place1)
(at_ ?package0 ?place1)

achieve_in0 ?package0 ?truck1

achieve_in0_m16-achieve_in0 achieve_in0_m17-achieve_in0 achieve_in0_m20-achieve_in achieve_in0_m22-achieve_in0 achieve_in0_m23-achieve_in0 achieve_in0_m18-achieve_in achieve_in0_m19-achieve_in achieve_in0_m21-achieve_in0

achieve_in0_m16-achieve_in0 ?place3 ?truck5

(package ?package0)
(place ?place3)
(truck ?truck1)
(truck ?truck5)
(at_ ?package0 ?place3)
not (in ?package0 ?truck1)

do_at-load-truck0 ?package0 ?truck5 ?place3

achieve_in0 ?package0 ?truck1

achieve_in0_m17-achieve_in0 ?airplane5 ?place3

(airplane ?airplane5)
(package ?package0)
(place ?place3)
(truck ?truck1)
(at_ ?package0 ?place3)
not (in ?package0 ?truck1)

do_at-load-airplane0 ?package0 ?airplane5 ?place3

achieve_in0 ?package0 ?truck1

achieve_in0_m20-achieve_in

(package ?package0)
(truck ?truck1)
not (locked_in ?package0 ?truck1)
not (in ?package0 ?truck1)

achieve_in0 ?package0 ?truck1

i-lock_in ?package0 ?truck1

achieve_in0_m22-achieve_in0 ?place6 ?truck3

(package ?package0)
(place ?place6)
(truck ?truck1)
(truck ?truck3)
(in ?package0 ?truck3)
not (in ?package0 ?truck1)

do_in-unload-truck0 ?package0 ?truck3 ?place6

achieve_in0 ?package0 ?truck1

achieve_in0_m23-achieve_in0 ?airplane3 ?place6

(airplane ?airplane3)
(package ?package0)
(place ?place6)
(truck ?truck1)
(in ?package0 ?airplane3)
not (in ?package0 ?truck1)

do_in-unload-airplane0 ?package0 ?airplane3 ?place6

achieve_in0 ?package0 ?truck1

achieve_in0_m18-achieve_in

(package ?package0)
(truck ?truck1)
(locked_in ?package0 ?truck1)

i-flag_in ?package0 ?truck1

achieve_in0_m19-achieve_in

(package ?package0)
(truck ?truck1)
(in ?package0 ?truck1)
not (locked_in ?package0 ?truck1)

i-lock_in ?package0 ?truck1

achieve_in0_m21-achieve_in0

(package ?package0)
(truck ?truck1)
(in ?package0 ?truck1)

achieve_in1 ?package0 ?airplane1

achieve_in1_m24-achieve_in1 achieve_in1_m25-achieve_in1 achieve_in1_m26-achieve_in1 achieve_in1_m29-achieve_in achieve_in1_m31-achieve_in0 achieve_in1_m27-achieve_in achieve_in1_m28-achieve_in achieve_in1_m30-achieve_in0

achieve_in1_m24-achieve_in1 ?place3 ?truck5

(airplane ?airplane1)
(package ?package0)
(place ?place3)
(truck ?truck5)
(at_ ?package0 ?place3)
not (in ?package0 ?airplane1)

do_at-load-truck0 ?package0 ?truck5 ?place3

achieve_in1 ?package0 ?airplane1

achieve_in1_m25-achieve_in1 ?airplane5 ?place3

(airplane ?airplane1)
(airplane ?airplane5)
(package ?package0)
(place ?place3)
(at_ ?package0 ?place3)
not (in ?package0 ?airplane1)

do_at-load-airplane0 ?package0 ?airplane5 ?place3

achieve_in1 ?package0 ?airplane1

achieve_in1_m26-achieve_in1 ?place6 ?truck3

(airplane ?airplane1)
(package ?package0)
(place ?place6)
(truck ?truck3)
(in ?package0 ?truck3)
not (in ?package0 ?airplane1)

do_in-unload-truck0 ?package0 ?truck3 ?place6

achieve_in1 ?package0 ?airplane1

achieve_in1_m29-achieve_in

(package ?package0)
(airplane ?airplane1)
not (locked_in ?package0 ?airplane1)
not (in ?package0 ?airplane1)

achieve_in1 ?package0 ?airplane1

i-lock_in ?package0 ?airplane1

achieve_in1_m31-achieve_in0 ?airplane3 ?place6

(airplane ?airplane1)
(airplane ?airplane3)
(package ?package0)
(place ?place6)
(in ?package0 ?airplane3)
not (in ?package0 ?airplane1)

do_in-unload-airplane0 ?package0 ?airplane3 ?place6

achieve_in1 ?package0 ?airplane1

achieve_in1_m27-achieve_in

(package ?package0)
(airplane ?airplane1)
(locked_in ?package0 ?airplane1)

i-flag_in ?package0 ?airplane1

achieve_in1_m28-achieve_in

(package ?package0)
(airplane ?airplane1)
(in ?package0 ?airplane1)
not (locked_in ?package0 ?airplane1)

i-lock_in ?package0 ?airplane1

achieve_in1_m30-achieve_in0

(package ?package0)
(airplane ?airplane1)
(in ?package0 ?airplane1)

achieve_at1 ?truck0 ?place1

achieve_at1_m36-achieve_at1 achieve_at1_m35-achieve_at1

achieve_at1_m36-achieve_at1 ?city7 ?place3 ?place6

(city ?city7)
(place ?place1)
(place ?place3)
(place ?place6)
(truck ?truck0)
(at_ ?truck0 ?place3)
(in_city ?place3 ?city7)
(in_city ?place6 ?city7)
not (at_ ?truck0 ?place1)

drive-truck ?truck0 ?place3 ?place6 ?city7

achieve_at1 ?truck0 ?place1

achieve_at1_m35-achieve_at1

(truck ?truck0)
(place ?place1)
(at_ ?truck0 ?place1)

achieve_at2 ?airplane0 ?airport1

achieve_at2_m41-achieve_at2 achieve_at2_m40-achieve_at2

achieve_at2_m41-achieve_at2 ?airport3 ?airport6

(airplane ?airplane0)
(place ?airport1)
(place ?airport3)
(place ?airport6)
(airport ?airport1)
(airport ?airport3)
(airport ?airport6)
(at_ ?airplane0 ?airport3)
not (at_ ?airplane0 ?airport1)

fly-airplane ?airplane0 ?airport3 ?airport6

achieve_at2 ?airplane0 ?airport1

achieve_at2_m40-achieve_at2

(airplane ?airplane0)
(place ?airport1)
(airport ?airport1)
(at_ ?airplane0 ?airport1)

Figure D.4: Graphical representation of the adapted IPC domain in Logistics.

148
A

ppendix
D

.
N

otable
D

om
ains

U
sed

in
E

xperim
ents

load-truck ?obj ?truck ?loc

(package ?obj)
(truck ?truck)
(location ?loc)
(at_ ?truck ?loc)
(at_ ?obj ?loc)

(in ?obj ?truck)
not (at_ ?obj ?loc)

load-airplane ?obj ?airplane ?loc

(package ?obj)
(airplane ?airplane)
(location ?loc)
(at_ ?obj ?loc)
(at_ ?airplane ?loc)

(in ?obj ?airplane)
not (at_ ?obj ?loc)

unload-truck ?obj ?truck ?loc

(package ?obj)
(truck ?truck)
(location ?loc)
(at_ ?truck ?loc)
(in ?obj ?truck)

(at_ ?obj ?loc)
not (in ?obj ?truck)

unload-airplane ?obj ?airplane ?loc

(package ?obj)
(airplane ?airplane)
(location ?loc)
(in ?obj ?airplane)
(at_ ?airplane ?loc)

(at_ ?obj ?loc)
not (in ?obj ?airplane)

drive-truck ?truck ?loc-from ?loc-to ?city

(truck ?truck)
(location ?loc-from)
(location ?loc-to)
(city ?city)
(at_ ?truck ?loc-from)
(in_city ?loc-from ?city)
(in_city ?loc-to ?city)
(different ?loc-to ?loc-from)

(at_ ?truck ?loc-to)
not (at_ ?truck ?loc-from)

fly-airplane ?airplane ?loc-from ?loc-to

(airplane ?airplane)
(location ?loc-from)
(location ?loc-to)
(airport ?loc-from)
(airport ?loc-to)
(at_ ?airplane ?loc-from)
(different ?loc-to ?loc-from)

(at_ ?airplane ?loc-to)
not (at_ ?airplane ?loc-from)

load-truck_zero_or_one ?a ?b ?c

load-truck_zero_or_one_m_n29 load-truck_zero_or_one_m_n30

load-truck_zero_or_one_m_n29

(location ?a)
(truck ?b)
(package ?c)

load-truck_zero_or_one_m_n30

(package ?c)
(truck ?b)
(location ?a)

load-truck ?c ?b ?a

t_patextract_id535_zero_or_more ?a ?b

t_patextract_id535_zero_or_more_m_n20 t_patextract_id535_zero_or_more_m_n5

t_patextract_id535_zero_or_more_m_n20 ?c ?d ?e ?f

(location ?c)
(package ?b)
(airplane ?a)
(location ?d)
(truck ?e)
(location ?f)

load-airplane_zero_or_one ?c ?b ?a

fly-airplane_zero_or_one ?d ?c ?a

unload-airplane_zero_or_one ?d ?a ?b

load-truck_zero_or_one ?d ?e ?b

drive-truck_zero_or_one ?e ?f

unload-truck_zero_or_one ?b ?f ?e

t_patextract_id535_zero_or_more ?a ?b

t_patextract_id535_zero_or_more_m_n5

(airplane ?a)
(package ?b)

load-airplane_zero_or_one ?a ?b ?c

load-airplane_zero_or_one_m_n11 load-airplane_zero_or_one_m_n12

fly-airplane_zero_or_one ?a ?b ?c

fly-airplane_zero_or_one_m_n18 fly-airplane_zero_or_one_m_n17

unload-airplane_zero_or_one ?a ?b ?c

unload-airplane_zero_or_one_m_n23 unload-airplane_zero_or_one_m_n24

drive-truck_zero_or_one ?a ?b

drive-truck_zero_or_one_m_n35 drive-truck_zero_or_one_m_n36

unload-truck_zero_or_one ?a ?b ?c

unload-truck_zero_or_one_m_n39 unload-truck_zero_or_one_m_n38

load-airplane_zero_or_one_m_n11

(location ?a)
(package ?b)
(airplane ?c)

load-airplane_zero_or_one_m_n12

(package ?b)
(airplane ?c)
(location ?a)

load-airplane ?b ?c ?a

fly-airplane_zero_or_one_m_n18

(airplane ?c)
(location ?b)
(location ?a)

fly-airplane ?c ?b ?a

fly-airplane_zero_or_one_m_n17

(location ?a)
(location ?b)
(airplane ?c)

unload-airplane_zero_or_one_m_n23

(location ?a)
(airplane ?b)
(package ?c)

unload-airplane_zero_or_one_m_n24

(package ?c)
(airplane ?b)
(location ?a)

unload-airplane ?c ?b ?a

drive-truck_zero_or_one_m_n35

(truck ?a)
(location ?b)

drive-truck_zero_or_one_m_n36 ?c ?d

(truck ?a)
(location ?c)
(location ?b)
(city ?d)

drive-truck ?a ?c ?b ?d

unload-truck_zero_or_one_m_n39

(package ?a)
(truck ?c)
(location ?b)

unload-truck ?a ?c ?b

unload-truck_zero_or_one_m_n38

(package ?a)
(location ?b)
(truck ?c)

deliver-pkg ?a ?b

deliver-pkg_m_n41

deliver-pkg_m_n41 ?c

(airplane ?c)
(package ?a)
(location ?b)

t_patextract_id535_zero_or_more ?c ?a

Figure D.5: Graphical representation of the best learned domain in Logistics.

149

make_sandwich_no_gluten ?s ?b ?c

(sandwich ?s)
(bread-portion ?b)
(content-portion ?c)
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(no_gluten_bread ?b)
(no_gluten_content ?c)
(notexist ?s)

(at_kitchen_sandwich ?s)
(no_gluten_sandwich ?s)
not (at_kitchen_bread ?b)
not (at_kitchen_content ?c)
not (notexist ?s)

make_sandwich ?s ?b ?c

(sandwich ?s)
(bread-portion ?b)
(content-portion ?c)
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(notexist ?s)

(at_kitchen_sandwich ?s)
not (at_kitchen_bread ?b)
not (at_kitchen_content ?c)
not (notexist ?s)

put_on_tray ?s ?t

(sandwich ?s)
(tray ?t)
(at_kitchen_sandwich ?s)
(at ?t kitchen)

(ontray ?s ?t)
not (at_kitchen_sandwich ?s)

serve_sandwich_no_gluten ?s ?c ?t ?p

(sandwich ?s)
(child ?c)
(tray ?t)
(place ?p)
(allergic_gluten ?c)
(ontray ?s ?t)
(waiting ?c ?p)
(no_gluten_sandwich ?s)
(at ?t ?p)

(served ?c)
not (ontray ?s ?t)

serve_sandwich ?s ?c ?t ?p

(sandwich ?s)
(child ?c)
(tray ?t)
(place ?p)
(not_allergic_gluten ?c)
(waiting ?c ?p)
(ontray ?s ?t)
(at ?t ?p)

(served ?c)
not (ontray ?s ?t)

move_tray ?t ?p1 ?p2

(tray ?t)
(place ?p1)
(place ?p2)
(at ?t ?p1)

(at ?t ?p2)
not (at ?t ?p1)

nop

serve ?c

serve_m0_serve serve_m1_serve

serve_m0_serve ?s ?b ?cont ?t ?p2

(child ?c)
(sandwich ?s)
(bread-portion ?b)
(content-portion ?cont)
(tray ?t)
(place ?p2)
(allergic_gluten ?c)
(notexist ?s)
(waiting ?c ?p2)
(no_gluten_bread ?b)
(no_gluten_content ?cont)

make_sandwich_no_gluten ?s ?b ?cont

put_on_tray ?s ?t

move_tray ?t kitchen ?p2

serve_sandwich_no_gluten ?s ?c ?t ?p2

move_tray ?t ?p2 kitchen

serve_m1_serve ?s ?b ?cont ?t ?p2

(child ?c)
(sandwich ?s)
(bread-portion ?b)
(content-portion ?cont)
(tray ?t)
(place ?p2)
(not_allergic_gluten ?c)
(notexist ?s)
(waiting ?c ?p2)
not (no_gluten_bread ?b)
not (no_gluten_content ?cont)

make_sandwich ?s ?b ?cont

put_on_tray ?s ?t

move_tray ?t kitchen ?p2

serve_sandwich ?s ?c ?t ?p2

move_tray ?t ?p2 kitchen

Figure D.6: Graphical representation of the IPC domain in Childsnack.

150
A

ppendix
D

.
N

otable
D

om
ains

U
sed

in
E

xperim
ents

make_sandwich_no_gluten ?s ?b ?c

(sandwich ?s)
(bread-portion ?b)
(content-portion ?c)
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(no_gluten_bread ?b)
(no_gluten_content ?c)
(notexist ?s)

(at_kitchen_sandwich ?s)
(no_gluten_sandwich ?s)
not (at_kitchen_bread ?b)
not (at_kitchen_content ?c)
not (notexist ?s)

make_sandwich ?s ?b ?c

(sandwich ?s)
(bread-portion ?b)
(content-portion ?c)
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(notexist ?s)

(at_kitchen_sandwich ?s)
not (at_kitchen_bread ?b)
not (at_kitchen_content ?c)
not (notexist ?s)

put_on_tray ?s ?t

(sandwich ?s)
(tray ?t)
(at_kitchen_sandwich ?s)
(at ?t kitchen)

(ontray ?s ?t)
not (at_kitchen_sandwich ?s)

serve_sandwich_no_gluten ?s ?c ?t ?p

(sandwich ?s)
(child ?c)
(tray ?t)
(place ?p)
(allergic_gluten ?c)
(ontray ?s ?t)
(waiting ?c ?p)
(no_gluten_sandwich ?s)
(at ?t ?p)

(served ?c)
not (ontray ?s ?t)

serve_sandwich ?s ?c ?t ?p

(sandwich ?s)
(child ?c)
(tray ?t)
(place ?p)
(not_allergic_gluten ?c)
(waiting ?c ?p)
(ontray ?s ?t)
(at ?t ?p)

(served ?c)
not (ontray ?s ?t)

move_tray ?t ?p1 ?p2

(tray ?t)
(place ?p1)
(place ?p2)
(at ?t ?p1)

(at ?t ?p2)
not (at ?t ?p1)

nop

serve ?a

serve_m_n17 serve_m_n18

serve_m_n17 ?b ?c ?d ?e ?f ?g

(sandwich ?b)
(bread-portion ?c)
(content-portion ?d)
(tray ?e)
(place ?f)
(place ?g)
(child ?a)

make_sandwich ?b ?c ?d

put_on_tray ?b ?e

move_tray ?e ?f ?g

serve_sandwich ?b ?a ?e ?g

move_tray ?e ?g ?f

serve_m_n18 ?b ?c ?d ?e ?f ?g

(sandwich ?b)
(bread-portion ?c)
(content-portion ?d)
(tray ?e)
(place ?f)
(place ?g)
(child ?a)

make_sandwich_no_gluten ?b ?c ?d

put_on_tray ?b ?e

move_tray ?e ?f ?g

serve_sandwich_no_gluten ?b ?a ?e ?g

move_tray ?e ?g ?f

Figure D.7: Graphical representation of the best learned domain in Childsnack.

151

turn_to ?s ?d_new ?d_prev

(satellite ?s)
(direction ?d_new)
(direction ?d_prev)
(pointing ?s ?d_prev)
not (= ?d_new ?d_prev)

(pointing ?s ?d_new)
not (pointing ?s ?d_prev)

switch_on ?i ?s

(instrument ?i)
(satellite ?s)
(on_board ?i ?s)
(power_avail ?s)

(power_on ?i)
not (calibrated ?i)
not (power_avail ?s)

switch_off ?i ?s

(instrument ?i)
(satellite ?s)
(on_board ?i ?s)
(power_on ?i)

(power_avail ?s)
not (power_on ?i)

calibrate ?s ?i ?d

(satellite ?s)
(instrument ?i)
(direction ?d)
(on_board ?i ?s)
(calibration_target ?i ?d)
(pointing ?s ?d)
(power_on ?i)

(calibrated ?i)

take_image ?s ?d ?i ?m

(satellite ?s)
(direction ?d)
(instrument ?i)
(mode ?m)
(calibrated ?i)
(on_board ?i ?s)
(supports ?i ?m)
(power_on ?i)
(pointing ?s ?d)

(have_image ?d ?m)

nop

do_mission ?d ?m

do_mission_m0_do_mission

do_mission_m0_do_mission ?s ?i

(direction ?d)
(mode ?m)
(satellite ?s)
(instrument ?i)

do_prepare ?s ?i ?d

take_image ?s ?d ?i ?m

do_prepare ?s ?i ?d

do_prepare_m1_do_prepare

do_prepare_m1_do_prepare

(satellite ?s)
(instrument ?i)
(direction ?d)

do_switching ?s ?i

do_turning ?s ?d

do_switching ?s ?i

do_switching_m2_do_switching do_switching_m3_do_switching do_switching_m4_do_switching

do_turning ?s ?d

do_turning_m8_do_turning do_turning_m9_do_turning

do_switching_m2_do_switching ?d ?other_i

(satellite ?s)
(instrument ?i)
(direction ?d)
(instrument ?other_i)
(on_board ?i ?s)
(on_board ?other_i ?s)
not (power_avail ?s)

make_power_available ?s ?other_i

switch_on ?i ?s

do_calibration ?s ?i ?d

do_switching_m3_do_switching ?d

(satellite ?s)
(instrument ?i)
(direction ?d)
(on_board ?i ?s)
(power_avail ?s)

switch_on ?i ?s

do_calibration ?s ?i ?d

do_switching_m4_do_switching

(satellite ?s)
(instrument ?i)
(power_on ?i)

nop

do_turning_m8_do_turning ?other_d

(satellite ?s)
(direction ?d)
(direction ?other_d)
(pointing ?s ?other_d)
not (pointing ?s ?d)

turn_to ?s ?d ?other_d

do_turning_m9_do_turning

(satellite ?s)
(direction ?d)
(pointing ?s ?d)

nop

make_power_available ?s ?other_i

make_power_available_m7_make_power_available

do_calibration ?s ?i ?d

do_calibration_m5_do_calibration do_calibration_m6_do_calibration

make_power_available_m7_make_power_available

(satellite ?s)
(instrument ?other_i)
(power_on ?other_i)
not (power_avail ?s)

switch_off ?other_i ?s

do_calibration_m5_do_calibration

(satellite ?s)
(instrument ?i)
(direction ?d)
not (calibrated ?i)

do_prepare ?s ?i ?d

calibrate ?s ?i ?d

do_calibration_m6_do_calibration

(satellite ?s)
(instrument ?i)
(direction ?d)
(calibrated ?i)

nop

Figure D.8: Graphical representation of the IPC domain in Satellite.

152
A

ppendix
D

.
N

otable
D

om
ains

U
sed

in
E

xperim
ents

turn_to ?s ?d_new ?d_prev

(satellite ?s)
(direction ?d_new)
(direction ?d_prev)
(pointing ?s ?d_prev)
not (= ?d_new ?d_prev)

(pointing ?s ?d_new)
not (pointing ?s ?d_prev)

switch_on ?i ?s

(instrument ?i)
(satellite ?s)
(on_board ?i ?s)
(power_avail ?s)

(power_on ?i)
not (calibrated ?i)
not (power_avail ?s)

switch_off ?i ?s

(instrument ?i)
(satellite ?s)
(on_board ?i ?s)
(power_on ?i)

(power_avail ?s)
not (power_on ?i)

calibrate ?s ?i ?d

(satellite ?s)
(instrument ?i)
(direction ?d)
(on_board ?i ?s)
(calibration_target ?i ?d)
(pointing ?s ?d)
(power_on ?i)

(calibrated ?i)

take_image ?s ?d ?i ?m

(satellite ?s)
(direction ?d)
(instrument ?i)
(mode ?m)
(calibrated ?i)
(on_board ?i ?s)
(supports ?i ?m)
(power_on ?i)
(pointing ?s ?d)

(have_image ?d ?m)

nop

t_patextract_id217_zero_or_one ?a ?b ?c

t_patextract_id217_zero_or_one_m_n21 t_patextract_id217_zero_or_one_m_n15

t_patextract_id217_zero_or_one_m_n21 ?d

(instrument ?b)
(satellite ?a)
(direction ?c)
(direction ?d)

switch_on ?b ?a

turn_to ?a ?c ?d

calibrate ?a ?b ?c

t_patextract_id217_zero_or_one_m_n15

(satellite ?a)
(instrument ?b)
(direction ?c)

t_patextract_id559 ?a ?b

t_patextract_id559_m_n8 t_patextract_id559_m_n13

t_patextract_id559_m_n8 ?c ?d

(satellite ?c)
(direction ?b)
(instrument ?d)
(mode ?a)

take_image ?c ?b ?d ?a

t_patextract_id559_m_n13 ?c ?d ?e ?f

(instrument ?c)
(satellite ?d)
(instrument ?e)
(direction ?f)
(direction ?b)
(mode ?a)

switch_off ?c ?d

t_patextract_id217_zero_or_one ?d ?e ?f

turn_to ?d ?b ?f

take_image ?d ?b ?e ?a

do_mission ?a ?b

do_mission_m_n4 do_mission_m_n22

do_mission_m_n4

(mode ?b)
(direction ?a)

t_patextract_id559 ?b ?a

do_mission_m_n22 ?c ?d ?e

(satellite ?c)
(instrument ?d)
(direction ?e)
(direction ?a)
(mode ?b)

t_patextract_id217_zero_or_one ?c ?d ?e

turn_to ?c ?a ?e

take_image ?c ?a ?d ?b

do_turning ?a ?b

do_turning_m_n2

do_turning_m_n2 ?c

(satellite ?a)
(direction ?b)
(direction ?c)

turn_to ?a ?b ?c

Figure D.9: Graphical representation of the best learned domain in Satellite.

References

[ABA15] Ron Alford, Pascal Bercher and David Aha. ‘Tight Bounds for HTN Planning’. In:
Proceedings of the International Conference on Automated Planning and Schedul-
ing 25 (8th Apr. 2015), pp. 7–15 (cit. on pp. 6, 10, 14).

[ABH14] Charu C. Aggarwal, Mansurul A. Bhuiyan and Mohammad Al Hasan. ‘Frequent
Pattern Mining Algorithms: A Survey’. In: Frequent Pattern Mining. Ed. by Charu
C. Aggarwal and Jiawei Han. Cham: Springer International Publishing, 2014,
pp. 19–64 (cit. on pp. 36, 120).

[Agg14] Charu C. Aggarwal. ‘An Introduction to Frequent Pattern Mining’. In: Frequent
Pattern Mining. Ed. by Charu C. Aggarwal and Jiawei Han. Cham: Springer
International Publishing, 2014, pp. 1–17 (cit. on p. 47).

[AJO19] Diego Aineto, Sergio Jiménez Celorrio and Eva Onaindia. ‘Learning Action Mod-
els with Minimal Observability’. In: Artificial Intelligence 275 (1st Oct. 2019),
pp. 104–137 (cit. on pp. 23, 24).

[AK95] D. Angluin and M. Kharitonov. ‘When Won฀t Membership Queries Help?’ In:
Journal of Computer and System Sciences 50.2 (1st Apr. 1995), pp. 336–355 (cit.
on p. 31).

[Aug+19] Adriano Augusto et al. ‘Automated Discovery of Process Models from Event Logs:
Review and Benchmark’. In: IEEE Transactions on Knowledge and Data Engin-
eering 31.4 (Apr. 2019), pp. 686–705 (cit. on p. 35).

[BCF20] Francesco Bariatti, Peggy Cellier and Sébastien Ferré. ‘GraphMDL: Graph Pat-
tern Selection Based on Minimum Description Length’. In: IDA 2020 - Symposium
on Intelligent Data Analysis. Konstanz, Germany, Apr. 2020 (cit. on pp. 47, 141).

[Beh+19] G Behnke et al. ‘Hierarchical Planning in the IPC’. In: Workshop on HTN Plan-
ning (ICAPS). Berkeley, United States, July 2019 (cit. on p. 12).

[Ben95] Scott Benson. ‘Inductive Learning of Reactive Action Models’. In: Machine Learn-
ing Proceedings 1995. Ed. by Armand Prieditis and Stuart Russell. San Francisco
(CA): Morgan Kaufmann, 1st Jan. 1995, pp. 47–54 (cit. on pp. 23, 24).

[BFG19] Blai Bonet, Guillem Francès and Hector Geffner. ‘Learning Features and Ab-
stract Actions for Computing Generalized Plans’. In: Proceedings of the AAAI
Conference on Artificial Intelligence 33 (17th July 2019), pp. 2703–2710 (cit. on
p. 33).

[BG20] Blai Bonet and Hector Geffner. ‘Learning First-Order Symbolic Representations
for Planning from the Structure of the State Space.’ In: ECAI 2020 - 24th
European Conference on Artificial Intelligence, 29 August-8 September 2020, San-
tiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Con-
ference on Prestigious Applications of Artificial Intelligence (PAIS 2020). ECAI.
2020, pp. 2322–2329 (cit. on pp. 23, 25).

[BH12] Yonatan Bisk and Julia Hockenmaier. ‘Simple Robust Grammar Induction with
Combinatory Categorial Grammars’. In: Proceedings of the AAAI Conference on
Artificial Intelligence 26.1 (1 2012), pp. 1643–1649 (cit. on p. 31).

154 References

[BHB19] Gregor Behnke, Daniel Höller and Susanne Biundo. ‘Finding Optimal Solutions
in HTN Planning - A SAT-based Approach’. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence. Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence {IJCAI-19}. Macao, China: In-
ternational Joint Conferences on Artificial Intelligence Organization, Aug. 2019,
pp. 5500–5508 (cit. on p. 60).

[BHB21] Gregor Behnke, Daniel Höller and Pascal Bercher, eds. Proceedings of the 10th In-
ternational Planning Competition: Planner and Domain Abstracts – Hierarchical
Task Network (HTN) Planning Track (IPC 2020). 2021 (cit. on p. 29).

[Bit23] Arthur Bit-Monnot. ‘Experimenting with Lifted Plan-Space Planning as Schedul-
ing: Aries in the 2023 IPC’. In: 2023 International Planning Competition at the
33rd International Conference on Automated Planning and Scheduling. Prague,
Czech Republic, July 2023 (cit. on p. 60).

[BMC19] Roman Barták, Adrien Maillard and Rafael C. Cardoso. ‘Parsing-Based Ap-
proaches for Verification and Recognition of Hierarchical Plans’. In: ICAPS Hier-
archical Planning Workshop (HPlan). 20th June 2019 (cit. on p. 31).

[CAÖ16] Michele Colledanchise, Diogo Almeida and Petter Ögren. ‘Towards Blended Re-
active Planning and Acting Using Behavior Trees’. In: 2019 International Confer-
ence on Robotics and Automation (ICRA) (2016), pp. 8839–8845 (cit. on p. 32).

[Che+21] Kevin Chen et al. ‘Learning Hierarchical Task Networks with Preferences from
Unannotated Demonstrations’. In: Proceedings of the 2020 Conference on Robot
Learning. Conference on Robot Learning. PMLR, 4th Oct. 2021, pp. 1572–1581
(cit. on pp. 27, 28, 30, 34, 36, 65, 67).

[CK23] David M. Cerna and Temur Kutsia. ‘Anti-Unification and Generalization: A Sur-
vey’. In: Proceedings of the Thirty-Second International Joint Conference on Ar-
tificial Intelligence. Thirty-Second International Joint Conference on Artificial
Intelligence {IJCAI-23}. Macau, SAR China: International Joint Conferences on
Artificial Intelligence Organization, Aug. 2023, pp. 6563–6573 (cit. on p. 68).

[CMÖ17] M. Colledanchise, R. M. Murray and P. Ögren. ‘Synthesis of Correct-by-
Construction Behavior Trees’. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Sept. 2017, pp. 6039–6046 (cit.
on p. 32).

[CÖ18] Michele Colledanchise and Petter Ögren. ‘Behavior Trees in Robotics and AI: An
Introduction’. 20th July 2018 (cit. on p. 32).

[CSL21] Elliot Chane-Sane, Cordelia Schmid and Ivan Laptev. ‘Goal-Conditioned Rein-
forcement Learning with Imagined Subgoals’. In: ICML. arXiv, 2021 (cit. on pp. 2,
118).

[CT12] Michele Chinosi and Alberto Trombetta. ‘BPMN: An Introduction to the Stand-
ard’. In: Computer Standards & Interfaces 34.1 (1st Jan. 2012), pp. 124–134 (cit.
on p. 35).

[CVM14] Lukáš Chrpa, Mauro Vallati and Thomas McCluskey. ‘MUM: A Technique for
Maximising the Utility of Macro-operators by Constrained Generation and Use’.
In: Proceedings of the International Conference on Automated Planning and
Scheduling 24 (10th May 2014), pp. 65–73 (cit. on p. 26).

References 155

[CVM15] Lukáš Chrpa, Mauro Vallati and Thomas Leo McCluskey. ‘On the Online Gen-
eration of Effective Macro-Operators’. In: Proceedings of the 24th International
Conference on Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI
Press, 25th July 2015, pp. 1544–1550 (cit. on p. 26).

[DFG11] Arianna D’Ulizia, Fernando Ferri and Patrizia Grifoni. ‘A Survey of Grammat-
ical Inference Methods for Natural Language Learning’. In: Artificial Intelligence
Review 36.1 (1st June 2011), pp. 1–27 (cit. on p. 31).

[DI00] Olivier Despouys and François Félix Ingrand. ‘Propice-Plan: Toward a Unified
Framework for Planning and Execution’. In: Recent Advances in AI Planning.
Ed. by Susanne Biundo and Maria Fox. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2000, pp. 278–293 (cit. on pp. 2, 118).

[dMB08] Leonardo de Moura and Nikolaj Bjørner. ‘Z3: An Efficient SMT Solver’. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ra-
makrishnan and Jakob Rehof. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2008, pp. 337–340 (cit. on p. 139).

[EHN94] K. Erol, J. Hendler and D. Nau. ‘HTN Planning: Complexity and Expressivity’.
In: AAAI Conference on Artificial Intelligence. 1st Aug. 1994 (cit. on pp. 9, 30,
141).

[FHN72] Richard E Fikes, Peter E Hart and Nils J Nilsson. ‘Learning and Executing Gen-
eralized Robot Plans’. In: Artificial Intelligence 3 (1st Jan. 1972), pp. 251–288
(cit. on p. 26).

[Fin+22] Morgan Fine-Morris et al. ‘Learning Decomposition Methods with Numeric Sub-
tasks’. In: ACS. 2022 (cit. on pp. 28, 29).

[Fre+19] Kevin French et al. ‘Learning Behavior Trees From Demonstration’. In: 2019 In-
ternational Conference on Robotics and Automation (ICRA). 2019 International
Conference on Robotics and Automation (ICRA). May 2019, pp. 7791–7797 (cit.
on p. 32).

[GG11] Christopher W. Geib and Robert P. Goldman. ‘Recognizing Plans with Loops
Represented in a Lexicalized Grammar’. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011. Ed. by Wolfram Burgard and Dan Roth. AAAI Press,
2011 (cit. on pp. 30, 31).

[Gha+98] Malik Ghallab et al. ‘PDDL - The Planning Domain Definition Language’. In:
(31st Aug. 1998) (cit. on p. 9).

[Gil94] Yolanda Gil. ‘Learning by Experimentation: Incremental Refinement of Incom-
plete Planning Domains’. In: ICML. Vol. 11. 10th–13th July 1994, pp. 87–95 (cit.
on pp. 22, 23).

[GJ20] Antonio Garrido and Sergio Jimenez. ‘Learning Temporal Action Models via Con-
straint Programming’. In: ECAI. 2020, p. 8 (cit. on pp. 23, 25).

156 References

[GK18] Christopher W. Geib and Pavan Kantharaju. ‘Learning Combinatory Categorial
Grammars for Plan Recognition’. In: Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18). AAAI. Ed. by Sheila A. McIlraith
and Kilian Q. Weinberger. AAAI Press, 2018, pp. 3007–3014 (cit. on p. 31).

[GMK18] Sriram Gopalakrishnan, Héctor Muñoz-Avila and Ugur Kuter. ‘Learning Task
Hierarchies Using Statistical Semantics and Goal Reasoning’. In: AI Communic-
ations 31.2 (2nd Mar. 2018). Ed. by Mark Roberts et al., pp. 167–180 (cit. on
pp. 27, 29, 65, 68).

[GNT14] Malik Ghallab, Dana Nau and Paolo Traverso. Automated Planning and Acting.
Cambridge: Cambridge University Press, 2014 (cit. on pp. 1, 2, 6, 117, 118).

[Goe+10] Moritz Goebelbecker et al. ‘Coming Up with Good Excuses: What to Do When
No Plan Can Be Found’. In: ICAPS. 2010, p. 8 (cit. on p. 25).

[Gol67] E Mark Gold. ‘Language Identification in the Limit’. In: Information and Control
10.5 (1st May 1967), pp. 447–474 (cit. on p. 31).

[GPF20] Maxence Grand, Damien Pellier and Humbert Fiorino. ‘AMLSI: A Novel Accurate
Action Model Learning Algorithm’. In: International Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS) during the 30th International
Conference on Automated Planning and Scheduling (ICAPS 2020). Nancy, France,
Oct. 2020 (cit. on p. 29).

[GPF22] Maxence Grand, Damien Pellier and Humbert Fiorino. ‘An Accurate HDDL Do-
main Learning Algorithm from Partial and Noisy Observations’. In: Proceedings of
the 5th ICAPS Workshop on Hierarchical Planning (HPlan 2022). 2022, pp. 1–9
(cit. on pp. 27, 28).

[Grü07] Peter D. Grünwald. The Minimum Description Length Principle. Adaptive Com-
putation and Machine Learning. Cambridge, Mass: MIT Press, 2007. 703 pp. (cit.
on pp. 47, 141).

[Grü96] Peter Grünwald. ‘A Minimum Description Length Approach to Grammar In-
ference’. In: Connectionist, Statistical and Symbolic Approaches to Learning for
Natural Language Processing. Ed. by Stefan Wermter, Ellen Riloff and Gabriele
Scheler. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1996,
pp. 203–216 (cit. on p. 31).

[HB23] Philippe Hérail and Arthur Bit-Monnot. ‘Leveraging Demonstrations for Learn-
ing the Structure and Parameters of Hierarchical Task Networks’. In: The 36th
International FLAIRS Conference. Vol. 36. 14th May 2023 (cit. on pp. 49, 61).

[HD11] Yuxiao Hu and Giuseppe De Giacomo. ‘Generalized Planning: Synthesizing Plans
That Work for Multiple Environments’. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume Two.
IJCAI’11. Barcelona, Catalonia, Spain: AAAI Press, 16th July 2011, pp. 918–923
(cit. on pp. 32, 33).

References 157

[HKM09] Chad Hogg, Ugur Kuter and Héctor Muñoz-Avila. ‘Learning Hierarchical Task
Networks for Nondeterministic Planning Domains’. In: IJCAI 2009, Proceedings
of the 21st International Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009. Ed. by Craig Boutilier. 2009, pp. 1708–1714
(cit. on pp. 27, 28).

[HKM10] Chad Hogg, Ugur Kuter and Hector Muñoz-Avila. ‘Learning Methods to Gen-
erate Good Plans: Integrating HTN Learning and Reinforcement Learning’. In:
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. Ed. by Maria Fox and
David Poole. AAAI Press, 2010 (cit. on p. 28).

[HMK08] Chad Hogg, Héctor Muñoz-Avila and Ugur Kuter. ‘HTN-MAKER: Learning
HTNs with Minimal Additional Knowledge Engineering Required’. In: Proceedings
of the 23rd National Conference on Artificial Intelligence - Volume 2. AAAI’08.
Chicago, Illinois: AAAI Press, 13th July 2008, pp. 950–956 (cit. on pp. 27, 28, 34,
36, 40, 52, 62, 67, 120).

[Hog11] Chad Hogg. ‘Learning Hierarchical Task Networks from Traces and Semantically
Annotated Tasks’. Lehigh, 2011 (cit. on p. 67).

[Höl+18] D. Höller et al. ‘Plan and Goal Recognition as HTN Planning’. In: 2018 IEEE 30th
International Conference on Tools with Artificial Intelligence (ICTAI). ICTAI.
Nov. 2018, pp. 466–473 (cit. on p. 31).

[Höl+20] Daniel Höller et al. ‘HDDL: An Extension to PDDL for Expressing Hierarch-
ical Planning Problems’. In: Proceedings of the AAAI Conference on Artificial
Intelligence 34.06 (06 3rd Apr. 2020), pp. 9883–9891 (cit. on p. 11).

[Höl+21] Daniel Höller et al. ‘Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems’. In: Proceedings of the 4th ICAPS Workshop on Hierarchical Plan-
ning (HPlan 2021). 2021, pp. 8–15 (cit. on p. 58).

[HS16] B. Hayes and B. Scassellati. ‘Autonomously Constructing Hierarchical Task Net-
works for Planning and Human-Robot Collaboration’. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2016 IEEE International
Conference on Robotics and Automation (ICRA). May 2016, pp. 5469–5476 (cit.
on pp. 27, 30, 36, 65, 67).

[Hsi+22] Eric Hsiung et al. ‘Generalizing to New Domains by Mapping Natural Language
to Lifted LTL’. In: 2022 International Conference on Robotics and Automation
(ICRA). Philadelphia, PA, USA: IEEE Press, 23rd May 2022, pp. 3624–3630 (cit.
on p. 68).

[Ing+96] F.F. Ingrand et al. ‘PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots’. In: Proceedings of IEEE International Conference
on Robotics and Automation. Proceedings of IEEE International Conference on
Robotics and Automation. Vol. 1. Apr. 1996, 43–49 vol.1 (cit. on pp. 2, 118).

[Jha+10] Susmit Jha et al. ‘Oracle-Guided Component-Based Program Synthesis’. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engin-
eering - Volume 1. ICSE ’10. New York, NY, USA: Association for Computing
Machinery, 1st May 2010, pp. 215–224 (cit. on p. 34).

158 References

[JJ15] Sergio Jiménez and Anders Jonsson. ‘Computing Plans with Control Flow and
Procedures Using a Classical Planner’. In: Proceedings of the International Sym-
posium on Combinatorial Search. Vol. 6. 1. 2015, pp. 62–69 (cit. on p. 34).

[JLS21] Brendan Juba, Hai S. Le and Roni Stern. ‘Safe Learning of Lifted Action Models’.
In: Proceedings of the Eighteenth International Conference on Principles of Know-
ledge Representation and Reasoning. 18th International Conference on Principles
of Knowledge Representation and Reasoning {KR-2021}. Hanoii, Vietnam: In-
ternational Joint Conferences on Artificial Intelligence Organization, Sept. 2021,
pp. 379–389 (cit. on p. 25).

[JS22] Brendan Juba and Roni Stern. ‘Learning Probably Approximately Complete and
Safe Action Models for Stochastic Worlds’. In: Proceedings of the AAAI Conference
on Artificial Intelligence 36.9 (9 28th June 2022), pp. 9795–9804 (cit. on pp. 23,
25).

[JSJ19] Sergio Jiménez, Javier Segovia-Aguas and Anders Jonsson. ‘A Review of Gener-
alized Planning’. In: The Knowledge Engineering Review 34 (2019), e5 (cit. on
pp. 32, 33).

[KBK07] John-Paul Kelly, Adi Botea and Sven Koenig. ‘Planning with Hierarchical Task
Networks in Video Games’. In: ICAPS Workshop on Planning in Games. 2007
(cit. on p. 29).

[Kle+20] Kilian Kleeberger et al. ‘A Survey on Learning-Based Robotic Grasping’. In: Cur-
rent Robotics Reports 1.4 (1st Dec. 2020), pp. 239–249 (cit. on pp. 2, 118).

[KOG19] Pavan Kantharaju, Santiago Ontañón and Christopher W. Geib. ‘Extracting
CCGs for Plan Recognition in RTS Games’. In: Proceedings of the 2nd Workshop
on Knowledge Extraction from Games Co-Located with 33rd AAAI Conference
on Artificial Intelligence, KEG@AAAI 2019, Honolulu, Hawaii, January 27th,
2019. Ed. by Matthew Guzdial, Joseph C. Osborn and Sam Snodgrass. Vol. 2313.
CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 9–16 (cit. on p. 31).

[KS20] Beomjoon Kim and Luke Shimanuki. ‘Learning Value Functions with Relational
State Representations for Guiding Task-and-Motion Planning’. In: Conference on
Robot Learning. Conference on Robot Learning. PMLR, 12th May 2020, pp. 955–
968 (cit. on p. 34).

[Lam+14] Hoang Thanh Lam et al. ‘Mining Compressing Sequential Patterns’. In: Statistical
Analysis and Data Mining: The ASA Data Science Journal 7.1 (2014), pp. 34–52
(cit. on pp. 47, 50, 142).

[Lem+17] Séverin Lemaignan et al. ‘Artificial Cognition for Social Human–Robot Inter-
action: An Implementation’. In: Artificial Intelligence. Special Issue on AI and
Robotics 247 (1st June 2017), pp. 45–69 (cit. on pp. 2, 118).

[LFA14] Sander Leemans, Dirk Fahland and Wil Aalst. ‘Discovering Block-Structured
Process Models from Event Logs Containing Infrequent Behaviour’. In: vol. 171.
10th May 2014, pp. 66–78 (cit. on p. 35).

[LFvdA13a] Sander J. J. Leemans, Dirk Fahland and Wil M. P. van der Aalst. ‘Discovering
Block-Structured Process Models from Event Logs - A Constructive Approach’.
In: Application and Theory of Petri Nets and Concurrency. Ed. by José-Manuel
Colom and Jörg Desel. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2013, pp. 311–329 (cit. on p. 29).

References 159

[LFvdA13b] Sander J. J. Leemans, Dirk Fahland and Wil M. P. van der Aalst. ‘Discovering
Block-Structured Process Models from Event Logs - A Constructive Approach’.
In: Application and Theory of Petri Nets and Concurrency. Ed. by José-Manuel
Colom and Jörg Desel. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2013, pp. 311–329 (cit. on p. 35).

[Li+14] Nan Li et al. ‘Learning Probabilistic Hierarchical Task Networks as Probabilistic
Context-Free Grammars to Capture User Preferences’. In: ACM Transactions on
Intelligent Systems and Technology 5.2 (2014), p. 32 (cit. on pp. 27–31, 34, 36,
61, 65, 67).

[LJ16] Damir Lotinac and Anders Jonsson. ‘Constructing Hierarchical Task Models Us-
ing Invariance Analysis’. In: Proceedings of the Twenty-second European Con-
ference on Artificial Intelligence. ECAI’16. NLD: IOS Press, 29th Aug. 2016,
pp. 1274–1282 (cit. on pp. 27, 29, 34, 65, 68).

[Lot17] Damir Lotinac. ‘Novel Approaches for Generalized Planning’. PhD thesis. Uni-
versitat Pompeu Fabra, 14th Dec. 2017 (cit. on pp. 32, 34).

[LS00] Pat Langley and Sean Stromsten. ‘Learning Context-Free Grammars with a
Simplicity Bias’. In: Machine Learning: ECML 2000. Ed. by Ramon López de
Mántaras and Enric Plaza. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2000, pp. 220–228 (cit. on p. 31).

[LTK12] Tobias Lang, Marc Toussaint and Kristian Kersting. ‘Exploration in Relational
Domains for Model-Based Reinforcement Learning’. In: The Journal of Machine
Learning Research 13.1 (1st Dec. 2012), pp. 3725–3768 (cit. on p. 25).

[LV90] Ming Li and Paul M.B. Vitányi. ‘Kolmogorov Complexity and Its Applications’.
In: Algorithms and Complexity. Elsevier, 1990, pp. 187–254 (cit. on pp. 141, 142).

[MAT15] David Martínez, Guillem Alenyà and Carme Torras. ‘Relational Reinforcement
Learning with Guided Demonstrations’. In: Artificial Intelligence. Special Issue
on AI and Robotics 247 (2015), pp. 295–312 (cit. on pp. 23, 25).

[MCA22] Amandine Mayima, Aurélie Clodic and Rachid Alami. ‘JAHRVIS, a Supervision
System for Human-Robot Collaboration’. In: 2022 31st IEEE International Con-
ference on Robot and Human Interactive Communication (RO-MAN). 2022 31st
IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN). Aug. 2022, pp. 777–784 (cit. on pp. 2, 118).

[McD00] Drew M. McDermott. ‘The 1998 AI Planning Systems Competition’. In: AI
Magazine 21.2 (2 15th June 2000), pp. 35–35 (cit. on pp. 12, 39).

[MG04] Mario Martín and Hector Geffner. ‘Learning Generalized Policies from Planning
Examples Using Concept Languages’. In: Applied Intelligence 20.1 (1st Jan. 2004),
pp. 9–19 (cit. on p. 33).

[Mik+13] Tomas Mikolov et al. ‘Distributed Representations of Words and Phrases and
Their Compositionality’. In: Advances in Neural Information Processing Systems.
Vol. 26. Curran Associates, Inc., 2013 (cit. on p. 29).

[Min85] Steven Minton. ‘Selectively Generalizing Plans for Problem-Solving’. In: Proceed-
ings of the 9th International Joint Conference on Artificial Intelligence. Los
Angeles, CA, USA, August 1985. Ed. by Aravind K. Joshi. Morgan Kaufmann,
1985, pp. 596–599 (cit. on p. 26).

160 References

[MMdS21] Maurício Magnaguagno, Felipe Meneguzzi and Lavindra de Silva. ‘HyperTensioN:
A Three-Stage Compiler for Planning’. In: IPC 2020. 1st Jan. 2021 (cit. on p. 113).

[Moo88] Raymond J. Mooney. ‘Generalizing the Order of Operators in Macro-Operators’.
In: 1988 (cit. on p. 26).

[Mou+12] Kira Mourao et al. ‘Learning STRIPS Operators from Noisy and Incomplete Ob-
servations’. 16th Oct. 2012 (cit. on pp. 23, 24).

[New+07] M. A. Hakim Newton et al. ‘Learning Macro-Actions for Arbitrary Planners and
Domains’. In: International Conference on Automated Planning and Scheduling.
22nd Sept. 2007 (cit. on p. 26).

[Ngu+17] Chanh Nguyen et al. ‘Automated Learning of Hierarchical Task Networks for Con-
trolling Minecraft Agents’. In: 2017 IEEE Conference on Computational Intelli-
gence and Games (CIG). 2017 IEEE Conference on Computational Intelligence
and Games (CIG). Aug. 2017, pp. 226–231 (cit. on p. 29).

[NLK06] Negin Nejati, Pat Langley and Tolga Konik. ‘Learning Hierarchical Task Networks
by Observation’. In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. New York, NY, USA: Association for Computing Machinery,
25th June 2006, pp. 665–672 (cit. on pp. 26, 27).

[NMB18] Xenija Neufeld, Sanaz Mostaghim and Sandy Brand. ‘A Hybrid Approach to
Planning and Execution in Dynamic Environments Through Hierarchical Task
Networks and Behavior Trees’. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence and Interactive Digital Entertainment 14.1 (1 25th Sept. 2018)
(cit. on p. 32).

[OC96] T. Oates and P. Cohen. ‘Searching for Planning Operators with Context-
Dependent and Probabilistic Effects’. In: AAAI/IAAI, Vol. 1. 4th Aug. 1996 (cit.
on pp. 23, 24).

[PB23] Kristýna Pantůčková and Roman Barták. ‘Using Earley Parser for Recognizing
Totally Ordered Hierarchical Plans’. In: ECAI 2023. ECAI. Kraków, Poland: IOS
Press, 2023, pp. 1819–1826 (cit. on p. 61).

[Per+11] Diego Perez et al. ‘Evolving Behaviour Trees for the Mario AI Competition Using
Grammatical Evolution’. In: Applications of Evolutionary Computation. Ed. by
Cecilia Di Chio et al. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pp. 123–132 (cit. on p. 32).

[Pet+04] G. Petasis et al. ‘E-GRIDS: Computationally Efficient Gramatical Inference from
Positive Examples’. In: Grammars (2004) (cit. on p. 31).

[Plo70] Gordon D Plotkin. ‘A Note on Inductive Generalization’. In: Machine intelligence
5.1 (1970), pp. 153–163 (cit. on p. 65).

[PZK07] H. M. Pasula, L. S. Zettlemoyer and L. P. Kaelbling. ‘Learning Symbolic Models
of Stochastic Domains’. In: Journal of Artificial Intelligence Research 29 (21st July
2007), pp. 309–352 (cit. on pp. 23, 25).

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1993 (cit. on p. 32).

References 161

[RGK17] F. Rovida, B. Grossmann and V. Krüger. ‘Extended Behavior Trees for Quick
Definition of Flexible Robotic Tasks’. In: 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Sept. 2017, pp. 6793–6800
(cit. on p. 32).

[Ris78] J. Rissanen. ‘Modeling by Shortest Data Description’. In: Automatica 14.5
(1st Sept. 1978), pp. 465–471 (cit. on p. 141).

[Rod+21] Ivan D. Rodriguez et al. ‘Learning First-Order Representations for Planning from
Black Box States: New Results’. In: Proceedings of the Eighteenth International
Conference on Principles of Knowledge Representation and Reasoning. 18th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
{KR-2021}. Hanoii, Vietnam: International Joint Conferences on Artificial Intel-
ligence Organization, Sept. 2021, pp. 539–548 (cit. on pp. 23, 25).

[RT97] Chandra Reddy and Prasad Tadepalli. ‘Learning Goal-Decomposition Rules Using
Exercises’. In: Proceedings of the Fourteenth International Conference on Machine
Learning. ICML ’97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
8th July 1997, pp. 278–286 (cit. on p. 26).

[RW15] Glen Robertson and Ian Watson. ‘Building Behavior Trees from Observations in
Real-Time Strategy Games’. In: 2015 International Symposium on Innovations in
Intelligent SysTems and Applications (INISTA). 2015 International Symposium
on Innovations in Intelligent SysTems and Applications (INISTA). Sept. 2015,
pp. 1–7 (cit. on p. 32).

[SBG22] Simon Ståhlberg, Blai Bonet and Hector Geffner. ‘Learning General Optimal
Policies with Graph Neural Networks: Expressive Power, Transparency, and Lim-
its’. In: Proceedings of the International Conference on Automated Planning and
Scheduling. Vol. 32. 13th June 2022, pp. 629–637 (cit. on p. 34).

[SBS12] Upendra Sapkota, Barrett R. Bryant and Alan Sprague. ‘Unsupervised Grammar
Inference Using the Minimum Description Length Principle’. In: Machine Learning
and Data Mining in Pattern Recognition. Ed. by Petra Perner. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 141–153 (cit. on pp. 31,
47, 141).

[Sch21] Dominik Schreiber. ‘Lilotane: A Lifted SAT-based Approach to Hierarchical Plan-
ning’. In: Journal of Artificial Intelligence Research 70 (17th Mar. 2021), pp. 1117–
1181 (cit. on pp. 61, 87, 113).

[SdSP06] Sebastian Sardina, Lavindra de Silva and Lin Padgham. ‘Hierarchical Planning in
BDI Agent Programming Languages: A Formal Approach’. In: Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems. AAMAS ’06. New York, NY, USA: Association for Computing Machinery,
8th May 2006, pp. 1001–1008 (cit. on pp. 2, 118).

[Shi+12] Vikas Shivashankar et al. ‘A Hierarchical Goal-Based Formalism and Algorithm
for Single-Agent Planning’. In: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2. 2012, pp. 981–988 (cit.
on pp. 26, 29, 30).

162 References

[SIZ11] Siddharth Srivastava, Neil Immerman and Shlomo Zilberstein. ‘A New Repres-
entation and Associated Algorithms for Generalized Planning’. In: Artificial In-
telligence 175.2 (1st Feb. 2011), pp. 615–647 (cit. on p. 32).

[Sol09] Armando Solar-Lezama. ‘The Sketching Approach to Program Synthesis’. In: Pro-
gramming Languages and Systems. Ed. by Zhenjiang Hu. Red. by David Hutchison
et al. Vol. 5904. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 4–13
(cit. on p. 34).

[SPF17] Jose A Segura-Muros, Raúl Pérez and Juan Fernández-Olivares. ‘Learning HTN
Domains Using Process Mining and Data Mining Techniques’. In: ICAPS Work-
shop on Generalized Planning. Pittsburgh, United States, 19th June 2017 (cit. on
pp. 27, 29, 36, 65, 67, 69).

[Sri10] Siddharth Srivastava. ‘Foundations and Applications of Generalized Planning’.
2010 (cit. on p. 33).

[SRU16] Shirin Sohrabi, Anton V. Riabov and Octavian Udrea. ‘Plan Recognition as Plan-
ning Revisited’. In: Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence. IJCAI’16. New York, New York, USA: AAAI Press,
9th July 2016, pp. 3258–3264 (cit. on p. 31).

[TB22] Jérémy Turi and Arthur Bit-Monnot. ‘Guidance of a Refinement-based Acting
Engine with a Hierarchical Temporal Planner’. In: ICAPS Workshop on Integrated
Planning, Acting, and Execution (IntEx). 17th June 2022 (cit. on pp. 2, 118).

[Van12] Wil Van Der Aalst. ‘Process Mining: Overview and Opportunities’. In: ACM
Transactions on Management Information Systems 3.2 (July 2012), pp. 1–17 (cit.
on pp. 29, 35).

[vZel+21] Sebastiaan J. van Zelst et al. ‘Event Abstraction in Process Mining: Literature
Review and Taxonomy’. In: Granular Computing 6.3 (1st July 2021), pp. 719–736
(cit. on p. 35).

[Wan95] Xuemei Wang. ‘Learning by Observation and Practice: An Incremental Approach
for Planning Operator Acquisition’. In: Machine Learning Proceedings 1995. El-
sevier, 1995, pp. 549–557 (cit. on pp. 22, 23).

[YWJ07] Qiang Yang, Kangheng Wu and Yunfei Jiang. ‘Learning Action Models from Plan
Examples Using Weighted MAX-SAT’. In: Artificial Intelligence 171.2 (1st Feb.
2007), pp. 107–143 (cit. on pp. 23, 24, 28).

[ZC05] Luke S. Zettlemoyer and Michael Collins. ‘Learning to Map Sentences to Logical
Form: Structured Classification with Probabilistic Categorial Grammars’. In: Pro-
ceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence.
UAI’05. Arlington, Virginia, USA: AUAI Press, 26th July 2005, pp. 658–666 (cit.
on p. 31).

[Zha+18] Qi Zhang et al. ‘Learning Behavior Trees for Autonomous Agents with Hybrid
Constraints Evolution’. In: Applied Sciences 8.7 (7 July 2018), p. 1077 (cit. on
p. 32).

[Zhu+09] Hankz Hankui Zhuo et al. ‘Learning HTN Method Preconditions and Action
Models from Partial Observations’. In: IJCAI 2009, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009. Ed. by Craig Boutilier. 2009, pp. 1804–1810 (cit. on p. 28).

References 163

[ZMY14] Hankz Hankui Zhuo, Héctor Muñoz-Avila and Qiang Yang. ‘Learning Hierarch-
ical Task Network Domains from Partially Observed Plan Traces’. In: Artificial
Intelligence 212 (1st July 2014), pp. 134–157 (cit. on pp. 27, 28, 34, 67, 68).

	Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Learning Task Models for Acting in a Robotics Context
	Introduction
	Automated Planning: Definitions
	Classical Planning
	Hierarchical Planning

	A Learner for Parameterized Hierarchical Task Networks from Demonstrations
	Learning Problem
	Inputs
	Goals

	The HTN Domains Considered in this Thesis

	Related Work
	Learning Action Models
	Learning Hierarchical Models
	Macro Operators
	Hierarchical Planning Domains

	Other Hierarchical Models
	Grammar Inference
	Behaviour Trees

	Generalized Planning
	Other Relevant Approaches
	Programming by Example
	Process Mining

	A Multi-Stage Iterative Learning Procedure

	Learning Hierarchical Task Networks Structure from Demonstrations
	Introduction
	Generating Neighbours of HTN Structures
	Goal Regression without Explicit Goals
	The HTN-Maker Algorithm
	HTN-Maker Without Arguments: Simplifying the Original Algorithm

	Frequent Pattern Mining for Neighbour Generation
	The Considered Patterns
	Substituting Patterns in Demonstrations and Extracting Neighbours
	Building a Set of Compressing Patterns
	Searching for the Best Abstraction Set

	Simplifying a Candidate Structure

	Evaluating Candidate Models
	The MDL Principle for HTN Structures Evaluation
	Obtaining Decomposition Trees from HTN Structures and Action Sequences.

	The Complete Structure Search Algorithm
	Conclusion

	Learning Hierarchical Task Networks Parameters from Demonstrations
	Introduction
	Learning Symbolic Parameters: Existing Approaches
	Generating Correct and Usable Parameters for a Given HTN Structure
	Generating a Finite Candidate Parameter Set
	Algorithm for Generating a Candidate Parameter Set
	Candidate Parameter Set Generation as Walks on a Graph

	Simplifying the Generated Candidate Sets
	Parameter Unification
	Parameter Removal

	Handling Recursive Task Definitions: the ``Loop-Until'' Pattern
	Ensuring Consistency with the HTN Structure
	Ensuring Compatibility with the Demonstrations
	Minimizing Method Parameters Through Unification

	Conclusion

	Experimental Evaluation
	Introduction
	Planning Domains Presentation
	Environment and Datasets
	Environment
	Datasets

	Planning Performance
	Rovers
	Logistics
	Childsnack
	Satellite
	Woodworking

	Learning Times
	Conclusion

	Conclusion
	Résumé en Français
	Handling Recursive Task Definitions: Arbitrary Recursive Structures
	A New Argument Propagation Procedure
	Direct Recursions
	Indirect and Independent Recursions

	Parameter Minimization
	Required Features in the MAX-SMT Solver
	Defining Datatypes and Functions
	Defining the Constraints
	Evidence from the Demonstrations
	Grouping Constraints

	Defining the Optimization Objectives

	Conclusion

	The Minimum Description Length Principle
	Notable Domains Used in Experiments
	References

