
HAL Id: tel-04714648
https://laas.hal.science/tel-04714648v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge-Enhanced Machine Learning for Diagnosis
Louis Goupil

To cite this version:
Louis Goupil. Knowledge-Enhanced Machine Learning for Diagnosis. Automatic. INSA TOULOUSE,
2024. English. �NNT : �. �tel-04714648�

https://laas.hal.science/tel-04714648v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par :
l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 08/07/2024 par :
Louis Goupil

Knowledge-Enhanced Machine Learning for Diagnosis

JURY
Jean-Marie Lagniez Professeur des Universités Président du Jury
Vincent Cocquempot Professeur des Universités Membre du Jury
Alexandre Voisin Maître de Conférences Membre du Jury
Louise Travé-Massuyès Directrice de Recherche Directrice de thèse
Elodie Chanthery Maîtresse de Conférences Co-directrice de thèse
Sébastien Delautier Ingénieur Recherche Invité
Hubert Lespinasse Ingénieur Recherche Invité

École doctorale et spécialité :
EDSYS : Informatique 4200018

Unités de Recherche :
l’équipe DISCO du LAAS-CNRS et l’Inno’lab Toulouse d’Atos

Directrices de Thèse :
Louise Travé-Massuyès et Elodie Chanthery

Rapporteurs :
Vincent Cocquempot et Alexandre Voisin

iii

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE TOULOUSE

Abstract
LAAS-CNRS - Atos

Doctor of Philosophy

Knowledge-Enhanced Machine Learning for Diagnosis

by Louis Goupil

Model-based diagnosis requires full knowledge about the analyzed system. On the
other hand, data-driven diagnosis lacks explanations about the cause of a fault. Many
applications require reliable and explainable fault diagnosis and would benefit from
knowing the cause of faults in order to avoid them. In this thesis, the focus is on
developing new methods combining model-based and data-driven diagnosis in a syn-
ergistic way. Specifically, the emphasis is on structural analysis as a model-based
method that requires only knowledge of the system’s structure. For that purpose, a
novel explainable method has been designed called DT4X (Diagnosis Tree for eXplain-
ability). It leverages decision trees where decisions are informed by diagnosis meta
knowledge, specifically focusing on the properties of diagnosis indicators. This knowl-
edge is used at each node to articulate a symbolic classification problem, outputting
discriminating functions. The outcome is a multivariate decision tree that produces a
compact model for diagnosis. The use of decision trees increases the explainability of
the outcome, all the more so as one discovers the explicit formal expressions of diag-
nosis indicators, structured in the form of analytical redundancy relations. On simple
systems, DT4X proves to output expressions that could previously only be found with
full physical knowledge of the system. Its accuracy is higher than traditional machine
learning algorithms. On more complex dynamic systems, DT4X reaches very high
accuracy but lacks interpretable insight about the studied system. On logical circuits,
a preprocessing of the data is proposed to remove samples corresponding to masked
faults. DT4X finds logical expressions that possess all the properties of model-based
diagnosis indicators. A variant of DT4X has been developed called PI-DT4X (Physics
Informed DT4X). It is an alternative that requires more physical insight about the
system but has higher accuracy and capacity to find relevant diagnosis indicators.
PI-DT4X takes as input the structural model of the system and injects specific struc-
tural sub-models in the decision tree to guide and focus symbolic regression, so that
diagnosis indicators are discovered faster and easier.

Keywords: Model-based and Data-based Diagnosis, Machine Learning, Hybrid
Artificial Intelligence, Business Knowledge, Additive Manufacturing.

HTTPS://WWW.INSA-TOULOUSE.FR/
https://www.laas.fr/fr/
https://atos.net/en/

iv

Le diagnostic basé modèle requiert une connaissance complète du système analysé.
Par ailleurs, le diagnostic basé sur des données ne fournit pas d’explications sur la
cause d’une défaillance. De nombreuses applications nécessitent un diagnostic des dé-
fauts fiable et explicatif, et bénéficieraient d’obtenir la cause des défaillances afin de
les éviter. Dans cette thèse, l’accent est mis sur le développement de nouvelles méth-
odes combinant le diagnostic basé modèle et le diagnostic basé données de manière
synergique. Plus précisément, l’accent est mis sur l’analyse structurelle en tant que
méthode basée modèle qui ne nécessite que la connaissance de la structure du sys-
tème. Dans ce but, une nouvelle méthode fournissant des explications a été conçue,
appelée DT4X (Diagnosis Tree for eXplainability). Elle exploite les arbres de décision
où les critères de décision sont construits à partir de méta-connaissance des méthodes
de diagnostic basés modèle, se concentrant spécifiquement sur les propriétés des indi-
cateurs de diagnostic. Cette connaissance est utilisée à chaque nœud pour articuler
un problème de classification symbolique, produisant des fonctions discriminantes.
Le résultat est un arbre de décision multivarié qui produit un algorithme de diagnos-
tic. L’utilisation d’arbres de décision augmente l’explicabilité du résultat, d’autant
plus que l’on découvre les expressions formelles explicites des indicateurs de diagnos-
tic, structurées sous forme de relations de redondance analytique. Sur des systèmes
simples, DT4X s’avère produire des expressions qui ne pouvaient auparavant être
trouvées qu’avec une connaissance physique complète du système. Sa précision est
supérieure à celle des algorithmes d’apprentissage automatique traditionnels. Sur des
systèmes dynamiques plus complexes, DT4X atteint une précision très élevée mais
apporte peu d’explications sur le système étudié. Sur les circuits logiques, un pré-
traitement des données est proposé pour supprimer les échantillons correspondant
à des défaillances masquées. DT4X trouve des expressions logiques qui possèdent
toutes les propriétés des indicateurs de diagnostic basés modèle. Une variante de
DT4X a été développée, appelée PI-DT4X (Physically Informed Diagnosis Tree for
eXplainability). Il s’agit d’une alternative qui nécessite une meilleure compréhension
physique du système mais présente une précision plus élevée et une meilleure capacité
pour trouver des indicateurs de diagnostic pertinents. PI-DT4X prend en entrée le
modèle structurel du système et injecte des sous-modèles structurels spécifiques dans
l’arbre de décision pour guider et concentrer la régression symbolique, de sorte que
les indicateurs de diagnostic soient découverts plus rapidement et plus efficacement.

Mots-clés : Diagnostic basé modèle et basé données, Apprentissage Machine, In-
telligence Artificielle Hybride, Connaissances Métier, Fabrication Additive.

v

Acknowledgements
First, I wish to thank Vincent Cocquempot, Alexandre Voisin and Jean-Marie

Lagniez for agreeing to evaluate my work and taking the time to attend the defense
in person. Thank you very much for your kind, relevant and constructive questions
and remarks, both in the reports and at the defense. They allowed me to improve
and finalize this manuscript.

I want to express my deepest gratitude to my three supervisors, Elodie Chanthery,
Louise Travé-Massuyès and Sébastien Delautier. Thank you for always being avail-
able, caring, listening and open-minded. Thank you for, at times, going beyond your
obligations as thesis supervisors. Thank you for creating an environment in which I
can grow and feel at ease. It has always been a pleasure for me to work and interact
with you, and I consider that paramount. In particular, thank you Sébastien for your
guidance and patience. Thank you also for giving me the opportunity to have a first
teaching experience. I know I am not the only one thinking that you were a good
team leader. Louise and Elodie, thank you for always finding the right way to talk to
me, encourage me, and push me to go beyond what I thought were my limitations. I
will be forever grateful for all the things you taught me during these three years and
all that I got to experience.

I want to thank all the members of the Inno’lab Toulouse of Atos. Through
these three years I had the chance to work alongside many different persons including
Margot, Étienne, Léo, Clara, Darsana, Clément, Maxence. Thank you all for the
great atmosphere. I also was lucky enough to have many colleagues helping with my
research topic, including Julia, Dorian, Thibault, Pauline and Sonia. I am grateful
for your great contributions to the project, this would not have been possible without
you. In particular, I want to express my thanks to Hubert Lespinasse for supporting
me throughout the three years with advices of all kinds, technical support and for
attending the defense as an Atos representative. In addition, thank you very much
Audrey for supervising the publication of two patents and the valuable friendship we
built.

Similarly, I want to thank the entirety of the DISCO team of the LAAS-CNRS.
The perpetually good atmosphere was always enjoyable. Thank you Soheib, Audine.
Thank you Carine for your help with the water tanks dataset. Thank you Yannick
for your warm welcome in the team. Thank you Pauline for your everlasting good
mood and valuable insight about any and all topics. I want to thank all PhD students
that graduated before me and were my mentors in many aspects, including Adrien,
Le Toan, Alexandre, Amaury, Camille, Kévin. I also want to thank all those that
will graduate after me for your constant support and friendship, including Charles-
Maxime, Lucas, Séna and Rahma. In particular, thank you Charlotte for those three
years of sharing the same challenges together. Thank you Rafael, Maxence and Reyan
for your support. Finally, thank you Ibis and Léonie for always being there when I
needed and for your valuable friendship.

I went studying two months at Linköping University. The whole trip was amaz-
ing. I am extremely grateful to my three supervisors Erik Firsk, Mattias Krysander
and Daniel Jung for your warm welcome and supervision. I learned so many new
interesting notions and acquired useful skills in such a short time. I am very thankful
for that. I want to thank the whole Vehicular Systems team, in particular Karin for
helping me settle in smoothly and Lars for all the interesting and fun conversations. I
still cannot believe how kind and welcoming everyone has been to me. I also want to
thank all the PhD students and all the pattern game enjoyers. In particular, Arvind,
Oskar, Jian, Ipek, Theodor, Ola, Olov. Thank you Abhi for organizing and inviting

vi

me to the Friday lunches. Thank you Shadi for everything, I wish we play many more
fish bowl games in the future. Thank you Arezou and Amina, your office is the best,
I wish I had such great neighbors in France. Thank you for all the fun. And finally,
thank you Arman for the boardgames and all the great memories we made together.

Finally, I want to thank the people that support me in my everyday life. Thank
you to all my friends, your constant support is vital to every aspect of my growth
including this thesis. Thank you to my whole family that has always been supporting
me, no matter my choices in life. You have had faith in me from the very beginning,
and that matters a lot to me. That includes my parents, to whom I am eternally
grateful, for everything in my life. My constant happiness and unconcern, I owe to
your unconditional support. Ultimately, thank you Fel for being by my side my whole
life.

vii

Preamble
This thesis is written in collaboration between Atos and the LAAS-CNRS. I started
working at Atos in February 2021 and began the thesis in collaboration with the
LAAS-CNRS shortly after. The thesis is founded by an ANRT grant n°2021/0443.
My scientific supervisors are Louise Travé-Massuyès and Elodie Chanthery (from the
DISCO team at the LAAS-CNRS). My industrial supervisors are Sébastien Delautier
and Laurent Garlatti (from Atos Toulouse). This project is related to ANITI within
the French “Investing for the Future – PIA3” program under the Grant agreement
n°ANR-19-PI3A-0004. During the third year of the thesis, I did a two months mo-
bility to Sweden. I worked with the vehicular systems team, in the department of
electrical engineering in Linköping University. In particular, I was supervised by Erik
Frisk, Mattias Krysander and Daniel Jung. They are fault diagnosis experts and in
particular Erik is the main designer of the Fault Diagnosis Toolbox (FDT) and him
and Mattias wrote the code and the algorithms for the toolbox. I used this toolbox
extensively in my works and it made everything much easier. They also provided
me with the water tanks system that is used as a use case throughout the whole
manuscript.

Louis Goupil

https://faultdiagnosistoolbox.github.io/

viii

List Of Publications

Louis Goupil, Elodie Chanthery, et al. (2022). “A survey on diagnosis methods
combining dynamic systems structural analysis and machine learning”. In: 33rd
International Workshop on Principle of Diagnosis–DX 2022

Dorian Voydie et al. (2023). “Machine Learning Based Fault Anticipation for 3D
Printing”. In: 22nd World Congress of the International Federation of Automatic
Control (IFAC 2023)

Louis Goupil, Elodie Chanthery, et al. (2023). “Tree based diagnosis enhanced
with meta knowledge”. In: 34th International Workshop on Principles of Diagnosis
(DX’23)

Louis Goupil, Louise Travé-Massuyès, et al. (June 2024). “Tree based Diagnosis
Enhanced with Meta Knowledge Applied to Dynamic Systems”. In: 12th IFAC Sym-
posium on Fault Detection, Supervision and Safety for Technical Processes. Ferrara,
Italy

ix

Contents

Abstract iii

Acknowledgements v

Preamble vii

1 Introduction 1
1.1 Scientific Goals . 1
1.2 Industrial Context . 2
1.3 Manuscript Organization . 3
1.4 Useful Concepts and Notations . 3

1.4.1 The System . 3
1.4.2 Diagnosis . 4

2 Machine Learning Based Diagnosis 7
2.1 Background . 7

2.1.1 Dataset . 7
2.1.2 Machine Learning . 8

2.1.2.1 General Principles . 8
2.1.2.2 Classic machine learning algorithms 10

2.2 State of the Art of 3D Printing Diagnosis Methods 11
2.3 Machine Learning Applied to the 3D Printer 14

2.3.1 System Description . 14
2.3.2 3D Printer Fault Types . 16
2.3.3 Measuring Equipment . 17
2.3.4 Data Collection . 20
2.3.5 Data Preprocessing . 22
2.3.6 Feature Engineering . 23
2.3.7 Training . 24
2.3.8 Results . 25
2.3.9 Takeaways . 26

2.4 Conclusions . 28

3 Hybrid AI Diagnosis 29
3.1 Background - Structural Analysis . 29

3.1.1 Important notions . 29
3.1.2 Diagnosis via Structural Redundancy 30

3.2 State of the Art . 31
3.2.1 Hybrid AI Diagnosis Methods 32
3.2.2 Machine learning and structural analysis 33

3.3 Variation on an hybrid AI Diagnosis method 35
3.3.1 The SA-ML Method . 35

3.4 Application to a dynamic non-linear system 36

x Contents

3.4.1 System description: the two tanks system 36
3.4.2 Structural Analysis . 39

3.4.2.1 Establish the Structural Model 39
3.4.2.2 Identify the MSO Sets and Compute the Fault Signa-

ture Matrix . 39
3.4.2.3 Select a Subset with Maximal Isolability 39

3.4.3 Training for each MSO Set . 41
3.4.3.1 Dataset Preprocessing 41
3.4.3.2 Training . 41
3.4.3.3 Best Algorithm Selection 42

3.4.4 Final Results . 42
3.5 Conclusions . 43

4 DT4X: Diagnosis Tree Enhanced with Meta-Knowledge 45
4.1 Background . 45

4.1.1 Genetic Algorithms . 45
4.1.2 Symbolic Classification . 46
4.1.3 Decision Trees . 48

4.1.3.1 Training a Decision Tree 50
4.1.3.2 Using a Tree . 51
4.1.3.3 Multivariate vs Univariate 51

4.2 DT4X . 51
4.2.1 Principle . 52
4.2.2 DT4X Algorithm . 53

4.2.2.1 Detailed Explanation 53
4.2.2.2 Classification Function 57
4.2.2.3 Hyper-Parameters . 58
4.2.2.4 Refitting . 59
4.2.2.5 Implementation Architecture 59
4.2.2.6 Time Complexity . 60

4.2.3 DT4X Properties . 62
4.2.3.1 Inherent Properties 63
4.2.3.2 Unicity of Diagnosis Indicators on a Path 64
4.2.3.3 Necessary and Sufficient Fault Signature Matrix . . . 64
4.2.3.4 Bounded Amount of Data Required to Train 65
4.2.3.5 Kernel Intersection of Data-Based ARRs from DT4X

is Included in the Kernel Intersection of Model-Based
ARRs . 66

4.3 Conclusions . 67
4.3.1 Summary . 67
4.3.2 Perspectives . 68

4.3.2.1 More Expert Knowledge 68
4.3.2.2 Automatic Fitting of Hyper-Parameters 68
4.3.2.3 Refitting Following Concept Drifts 68

5 DT4X Applications 69
5.1 Application to Static Systems . 69

5.1.1 Polybox . 69
5.1.1.1 System Description 69
5.1.1.2 Results . 70
5.1.1.3 Comparison with Model-Based Results 70

Contents xi

5.1.1.4 Comparison with Other Machine Learning Algorithms 72
5.1.1.5 Other Variants . 74

5.1.2 Logic Circuits . 74
5.1.2.1 Introduction . 74
5.1.2.2 System Description 75
5.1.2.3 Masked Faults and Preprocessing 76
5.1.2.4 Training and Results 76

5.2 Application to Dynamic Systems . 77
5.2.1 Specifics about Dynamic Systems 78
5.2.2 Water Tanks . 79

5.2.2.1 Dataset . 79
5.2.2.2 DT4X Results . 80

5.2.3 3D printer . 82
5.2.3.1 Dataset . 82
5.2.3.2 Preprocessing . 83
5.2.3.3 DT4X Results . 84
5.2.3.4 Analysis . 88

5.3 Conclusions . 88
5.3.1 Summary . 88
5.3.2 Perspectives . 89

6 Physics Informed DT4X 91
6.1 Background Concepts . 91

6.1.1 Symbolic Regression . 91
6.1.2 Weakly Detectable Faults . 93

6.2 PI-DT4X . 94
6.2.1 PI-DT4X Principle . 94
6.2.2 PI-DT4X Algorithm . 95
6.2.3 Detailed Explanation . 96
6.2.4 Design Motivations . 99

6.2.4.1 Symbolic Regression rather than Symbolic Classification 99
6.2.4.2 Choice of the Target Variable 100

6.2.5 PI-DT4X Hyper-Parameters . 100
6.3 Applications . 100

6.3.1 Polybox . 100
6.3.2 Water Tanks . 103

6.3.2.1 System Description 103
6.3.2.2 Dataset . 103
6.3.2.3 Results . 105

6.4 Conclusion . 106
6.4.1 Summary . 106
6.4.2 Perspectives . 107

6.4.2.1 Data Normalization 107
6.4.2.2 Enhanced Symbolic Regression 107
6.4.2.3 PSO Sets Rather than MSO Sets 107
6.4.2.4 Learning the Structural Model 107

xii Contents

7 Conclusions and Perspectives 109
7.1 Main Contributions . 109
7.2 Conclusions . 110
7.3 Perspectives . 110
7.4 Closing Thoughts . 111

A 3D Printer Instrumentation 113

B DT4X Applied to the Polybox 117
B.1 Polybox . 117

B.1.1 Double Faults . 117
B.1.2 Merged Classes Single Faults 117
B.1.3 Merged Classes Double Faults 118

B.2 Second Polybox . 119
B.2.1 Single Fault . 119
B.2.2 Double Fault . 120

B.3 Third Polybox . 120
B.3.1 Single Fault . 120
B.3.2 Double Fault . 121

Bibliography 129

xiii

List of Figures

2.1 Example of a 5-Folds Cross Validation 9
2.2 Summary of the Study . 14
2.3 3D Printer . 15
2.4 Print Process . 15
2.5 Critical Faults . 16
2.6 Severe Faults . 17
2.7 Inertial Measurement Unit . 18
2.8 Board Accelerometer . 19
2.9 Wire Spool Weight . 19
2.10 Sensor Linkage Through Local Network 20
2.11 Labeling Tool . 21
2.12 Geometry Designed to be Able to Generate all 8 Studied Types of Faults 21
2.13 Experimental Design and the Fault Observed During each Print 22
2.14 Balancing the Dataset for each Fault Type 24
2.15 Decision Tree Trained to Predict the No Adhesion Fault (Blue=Faulty,

Orange=This fault is not present) . 27

3.1 Example of a Structural Model. Each equation corresponds to a com-
ponent of the system. The presence of a dot signifies that the variables
belongs to the equations, the absence that is does not. The left-most
section shows non-observable variables, the central section shows faults
and the right-most section shows observable variables. 30

3.2 Principle of Fusion . 32
3.3 Summary of Methods Combining Structural Analysis and Machine

Learning. 33
3.4 Replacing Residual Selection with a Feature Selection Algorithm . . . 34
3.5 Replacing Residual Generation with a Grey-Box Recurrent Neural Net-

work . 34
3.6 Improving Structural Analysis Results with a Graph Neural Network . 34
3.7 Summary of the Proposed Method . 36
3.8 Two Water Tanks System. FS means flow sensor. 37
3.9 Graph of uref as a Function of Time (in m3 · s−1) 38
3.10 Example of a Fault Signal when the Fault Occurs 38
3.11 Structural Model of the Water Tanks. e6 and e7 are the differential

constraints. I means that the variable is the primitive of the other, and
D means that the variable is the derivative of the other. 39

3.12 Fault Signature Matrix of the Water Tanks 40
3.13 Fault Signature Matrix restrained to MSO2, MSO8, MSO9, MSO12, MSO13. 41
3.14 Confusion Matrix of the Hybrid AI Diagnosis Method 42

4.1 Example of a Crossover . 46
4.2 Example of a Mutation . 46

xiv List of Figures

4.3 Symbolic Classifier: during training, the green objects are known and
the red ones are unknown. 46

4.4 Symbolic Classifier: during testing, the green objects are known and
the red ones are unknown . 47

4.5 Expression Tree of x2
1 + log(3) . 48

4.6 Crossover Between Two Candidate Expressions 48
4.7 Hoist Mutation of a Candidate Expression 49
4.8 Subtree Mutation of a Candidate Expression 49
4.9 Point Mutation of a Candidate Expression 49
4.10 Example of a Decision Tree Produced by DT4X 53
4.11 The Root Node n0 . 55
4.12 The First Pair Selected . 56
4.13 Balancing the Pair . 56
4.14 Symbolic Classification on the Pair: the nominal samples are labeled

0 and the faulty samples are labeled 1. The goal is to fit f while t is
known. 57

4.15 Splitting According to dni (f in this case) 57
4.16 Classification Function used for Symbolic Classification in DT4X . . . 58
4.17 UML graph of DT4X . 61
4.18 Simplified View of the Tree Obtained by DT4X (with D2 ⊆ D1l

) . . . 65
4.19 Tree from DT4X that Contains more Information than Necessary . . . 66

5.1 The Polybox . 69
5.2 Single Fault Polybox DT4X Decision Tree 70
5.3 Confusion Matrix of the Single Fault Polybox Diagnosis Tree 71
5.4 Structural Model of the Polybox . 71
5.5 The Full Subtractor . 75
5.6 Single Fault Full Subtractor Decision Tree 77
5.7 Confusion Matrix of the Full Subtractor Diagnosis Tree 78
5.8 Confusion Matrix of DT4X for the Water Tanks 81
5.9 First Three Nodes of the Water Tanks Output Decision Tree 81
5.10 Sample Distribution in the Dataset . 84
5.11 Decision Tree Trained by DT4X on the 3D Printer Dataset 86
5.12 Confusion Matrix of the Depth 2 Decision Tree for the 3D Printer . . 86
5.13 Confusion Matrix of the Decision Tree Trained by DT4X on the 3D

Printer Dataset . 87

6.1 Symbolic Regressor: during training, the green objects are known and
the red ones are unknown and learnt. 92

6.2 Symbolic Regressor: during testing, the green objects are known and
the red ones are unknown and predicted 92

6.3 Detectable Fault 1 . 93
6.4 Detectable Fault 2 . 93
6.5 Detectable Fault 3 . 94
6.6 Detectable Fault 4 . 94
6.7 Not Detectable Fault . 94
6.8 Weakly Detectable Fault . 94
6.9 Selection of an MSO Set Using the Structural Model 97

List of Figures xv

6.10 Classes Kept for Symbolic Regression. The green circles show fault
classes that are not in the fault support of the MSO set (yellow boxes).
In this case, it means that classes corresponding to fault f3 and f5 are
kept. The nominal class is also kept. 97

6.11 Variable Selection during PI-DT4X. The circled variables are in the
MSO set, thus they are selected. One of them is arbitrarily set as the
target. 98

6.12 Structural Model of the Polybox. In the figure, M1 means fM1 (idem
for the others) and e1 is the equation corresponding to component M1,
e2 to M2, e3 to M3, e4 to A1, e5 to A2. 101

6.13 MSO Sets of the Polybox. A dot means that the equation of the com-
ponent (horizontal axis) belongs in the equation (MSO) set (vertical
axis). 102

6.14 Decision Tree from PI-DT4X for the Single Fault Polybox 102
6.15 Structural Model of the Water Tanks. e6 and e7 are the differential

constraints. 103
6.16 Decision Tree of PI-DT4X for the Water Tanks 105

A.1 Pin Mapping for the 3D printer Instrumentation 114
A.2 Bed Camera Setup . 114
A.3 Bed Camera View . 114
A.4 Nozzle Camera Setup . 115
A.5 Nozzle Camera View . 115

B.1 Double Fault Polybox Decision Tree 118
B.2 Confusion Matrix of the Double Fault Polybox Diagnosis Tree 119
B.3 Single Fault Polybox Decision Tree with Merged Classes 119
B.4 Confusion Matrix of the Single Fault Polybox Diagnosis Tree with

Merged Classes . 120
B.5 Double Fault Polybox Decision Tree with Merged Classes 121
B.6 Confusion Matrix of the Double Fault Polybox Diagnosis Tree with

Merged Classes . 121
B.7 The Second Polybox . 122
B.8 Single Fault Second Polybox Decision Tree 123
B.9 Confusion Matrix of the Single Fault Second Polybox Diagnosis Tree . 124
B.10 Double Fault Second Polybox Decision Tree 124
B.11 Confusion Matrix of the Double Fault Second Polybox Diagnosis Tree 125
B.12 The Third Polybox . 125
B.13 Single Fault Third Polybox Decision Tree 126
B.14 Confusion Matrix of the Single Fault Third Polybox Diagnosis Tree . . 126
B.15 Double Fault Third Polybox Decision Tree 127
B.16 Confusion Matrix of the Double Fault Third Polybox Diagnosis Tree . 127

xvii

List of Tables

2.1 Additional Information about the Classic Machine Learning Algorithms.
The further documentation includes detailed explanations about the
influence of hyper-parameters. 12

2.2 Details on Some Fault Diagnosis Methods for 3D Printing 12
2.3 Insight Into Algorithms Used for Fault Diagnosis of 3D Printing. Empty

cells correspond to unavailable information. 13
2.4 Signals Measured on the 3D Printer 20
2.5 Features Engineered in each Window 24
2.6 Algorithms and Hyper-parameters . 25
2.7 Results for the Statistical Split (1/2) 25
2.8 Results for the Statistical Split (2/2) 26
2.9 Results for the Objective Split (1/2) 26
2.10 Results for the Objective Split (2/2) 27

3.1 Possible Faults in the Water Tanks . 37
3.2 For each selected MSO set, list of involved variables and corresponding

fault support. 40
3.3 Accuracy of the Machine Learning Algorithms Simulating Residuals

on a Testing Set (in %) . 42

4.1 List of DT4X hyper-parameters and their default values 58
4.2 List of Variables that Impact Time Complexity 60
4.3 Example of Signature Matrix Inferred from the Decision Tree 64

5.1 Fault Signature Matrix for the Single Fault Polybox (computed from
the model) . 72

5.2 Fault Signature Matrix for the Single Fault Polybox (computed from
DT4X tree) . 73

5.3 Single Fault Polybox Results . 73
5.4 Single Fault Full Subtractor Results 77
5.5 Truth Table of Diagnosis Indicators Found by DT4X for the Full Sub-

tractor System (in the nominal case) 79
5.6 Truth Table of Second Node Diagnosis Indicator for faults fXOR1 and

fXOR2. Once the data is filtered, the only data remaining are visible
faults, meaning a faulty component outputs the incorrect value. This
table is built in this specific context. 79

5.7 System Constants . 80
5.8 Water Tanks Results. The SVM did not finish training after more than

30 hours, hence why it has no value. 80
5.9 Training Hyper-Parameters of DT4X for the 3D Printer. Other hyper-

parameters have default values. 82
5.10 Measured Variables for the 3D Printer 83

xviii List of Tables

5.11 Feature Importance of the Observable Variables for the Prediction of
the 3D Printer State . 85

6.1 List of PI-DT4X hyper-parameters and their default values 100
6.2 List of Components and Observables in each MSO set along with the

Fault Support of the Corresponding ARR. All computed from the
structural model using the fault diagnosis toolbox. 101

6.3 Results from PI-DT4X compared with Results from DT4X for the
polybox . 102

6.4 List of Equations and Observables in each MSO set along with the Fault
Support of the Corresponding ARR. All computed from the structural
model using the fault diagnosis toolbox. The equation numbers refer
to Figure 6.15 on page 103. 104

6.5 Training Hyper-Parameters of PI-DT4X for the Water Tanks. Other
hyper-parameters have default values. 105

B.1 Double Fault Polybox Results . 117
B.2 Single Fault Polybox with Merged Classes Results 120
B.3 Double Fault Polybox with Merged Classes Results 122
B.4 Single Fault Second Polybox Results 123
B.5 Model-Based Residuals for the Second Polybox 123
B.6 Double Fault Second Polybox Results 123
B.7 Single Fault Third Polybox Results . 125
B.8 Model-Based Residuals for the Third Polybox 126
B.9 Double Fault Third Polybox Results 128

xix

List of Abbreviations

3D Three Dimensional
AI Artificial Intelligence
AMD Advanced Micro Devices
ANRT Association Nationale de la Recherche et de la Technologie
ARR Analytical Redundancy Relations
CNN Convolutional Neural Network
CNRS Centre National de Recherche Scientifique
CPU Core Processing Unit
CUSUM CUmulative SUM
DT Decision Tree
DT4X Diagnosis Tree 4(for) eXplanation
FDI Fault Detection (and) Isolation
FDT Fault Diagnosis Toolbox
FMSO Fault-driven Minimally Structurally Overdetermined
GAN Generative Adversarial Network
GPU Graphics Processing Unit
IFAC International Federation of Automatic Control
IMU Inertial Measurement Unit
KNN K Nearest Neighbors
LAAS Laboratoire d’Analyse et d’Architecture des Systèmes
LDA Linear Discriminant Analysis
LR Logistic Regression
SA Structural Analysis
SA-ML Structural Analysis - Machine Learning
SO Structurally Overdetermined
ML Machine Learning
MLP Multi Layer Perceptron
MSO Minimally Structurally Overdetermined
NB Naive Bayes
NP Nondeterministic Polynomial time
PI-DT4X Physically Informed Diagnosis Tree 4(for) eXplanation
PLA Poly Lactic Acid
RF Random Forest
sklDT SciKit-Learn Decision Tree
sklKNN SciKit-Learn K Nearest Neighbors
sklLR SciKit-Learn Logistic Regression
sklNB SciKit-Learn Naive Bayes
sklRF SciKit-Learn Random Forest
sklSVM SciKit-Learn Support Vector Machine
STD STandard Deviation
STL Standard Triangle Language
SVM Support Vector Machine

xxi

List of Symbols

DIAGNOSIS
Σ system
nz number of hidden variables
z set of hidden variables
nx number of observable variables
x set of observable variables
nf number of faults
f set of system faults
S set of system states
ne number of system equations
ek kth system equation
r residual
G bipartite graph
A set of edges of the bipartite graph
ρ structural redundancy
φ FMSO set
FS fault support of an ARR
SM signature matrix
R set of model-based ARRs

MACHINE LEARNING
D dataset
D01 a dataset made of values in {0, 1}
nD number of elements in the dataset
x sample of the dataset
C set of classes in a labeled dataset
Cnom, C0 class containing nominal samples
Cwd class of a weakly detectable fault
l label
T tree
E set of edges of the tree
N set of nodes of the tree
n0 the root node of the tree
ni any node of the tree
P path of the tree
A algorithm

SYMBOLIC CLASSIFICATION & REGRESSION
O set of operators
c candidate solution, expression that combines vari-

ables from x and operators from O
cbest the retained candidate solution at the end of sym-

bolic classification

xxii

w threshold for symbolic classication
t classification function
lavg average length of a candidate solution of symbolic

classification
ng maximum number of generations for symbolic clas-

sification
ncs number of candidate solutions per generation of

symbolic classification

DT4X & PI-DT4X
d diagnosis indicator
D set of diagnosis indicators
Xr, Xp, XT1 , XT2 hyperparameters of DT4X described in Table 4.1
ϵ hyperparameter of DT4X described in Sec-

tion 4.2.2.2
p parsimony coefficient
T1, T2, T3 conditions required for an expression to be consid-

ered a diagnosis indicator
C time complexity of DT4X
nn number of nodes in the tree
nD number of samples in the dataset
nC number of classes in the dataset
nO number of input operators
nx number of input variables
Ker the kernel operator

SYSTEMS
PT printing time
nwindows the number of windows in the 3D printer dataset
T1, T2 the water tanks
uref input flow of the water tanks system
y1, y2, y3, y4 signals measured by the water tanks sensors
d1, d2, d3, d4, d5, d6 water tanks constants
Fi fault mode i for the water tanks
fi fault signal i for the water tanks
M1, M2, M3, A1, A2 polybox components

MISCELLANEOUS
R set of real numbers
N set of natural numbers
f function
n, k, K integers
a real number
t∗ time
| logical OR
& logical AND
¬,∼ logical NOT
⊕,∧ logical XOR

1

Chapter 1

Introduction

In contemporary engineering and industrial domains, the ability to promptly and
accurately diagnose faults (i.e. detecting and identifying the root cause of a misbe-
haviour) in complex systems is paramount for ensuring operational efficiency, safety,
and cost-effectiveness. The advancement of technology has ushered in an era where
traditional diagnostic methods (i.e. relying on the knowledge of an analytical model
of the system) are being complemented and, in some cases, supplanted by powerful
machine learning techniques (i.e. using data measured on the system). This the-
sis goal is to combine these two domains, aiming to capitalize on their respective
strengths while mitigating their inherent limitations.

1.1 Scientific Goals
Diagnosis methods are often categorized as either model-based or data-driven.

Model-based diagnosis uses a model of the system, most of the time designed from
physical laws ruling the behavior of its components, to estimate how that system
should behave. The estimated behavior is then compared with the actual behavior of
the system. Such a model is not always available, in particular for complex systems
or systems protected by business secrets.

Data-driven diagnosis methods, often based on machine learning, stand on algo-
rithms able to diagnose the system without formalized knowledge about it. These
algorithms are used on data recorded from the system — usually with sensors. How-
ever, data-driven methods require large amounts of data and often lack explainability
as to why a fault occured.

The scientific goal of this thesis is to design one or more diagnosis methods that
mix model-based and data-based approaches. Data is often easy to obtain (even
more nominal data). Model-based algorithms give explainability, but they require a
precise physical, analytical model of the system. They often allow to take advantage
of expert knowledge of the system in order to improve the accuracy of diagnoses.
The goal is to design a method that relies on data, but that gives explainability in
order to correct faults. Intrinsically mixing model-based and data-based methods
should allow to obtain explainability and enhance data-based diagnosis with expert
knowledge. However, it is important to find a method that does not combine the
limitations of each approach, but rather palliates them.

Overall, this means that we target a data-driven diagnosis method that:

• learns system information from the data;

• uses meta-knowledge (i.e. knowledge about the way the method works) from
model-based methods;

• allows for expert knowledge to be exploited to enhance diagnosis;

2 Chapter 1. Introduction

• is explicable (i.e. allows to identify what causes a fault to occur in order to be
able to correct it).

1.2 Industrial Context
Industrial applications are driven by the imperative to enhance operational efficiency,
reliability, and safety of operational systems. In many fields such as aerospace, auto-
motive, and others, the quality of the products manufactured and utilized must meet
very high standards. Faults have to be extremely scarce in order to meet very strict
safety requirements.
Many standards govern this quality, such as the AS/EN9100 series standards, which
draw inspiration from the ISO 9001 Quality Management standard. Thus, to comply
with the numerous standards in these domains, manufacturers must, among other
things, implement a system for regularly monitoring and controlling the quality of
their parts and systems. The repercussions of non-conformities can be numerous and
more or less severe, ranging from a decrease in the brand image for the company
responsible for the defect, to technical issues that can lead to various accidents.

Nowadays, systems become more and more complex. For instance, they can be
large, heterogeneous, uncertain, hybrid, dynamic and non-linear. Examples surround
us everyday: 3D printers, autonomous cars, aircraft subsystems, smartphones, com-
puters and all their subsystems, etc... This complexity, combined with business se-
crets, leads to the study of not fully comprehended systems. For that reason, there is
a need for diagnosis tools that fit as many system types as possible and in particular
large non linear dynamic systems for which no full physical model is available, only
some partial expert knowledge. The integration of machine learning and model-based
diagnosis holds great promise for industrial applications because of the ability to take
advantage of expert knowledge accumulated along the operational history of the sys-
tem but also of the data that can be measured on the system and exploited with
machine learning.

A recent transformative shift in manufacturing paradigms can be observed with
the widespread use of 3D printing. This rise is propelled by technological advance-
ments, offering unparalleled design freedom and rapid prototyping capabilities. 3D
printing ability to customize and personalize products, coupled with supply chain
resilience and sustainability benefits, has made it a transformative force across vari-
ous sectors. However, those tremendous advancements hide some harsh reality: 3D
printing is by no means reliable. Defects1 systematically appear on parts, no matter
the technology, be it additive manufacturing, particle fusion or stereolithography. No
technique allows for a hundred percent success rate during printing. For small-scale
3D printers using plastic filament, the impact might be minimal, wasting only a small
amount of time and plastic. However, for metal fusion printers, a single day of print
can cost millions of euros. Hence the need for a diagnosis method able to correctly
detect if a defect occurs during the printing process, or better, predict whether a
defect will appear during printing in the future.

This thesis focuses on diagnosis of technological systems and it is largely interested
in experiments performed on a 3D printer as proposed by our industrial partner.
For the aforementioned reasons, the eventual goal, in the context of 3D printing, is
prognosis. Exploring early diagnosis possibilities is a step in that direction.

1The term ’defect’ is used to indicate a problem with the printed part, while ’fault’ is reserved for
problems related to the systems or processes.

1.3. Manuscript Organization 3

1.3 Manuscript Organization
Contrary to what is done traditionally, in this manuscript, we took the decision to
spread out the state of the art in every chapter. This makes for more self-sufficient
chapters, that start with background concept and notations along with the associated
state of the art, followed by the description of methods using these concepts, again
followed by the application of these methods on use cases. Then, each chapter contains
conclusions and perspectives about the presented works.

Chapter 2 on page 7 goal is to solely use data-driven techniques for diagnosis in
order to study the drawbacks and advantages of such methods, and also to have a
reference to compare with for future studies. It starts by introducing machine learning
and a few algorithms and then presents a state of the art of 3D printing diagnosis
methods. Finally, it introduces the 3D printer use case and displays the results of
machine learning algorithms applied to this use case.

Chapter 3 on page 29 introduces the concept of structural analysis and gives a
state of the art of methods combining machine learning with model-based diagnosis.
Next, it illustrates such a method on the water tanks use case. The aim of this chapter
is to look at what has already been done in the domain of combined data-driven and
model-based diagnosis and to propose an enhanced version of what already exists.
Then, by reflecting on this experiment, the goal is to develop a novel data-driven
diagnosis method that relies on meta-knowledge from model-based.

Chapter 4 on page 45 presents DT4X, the model-based inspired data-driven di-
agnosis algorithm we developed as an answer to both the industrial and scientific
goals. The background required for DT4X is first introduced, then the principle of
the algorithm is explained and some properties of the algorithm are studied.

Chapter 5 on page 69 illustrates the use of DT4X to diagnose four different types
of systems, including the water tanks and the 3D printer. A special emphasis is put on
the application of DT4X to logic circuits because it allows to find interesting logical
relations, which, as far as we know, have never been identified before.

Chapter 6 on page 91 presents PI-DT4X, an alternative to DT4X that uses the
structural model of the studied system in order to orient the training. The goal is
to explore whether it is possible to drastically improve the quality of the explanation
gathered from DT4X by feeding more knowledge about the studied system. PI-DT4X
is then tested on two systems.

Finally, Chapter 7 on page 109 concludes the manuscript by giving a short sum-
mary of the research, recapping what has been answered w.r.t the initial problem and
providing some global perspectives for future works.

1.4 Useful Concepts and Notations
In most sections, methods are presented in a generic scenario, without any specific
system in mind. Here, notations and notions are defined for the whole manuscript, for
coherence sake. Please, refer to this section when doubting the meaning of a symbol
(along with the list of symbols at the beginning of the manuscript).

1.4.1 The System

Definition 1 (System). A system Σ is a set of interconnected or interdependent
components working together to achieve a common goal or function.

4 Chapter 1. Introduction

Definition 2 (Non-observable Variables). Non-observable variables, or hidden vari-
ables, or internal states, are physical quantities characterizing the system that are not
measured by the instrumentation in place on the system.

Definition 3 (Observable Variables). Observables variables, or measurable variables,
are physical quantities characterizing the system that are measured by the instrumen-
tation in place on the system.

We consider a system Σ. This system is composed of nz non-observable variables
and nx observable variables. The vector of non-observable variables is denoted z =
(z1, . . . , znz) ∈ Rnz and the vector of observable variables is denoted x = (x1, . . . , xnx)
∈ Rnx 2.

Definition 4 (Fault). In the context of diagnosis, a fault refers to an abnormality,
defect, or malfunction within the system that leads to its improper or sub-optimal
functioning. Faults can manifest in various ways, such as errors in operation, devia-
tions from expected behavior, or failures to meet performance requirements.

Definition 5 (State of a System). The state of a system refers to the condition
or configuration of a system at a particular moment in time. It represents the set
of values or parameters that fully describe the system behavior and characteristics at
that specific instant. A state can be nominal if the system is behaving as it is supposed
to according to its purpose. Otherwise, the state of the system is said to be faulty. A
system cannot be in two different states at the same time.

Σ is subject to certain faults. We consider nf ∈ N different faults. Thus, Σ can
either be in a nominal state or in one of the faulty states. The set of states is denoted
S = {nominal, f1, . . . , fnf }3. The vector of faults is denoted f = (f1, . . . , fnf).

Definition 6 (Ambiguous State of a System). A system is said to be in an ambiguous
state when its state is not exactly known. An ambiguous state is a logical statement
expressing a disjunction of states.

For instance, if Σ is diagnosed as being either subject to f1 or f2 it is said to be
in an ambiguous state. On the contrary, if Σ is said to be subject to f1, its state is
not ambiguous.

The system model Σ(z, x, f) is a set of differential or algebraic equations ek(z, x, f),
k ∈ [1, ne] with ne the number of equations.

1.4.2 Diagnosis

In this manuscript, diagnosis always refers to fault diagnosis. It is not to be mixed-up
with medical diagnosis, even though the concepts are very similar.

Definition 7 (Fault Diagnosis). Fault diagnosis is the process of detecting the pres-
ence of faults within a system or process, determining their root cause or causes, and
providing information about the nature and severity of the faults.

Diagnosis often consists in different steps: detection, isolation and identification
of the fault.

2This goes against the traditional diagnosis notations that consist in having z represent the ob-
servable variables and x the hidden variables. This choice has been made in order to coincide with
traditional machine learning notations that use x as the sample.

3fi designates a faulty state. It can be multiple faults happening at the same time, it does not
have to only be one fault.

1.4. Useful Concepts and Notations 5

Definition 8 (Detection). Detection is the process of identifying the presence of
abnormalities, deviations, or malfunctions within a system or process. It involves
detecting when the system’s behavior deviates from its expected or normal operating
conditions. The primary goal of fault detection is to recognize the existence of faults
as soon as possible, allowing for timely intervention to prevent or mitigate potential
adverse effects.

Definition 9 (Detectability). A fault is said to be detectable when the set of sensors
in place on the system allow for its detection.

Definition 10 (Isolation). Isolation is the process of identifying and pinpointing the
specific component, subsystem, or area within a system where a fault or malfunction
has occurred. It involves narrowing down the possible sources of the fault to isolate
the root cause accurately.

Definition 11 (Isolability). A specific fault (i.e. a certain component malfunction)
is said to be isolable when the set of sensors in place on the system allow to identify
that this specific fault is present when a detection of it occurs. This means that when
this fault occur, it can not be confused with another fault. When two faults are said
to be isolable, it means that these two faults make the system behave in different
ways, and thus can not be confused with one another. It is also often referred to as
diagnosability.

Definition 12 (Full Isolability). A fully isolable system is a system where all faults
are isolable (w.r.t. the set of sensors). It is also often referred to as full diagnosability.

Definition 13 (Identification). Identification is the process of identifying the specific
cause or source of the fault.

Definition 14 (Diagnosability of a System). The diagnosability of a system is whether
the possible faults that can occur in this system are diagnosable or not.

Definition 15 (Maximum Diagnosability of a System). The maximum diagnosability
of a system is reached when all isolable faults are isolated.

7

Chapter 2

Machine Learning Based
Diagnosis

In order to design a diagnosis method using a data-driven approach, it is important
to understand the processes of such an approach. In particular, machine learning is
a widespread source of data-driven approaches. This chapter aims at giving some
background on machine learning by, notably, giving examples of the most classic
machine learning algorithms and their principle. Then, it provides a state of the art
of 3D printing diagnosis methods and, lastly, it applies machine learning to a specific
3D printer whose diagnosis is part of the industrial goal of this thesis. The objective
is firstly to highlight the drawbacks of using machine learning exclusively, and then
to study how it can be improved by using model-based approaches in conjunction
with it. A second objective is to obtain results that can serve as benchmarks for
comparison with the other methods developed in this thesis.

2.1 Background
First, we define the concepts and notations that surround a dataset. A dataset is
a key part of machine learning. Then, the core principles of machine learning are
described and a few classic algorithms are presented. These are used throughout the
manuscript.

2.1.1 Dataset

Definition 16 (Data-based Algorithm). A data-based (or data-driven) algorithm is
a type of algorithm that uses data as its primary input or relies heavily on data-driven
techniques to make decisions, solve problems, or perform tasks. These algorithms typ-
ically leverage large datasets to learn patterns, extract insights, or make predictions.

Definition 17 (Dataset). A dataset D is a structured collection of data that is or-
ganized and stored in a specific format for analysis, processing, or presentation. It
typically consists of individual data points or records, each containing one or more
attributes or variables.

Definition 18 (Sample). In the context of data-driven algorithms, a sample x refers
to a single instance or observation within the dataset D. It is also called a data point
or an observation.

In this manuscript, many data-based algorithms are described and used. In order
to train those algorithms, a dataset D is required. The size of D is nD. If D is a
labeled dataset, it is made of nD pairs. A pair is made of a sample x and a label l. x
can take many forms, such as an image, a text, a matrix, a vector, a real number, etc.

8 Chapter 2. Machine Learning Based Diagnosis

In our case, unless specified, it represents the values of the system observable variables
x = (x1, . . . , xnx) as defined in Section 1.4.1 on page 3 at some time point t∗. A sample
is hence a vector of values x = x(t∗) = (x1(t∗), . . . , xnx(t

∗)) ∈ Rnx , nx ∈N. The set
of possible classes is denoted C. The label l ∈ C. Also, in this manuscript, unless
otherwise specified, the set of classes is the set of possible system states: C = S. In the
case where D is not labeled, it simply contains the nD samples, without corresponding
labels.

In this manuscript, the term sample corresponds to a data point, an observation
of the system at a given time (described by its variables but also sometimes the
derivatives which give an indication of the evolution of the system over time).

2.1.2 Machine Learning

Machine learning (Alpaydin, 2021) is a subfield of artificial intelligence that focuses
on the development of algorithms and computational models capable of learning from
data and making predictions or decisions based on that learning.

In this manuscript, we only consider supervised learning. This means that data
is labeled, each sample x has a corresponding label l that is used during the training
step. We limit our scope to systems for which a labeled dataset can be built from the
system in operation.

2.1.2.1 General Principles

Machine learning involves the following key steps, in order:

1. Data Collection. The first step in machine learning is to gather relevant data
that contains information about the problem to solve. This data can come from
various sources such as sensors or databases.

2. Data Preprocessing (García et al., 2016). Once the data is collected, it often
needs to be cleaned and preprocessed to remove noise, handle missing values,
and normalize or scale the features. This step ensures that the data is in a
suitable format for training machine learning models.

3. Feature Engineering (Zheng and Casari, 2018). Feature engineering involves
selecting, transforming, or creating new features from the raw data to improve
the performance of machine learning models. This may include extracting useful
information from the data, combining features, or reducing dimensionality.

4. Algorithm Selection. An appropriate machine learning algorithm that is
well-suited to the problem at hand has to be selected. The choice depends on
factors such as the type of problem (e.g., classification, regression, clustering),
the nature of the data, and the desired performance metrics.

5. Training. In supervised learning, the selected algorithm is trained on a (of-
ten random) subset of the labeled dataset, where each data point is associated
with a target label or outcome. During training, a model is learned from the
input-output pairs in the training data and the algorithm adjusts its param-
eters to minimize a loss function, which measures the difference between the
predicted and actual outputs. Often, during traing, a K-fold cross validation
(Refaeilzadeh, Tang, and H. Liu, 2009) process is used (K ∈N). It consists in
separating the training set in K subsets that are used interspersed as validation
sets in order to check that what is learned by the algorithm can be generalized.
The principle is illustrated in Figure 2.1 on the facing page.

2.1. Background 9

Figure 2.1: Example of a 5-Folds Cross Validation

6. Testing. After training, the performance of the model is evaluated on a sep-
arate testing dataset to assess how well it generalizes to unseen data. This
evaluation helps to identify any issues such as overfitting (where the model per-
forms well on the training data but poorly on new data) or underfitting (where
the model fails to capture the underlying patterns in the data).

7. Hyperparameter Tuning (L. Yang and Shami, 2020). Machine learning al-
gorithms often have hyperparameters that control their behavior, such as the
learning rate, regularization strength, or the number of layers in a neural net-
work. Hyperparameter tuning involves selecting the optimal values for these
hyperparameters to improve the performance of the model.

Some algorithms require specific additional steps. Feature engineering is not
mandatory and it depends on the use case.

Definition 19 (Training Dataset). A training dataset is a portion of data that is
used to train a machine learning model during the training step. It consists of input
samples x along with their corresponding target labels l. It usually represents between
70% and 90% of the dataset.

Definition 20 (Testing Dataset). A testing dataset is a portion of data that is used
to test a machine learning model during the testing step. It consists of input samples
x along with their corresponding target labels l. It usually represents between 10%
and 30% of the dataset.

Separating the dataset into a training and a testing set is usually done during the
preprocessing step.

The purpose of machine learning varies depending on the use case. The most
common applications are classification (Kotsiantis, Zaharakis, Pintelas, et al., 2007)
and regression (Rong and Bao-Wen, 2018) tasks.

Definition 21 (Classification). Classification refers to the process of predicting a
categorical label or class l for a given input data point x. The goal is to assign each
sample x to one of a predefined set of classes or categories based on its features or
attributes. A classification algorithm can be seen as a function f that maps the sample
space (often Rn, n ∈N) to the class space (C). f(x) = l.

Definition 22 (Regression). Regression refers to the process of predicting a numerical
value a ∈ R for a given input data point x using a function f . Unlike classification,
which predicts categorical labels or classes, regression models aim to estimate a quan-
tity that can vary over a continuous range. A regression algorithm can be seen as a
function f that maps the sample space (often Rn, n ∈N) to a continuous space (R).
f(x) = a.

10 Chapter 2. Machine Learning Based Diagnosis

2.1.2.2 Classic machine learning algorithms

Some machine learning algorithms are mentioned throughout the manuscript. Most
are just used as a comparison to evaluate performance of the proposed algorithms.
They mainly consist in classification rather than regression. Others, such as decision
trees symbolic classification and symbolic regression, are detailed in depth in further
sections where they are used. Here is a quick overview of the different algorithms that
gives a basic understanding of how they work and what is their purpose. Some addi-
tional information is given in Table 2.1 on page 12. Singh, Thakur, and Aakanksha
Sharma, 2016 gives a detailed overview of many machine learning algorithms includ-
ing those presented here.

Logistic Regression (LR) Logistic regression (Kleinbaum et al., 2002) is a sta-
tistical method used for binary classification tasks, where the goal is to predict the
probability that a given input data point belongs to one of two classes or categories.
Despite its name, logistic regression is a classification algorithm rather than a re-
gression algorithm, as it predicts discrete class labels rather than continuous values.
Logistic regression models assume a linear decision boundary separating the classes
in the feature space. This decision boundary divides the feature space into regions
where one class is more likely than the other. Being a linear model, it is limited in its
performances because of its low number of parameters compared to other approaches.

Linear Discriminant Analysis (LDA) This statistical method (Izenman, 2013)
finds a linear combination of features that characterizes or separates two or more
classes in windows. It is the supervised equivalent of a principal component analysis
(Greenacre et al., 2022). It projects the dataset along linear discriminant axes and
represents visually one-vs-all axes for all classes. It gives a quick, visual and efficient
way to check if the data allows to separate classes or not.

Decision Trees (DT) A decision tree (Kotsiantis, 2013) is a predictive model-
ing technique used in machine learning and data mining for both classification and
regression tasks. It represents a flowchart-like structure where each internal node
represents a decision based on the value of a feature attribute, each branch repre-
sents the outcome of the decision, and each leaf node represents the final decision or
prediction. Decision trees are precisely presented in Section 4.1.3 on page 48.

Random Forest (RF) A random forest (Rigatti, 2017) is an ensemble learning
technique (i.e. it merges predictions from multiple models) for both classification and
regression tasks. It is composed of multiple individual decision trees, each trained on
a random subset of the training data and using a random subset of the input features.
The process of combining multiple decision trees in a random forest reduces variance
and improves predictive performance compared to a single decision tree. This is
because the individual trees may have different biases and errors, but when combined,
they tend to cancel out each other’s shortcomings. The predictions of individual
decision trees in the random forest are combined to make the final prediction. For
classification tasks, the mode (most frequent class) of the predictions is typically used,
while for regression tasks, the average of the predictions is taken.

K-Nearest Neighbors (KNN) K-Nearest Neighbors (Peterson, 2009) is an
algorithm used for both classification and regression tasks. It is a non-parametric
(i.e. the model structure is not given a priori but learned from data) and instance-
based learning method, meaning it makes predictions based on the similarity of input
data points to known examples in the training dataset. KNN makes predictions by
identifying the K (K ∈ N) nearest neighbors of a given query data point in the
feature space. The class label (in classification) or the numerical value (in regression)

2.2. State of the Art of 3D Printing Diagnosis Methods 11

of the query point is then determined by the majority class or the average value,
respectively, of its nearest neighbors.

Multi-Layer Perceptron (MLP) A multilayer perceptron is a type of feedfor-
ward artificial neural network (Yegnanarayana, 2009) consisting of multiple layers of
nodes (neurons), each layer fully connected to the next layer. MLPs are widely used
for supervised learning tasks such as classification, regression, and pattern recognition
(Riedmiller and Lernen, 2014). The input layer of an MLP consists of neurons rep-
resenting the input features of the dataset. Each neuron corresponds to one feature,
and the values of these neurons are passed to the neurons in the next layer. Between
the input and output layers, MLPs can have one or more hidden layers. Each hidden
layer consists of multiple neurons that perform computations on the input data using
weighted connections and activation functions. The output layer of an MLP produces
the final predictions or outputs of the model. The number of neurons in the output
layer depends on the task at hand; for example, in binary classification tasks, there
may be one neuron representing the probability of belonging to one class, while in
multi-class classification tasks, there may be multiple neurons representing the proba-
bilities of belonging to each class. The connections between neurons in adjacent layers
are characterized by weights, which represent the strength of the connection. Each
neuron also has an associated bias term, which allows the model to learn nonlinear
relationships in the data. During training, the weights and biases of the MLP are
adjusted through the process of backpropagation to minimize a loss function, such as
mean squared error or cross-entropy loss (Raul Rojas and Raúl Rojas, 1996).

Support Vector Machine (SVM) A support vector machine (Steinwart and
Christmann, 2008) is a supervised algorithm used for classification and regression
tasks. SVM aims to find the hyperplane that best separates the data points of different
classes while maximizing the margin, which is the distance between the hyperplane
and the closest data points (support vectors). By maximizing the margin, SVM seeks
to achieve better generalization performance and robustness to noisy data.

Naive Bayes (NB) Naive Bayes (Webb, Keogh, and Miikkulainen, 2010) is a
probabilistic classification algorithm based on Bayes’ theorem (Joyce, 2003), with
a naive assumption of feature independence. This assumption is that the features
are conditionally independent given the class label. This means that the presence or
absence of a particular feature is assumed to be unrelated to the presence or absence of
any other feature, given the class label. To make predictions, Naive Bayes calculates
the posterior probability of each class given the observed input features using Bayes’
theorem. The class with the highest posterior probability is then predicted as the
output class label.

2.2 State of the Art of 3D Printing Diagnosis Methods
The industrial goal of this thesis is, in particular, to develop a diagnosis method to
improve the quality of 3D printed parts. In the literature, many aspects of this prob-
lem are explored, from performing predictive maintenance on the printer to looking
at each layer of the part and ensuring its good quality. We have identified a few recent
articles that tackle the problem with various angles and solutions in order to get a
somewhat comprehensive look at the existing methods. As the field is ever growing,
we have added new papers that got published while the thesis was on-going. They
are recapped in Table 2.2 on the next page.

12 Chapter 2. Machine Learning Based Diagnosis

Explicable Scalable Further Documentation
LR No Yes LR

LDA Partly Yes LDA
DT Partly Yes DT
RF No Yes RF

KNN Partly Yes KNN
MLP No Yes MLP
SVM No Hardly SVM
NB No Yes NB

Table 2.1: Additional Information about the Classic Machine Learn-
ing Algorithms. The further documentation includes detailed expla-

nations about the influence of hyper-parameters.

Paper Data-
based

Real-
time

Correction Image-
based

Antici-
pation

Baumann and
Roller, 2016

× ×

Brion and Pattinson,
2022

× × control
loop

×

Delli and Chang,
2018

× Stops when
fault

appears

×

He et al., 2018 ×
Z. Jin, Z. Zhang,

and Gu, 2019
× Only

under/over
extrusion

×

Loja et al., 2020 ×
Uhlmann et al., 2018 ×

Yen and Chuang,
2022

× ×

S. Zhang et al., 2021 ×

Table 2.2: Details on Some Fault Diagnosis Methods for 3D Printing

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/tree.html#decision-trees
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/svm.html#support-vector-machines
https://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes

2.2. State of the Art of 3D Printing Diagnosis Methods 13

Paper Algorithm Preprocessing Accuracy
Brion and

Pattinson, 2022
Multi-head neural

network
Data augmentation,

image resizing
96.6%

Delli and
Chang, 2018

SVM kernel trick Divide, resize and
recolor images

He et al., 2018 least square loss
SVM

94.44%

Z. Jin, Z. Zhang,
and Gu, 2019

CNN (Resnet) Concatenation of
images

Loja et al., 2020 GAN Non linear mapping
to preclassification

space
Uhlmann et al.,

2018
Clustering with

k-means
Normalization

Yen and
Chuang, 2022

Neural Network with
only 1 hidden layer

83.5%

S. Zhang et al.,
2021

Reservoir computing feature extraction
using aggregation

function

98%

Table 2.3: Insight Into Algorithms Used for Fault Diagnosis of 3D
Printing. Empty cells correspond to unavailable information.

Most methods rely on data. The only paper (Baumann and Roller, 2016) not
using a data-driven technique is using image processing. That is not even a model-
based method either and it can only be used to detect faults, not correct them. None
of the methods try to anticipate faults. Some try to exploit images, with Baumann
and Roller, 2016 making use of image processing to detect a fault in real time. The
others analyze the video or the images post-printing and try to determine whether a
fault occurred. Correction is considered when real-time detection is possible or when
detection is made by pausing the print (Delli and Chang, 2018, Z. Jin, Z. Zhang,
and Gu, 2019). The only work that applies a full real-time correction is Brion and
Pattinson, 2022. It uses detection values to compute a correction to apply to the main
printing parameters using a multi-head neural network that uses images automatically
labelled by deviation from optimal printing parameters. The correction is then sent
through gcode to the printer.

As most use data-driven techniques, it is insightful to look at which algorithms are
used. A quick description of the algorithms is given in Table 2.3. The given accuracy
has to be taken with a grain of salt because it heavily depends on which fault types
the papers try to identify, the quality of data and the evaluation metric.

For further information on machine learning applied to 3D printing diagnosis, we
identified three interesting surveys of this domain: Wang et al., 2020, Ademujimi,
Brundage, and Prabhu, 2017 and Goh, Sing, and Yeong, 2021. They mainly focus on
fault detection from various machine learning and deep learning methods. Goh, Sing,
and Yeong, 2021 goes as far as to study the impact of designing the part, tuning the
material and even wonders about cybersecurity of a 3D printing process. One of the
main takeaways is that machine learning rarely gives an explanation of why a fault
is occurring and that it hinders the correction possibilities.

To summarize, almost no algorithm is able to reliably and automatically predict
or detect faults in real-time. The only one that performs real-time detection and

14 Chapter 2. Machine Learning Based Diagnosis

Figure 2.2: Summary of the Study

correction with a very high accuracy is Brion and Pattinson, 2022. It solely relies
on data-based methods, allows for some expert knowledge to be used to enhanced
diagnosis and only gives a partial explanation as to why a fault occurs or learn
system information (which are the criteria we set in Section 1.1 on page 1). In this
manuscript, our goal is to take advantage of model-based methods to incorporate
some knowledge about the system and outperform data-driven only methods. But
first, let us study how traditional machine learning methods perform on our 3D printer
use case.

2.3 Machine Learning Applied to the 3D Printer
The goal of this section is to study how data-driven approaches perform on a complex
dynamical system such as a 3D printer. In particular, it is interesting to study the
drawbacks of such methods in order to then develop a novel approach that uses model-
based theory in order to palliate those drawbacks. It can also serve as a benchmark
for then comparing with a hybrid diagnosis method.

Specifically, on the considered 3D printer (see Section 2.3.1), the goal is to diagnose
defects on the printed parts, not faults in the printer. A fault designates a defect
on the printed part, in the context of this system. Figure 2.2 recapitulates how
printing works, data is acquired and a diagnosis is established. The following sections
detail each step of this figure, including the printing process and how a diagnosis is
established.

2.3.1 System Description

The studied system is a physical 3D printer present at Atos. As such, we can use it
to experiment, modify the sensing equipment and print a dataset whenever needed.
It is a microdelta rework printer developed by eMotion Tech. A picture of the printer
is given in Figure 2.3 on the facing page. This printer uses plastic additive manufac-
turing, meaning it successively deposes thin layers of melted Poly Lactic Acid (PLA)
at the right coordinates to build the requested part. PLA is a kind of bioplastic

https://www.emotion-tech.com/

2.3. Machine Learning Applied to the 3D Printer 15

Figure 2.3: 3D Printer

Figure 2.4: Print Process

(plastic made from renewable, organic sources) that is used in the most common type
of printers, see Garlotta, 2001. Its melting temperature is between 170°C and 180°C.

As illustrated in Figure 2.4, in order to print a part, a 3D model of this part has
to be designed. Then, this model is converted into a Standard Triangle Language
file (STL file for short, originally STereoLithography, see Bártolo, 2011). This file
describes only the surface geometry without any representation of color, texture,
scale or units. This file is then fed to a slicer, a software parameterized with specific
printer characteristics, that outputs a file understandable by the 3D printer. In our
case, this file is a gcode file written in the language Marlin (Krüger et al., 2018).
This file is then given to the printer that prints the part. This is all summarized
in Figure 2.4. The web interface Octoprint is used to send the gcode to the printer
through an ssh (secure shell protocol) connection.

The process of slicing is crucial. It is at this stage that most printing parameters
are set, and, based on 3D printing experts’ experience, it is at this stage that most

https://octoprint.org/

16 Chapter 2. Machine Learning Based Diagnosis

Figure 2.5: Critical Faults

common printing faults are generated. For instance, the printer nozzle temperature
and printing speed are set during slicing. Requiring a nozzle temperature of 220°C
with a speed of 10 mm/s would result in a failed print with overheating of the part
or blob appearances since the heat would melt the PLA faster but the nozzle would
move too slowly in comparison. One of the goals of this study is to be able to detect
such bad parameterization and correct it before it leads to a fault by altering in real-
time the gcode sent to the printer (the Octoprint interface allows to send gcode lines
in real time).

The physical model of the 3D printer is not fully known, meaning that we cannot
use system equations to model the printer behavior. Hence the use of methods based
on data that do not require system knowledge, such as machine learning. This also
means that we do not know precisely how the printing parameters influence the
behavior of the system. Therefore, when deciding those parameter values for building
the dataset, we have to be careful not to be biased by what we intuitively think are
the correct parameters.

2.3.2 3D Printer Fault Types

3D printing having poor performances overall, many people got interested in identi-
fying and classifying possible faults. For this study, it is important to identify the
faults we want to be able to diagnose.

Based on the feedback of experts, eight different types of faults have been selected,
divided in 2 categories:

• Critical faults (see Figure 2.5);

• Severe faults (see Figure 2.6 on the facing page).

When a critical fault occurs, the printed part is expected to be non-functional and so
distorted that it becomes useless to continue the print. However, when a severe fault
occurs, the part remains functional but its aspect integrity is questioned. Obviously,
depending on the aim of the part and the requirements of the part manufacturer,
these categories may vary.

Here is a short description of the possible faults:

• Layer Shifting: a shift in the printing coordinates induces a shift between two
layers of the printed part. This is often caused by the engine not correctly
driving the belt and skipping a step on one of the three belts of the printer,
resulting in the printing coordinates being slightly shifted.

• Not Extruding: the nozzle stops delivering PLA. This mostly occurs when the
spool is empty or when the wire is stuck.

2.3. Machine Learning Applied to the 3D Printer 17

Figure 2.6: Severe Faults

• No Adhesion: the PLA does not stick to the board. This mostly occurs when the
board temperature is too low or too high with respect to the nozzle temperature.

• Warping: an angle of the part in contact with the board gets distorted until it
is not anymore in contact. This mostly happens when the board temperature
is too high.

• Blobs: small blobs appear on the surface of the part. This often occurs when
printing speed is too low, too much PLA gets deposited and creates a surplus.

• Stringing: thin filaments spread from the part. This often occurs at the end of
the print, when the nozzle goes back to its original position. The filaments are
made of leftover PLA that leaks from the nozzle.

• Overheating: the part appears melted. This often occurs when the nozzle tem-
perature is too high, the PLA is almost liquid and does not stay where it should.

• Gaps: gaps appear on the surface of the part. This mainly happens when the
printing speed is too high, the PLA does not have time to escape from the
nozzle.

2.3.3 Measuring Equipment

The goal of this study is to know whether it is possible to predict faults in real-time
during a print with enough accuracy so that the removal of the detected faults would
drastically improve the average quality of 3D printed parts. A specific interest is
shown in the ability to anticipate faults using data from sensors (that record during
printing) and knowledge about the part to be printed in the form of the gcode file.

In order to gather this data, the system is equipped with multiple sensors. Since
we suspect the three factors affecting printing to be initial, environmental and printing
parameters, the inputs of the machine learning models are as follows:

• 3D model of the part to be printed in the shape of gcode;

18 Chapter 2. Machine Learning Based Diagnosis

Figure 2.7: Inertial Measurement Unit

• sensor values of printer parameters recorded during printing;

• sensor values of environmental parameters recorded during printing.

We equipped the printer with sensors according to the above items. The printer
also has integrated sensors. All the signals retrieved (see Table 2.4 on page 20 for a
summary) are:

• From the printer integrated sensors:

– Nozzle Temperature (actual and target);

– Bed temperature (actual and target);

– Layer information (number, time, mesh, etc.);

– General printing settings of maximum speeds, maximum accelerations, di-
mension boundaries, printing time, nozzle travel lengths, etc.;

• From an inertial measurement unit (IMU) placed close to the nozzle (Fig-
ure 2.7):

– Nozzle acceleration, angular speed and exterior temperature;

• From an accelerometer placed close to the board (Figure 2.8 on the next page):

– Board acceleration;

• From a weight placed below the wire spool (Figure 2.9 on the facing page):

– Wire spool weight, equivalent to the wire tension in our case.

The pin mapping is given in Appendix A on page 113. Some other instrumentation
was set up, but not used in the dataset. This additional instrumentation is also
described in Appendix A on page 113.

All the sensors are linked together through a local network. It makes the trigger
of events to synchronize the signals easier and allows us to monitor the process using
a laptop connected to the network. The whole setup is presented in Figure 2.10 on
page 20. All these sensors allow to collect data.

2.3. Machine Learning Applied to the 3D Printer 19

Figure 2.8: Board Accelerometer

Figure 2.9: Wire Spool Weight

20 Chapter 2. Machine Learning Based Diagnosis

Figure 2.10: Sensor Linkage Through Local Network

Sensor Signal Unit

Printer integrated sensors

Target nozzle temperature °C
Actual nozzle temperature °C
Target board temperature °C
Actual board temperature °C

Layer number

IMU

Nozzle acceleration m · s−2

Nozzle angular speed rad · s−1

Nozzle exterior temperature °C
Nozzle magnetization A ·m−1

Board accelerometer Board acceleration m · s−2

Weight Wire spool weight kg ·m · s−2

Table 2.4: Signals Measured on the 3D Printer

2.3.4 Data Collection

In all machine learning approaches, building a relevant dataset is key. The quality of
data is often more important than any kind of tuning done on the hyper-parameters.
This is because the key information (the signal signatures that precede a fault) that
the algorithm wants to detect needs to be present in the data, otherwise it cannot
be detected. However, in our case, as mentioned previously, we do not fully know
how the system reacts to some parameters or combinations of parameters, and so
we do not know in which signals the fault signatures lie. Thus, we want to get as
many signals as input as possible and with the maximum level of accuracy possible.
Still, computation time can quickly become an issue (especially in real-time contexts).
This is part of the reason why cameras have not been considered (see Appendix A on
page 113), they often require heavy image processing.

All the signals gathered and preprocessed to be fed to the algorithms are recapped
in Table 2.4.

The nozzle magnetization is available in the IMU but is not expected to give
meaningful data.

2.3. Machine Learning Applied to the 3D Printer 21

Figure 2.11: Labeling Tool

Figure 2.12: Geometry Designed to be Able to Generate all 8 Studied
Types of Faults

This data needs to be labeled with the occurring fault in order to train supervised
machine learning algorithms. In order to know which fault occurs during each time
frame, we recorded it during printing using a synchronized chronometer. This makes
8 time-series (one for each type of fault) of zeros (nominal) and ones (faulty) that last
as long as the print lasts. In practice, the timings where faults occurred were written
down during printing and then turned into time-series using a homemade interactive
interface to directly add them to the rest of the dataset. This interactive interface
allows displaying an input signal of choice on a graph, and selecting portions of the
print to declare faults that occurred in said portions by clicking on the appropriate
fault button (see Figure 2.11). Using this tool, it is also possible to declare when the
print starts in order to get rid of the section where the printer is still being initial-
ized (the analysis is done on data of parts being actually printed). An experimental
design was imagined in order to know which parts to print with which parameters
for the dataset. It ensures faults appear with a high enough frequency to get inter-
esting training data without biasing the dataset. The diversity comes from initial
parameters, either slicing parameters or the geometry of the printed part. For the
experimental design, we mainly used one geometry specifically designed to generate
as many different types of faults as possible while keeping a relatively simple shape to
be able to print it in a short time (see Figure 2.12). It takes between 10 and 40 min-
utes to print this part (depending on printing speed). It was 25 minutes for standard
parameters. However, we soon realized that more diversity in the geometrical shape
was required and decided to use five more shapes. A total of 54 parts were printed

22 Chapter 2. Machine Learning Based Diagnosis

Figure 2.13: Experimental Design and the Fault Observed During
each Print

using 6 different shapes and various printing parameters. Based on experts’ feedback,
three parameters are known to impact more significantly the quality of parts than
others:

• nozzle temperature

• bed temperature

• printing speed

To make sure to cover their possible field of values, we took the slicer most extreme
possible values. We used the slicer Cura (Šljivic et al., 2019). The first 27 parts of
the dataset are printed using these extreme parameters and also the default values
(default in the slicer). The experimental design is represented on Figure 2.13 where -1
and 1 respectively represent the lower and upper bounds for these input parameters,
0 their default value, on the left hand side, whereas 0 means not present and 1 means
present for the faults on the right hand side. In the experimental design, the faults
Layer Shifting and Not Extruding were not considered because of their very low and
often random presence. Also, the fault No Adhesion (or Not Sticking to Bed) causes
the print to stop, so no other later fault could be observed on these prints. The
other parts for the dataset were printed with other various shapes and trying to
generate faults that appeared less in the experimental design. However, some fault
such as Layer Shifting only appear occasionally (they do not remain over time) so
they inherently end up with less samples.

2.3.5 Data Preprocessing

Preprocessing is a crucial part of machine learning because it allows to extract mean-
ing from the data and make it more obvious for the algorithms to learn it.

First of all, all signals are synchronized on the highest frequency signal (the board
accelerometer frequency). Its period is 3e−3s. Empty values are filled using linear
interpolation (Lepot, Aubin, and Clemens, 2017).

https://ultimaker.com/software/ultimaker-cura/

2.3. Machine Learning Applied to the 3D Printer 23

Once the signals and labels are gathered in the same table, we extract sliding
windows of a fixed amount of seconds from the time-series. For this experiment, we
chose windows of 10 seconds which corresponds to 3330 time-steps, with a stride half
the size of the window, meaning two successive windows share half of their data.

For each print, we end up with a 3-dimensional table with dimensions:

(nwindows, 3330, 39)

where nwindows = P T
10 with PT the printing time in seconds and 39 is 38 observable

variables and 1 label.
The same process with windows of 1s and windows of 50s was implemented.

Multiple sizes are tested because, again, the behavior of the fault signatures is not
accurately known. With a stride of half the window size, a 1s window allows the
algorithm to compute for 0.5s. Less than that would be too much of a constraint
for a machine learning algorithm. Meanwhile, a 50s window should identify most
signatures (once again, according to 3D printing experts). The 10s window is a good
trade-off and ended-up having the best results.

Gathering time-steps in windows allows us to detect patterns on various time
ranges. Indeed we expect the faults to have a small signature in the signal. Still,
we do not have prior knowledge on the size or behavior of this pattern, hence the
different window size trials.

Once the windows are extracted, they must be labeled. It was decided to label
every window as faulty (1) or normal (0) according to each type of fault. Each algo-
rithm gets fed the whole window and is trained to output 0 or 1 for its corresponding
faults. For critical faults, the presence of a faulty time-step in the window (even only
one) results in the window being labeled as faulty. Meanwhile, for severe faults, if
the majority of the time-steps are faulty the window is labeled as faulty for this fault,
otherwise it is nominal.

lCriticalF ault = maxi∈window(li) (2.1)

lSevereF ault =

{
1 if meani∈window(li) ≥ 0.5
0 if meani∈window(li) < 0.5

(2.2)

where l∗ is the label of any window w.r.t. fault "*" and li is the label of the ith

time-step within the same window.
Let us note that this labeling allows detection of faults but not anticipation. To

be able to train the algorithms to predict faults, the label is shifted one window
backwards. It means that a window is labeled with a fault that will take place in the
next window.

2.3.6 Feature Engineering

In order to make data intelligible to algorithms, feature engineering is performed on
that data. The list of features extracted from every window is shown in Table 2.5
on the next page. To enhance algorithm performances and inference time, feature
selection is also performed before training each algorithm using scikit-learn. The
windows, now characterized by the features, are split 80%/20% between a training
set and a testing set. Because algorithm performances can greatly vary according to
the data put in each set, two means of splitting the dataset are used:

• Statistical split: separate the windows between training and testing randomly
and regardless of which print they belong to.

https://scikit-learn.org/stable/

24 Chapter 2. Machine Learning Based Diagnosis

Name Signification
mean Mean value
std Standard deviation
mad Median absolute deviation
max Largest value in array
min Smallest value in array
iqr Interquartile range

maxPeak Largest frequency value
meanFreq Frequency signal weighted average

Table 2.5: Features Engineered in each Window

Figure 2.14: Balancing the Dataset for each Fault Type

• Objective split: separate the prints between training and testing and then
extract the windows. This means that two windows from the same print can
not be in different sets.

Once the splits are done, within each set and for each fault type separately, the
classes are balanced so the algorithms do not get biased. The goal is to use the ma-
chine learning algorithms as binary classifiers. Thus, 8 versions of each algorithm are
trained in order to predict the presence of each fault type. This allows for multi fault
prediction while still using only binary algorithms. However, it is more computation-
ally expensive.

More often than not, there are more nominal than faulty windows so this means
removing some nominal windows. We used a One-versus-Rest (See Tax and Duin,
2002) method to create our balanced datasets. For each fault, this means a dataset
with half the windows containing said fault, and the other half any window that does
not contain the fault (it can be any combination of nominal or the other faults). An
example is presented in Figure 2.14.

2.3.7 Training

Once the data is balanced, it can be used to train algorithms.
In order to obtain relevant results, a 10-Folds Cross Validation is applied on the

training sets to assess how the results of the training generalize to a new set of prints.
For each of the eight fault types, six machine learning algorithms were trained (see

Section 2.1.2 on page 8). These algorithms and the value of their hyper-parameters
are presented in Table 2.6 on the facing page. They are all implemented using the
scikit-learn library for Python. The hyper-parameters descriptions can be found in

2.3. Machine Learning Applied to the 3D Printer 25

Algorithms Hyper ValuesParameters
C ∈]0, 5]

Logistic solver "liblinear"
Regression multiclass "auto"

penalty "l1"
Linear

ncomponents 100Discriminant
Analysis

K-Nearest
nneighbors 3Neighbors

Random Forest nestimators 400
Decision Tree max_depth None
Multi-layer hdn_layer_sizes (64,32,16,)
Perceptron activation "tanh"

Table 2.6: Algorithms and Hyper-parameters

LR LDA RF
Mean STD Mean STD Mean STD

Warping 88.47 1.01 93.3 0.61 99.85 0.12
Layer Shifting 69.85 8.22 67.43 6.54 90.99 4.67

Blobs 72.67 0.66 93.14 0.28 99.79 0.08
No Adhesion 85.40 2.30 96.41 1.35 99.46 0.42

Stringing 73.6 0.31 95.29 0.26 99.94 0.04
Gaps 77.67 0.46 96.53 0.22 99.71 0.09

Overheating 60.6 0.69 91.94 0.28 99.94 0.03
Not Extruding 70.09 2.16 92.31 0.7 99.22 0.35

Table 2.7: Results for the Statistical Split (1/2)

the scikit-learn documentation. The tuning of these hyper-parameters is done by
performing a grid search in commonly used intervals or given by expert knowledge.

2.3.8 Results

The performance of these algorithms on windows of 10 second is shown in Table
2.7 and 2.8 on the following page for the statistical split and in Table 2.9 on the
next page and 2.10 on page 27 for the objective split. with Mean being the average
accuracy on each validation of the cross-validation on the testing set and STD the
standard deviation. The best scores are colored. Green is used when the score is above
90% and yellow otherwise. In the statistical split, the Random Forest algorithm is
outperforming other models by a large margin, and as expected, models trained on
the statistical split are always better than the ones trained on the objective split.

On Figure 2.15 on page 27, a decision tree trained to predict the fault No Adhe-
sion is presented. The first criterion to discriminate between faulty and nominal is
whether the bed temperature is above or below 31°C. Indeed, with a bed (or board)
temperature too low, the printed part does not stick to the bed. Decision trees are not
only one of the best performing algorithms but also present a level of explainability
that no other algorithm tested here do.

https://scikit-learn.org/stable/modules/classes.html

26 Chapter 2. Machine Learning Based Diagnosis

DT MLP KNN
Mean STD Mean STD Mean STD

Warping 98.91 0.36 67.65 11.85 88.4 0.82
Layer Shifting 84.46 4.99 69.44 6.36 72.99 7

Blobs 99.19 0.19 53.75 5.75 80.49 0.54
No Adhesion 98.15 0.50 73.76 8.91 81.21 2.08

Stringing 99.84 0.04 52.81 1.92 84.13 0.33
Gaps 99.67 0.14 53.56 3.11 78.83 0.81

Overheating 99.73 0.06 53.47 1.23 81.28 0.31
Not Extruding 97.59 0.44 65.51 8.74 84.93 0.83

Table 2.8: Results for the Statistical Split (2/2)

LR LDA RF
Mean STD Mean STD Mean STD

Warping 67.24 13.83 51.43 17.67 59.10 13.20
Layer Shifting 50.4 25.57 53.67 24.11 48.03 11.22

Blobs 61.49 8.96 40.82 9.59 49.25 3.48
No Adhesion 55.77 16.98 46.49 5.73 50.49 2.48

Stringing 66.42 16.93 59.60 15.35 65.64 16.59
Gaps 61.10 17.23 59.24 21.14 54.23 5.11

Overheating 47.85 16.59 57.24 15.85 58.7 14.32
Not Extruding 59.29 14.2 65.75 15.78 73.58 22.97

Table 2.9: Results for the Objective Split (1/2)

2.3.9 Takeaways

In this section, we analyze the results and what should be done to improve the method.
Split and Increase the Dataset In Section 2.3.6 on page 23 we mentioned the

two manners to split the dataset. The objective split is relevant to our application.
Indeed, we want the algorithms to be able to predict faults on new prints that do not
already belong to the dataset. The results highlight the advantages of using different
algorithms for different faults. Indeed, there is not a single algorithm having the
best performance on all faults. However, the performances in the objective split are
lackluster because some faults are not represented in the training dataset. Indeed,
some faults appear in only a few prints, meaning that if those prints are all in the
testing set, the algorithms are not trained on them and thus not able to predict
them. On the other hand, if they are all in the training set, the algorithm is made to
predict them correctly but it is not checked by the testing set. As a result, despite the
objective split being more suitable for the goal, its performance is limited by the way
the dataset is built. Thus, we used the statistical split based on the assumption that
the results of this split are representative of a case where all possible print scenarios
are present in the dataset. Indeed, if all possible print scenarios are present in the
training dataset, that means that data in the testing dataset will be similar to the
training data, just as in the statistical split case.

If more parts are printed and included in the dataset, the case where a fault type
is not present in either the training set or the testing set is less likely to happen.
Also, the main consequence of choosing one splitting method over the other is the
different degree of similarity between the training and testing sets. With a large
enough dataset, this difference disappears and the performance should also become

2.3. Machine Learning Applied to the 3D Printer 27

DT MLP KNN
Mean STD Mean STD Mean STD

Warping 57.84 15.70 56.78 11.95 53.35 11.31
Layer Shifting 54.72 20.80 49.41 19.97 47.11 18.36

Blobs 47.15 6.43 52.74 4.21 48.39 7.71
No Adhesion 52.51 6.9 56.92 15.58 53.41 13.36

Stringing 63.38 16.11 42.66 10.36 53.61 9.41
Gaps 56.69 9.83 42.57 9.43 47.75 9.4

Overheating 59.69 14.85 45.45 11.35 46.64 7.79
Not Extruding 68.02 18.70 53.40 15.56 56.38 12.01

Table 2.10: Results for the Objective Split (2/2)

Figure 2.15: Decision Tree Trained to Predict the No Adhesion Fault
(Blue=Faulty, Orange=This fault is not present)

equivalent. This is why using the statistical split gives an idea of how good machine
learning algorithms could be. Still, no proof is established that this is true so the
results from the statistical split should be taken with a grain of salt. In a more
generic sense, improving the dataset should definitely improve the performance. In
particular, the focus has to be on increasing the presence of rare faults and increase
the number of prints they appear in. Also, increasing the diversity of part shapes is
important to increase the representativity of the dataset.

Geometrical Analysis The 3D printing experts all agree on the fact that the
geometrical shape of the part to be printed is a very important factor for faults.
In this experiment, the dataset was built using 6 different shapes for its parts. A
geometrical shape is a combination of many basic shapes (such as pyramids, cylinders
and whatnot). Perhaps, a geometrical study could help prove that all 3D parts are
made of a finite set of elementary shapes and this elementary shapes could be used to
train the fault prediction algorithm, thus increasing its robustness to new, unknown
shapes.

Computer Vision In order to identify anomalies, the printer has been equipped

28 Chapter 2. Machine Learning Based Diagnosis

with two cameras. There is a possibility that these cameras can detect precursors to
specific types of fault. The reason we think it is possible is that it actually happens
on the printer we use at Atos. At the beginning of each print, when the nozzle heats
up before the print, a small blob of PLA forms at the tip of the nozzle. When the
print starts, it can remain embedded in the part and cause a blob on it. Some works
such as Delli and Chang, 2018 are able to detect faults when they occur, in this
case using Support Vector Machines. However, once the fault happens, it is too late.
Henceforth, we have to detect precursors. Since we do not know what form those
precursors could take, it would require either to compare the current printed part
with its 3D model (maybe with a geometrical analysis similar to what the authors in
Petsiuk and Pearce, 2020 did) or to train a computer vision algorithm to predict the
fault using labels from our already built dataset.

Hybrid Methods It may be that, even if the amount of data, its precision, and
its quality are increased, the algorithms are not able to predict the faults. A possible
reason for that would be because the algorithm structures are not able to represent
the real system behavior. This goes back all the way to the fact that the mathematical
equations that govern the behavior of the system are not fully known. This prevents
the use of a model-based method. However, nowadays, many hybrid methods for
diagnosis have been developed to compensate for the lack of knowledge about the
system with data. The first step is to estimate some system equations using machine
learning (for instance with symbolic regression, as explored in the next chapter). An
advantage of most hybrid methods over pure data-based methods is explainability of
the outcome. In order to eventually correct the faults in real-time, explainability is a
must-have.

2.4 Conclusions
This chapter introduces various machine learning concepts that are used throughout
the manuscript. It also presents a state of the art of 3D printing diagnosis methods
that shows that almost all approaches solely rely on data-driven techniques.

Afterwards, machine learning is applied to our 3D printer use case. Applying
data-driven methods to the 3D printer proved challenging for one main reason: it
is very complex to build a relevant dataset. However, some algorithms showed de-
cent performances and, in particular, decision trees managed to identify interesting
patterns in the variables that could be linked to expert knowledge about the system.

Machine learning algorithms learn underlying patterns in the data. Those pattern
rarely have a physical reality in the system. Identifying patterns with a physical sense
would increase performances but also give some knowledge about the studied system.
This leads to the idea of constraining data driven algorithms to learn something
about the system rather than to learn arbitrary relations between the variables. This
is explored in Chapter 4 on page 45. The next chapter focuses on diagnosis methods
that try to combine model-based and data-driven approaches.

29

Chapter 3

Hybrid AI Diagnosis

Considering the results obtained in the previous chapter, we look for methods that
combine model-based and data-based diagnosis. The main idea is to look at struc-
tural diagnosis methods that rely on the structure of the model of the system rather
than on the analytical equations. This allow to work with non-linear, dynamical, high
dimension systems. Thus, this chapter starts by providing background on structural
analysis. It is a powerful model-based diagnosis tool that can be used in conjunction
with data-driven approaches. Then, we give an overview of state-of-the-art diagnosis
methods applied to dynamic systems, focusing on methods that combine data-driven
and model-based approaches. After that, we propose a new method that enhances
such an existing method, resulting in a combined data-driven and model-based diag-
nosis method. The proposed method is tested on the water tanks use case, which is
also introduced. The goal is to study which approaches already exist, where are their
shortcomings and how to build upon what exists in order to overcome the hurdles
that were faced.

3.1 Background - Structural Analysis

3.1.1 Important notions

Before talking about structural analysis, we need to define the notion of residual
generator for a system Σ, as defined in Section 1.4.1 on page 3.

Definition 23 (Residual Generator for Σ). A residual generator for Σ(z, x, f) is
a relation arr(x′, ẋ′, ẍ′, . . .) = r (with x′ a sub-vector of x1 and r a scalar named
residual) such that for all x consistent with Σ(z, x, f), it holds that in steady state
r = 0.

A relation arr(x′, ẋ′, ẍ′, ...) = r as defined in Definition 23 is called an Analytical
Redundancy Relation (ARR). An ARR is sensitive to faults in the system. Indeed,
deviating from a nominal case leads to r ̸= 0. However, not all f ∈ f necessarily
appear in the expression of an ARR.

Definition 24 (Fault Support). The fault support FS of an ARR is defined as the
set of faults that impact this ARR. FS ⊂ C.

Thus, when the residual of an ARR is non-zero, it means that at least one of the
faults of the fault support of this ARR has occurred.

Definition 25 (Signature Matrix). A signature matrix is a matrix where a line i
corresponds to ARRi, a column j corresponds to the fault fj, and a cell cij with a 1

1Reminder that x represents observable variables contrary to what is usually done in diagnosis.

30 Chapter 3. Hybrid AI Diagnosis

Figure 3.1: Example of a Structural Model. Each equation corre-
sponds to a component of the system. The presence of a dot signifies
that the variables belongs to the equations, the absence that is does
not. The left-most section shows non-observable variables, the central
section shows faults and the right-most section shows observable vari-

ables.

means that the fault belongs to the fault support FSi of ARRi.

cij =

{
1 if fj ∈ FSi

0 if fj /∈ FSi
(3.1)

A fault fj is said to be structurally detectable if and only if column j of the
signature matrix contains at least a 1. A fault fj is isolable if and only if ¬∃ j′, j′ = j,
in other words fj is isolable if and only if all other columns are different from j. See
Definitions 9 on page 5 and 11 on page 5.

Structural analysis is a general framework that can be used to analyze large-scale,
complex and dynamic systems described by numerous equations, both linear and non-
linear. It abstracts equations by only keeping their links with variables. Therefore,
it ignores the details of parameter values to base the analysis on the structure of
the system by means of efficient graph-based tools (Cassar and Staroswiecki, 1997)
and thus a major advantage of structural analysis is that it can be used for systems
under uncertainty for which the analytical model is not precisely known (Cassar and
Staroswiecki, 1997; Düştegör et al., 2006).

The structural model M of a system represents this system with its components
and the constraints related to these components. It can be obtained by abstracting
the functional relations of Σ(z, x, f).

The structural model M can be represented by a matrix qualified as the incidence
matrix, which rows are associated to equations and columns to variables. Its elements
take the value 1 when the variable is involved in the equation and 0 otherwise. An
example of such a representation is given in Figure 3.1. For instance, in this illustra-
tion, equation e1 includes the unknown variable x, the fault f1 and the observable
variables A and C.

Equivalently, M can be represented by a bipartite graph G(Σ ∪ x ∪ z, A), where
A is the set of edges linking equations of Σ(z, x, f) and variables of x and z. Hence,
each edge links a variable with an equation it belongs to.

3.1.2 Diagnosis via Structural Redundancy

When used for fault detection and isolation purposes, structural analysis aims at
finding subsets of system equations with redundancy. These can be turned into

3.2. State of the Art 31

diagnosis tests, i.e. ARRs or parity relations, which are designed off-line (Blanke
et al., 2006). Diagnosis tests are then checked against observations on-line.

Redundancy in a system of the form Σ(z, x, f) can be brought to light by the
well-known Dulmage-Mendelsohn (DM) canonical decomposition (Blanke et al., 2006;
Murota, 2009; Dulmage and Mendelsohn, 1958). It partitions the system into three
subsystems:

• Σ+ has more equations than unknown variables and is named the structurally
overdetermined (SO) subsystem,

• Σ0 is the structurally just determined subsystem,

• Σ− has more unknown variables than equations and is named the structurally
underdetermined subsystem.

If a set of equations Σ′ is such that Σ′ = Σ+ and no proper subset of Σ′ is overde-
termined, this set Σ′ is qualified as minimally structurally overdetermined (MSO) (M.
Krysander, Åslund, and E. Frisk, 2010). This means that an MSO set has exactly one
more equation than unknown variables, which is a particular case of SO subsystems.
Nevertheless, only MSO sets impacted by faults are interesting for diagnosis. This is
why the concept of fault support was defined further up.

Definition 26 (Fault-Driven Minimal Structurally Overdetermined Set). A Fault-
Driven Minimal Structurally Overdetermined (FMSO) set is an MSO set whose fault
support is not empty (Pérez et al., 2017).

Definition 27 (Structural Redundancy). The structural redundancy ρ
Σ′ of a set of

equations Σ′ ⊆ Σ is defined as the difference between the number of equations and the
number of unknown variables in Σ′.

If a set of equations is structurally redundant (ρ
Σ′ > 0), it means that residuals

can be generated using the equations in this set. Once the subsets of equations
with redundancy are found using structural analysis, several methods exist to find
the analytical expression of the residual generator (L. Travé-Massuyès, Escobet, and
Olive, 2006; Chow and Willsky, 1984; E. Frisk and M. Nyberg, 2001).

An FMSO set φ identifies a just overdetermined subset of |φ| equations of the
model, among which, one is redundant. This means that all the unknown variables
can be determined using |φ|− 1 equations, and that an ARR can be generated by sub-
stituting in the |φ|th equation. This residual generator can then be used to diagnose
faults in its fault support.

Structural analysis is illustrated on an example in Section 5.1.1.3 on page 70.

3.2 State of the Art
As mentioned in the introduction, diagnosis can be divided into two main subfields,
model-based diagnosis and data-driven diagnosis (Q. Yang, 2004). The main goal of
this thesis is to research how to combine these two fields in order to take advantage
of both and mitigate their limitations.

Next sections define what we call Hybrid AI diagnosis methods, then focus on
diagnosis methods that specifically combine machine learning and structural analysis.

32 Chapter 3. Hybrid AI Diagnosis

Figure 3.2: Principle of Fusion

3.2.1 Hybrid AI Diagnosis Methods

Definition 28 (Hybrid AI Diagnosis Method). We call hybrid AI diagnosis method
a diagnosis method that combines model-based diagnosis and data-driven diagnosis.

In general, hybrid AI diagnosis methods use artificial intelligence based methods
such as machine learning, hence the name.

While establishing a state of the art of hybrid AI diagnosis methods, two main
families have been identified:

• Fusion and similar methods that consist in using both model-based and data-
driven approaches side-by-side and then combining the outputs into one final
prediction.

• Model identification using machine learning in order to then use model-based
methods.

Fusion An example of what fusion can look like in a generic context is given
in Figure 3.2 that comes from Slimani et al., 2018. Slimani et al., 2018 propose
a framework to use any kind of method, no matter the inputs and outputs, using
a standardized representation for data, either collected from the system, or in the
shape of model-based knowledge. Nevertheless, most diagnosis fusion strategies rely
on either fully model-based methods or fully data-driven methods (S. Li et al., 2020,
Duan et al., 2018, Shao et al., 2021)

Model Identification Many works provide system identification (Keesman, 2011,
Ljung, 1995, Åström and Eykhoff, 1971) or model identification (Hollerbach, Khalil,
and Gautier, 2016, Janos Abonyi and János Abonyi, 2003, K. Li, Peng, and Irwin,
2005) strategies. However, only a few use that to then perform diagnosis of the sys-
tem using model-based methods. Subias and Travé-Massuyes, 2006 propose such an
approach that consists in a discretization algorithm that extracts a qualitative model
of the system from data. This model is then used to perform model-based diagnosis.

Other Methods It is worth mentioning that some data-driven methods, while
not hybrid, focus on explanation of a diagnosis (which is part of what we are looking
for in hybrid AI diagnosis methods). For instance, Basak and Krishnapuram, 2005
provide an unsupervised decision tree algorithm that outputs insights as to why a
fault occurs. A lot of works focus on extracting knowledge from black-box models

3.2. State of the Art 33

Figure 3.3: Summary of Methods Combining Structural Analysis
and Machine Learning.

such as neural networks (Rudin, 2019, Zerilli, 2022, Mothilal, Amit Sharma, and Tan,
2020, Gilpin et al., 2018).

On the other hand, some model-based methods take inspiration from machine
learning architectures, for instance Console, Picardi, and Duprè, 2003 propose to
build a temporal decision tree with the model of the system and use it to perform
diagnosis.

Following this state of the art, a subfield of model-based diagnosis methods has
been identified as promising. Indeed, structural analysis relies on structural knowl-
edge about the system and not on physical knowledge. This can be taken advantage
of.

3.2.2 Machine learning and structural analysis

Our paper Goupil, Chanthery, et al., 2022 provides a review of existing methods com-
bining machine learning and structural analysis. Figure 3.3 summarizes the findings.
Three main approaches have been identified:

• Residual Selection: the step of structural analysis that consists in selecting
the right expression for generating a residual is replaced with a machine learning
algorithm. For instance, D. Jung and Sundstrom, 2017 replace this step by a
feature selection algorithm (see Figure 3.4 on the following page).

• Residual Generation: the evaluation of a residual in structural analysis re-
quires the equation of the model. Thus, some works propose to replace this step
with a machine learning algorithm trained with labeled data. For instance, D.
Jung, 2020 replaces residual generation with a grey-box recurrent neural net-
work (Figure 3.5 on the next page). We explore and extend this possibility
further in Section 3.3 on page 35.

• Improvement post structural analysis: three papers try to improve the
output results of structural analysis with deep learning. This does not reduce
the requirements for using the model-based framework but enhances the diag-
nosis accuracy by taking advantage of available data. For instance, Z. Chen et
al., 2021 uses graph convolutional networks to enhance the diagnosis accuracy
of structural analysis (Figure 3.6 on the next page).

From this study, the conclusions are:

34 Chapter 3. Hybrid AI Diagnosis

Figure 3.4: Replacing Residual Selection with a Feature Selection
Algorithm

Figure 3.5: Replacing Residual Generation with a Grey-Box Recur-
rent Neural Network

Figure 3.6: Improving Structural Analysis Results with a Graph
Neural Network

3.3. Variation on an hybrid AI Diagnosis method 35

• These various approaches can be used together to enhance accuracy and reduce
the need for model knowledge.

• Some works (Svärd et al., 2011, for instance) utilize machine learning for residual
computation (outside the scope of structural analysis). This could be put to
good use.

• Here, the focus is on residuals. Could machine learning be used in other areas
of structural analysis ? For instance, automatically generating the structural
model using graph neural networks would lower the model knowledge require-
ments of structural analysis.

Finally, on a positive note, those methods rarely require large amounts of data. In
general, they require some varied data that cover all types of faults. This shows that
combining some knowledge about the system and some data can output convincing
results. This is promising because more often than not, some knowledge of the system
is available: expert knowledge, basic components equations, etc. Also, some data is
often available, such as nominal data and a few faulty occurrences.

3.3 Variation on an hybrid AI Diagnosis method
The above state of the art shows that no algorithm intrinsically combines model-based
diagnosis and data-based diagnosis. Proposing such a method is the focus of the next
chapter. Papers such as D. Jung, 2020 use a model-based algorithm but replace a step
of this algorithm with a data-based method. Still, this approach is very promising
and shows that structural analysis is a good tool for hybrid AI diagnosis methods.

This section proposes a hybrid AI diagnosis method. This method is heavily in-
spired by D. Jung, 2020 which combines structural analysis with recurrent neural
networks. It replaces the residual computation (which requires exact physical equa-
tions of the system) with a recurrent neural network trained to act as the residual,
meaning to output 0 for data from a class that is not supposed to be detected by the
residual and not 0 otherwise.

3.3.1 The SA-ML Method

In our case, residual computation is achieved by replacing recurrent neural networks
with any type of machine learning algorithm. So the method is called SA-ML as
"Structural Analysis and Machine Learning". Furthermore, for each residual, the
best algorithm is kept and different residuals can have different algorithms used to
simulate them. Another major difference with D. Jung, 2020 is that dynamics of the
system are considered in a very different way. They use recurrent neural networks
to deal with time-series signals as a whole, using the information of the order of the
timesteps. We use derivatives that inherently contain information about variations
of the variables.

The principle of the method is described in Figure 3.7 on the following page.
All the steps are detailed in the following sections when applied to the water tanks
system.

36 Chapter 3. Hybrid AI Diagnosis

Figure 3.7: Summary of the Proposed Method

3.4 Application to a dynamic non-linear system

3.4.1 System description: the two tanks system

The studied non-linear, dynamic system consists of two coupled water tanks. Faults
considered in the process are leakages and actuator and sensor faults. Each tank
is equipped with a level sensor with values y1 and y2. The flow out of each tank
is measured with a flow sensor with values y3 and y4. The system is presented in
Figure 3.8 on the next page. The tanks are subject to ten possible faults, listed
in Table 3.1 on the facing page. Here, Fa denotes fault mode and fa denotes the
modeled fault, e.g., the fault signal. The different fault modes that can be introduced
in the system can be modeled in several different ways, e.g., as signals or deviations in
constant parameters. Actuator and sensor faults are modeled using additive signals,
and other fault modes as constant parameters. Data for this system is generated in
Python using odeint from the scipy package. The input flow of T1, uref , in function
of time t∗, is described by Equation 3.2:

uref (t
∗) =


3 if 0 ≤ t∗ < 1
5 if 1 ≤ t∗ < 15
6 if 15 ≤ t∗

(3.2)

Its graph is shown in Figure 3.9 on page 38. Simulations are 700s long, chosen in
order to be able to see the impact of the fault on the measurements. Faults randomly
occur between 15s and 300s. Data is labeled as faulty from the fault occurrence
time. Before, or on simulations without fault, it is labeled as nominal. We only
consider cases where zero or one fault occurs, not multiple faults at the same time.
The amplitude of fault varies according to fault type, and is randomly selected in the
intervals given in Table 3.1 on the next page. When a fault occurs, it ramps up for
two seconds before reaching its full amplitude. An example of such a fault is shown

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

3.4. Application to a dynamic non-linear system 37

Figure 3.8: Two Water Tanks System. FS means flow sensor.

Fault name Fault description Fault amplitude Unit
Fa Actuator fault in the pump [−0.1,−0.07] ∪ [0.07, 0.1] m · s−1

Fh1 Fault in sensor 1 measuring
the water level h1 in the

upper tank, T1

[−2,−1] ∪ [1, 2] m

Fh2 Fault in sensor 2 measuring
the water level h2 in the

lower tank, T2

[−2,−1] ∪ [1, 2] m

Ff1 Fault in sensor 3 measuring
the flow f1 between T1 and

T2

[−2,−1] ∪ [1, 2] m3 · s−1

Ff2 Fault in sensor 4 measuring
the flow f2 out of T2

[−2,−1] ∪ [1, 2] m3 · s−1

Fl1 Leakage between T1 and
sensor 3

[0.4, 0.5] n/a

Fl2 Leakage between sensor 3
and T2

[0.4, 0.5] n/a

Fl3 Leakage between T2 and
sensor 4

[0.4, 0.5] n/a

Fc1 Partial obstruction (clogging)
in the pipe between T1 and

T2

[0.4, 0.5] n/a

Fc2 Partial obstruction (clogging)
after T2

[0.4, 0.5] n/a

Table 3.1: Possible Faults in the Water Tanks

38 Chapter 3. Hybrid AI Diagnosis

Figure 3.9: Graph of uref as a Function of Time (in m3 · s−1)

Figure 3.10: Example of a Fault Signal when the Fault Occurs

in Figure 3.10.
The water tanks system is ruled by the following equations:

e1 : ḣ1 = d1uref − d2x2 + fa (3.3)
e2 : ḣ2 = d3x1(1− fl2)− d4x3 (3.4)
e3 : x1 = (1− fl1)x2 (3.5)
e4 : x2 = (1− fc1)

√
h1 (3.6)

e5 : x3 = (1− fc2)
√

h2 (3.7)

e6 :
dh1
dt

= ḣ1 (3.8)

e7 :
dh2
dt

= ḣ2 (3.9)

e8 : y1 = h1 + fh1 (3.10)
e9 : y2 = h2 + fh2 (3.11)

e10 : y3 = d5x1 + ff1 (3.12)
e11 : y4 = d6(1− fl3)x3 + ff2 (3.13)

(3.14)

3.4. Application to a dynamic non-linear system 39

Figure 3.11: Structural Model of the Water Tanks. e6 and e7 are
the differential constraints. I means that the variable is the primitive
of the other, and D means that the variable is the derivative of the

other.

3.4.2 Structural Analysis

3.4.2.1 Establish the Structural Model

The structural model of the water tanks is presented in Figure 3.11. It is established
using the fault diagnosis toolbox (a Python tool described in Erik Frisk, Mattias
Krysander, and Daniel Jung, 2017) from the aforementioned equations. It only uses
structural relations and not physical equations of the system. In other words, it
only uses knowledge of which variables are involved in each equation representing a
component of the system.

3.4.2.2 Identify the MSO Sets and Compute the Fault Signature Matrix

From the structural model, we use the fault diagnosis toolbox to compute the fault
signature matrix, presented in Figure 3.12 on the following page. It shows that there
are seventeen MSO sets. From looking at the matrix, we can conclude that faults Ff2

and Fl3 are not isolable (see Definition 25 on page 29) because they have the same
signature. This is also visible in the structural model, the faults appear in the same
equation e11.

3.4.2.3 Select a Subset with Maximal Isolability

Not all MSO sets are required to obtain maximal isolability of the faults. For in-
stance, MSO sets MSO2, MSO8, MSO9, MSO12, MSO13 are enough, as shown in
Figure 3.13 on page 41. They are enough to obtain maximal isolability because all
faults have a different signature when considering only those MSO sets (except Ff2

and Fl3 that are not isolable from each other anyway).

https://faultdiagnosistoolbox.github.io/

40 Chapter 3. Hybrid AI Diagnosis

Figure 3.12: Fault Signature Matrix of the Water Tanks

Observables Fault Support
MSO2 y1, y3 fh1 , ff1 , fl1 , fc1

MSO8 y1, y2, ẏ2 fh1 , fh2 , fl1 , fl2 , fc1 , fc2

MSO9 uref , y1, ẏ1 fa, fh1 , fc1

MSO12 uref , y1, y2, y4, ẏ1, ẏ2 fa, fh1 , fh2 , ff2 , fl1 , fl2 , fl3

MSO13 uref , y1, y4, ẏ1, ẏ4 fa, fh1 , ff2 , fl1 , fl2 , fl3 , fc2

Table 3.2: For each selected MSO set, list of involved variables and
corresponding fault support.

There exists algorithms designed to automatically obtain a minimal subset of
MSO sets that has maximal isolability properties (see Pérez-Zuñiga et al., 2018).

Only these five MSO sets are considered for the following steps of the method.
From the structural model, it is possible to identify the observable variables that
appear in the residual generators associated with each of these MSO sets. They
are presented in Table 3.2. We can use this knowledge to train a machine learning
algorithm to act as a residual generator. For instance, for MSO2, we know that the
residual generator involves only y1 and y3 and that data from faults fh1 , ff1 , fl1 , fc1

should be predicted as not 0 whereas data from the other classes should be predicted
as 0.

Note that, if we were to use the model equations, the ARR that could be obtained
for MSO2 would have been:

ARR2 = y3 − d5
√

y1 (3.15)

3.4. Application to a dynamic non-linear system 41

Figure 3.13: Fault Signature Matrix restrained to
MSO2, MSO8, MSO9, MSO12, MSO13.

3.4.3 Training for each MSO Set

3.4.3.1 Dataset Preprocessing

A dataset of 110 simulations is generated, 10 simulations per fault type (and 10 fault-
less simulations). The sampling frequency is 5Hz. No noise is injected in the dataset
because derivatives of noisy data are generally mediocre, which is an orthogonal prob-
lem to our purpose, i.e. to show that the proposed diagnosis SA-ML architecture is
interesting (see Section 5.2.1 on page 78). The dataset contains measurements of
four observable variables, y1, y2, y3, y4, and a label l for the fault type (or nominal).
First order derivatives of y1, y2, y4

2 are computed using the gradient method of the
NumPy package, and added to the dataset. Since uref is the input of the system, it
is known and is also put in the dataset.

In the end, the dataset is split between a training and a testing dataset. The
training dataset contains 308088 samples of 8 variables (uref , y1, y2, y3, y4, ẏ1, ẏ2, ẏ4)
and the corresponding label l. The testing dataset contains 77022 samples.

For each MSO set, a specific dataset is used. Minor preprocessing is performed to
have different labels depending on which MSO set is considered. Each MSO set has
its own labeling:

li =

{
0 if l /∈ FSi

1 if l ∈ FSi
(3.16)

with li the label for MSOi with fault support FSi. For each MSO set, this becomes a
binary classification problem. Also, for each MSO set, only observable variables that
are involved in the associated MSO are kept in the dataset.

3.4.3.2 Training

For each MSO set, five algorithms are trained for binary classification. The goal is to
separate samples from the classes in the fault support of the ARR corresponding to

2ẏ3 is not computed because structural analysis indicates that it does not appear in any of the
residual generators selected.

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

42 Chapter 3. Hybrid AI Diagnosis

Algorithm MSO2 MSO8 MSO9 MSO12 MSO13
sklDT 99.98 99.98 99.99 99.98 99.98
sklRF 99.99 99.98 99.99 99.98 99.99
sklLR 85.53 69.69 88.51 78.75 79.99
sklNB 73.47 71.11 22.29 63.63 58.97
sklKNN 99.98 99.83 99.96 99.95 99.97

Table 3.3: Accuracy of the Machine Learning Algorithms Simulating
Residuals on a Testing Set (in %)

Figure 3.14: Confusion Matrix of the Hybrid AI Diagnosis Method

the MSO set from samples that are not labeled by classes in the fault support.

3.4.3.3 Best Algorithm Selection

The results from the training are presented in Table 3.3.
Clearly, decision tree, K-nearest neighbor and random forest classifiers are the

best performing algorithms. Random Forest slightly outperforms the other two for
every MSO set. Thus, each residual generator is simulated using a Random Forest
binary classifier. A novel aspect of this proposed method over the existing ones is
that the selected algorithm does not have to be the same for every MSO set. It is the
case here because random forest outperforms the other algorithms on every MSO set.
Also, for this study case, only five algorithms have been tested and perhaps other
algorithms could have better performances than Random Forest.

3.4.4 Final Results

Using binary classifiers in conjunction with the signature matrix to predict the class
of samples from the test set gives an accuracy of 93, 40% and the confusion matrix
shown in Figure 3.14. Class 11 corresponds to samples that were predicted in an
unknown class. This happens when there is no signature in the signature matrix that
corresponds to the output of the machine learning classifiers.

3.5. Conclusions 43

Note that the non isolability of Fl3 and Ff2 impacts the accuracy. If those classes
are considered as one class, the accuracy becomes 99.96%. The performances are
really good for this method on this system. Furthermore, it only requires data and
the structural model of the system. The structural model is a demanding requirement
because it is hard to obtain, but this prerequisite is weaker than requiring the full
analytical model of the system. However, the outcome of this method is simply a
diagnosis, without any explanation as to why a fault occurred.

3.5 Conclusions
The study of existing hybrid AI diagnosis methods show that algorithms exist in this
field but never use model-based methods to extract an explanation of the diagnosis.
Also, most of the time, they still require some deep knowledge about the system (e.g.
the structural model). Often, one step of a model-based algorithm is replaced with
machine learning. No method tries to intrinsically take advantage of model-based
concepts in a data-driven algorithm, which is what we explore in the next chapter.

We proposed a new hybrid AI diagnosis method, named SA-ML, heavily inspired
by D. Jung, 2020. It relies on structural analysis but the residual generator computing
part is replaced with machine learning algorithms. SA-ML is a variant allowing
any kind of machine learning algorithm to replace the recurrent neural network and
different algorithms to be selected for different faults. The method has been tested
on the water tanks use case. The performance is very good but the diagnosis lacks
explanation about the fault or knowledge learned about the system. However, decision
trees show promising results by being one of the best algorithms in the context of the
method while being partly explanatory.

45

Chapter 4

DT4X: Diagnosis Tree Enhanced
with Meta-Knowledge

After exploring various options and experimenting with different machine learning
techniques, a technology emerged as being able to synergistically combine data-based
diagnosis methods with model-based diagnosis methods: symbolic classification. It
allowed the design of a novel explainable diagnosis method called DT4X (Diagnosis
Tree for eXplainability). DT4X leverages decision trees where decisions are informed
by diagnosis meta knowledge, specifically focusing on the properties of diagnosis in-
dicators. This knowledge is used at each node to articulate a symbolic classification
problem, outputting discriminating functions. The outcome is a multivariate decision
tree that produces a compact model for diagnosis. The use of decision trees increases
the explainability of the outcome, all the more so as one discovers the explicit formal
expressions of diagnosis indicators, structured in the form of analytical redundancy
relations.

This chapter aims at explaining how DT4X works and the reasons behind its
design. First, some background on genetic algorithms, symbolic classification and
decision trees is required to understand the methods involved in DT4X.

4.1 Background
DT4X relies on symbolic classification. Symbolic classification itself relies on genetic
algorithms.

4.1.1 Genetic Algorithms

Genetic algorithms come from the research of John Holland in 1960 but were pop-
ularized in the nineties (Holland, 1992). They are a kind of evolutionary algorithm
and are inspired by the process of natural selection. They have been used to solve
some very complex problems such as the Traveling Salesman Problem (Beardwood,
Halton, and Hammersley, 1959) or the Knapsack Problem. They are often used to
find an approximate solution to NP-hard problems.

Genetic algorithms are used to find approximate solutions to optimization and
search problems. Let us define the main actors of a genetic algorithm.

Definition 29 (Candidate Solution). A possible solution to the problem at hand.
Can also be called individual, creature, organism.

Definition 30 (Population). The set of candidate solutions.

Definition 31 (Fitness Function). A function that takes as input a candidate solution
and outputs a score that represents how well it performs on the problem at hand. In
other words, it evaluates how good an individual is in terms of solving the problem.

46 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Figure 4.1: Example of a Crossover

Figure 4.2: Example of a Mutation

The genetic algorithm iterates through generations (as in iterations or cycles of
the algorithm’s evolutionary process). Between each generation, the composition of
the population changes. Individuals with the best scores at a given generation are
selected and then used in a reproduction process to give the population of the next
generation.

Definition 32 (Reproduction). The process of creating a new candidate solution.
Selected individuals undergo genetic operations such as crossover and mutation to
produce offspring. Crossover involves combining the genetic information of two par-
ents to create new individuals, while mutation introduces small random changes in
the genetic material.

Figure 4.1 illustrates a crossover, while Figure 4.2 illustrates a mutation.
Using this process, the fitness of the population progressively improves over the

generations. The algorithm terminates when a stopping criterion is met, such as
reaching a maximum number of generations or when the score of an individual passes
a given threshold. Of course, many variants of genetic algorithms exist, with differ-
ent reproduction operators, stopping criteria, initialization and selection processes.
Examples of use cases include search and optimization (Deb, 1998), machine learning
(Grefenstette, 1993), robotics (Davidor, 1991), bioinformatics (Manning, Sleator, and
Walsh, 2013) or even solving sudoku puzzles (Gerges, Zouein, and Azar, 2018).

4.1.2 Symbolic Classification

Symbolic classification is a technique in machine learning and symbolic artificial intel-
ligence where symbolic expressions or rules are used to represent relationships between
input variables and output labels. Unlike traditional statistical or machine learning
approaches that rely on predefined mathematical models, symbolic classification aims
to discover interpretable symbolic expressions directly from the data.

Figure 4.3 illustrates the training process of symbolic classification. It consists in
estimating a function f : Rn → R knowing samples (x, l) with x = (x1, . . . , xn) ∈ Rn

and l ∈ C = {0, 1}. C represents a set of classes of cardinality two (classes do not
need to be 0 and 1 but they can be mapped to {0, 1} so for clarity purposes we only

Figure 4.3: Symbolic Classifier: during training, the green objects
are known and the red ones are unknown.

4.1. Background 47

Figure 4.4: Symbolic Classifier: during testing, the green objects
are known and the red ones are unknown

consider C = {0, 1}). f is the actual function, the one that symbolic classification
is trying to find the expression of, or at least get as close as possible to. Let us call
cbest the function found by symbolic classification that tries to be as similar to f as
possible. cbest is then used together with a classification function1 t : R → [0, 1] to
predict the class of a sample x. The output of t is in the real interval [0, 1] but a
threshold function w : [0, 1] → {0, 1} can be applied to obtain the class in {0, 1}. In
other words, w ◦ t ◦ f(x) gives the class of x. Figure 4.4 shows how prediction of the
class of a new sample x is performed once cbest has been found.

Definition 33 (Symbolic Classifier). We call symbolic classifier the composition of
cbest, t and w. w ◦ t ◦ cbest : Rn → {0, 1}.

The classification function t can take many shapes. Its default value usually is
a sigmoid function (Han and Moraga, 1995). In the context of this manuscript, the
classification function is customized to fit our needs (see Section 4.2.2.2 on page 57).

The estimation of f is done without assuming its structure; an analytical relation
is therefore just discovered. There are multiple ways to carry out this estimation.
Symbolic classification algorithms typically explore a vast space of possible expres-
sions to find the most accurate model. Evolutionary algorithms, such as genetic
algorithms, are commonly used for this purpose due to their ability to efficiently
search complex solution spaces. To the best of our knowledge, symbolic classification
is only implemented in the python package gplearn (Stevens, 2016) which uses a
genetic algorithm to estimate f . gplearn is based on (Poli, Langdon, and McPhee,
2008). For instance, the paper (S. Liu et al., 2022) (despite being completely unre-
lated to our topic) uses symbolic classification through gplearn. Nevertheless, it is
clear that some other methods could be used to estimate f in the context of symbolic
classification and it is discussed in Section 6.1.1 on page 91.

Thus, in our case, symbolic classification relies on a genetic algorithm that takes
as inputs a set of samples D = {(x, l)} called the dataset and a set of operators O
(e.g. +, ∗,−, /,√, ||, log, etc.). The genetic algorithm searches for the best expression
cbest combining variables (x1, . . . , xn) and operators so that

∑
x∈D |w ◦ t ◦ cbest(x)−

w ◦ t ◦ f(x)| is minimal. It generates candidate solutions in the form of expressions
c : Rn → R. These expressions are represented as expression trees (Preiss, 1998).
Figure 4.5 on the next page shows an example of such an expression tree. If a node is
an operator, it has as many edges coming out of it as its arity (number of operands).
Each child node is one of its operands. If a node is a variable or a constant, it is a
leaf. The candidate expressions are evaluated using a fitness function. The fitness
function can vary depending on the application of symbolic classification, but is most
often the log loss function (Bishop, 2006), given by:

Fitness(c) = − 1
|D|

∑
(x,l)∈D

[l ln(t(c(x))) + (1− l) ln(1− t(c(x)))] (4.1)

1The notation t comes from the original name of this function: the transformer. However, since
we are dealing with Artificial Intelligence related topics, it could be confusing to name this function
a transformer. Also, classification function really fits the role of the function which is to turn a
regression problem into a classification problem by fitting classes rather than a variable.

48 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Figure 4.5: Expression Tree of x2
1 + log(3)

Figure 4.6: Crossover Between Two Candidate Expressions

Following the principles described in 4.1.1 on page 45, an initial population of can-
didate expressions is randomly generated. Then, the individuals are evaluated using
the fitness function. A new generation of individuals is generated by reproducing
the previous ones. Candidates with a high fitness are more likely to be used in the
reproduction process. Reproduction can consist of various operations. The ones used
in gplearn are:

• crossover, consisting in merging parts of two expression trees together (Fig-
ure 4.6);

• hoist mutation, consisting in replacing the subtree of a candidate expression by
a new node (Figure 4.7 on the facing page);

• subtree mutation, consisting in replacing the subtree of a candidate expression
by a new subtree (Figure 4.8 on the next page);

• point mutation, consisting in replacing a node of a candidate expression by a
different node, of the same nature or not (Figure 4.9 on the facing page). It can
incur changes in the subtree that starts from this node if the new node has a
different arity.

This process is repeated until a stopping criterion is reached. It can be a stagnating
fitness or a fitness threshold being reached by a candidate expression.

4.1.3 Decision Trees

A decision tree is a popular supervised learning algorithm used for both classification
and regression tasks in machine learning.

4.1. Background 49

Figure 4.7: Hoist Mutation of a Candidate Expression

Figure 4.8: Subtree Mutation of a Candidate Expression

Figure 4.9: Point Mutation of a Candidate Expression

50 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Definition 34 (Decision Tree). A decision tree T (E, N) is a directed acyclic graph
having at most one edge between every pair of nodes (Fürnkranz, 2010). E is the set
of edges and N is the set of nodes. T must have exactly one root node n0. All other
nodes have exactly one incoming edge.

Definition 35 (Root Node). A root node n0 is the only node of a decision tree with
no incoming edge.

Definition 36 (Leaf). Nodes without outgoing edges are called leaves.

Definition 37 (Binary Decision Tree). Specific type of decision tree where each node
that is not a leaf has exactly two outgoing edges.

Definition 38 (Children of a Node). The children of a node are the nodes reachable
from it by following the two outgoing directed edges. Leaves do not have children.

Definition 39 (Path to a Node). The path to a node is the ordered list of edges
followed to reach this node from n0.

Theorem 4.1.1 (Unicity of the path). The path to a node is unique. (Fürnkranz,
2010)

Corollary 4.1.1.1 (Unicity of the path to a leaf). The path to a leaf is unique.

4.1.3.1 Training a Decision Tree

Training a decision tree involves building the structure of the tree based on a dataset
with known input-output pairs. It starts from the root node n0 in which the training
dataset is stored.

Definition 40 (Purity of a Node). A node ni is said pure when the dataset associated
to it contains samples from only one class Ci.

During the training phase, a process is repeated in each node of the tree, starting
from n0. Let us consider a node ni that contains the dataset Di. If ni is pure and
contains samples from the class Ci, it is declared a leaf and labeled with that class
Ci. If ni is not pure, a discriminating criterion di is computed. The most common
ways to determine if a discriminating criterion is good are gini and entropy (Priyam
et al., 2013). They are a measure of the purity of a node. Thus, they can measure
the purity of the child nodes that would be created according to a given criterion.
For instance, the gini impurity measure of a node ni containing a dataset Di made of
samples from classes C1, . . . , Ck is:

gini(ni) = 1−
∑

C∈{C1,...,Ck}
(
|C|
|Di|

)2 (4.2)

If k = 1, the node ni contains only one class and |C1| = |Di|, meaning that gini(ni) =
0, which corresponds to the best possible purity. Entropy follows the same principles.
In this manuscript, only gini is used. These metrics are used to determine which
criterion to use to split the dataset in order to maximize purity of the children. Once
di is chosen, all samples in ni are evaluated on di, leading to the creation of two
new nodes: one for the samples that satisfy the criterion ({x ∈ Di, d(x)}), and one
for those that do not ({x ∈ Di,¬d(x)}). This process is repeated for newly created

4.2. DT4X 51

nodes until there are no impure nodes left2. As a consequence, when the decision tree
is fully trained, each leaf is assigned a class.

The condition di of a non-leaf node ni, determined during training, can be pre-
sented this way: ni is associated with ki ∈ N features. ni is also associated with a
subset of Rki . The condition di is verified when the actual values of the ki features
belong to the associated subset and not verified otherwise.

4.1.3.2 Using a Tree

Once the decision tree has been trained, it can be used to predict the class of a sample
x. Classification of a sample x is performed by following the path of conditions that
correspond to its feature values until reaching a leaf node. The predicted class is the
one associated with this leaf node.

4.1.3.3 Multivariate vs Univariate

Decision trees can be split into two distinct categories: univariate and multivariate.

Definition 41 (Univariate Decision Trees). Univariate decision trees are decision
trees whose criteria are only based on one feature at a time. This means that ki = 1
for all non-leaf nodes.

Definition 42 (Multivariate Decision Trees). Multivariate decision trees are decision
trees whose criteria can be based on any number of features (and it it not fixed across
the tree). For all non-leaf nodes, ki ∈ [1, nx] (Brodley and Utgoff, 1995).

With these definitions, univariate decision trees are a particular case of multi-
variate decision trees. In the literature, the most common type of decision trees are
univariate decision trees. The recent survey of Costa and Pedreira, 2023 calls “tra-
ditional trees” the univariate decision trees from Priyam et al., 2013 and says that
it “remains one of the most popular algorithms in the field, and also serves as the
base for several other contributions.” For diagnosis purposes, multivariate decision
trees are of utmost importance because faults can be detected by comparing input
and output observable variables and not only one variable at a time.

4.2 DT4X
DT4X is the algorithm designed as a solution to our initial problem (see Section 1.1
on page 1). Our ambition is to intrinsically combine model-based and data-driven
diagnosis methods. DT4X is a data-driven diagnosis methods in the sense that it
uses data to make predictions on the state of the system. It is also a model-based
method since the data is used to find equations of the system model (namely the
data-driven equivalent of analytical redundancy relations presented in Section 3.1 on
page 29) and then use them to compute a diagnosis. To be more precise, it is not
a model-based method per se, but rather, it uses meta-knowledge from model-based
methods in order to find analytical model-based relations using data.

DT4X stands for Diagnosis Tree for eXplainability. It also stands for Diagnosis
Tree with 4 main properties (4X): multivariate analysis, explicable decision-making,
incorporation of meta-knowledge and use of symbolic classification.

This section goal is to explain what is DT4X and how it is implemented.
2In practice, most decision tree algorithms allow for a percentage of the data in the node to not

be of the same class. Otherwise, the decision tree can quickly become huge and prone to over-fitting.

52 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

4.2.1 Principle

DT4X aims at training a binary decision tree to diagnose a system. The inputs for
DT4X are a training dataset D, a list of operators and the hyper-parameter (see
Section 4.2.2.3 on page 58) values.
D must contain data from the nominal class and from all the faulty classes. Indeed,

the output tree is only able to predict faults used to train it. It is preferable to have
more nominal data than data from the other classes. It is often the case since it is
easier to acquire nominal data for pretty much any system. A sample x of D contains
values of observable variables. This x is also called a feature vector and the variables
inside the features of a sample. This term is often used when dealing with machine
learning in general.

The operators are a set of functions specified by the user. The usual operators
are: +, ∗,−, /, sign, abs,√, cos, sin, ... By default, the operators are +,−, ∗, /. They
should be chosen according to system behavior knowledge. For instance, if a compo-
nent is known to square its input, it makes sense to include the square operator and
its inverse, the square root operator. In this way, expert knowledge is injected into
the algorithm. It can come from some system model knowledge (which links back to
the idea of combining model-based and data-driven diagnosis).

In order to inject meta-knowledge from model-based diagnosis into DT4X, we
use the concept of diagnosis indicator. It coincides with the definition of residual
generator of Section 3.1 on page 29.

Definition 43 (Diagnosis Indicator). A diagnosis indicator (or fault indicator) is
a relation that maps quantities that have been observed, or those deducible from ob-
servations, into a scalar value, providing an indication of a fault. A relation of the
form d(x′, ẋ′, ẍ′, ...) = r, with input x′, a subvector of x the observable variables, and
output r, a scalar named residual, is a diagnosis indicator d if for each x measured
on the system in nominal conditions, the relation is fulfilled, i.e. r = 0 (or tends to
0 when time tends to ∞ in the case of a dynamic system).

Definition 44 (Evaluate). To evaluate a diagnosis indicator d on a sample x means
to compute the image of x by d.

A diagnosis indicator evaluated on a nominal sample should be zero, considering
an ideal, non-noisy, environment, and non-zero on faulty samples. The main idea
of DT4X is to use this knowledge to find appropriate multivariate relations that are
used as branching conditions to take a decision in each node of the decision tree.
To do so, symbolic classification is used with a modified classification function (see
Section 4.2.2.2 on page 57). This constraints the output function to be a diagnosis
indicator in the sense that it has the same properties and discrimination capabilities.

In the decision tree resulting of DT4X, each node ni ∈ N that is not a leaf
therefore contains a binary diagnosis indicator dni : Rn → {0, 1}. Each diagnosis
indicator dni is used to partition the data into two disjoint subsets, depending on
whether dni(x) = 0 or dni(x) = 1 for all x belonging to ni. The two subsets are
then sent to a different child node. Each leaf of the resulting tree has a label that
is the class predicted for the data reaching this leaf. See Figure 4.10 on the facing
page for an example. In each node, except the root node, the first line indicates the
node number. For non-leaf nodes, the next line shows the found diagnosis indicator.
Then, the following line shows the classes used to train symbolic classification (to find
the diagnosis indicator). Leaves contain their diagnosis, which means the class label
given to samples that reach this leaf. All nodes except the root node contain their
own gini purity value. For the root node, it is always bad because all the classes are

4.2. DT4X 53

Figure 4.10: Example of a Decision Tree Produced by DT4X

present, hence why it makes no sense to display it. Finally, for each node, the sample
distribution is given.

4.2.2 DT4X Algorithm

The algorithm uses concepts that need to be defined:

Definition 45 (Pure with label l). A node ni is said to be pure with label l if at least
Xp% of the samples belonging to ni are of class l.

This corresponds to the definition of purity given in Definition 40 on page 50, but
extended to allow leaves to mainly contain one class while still having some samples
from other classes. The value Xp is a hyper-parameter of DT4X.

Definition 46 (Relevancy in ni). A class is said to be relevant in ni if the amount
of samples of this class present in ni constitutes at least Xr% of the whole dataset.

The value Xr is a hyper-parameter of DT4X.
Algorithm 1 on the following page gives the pseudo-code of DT4X. The arrow

symbol with a plus (← +) means that the value is appended to the variable.Next
sections explain the algorithm in details. All the keywords used are explained in
Section 4.2.2.1.

4.2.2.1 Detailed Explanation

During the training phase, a node ni ∈ N contains a subset of samples Dni ⊂ D.
Each sample (x, l) in ni verifies the conditions defined on the edges leading to ni

from the root node. At the beginning of DT4X (line 1), the root node n0 contains
the entire set D (see Figure 4.11 on page 55).

DT4X builds the tree starting from the root node and then going through every
single node in their order of creation. The algorithm stops when no nodes are left to
deal with (line 2).

When reaching a node ni, DT4X first checks whether ni is pure with label l
(line 4) (see Definition 45). If it is the case, ni is designated as a leaf and the label l
is associated with it (lines 5 and 6).

Otherwise, the goal is to find a new diagnosis indicator dni that splits the data
belonging to Dni (line 8 to 15). Thus, let us generate a set of possible pairs of classes
(pairsToTry) to split using a symbolic classifier (line 8).

54 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Algorithm 1 DT4X pseudo-code
Inputs: D, O, Hyper-Parameters, Untrained Decision Tree (n0)
Output: Trained Decision Tree with Diagnosis Indicators

1: currentNodes← n0
2: while currentNodes is not empty do
3: for all node ∈ currentNodes do
4: if node is pure with label l then
5: node is leaf
6: node← l
7: else
8: pairsToTry ← generate pairs
9: pair ← first element of pairsToTry

10: while not check cbest and pairsToTry not empty do
11: balance pair
12: cbest ← Symbolic Classification on pair
13: pair ← next element of pairsToTry
14: end while
15: if cbest then
16: lNode, rNode← split according to cbest

17: futureNodes← +lNode, rNode
18: else
19: node is leaf
20: node← majority label l
21: end if
22: end if
23: end for
24: currentNodes← futureNodes
25: end while

4.2. DT4X 55

Figure 4.11: The Root Node n0

Two cases are distinguished for the pair generation.
If the nominal class is relevant (see Definition 46 on page 53) in the node ni, the

set of pairs to try (pairsToTry) is built by having the nominal data as the first class,
and any of the faulty classes relevant in ni as the second class. This means pairs of
the shape (nominal, fk).

If the nominal class is not relevant in ni, the first step is finding the set of faulty
classes that are relevant in ni. Then, all permutations of pairs of these classes are
generated. For p faulty classes, this results in p ∗ (p− 1) pairs. It also means that if
the pair (fi, fk) is present, the pair (fk, fi) is also present. This is important because
the following step of the algorithm modifies the first class of the pair. During the
balancing process (see further), half of the data of the first class is made of samples
of the class itself, and the other half is made of nominal data randomly selected from
the initial dataset. This ensures that symbolic classification finds an expression that
is worth 0 for both nominal samples and samples belonging to the first class of the
pair. This expression is also different from 0 for samples of the second class of the
pair. In other words, the expression is triggered by samples of the second class but
not by samples of the first or by nominal samples.

Once the set of pairs (pairsToTry) is generated, the algorithm loops over these
pairs until either it runs out of pairs to try or until a diagnosis indicator dni is found
that discriminates the classes from the pair correctly (lines 10 to 11). Figure 4.12 on
the next page shows the first pair selected.

When a pair is selected from pairsToTry, step one is to balance samples in the
two classes (line 12). This preprocessing checks which class in the pair has fewer
samples and randomly selects the same number of samples from the class that has
the most samples. This is done to ensure symbolic classification is performed with
balanced classes. See Figure 4.13 on the following page.

Then, the symbolic classification algorithm is performed on the pair as described
in Section 4.1.2 on page 46 (line 13, see Figure 4.14 on page 57). The classification
function is described in Section 4.2.2.2 on page 57. Symbolic Classification always
returns a candidate expression, named cbest, that is the best expression found with
respect to the fitness (see Section 4.1.2 on page 46) (line 13). However, while this
expression might be the best found, it might not necessarily qualify as a good diagnosis
indicator, either because the best possible expression has not been found or because

56 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Figure 4.12: The First Pair Selected

Figure 4.13: Balancing the Pair

the pair of classes used to train the symbolic classification are samples from non
isolable fault cases. Thus, it is important to check (line 10) if the found expression
cbest is a valid diagnosis indicator. This is done by taking two consecutive tests.

T1 checks that the nominal data from the whole dataset is predicted as 0 by
cbest. If at least XT1% of the nominal data is predicted as 0 then the test is passed
successfully, XT1 being a hyper-parameter of DT4X.

T2 checks that cbest correctly predicts XT2% of the data used to find it through
symbolic classification. This percentage does not include data discarded during the
balancing process. This test ensures that cbest is classifying correctly. XT2 is a hyper-
parameter of DT4X.

If either T1 or T2 is false, then cbest is not considered as a valid diagnosis indicator
and the loop over the pairs continues.

Once either a valid diagnosis indicator dni has been found or all pairs have been
tested, the while loop is exited. If a diagnosis indicator dni was found, corresponding
to cbest (line 16), the data in node ni is split according to dni (see example in
Figure 4.15 on the next page). The algorithm evaluates dni on the samples within
Dni . If the result is 0, the sample (x, l) is sent to the left child of the current
node (lNode). If the result is different from 0, the sample is sent to the right child
(rNode). In traditional decision trees (Section 4.1.3 on page 48), gini is used to
evaluate how good a discriminating criterion is. Here, a discriminating criterion (a
diagnosis indicator) is accepted right away without measuring how well it splits the

4.2. DT4X 57

Figure 4.14: Symbolic Classification on the Pair: the nominal sam-
ples are labeled 0 and the faulty samples are labeled 1. The goal is to

fit f while t is known.

child nodes. Instead, the tests T1 and T2 have been performed to make sure dni is
a diagnosis indicator, which means it splits some classes in a relevant way. However,
some cases can occur such as with Fault1 data on Figure 4.15 where classes are not
placed whole in one child node or the other.

If no diagnosis indicator was found (line 20), the class with the most samples in
Dni has the majority, and the node is labeled with this class (line 22) and declared
a leaf.

Figure 4.15: Splitting According to dni (f in this case)

4.2.2.2 Classification Function

The classification function t for symbolic classification is customized for discovering
diagnosis indicators:

If |a| < ϵ, t(a) = 0, otherwise t(a) = 1, (4.3)

with a ∈ R and ϵ a DT4X hyper-parameter. See Figure 4.16 on the following
page. If nominal data is inputted as class 0 and a faulty scenario data as class 1,

58 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Figure 4.16: Classification Function used for Symbolic Classification
in DT4X

and a function is discovered with high accuracy on this data, then this function is a
diagnosis indicator, as it is characterized by being null for nominal cases, non-null for
the class 1 faulty scenario, and involving only observable variables. Such indicator is
sensitive to, at least, the fault used to find it.

In our case, there is no need for a threshold function w (such as defined in Sec-
tion 4.1.2 on page 46) because t already gives values in {0, 1}.

4.2.2.3 Hyper-Parameters

A crucial parameter for DT4X is the list of operators that are used to estimate the
diagnosis indicators using symbolic classification. They can be chosen according to
prior knowledge about the system (which operators are included in the component
equations, for instance). More operators, and more complex operators increases the
time complexity of DT4X (see Section 4.2.2.6 on page 60) so they should be inputted
with parsimony. The way symbolic classification is implemented in gplearn allows for
any python function to be considered an operator. This opens infinite possibilities.

The hyper-parameters for DT4X are summarized in Table 4.1.

DT4X hyper-parameter Default Value
purity threshold Xp 0.95

relevance threshold Xr 0.001
performance on nominal threshold XT1 0.95
indicator performance threshold XT2 0.90

Symbolic Classification Default Value
ϵ 0.01

population size 5000
maximum number of generations 50

stagnation number 4
proportion of samples used 1

parsimony coefficient 0.02

Table 4.1: List of DT4X hyper-parameters and their default values

4.2. DT4X 59

The DT4X hyper-parameters are described in Section 4.2.2.1 on page 53.
We now describe the symbolic classification hyper-parameters.
The ϵ parameter (Section 4.2.2.2 on page 57) has a powerful influence on the

outcome of symbolic classification, so it should be modified according to the studied
system. It should be scaled according to the order of magnitude of the data.

The population size parameter is the number of candidate solutions generated at
each generation. A higher value reduces the number of generations before reaching a
good solution but it extends training time.

The maximum number of generations is the number of generations beyond which
symbolic classification stops, even if it has not found a solution. High value means
more chances to find the right solution, but when no solution is to be found, it length-
ens the time it takes to stop. However, the maximum number of generations should
be high enough to never be reached. Indeed, there is another stopping condition
called the stagnation condition. If the fitness value of the best candidate solution is
the same for stagnation number generations in a row, the symbolic classification is
stopped. This either occurs when the fitness reaches its minimum value or when the
best candidate solution remains the same for a while (stagnates) without improving.

The proportion of samples used is the dataset fraction used to test each candidate
solution. It provides a trade-off between computation time and accuracy. Higher
accuracy means finding better diagnosis indicators, leading to faster predictions. In-
deed, prediction time should have priority over training time. Thus, the whole dataset
is used by default.

When computing fitness for a candidate solution, a penalty is added to its score.
This penalty is the parsimony coefficient multiplied by the expression length of the
candidate solution, favoring shorter solutions (because the fitness aims to be as small
as possible).

4.2.2.4 Refitting

Once the decision tree is fully trained, it can sometimes be further improved. Indeed,
DT4X relies on a genetic algorithm that, while very likely, does not guarantee conver-
gence (Holland, 1992). Reusing symbolic classification on a pair that initially did not
produce a diagnosis indicator might produce one with, for example, a different seed
for the randomization of mutations. Thus, a refit function has been designed to
automatically select leaf nodes with the lowest purity scores and retry symbolic clas-
sification with all the relevant classes in those nodes. It uses the gini metric described
in Section 4.1.3 on page 48 to measure the purity of leaf nodes and selects the most
impure leaves based on a threshold. Then, it reruns DT4X by initializing the variable
currentNodes (see line 1 of Algorithm 1 on page 54) to the list of impure nodes to
refit. Algorithm 2 on the following page gives the pseudo-code of refit. The refit
function also allows adjustments to symbolic classification parameters, such as the
mutation rate or the population size. refit is usually performed only once because
after two tries, an impure node most likely contains classes that are non-isolable from
each other.

4.2.2.5 Implementation Architecture

The UML graph of DT4X architecture is presented in Figure 4.17 on page 61. The
algorithm is implemented in Python using pandas, numpy and sympy. The models
are saved using pickle. The tree is displayed using graphviz.

https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://www.sympy.org/en/index.html
https://wiki.python.org/moin/UsingPickle
https://graphviz.org/

60 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Algorithm 2 Refit
Inputs: D, O, Hyper-Parameters, Decision Tree Trained by DT4X, Threshold T
Output: Trained Decision Tree with Diagnosis Indicators

1: refitNodes← emptyList
2: for all node ∈ tree do
3: if gini(node) ≥ T then
4: refitNodes← +node
5: end if
6: end for
7: DT4X(currentNodes← refitNodes)

4.2.2.6 Time Complexity

A question that might arise when considering a novel algorithm such as DT4X is "How
long does it take to get a result ?" Time complexity is a very insightful indicator of
that and in particular the worst-case time complexity gives an upper-bound of how
long it takes to obtain the desired output of an algorithm. Multiple factors play a
role in the overall time complexity of DT4X. The most time-consuming process is
evaluating an expression on a sample of data. Here, we count the number of times
this operation is performed. It is called C. The factors involved are recapped in
Table 4.2.

Factor Variable Name
number of nodes in the tree nn

number of samples in the dataset nD
average length of a candidate solution

during symbolic classification lavg

maximum number of generations during
symbolic classification ng

number of candidate solutions for each
generation of symbolic classification ncs

number of classes in the dataset nC

number of input operators nO

number of input variables nx

Table 4.2: List of Variables that Impact Time Complexity

We consider the worst case scenario in which all nodes of the tree contain the
whole dataset. Also, we consider that all the possible pairs of classes are tested in
each node and that the last generation of symbolic classification is reached every time.
Finally, we consider the amount of samples on which symbolic classification is trained
to always be the whole dataset.

In every node, the same costly operations occur, namely:

1. for each pair:

1a. running symbolic classification
1b. testing the obtained expression

2. creating new nodes if applicable

Let us take a look at the cost of each operation in detail:

4.2. DT4X 61

Figure 4.17: UML graph of DT4X

Operation 1a. During each generation of symbolic classification, each candidate
solution is tested on each sample. At worst, this means ngncsnD expression evalua-
tions.

Operation 1b. The obtained expression is tested on the training dataset of sym-
bolic classification and on the nominal samples of the whole dataset. At worst, this
means 2nD expression evaluations.

Operation 2. The newly found diagnosis indicator is evaluated on the node
dataset. At worst, this means nD expression evaluations.

Operations 1a and 1b are repeated for each pair of classes, at worst this means
nC (nC−1)

2 number of times.
Operation 2 only occurs for non-leaf nodes. A property of the binary tree is that

it contains exactly nn−1
2 non-leaf nodes (and nn is always odd).

Hence, the total number of times an expression is evaluated at worst:

C = nn(
nC(nC − 1)

2)(nDngncs + 2nD) +
nn − 1

2 nD

= nD
nnnC(nC − 1)(ngncs + 2) + (nn − 1)

2

(4.4)

This gives a rough indication of which variables are important. In particular nC

being squared, it is an important factor. However, it does not tell the whole story.
Indeed, when we are not considering the worst case, a huge factor of time complexity is
how long it takes for symbolic classification to stop, which in most cases is equivalent
to how long it takes to converge to the best possible solution. This highly depends
on the number of input variables nx and operators nO that are actually the most

62 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

influential factors on time complexity (because the worst case is always far from
being reached). The more there are, the longer it takes to reach the best possible
solution. More specifically, since the candidate solutions are sequences of operators
and variables picked randomly among the set of input variables and operators, for an
expression of length lavg there are (nx + nO)lavg possibilities. This is not exactly true
since a candidate solution cannot end with an operator, but it gives a good idea of
the growth of the size of the space of possible solutions according to nx and nO. The
paper Virgolin and Pissis, 2022 shows that symbolic regression (and by extension,
symbolic classification) is an NP-hard problem.

Another important factor that is not taken into account in the computing of
C, despite being very influential on time complexity, is the average length lavg of
candidate solutions. The longer the expression, the longer it takes to compute it.
The parsimony coefficient (see Section 4.2.2.3 on page 58) plays an important role in
minimizing lavg. Setting it to 0 causes the computational time to increase drastically.

One more factor simply is the nature of the input operators. For instance, it takes
more time to compute the logarithm of a value than to add two values together. It
is dependent on the inputs and cannot be estimated in a general case.

Finally, luck plays a role in how fast symbolic classification converges (in the initial
candidates generation and in the mutations).

One might also wonder about space complexity. No analysis has been made
because on all use cases considered as of now, no limit has ever been reached (despite
sometimes using laptops with 8GB RAM). The dataset being loaded in memory
prior to the algorithm starting, nD impacts space complexity. At the beginning
of a generation, during symbolic classification, ncs candidate solutions of size lavg

are generated simultaneously. However, candidate solutions that are not used in
the next generation are dynamically discarded in order to free space, leading to no
accumulation.

For more information on time and space complexity of genetic algorithms, see
Oliveto and Witt, 2015, Lissovoi and Oliveto, 2019 and Ankenbrandt, 1991.

4.2.3 DT4X Properties

This section aims to show what properties the resulting decision tree from DT4X
possesses. These properties are derived from the way DT4X builds the decision tree.
The first three properties are inherent because the algorithm was designed with these
properties in mind.

First, we need to define the core concept of data-based analytical redundancy rela-
tion (data-based ARR). Diagnosis indicators found by DT4X have the same properties
as model-based ARR but they are computed from a dataset D. Hence, we define the
specific diagnosis indicators found along the DT and name them data-based ARR.
Consequently, data-based ARR have a validity domain limited to the dataset D.

Definition 47 (Data-based ARR for a dataset D).
Consider a dataset of samples D = {(x, l)}, x ∈ R, l ∈ C and C0 ∈ C the class of
nominal samples. A relation of the form d(x′, ẋ′, ẍ′, ...) = r, with input x′, a subvector
of x, and output r, a scalar named residual, is a data-based ARR for the dataset D
if, for all x such that there exists a sample (x, C0) ∈ D, it holds that r = 0.

Also, some of the properties rely on being in an ideal scenario.

Definition 48 (Ideal Scenario). An ideal scenario requires the 3 following conditions:

• the data is perfectly clean, i.e. it contains no noise;

4.2. DT4X 63

• the operators given to DT4X are sufficient to find a diagnosis indicator to sep-
arate a pair of classes when it exists.

• enough time is given to symbolic classification to converge to a solution if it
exists.

The main hypothesis on the ideal scenario is that, if an expression of the observable
variables can split the two classes thanks to symbolic classification, it will be found by
the algorithm in finite time.

Such an ideal case does not exist. However, it is possible to get close to it. Enough
samples and enough generations can erase this luck factor and the perfect data can
be obtained by working with non noisy systems in discrete environments (for instance
with logic circuits as considered in Section 5.1.2 on page 74).

4.2.3.1 Inherent Properties

Theorem 4.2.1 (DT4X diagnosis indicators are Residual Generators). The diagnosis
indicators found by DT4X are residual generators for their training data.

Proof. As explained in Section 4.2.2.2 on page 57, symbolic classification looks for
diagnosis indicators that can discriminate some faulty cases from nominal cases. In
an ideal scenario, when symbolic classification stops because of reaching a perfect
fitness, the found diagnosis indicator has all the properties of a data-based ARR as
defined in Definition 47 on the facing page. And, by definition, data-based ARRs are
residual generators for their dataset. QED

Since model-based residual generators are also valid on clean data, when data is
clean enough and representative of the system use cases, the found data-based ARRs
are the same as the model-based ARRs. In practice, this is the case for systems whose
data is generated through simulation or for systems were variables can only take a
finite number of values such as logic circuits. Having data that is clean enough is very
hard to define in general and is dependent on systems and measurement equipment.

Theorem 4.2.2 (Data-based Diagnosability for a dataset D). Diagnosability of the
studied system with respect to a dataset D can be deduced from the leaves of the tree
produced by DT4X. All faulty classes whose samples share a leaf node with nominal
samples are non-detectable. All faulty classes whose samples end up in the same leaf
are non-isolable from each other.

Proof. In an ideal scenario, classes whose samples end up alone in a leaf are isolable
since there exist diagnosis indicators that can separate them from the other classes
(those diagnosis indicators can be found on the path from the root node towards
the leaf in question). Classes whose samples end up in the same leaf as nominal
samples are non-detectable because symbolic classification can not find any diagnosis
indicator able to separate them and did not converge, meaning that there exists no
expression of the observable variables that can split these classes samples from the
nominal samples (see Definition 48 on the preceding page). This reasoning can also
be applied to say that classes whose samples end up in the same leaf are non isolable
from each other. These properties are assessed for the considered dataset D used for
training DT4X. QED

Theorem 4.2.3 (Predicting the Class of an Unknown Sample). The output tree of
DT4X is able to predict the class of an unlabeled sample.

64 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

nominal f1 . . . fnC

dn0 0 1 . . . 0
dn1 0 ? . . . 1
.

dnnn
? ? . . . 1

Table 4.3: Example of Signature Matrix Inferred from the Decision
Tree

Predicting the class of an unknown sample can be done by evaluating the diagnosis
indicators with the sample features, i.e. observable variable values, and then following
the corresponding arrows on the edges of the tree, starting from the root node. Ending
up in a leaf with label l means that this sample is predicted as being of class l. A
leaf containing multiple classes can be labeled as either one of the classes. It is not
possible to say which one, since they are non-isolable according to Theorem 4.2.2 on
the preceding page.

4.2.3.2 Unicity of Diagnosis Indicators on a Path

Theorem 4.2.4 (Unicity of diagnosis indicators on a path). On a given path P of
the DT4X decision tree, each diagnosis indicator is unique. This means that along a
given path, it is impossible to encounter twice the same diagnosis indicator to partition
the samples of a node n1 ∈ P and to partition the samples of a node n2 ∈ P, i.e.
∀n1, n2 ∈ P, d1 = d2 =⇒ n1 = n2.

Proof. Let us consider a path P in a DT4X decision tree. Let us consider two random
diagnosis indicators along this path, the first encountered (starting from the root
node) being d1 and the second d2, respectively partitioning the samples of node n1
and n2. Let us call D1 and D2 respectively the datasets associated with n1 and
n2, as illustrated in Figure 4.18 on the next page. Let us call D1l

the subset of
D1 so that ∀x ∈ D1l

, d1(x) = 0. Idem, let us call D1r the subset of D1 so that
∀x ∈ D1r , d1(x) = 1. By construction of the tree, either D2 ⊆ D1l

or D2 ⊆ D1r .
Now, we need to go back to how symbolic classification works. In DT4X, symbolic

classification is used on two balanced classes with at least one element each. 90% of
those samples need to be predicted correctly by the obtained solution for it to be
considered a diagnosis indicator (see Section 4.2.2.3 on page 58). This means that
at least one element of each class must be predicted correctly. This implies that,
for a valid diagnosis indicator, such as d2 in our case, ∃ x0 ∈ D2, d2(x0) = 0 and
∃ x1 ∈ D2, d2(x1) = 1.

If D2 ⊆ D1l
, d2(x1) = 1 and d1(x1) = 0 because x1 ∈ D1l

; thus d1 ̸= d2.
Similarly, if D2 ⊆ D1r , d2(x0) = 0 and d1(x0) = 1 because x0 ∈ D1r ; thus d1 ̸=
d2. QED

4.2.3.3 Necessary and Sufficient Fault Signature Matrix

From the way the training data is split by the diagnosis indicators found in nodes, it
is possible to fill the fault signature matrix SM . Such a matrix is shown in Table 4.3.
0 means that d(x) = 0 for all x in the class. 1 means that d(x) ̸= 0 for all x in the
class. ? means that either we do not know what d(x) is equal to or it can be both
0 and not 0 depending on the data sample. See Section 5.1.1.1 on page 69 for an
example of what this matrix can look like for a specific system.

4.2. DT4X 65

Figure 4.18: Simplified View of the Tree Obtained by DT4X (with
D2 ⊆ D1l

)

Theorem 4.2.5 (Sufficient Fault Signature Matrix). The signature matrix that can
be established from the output tree of DT4X is sufficient to obtain the maximal (data-
based) diagnosability of the system.

Proof. The signature matrix is equivalent to the tree in terms of diagnosability (it is
just a way to present it in a more readable way than the tree itself). According to
Theorem 4.2.2 on page 63, we know that the tree contains sufficient information to
obtain maximal (data-based) diagnosability of the system. QED

However, there is more than only the necessary information to obtain maximal
diagnosability. Indeed, Figure 4.19 on the following page shows a counter-example.

This is an example of a phenomenon that may happen in a tree from DT4X. Each
node contains the class numbers. The two orange nodes contain the same classes but
two different diagnosis indicators are found. This may happen, for instance, if the
pairs for symbolic classification are (1, 2) and (2, 1). The corresponding two diagnosis
indicators would be different (because one would be zero for class 1 and the other
for class 2) despite being redundant in terms of diagnosability information. This
proves that the signature matrix obtained from DT4X can have more information
than necessary for maximal (data-based) diagnosability.

4.2.3.4 Bounded Amount of Data Required to Train

It is conjectured that the amount of data required to train DT4X has a ceiling. This
means that beyond a certain amount, DT4X performances do not improve. The rea-
soning behind this conjecture is that once the model-based diagnosis indicators of the

66 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

Figure 4.19: Tree from DT4X that Contains more Information than
Necessary

system are found by DT4X, it reaches maximum performances. After that, it cannot
find better expressions and thus, cannot improve. However, it seems very complex to
prove that DT4X always finds model-based ARRs, even in an ideal scenario. Note
also that model-based ARRs can be taken as reference only in the case of a "perfect"
model, which hardly happens for dynamic systems. However, it can be easily true for
static systems like the polybox (cf. Section 5.1.1 on page 69) and logic circuits (cf.
Section 5.1.2 on page 74).

4.2.3.5 Kernel Intersection of Data-Based ARRs from DT4X is Included
in the Kernel Intersection of Model-Based ARRs

Definition 49 (Kernel of a diagnosis indicator). The kernel of a function f defined
on a set I is defined as Ker(f) = {x ∈ I, f(x) = 0}. Thus, the kernel of a diagnosis
indicator dni on D is defined as Ker(dni) = {x ∈ D, dni(x) = 0}.

Theorem 4.2.6 (Kernel Inclusion). In an ideal scenario with the hypothesis that all
fault classes are detectable and that model-based ARRs are built from an accurate
model of the system: ⋂

d∈D
Ker(d) ⊆

⋂
arr∈R

Ker(arr) (4.5)

with D the set of all diagnosis indicators found when training DT4X and R the set
of model-based ARRs for the studied system.

Proof. Let us call Cnom the class of C that contains the nominal samples. First, we
show that Cnom =

⋂
d∈D

Ker(d) (i). Then, we show that Cnom ⊆
⋂

arr∈R
Ker(arr) (ii).

(i) In an ideal scenario, the diagnosis indicators found by DT4X are data-based
ARRs (Theorem 4.2.1 on page 63). By definition of a data-based ARR, ∀ x ∈ Cnom,
∀ d ∈ D, d(x) = 0. Thus, Cnom ⊆

⋂
d∈D

Ker(d). Let us consider x ∈
⋂

d∈D
Ker(d). ∀

4.3. Conclusions 67

d ∈ D, d(x) = 0. This means that there is no diagnosis indicator that can detect x.
Either x is nominal or x belongs to an undetectable class. With the hypothesis that
all classes detectable, we can deduce that x ∈ Cnom. Consequentially,

⋂
d∈D

Ker(d) ⊆

Cnom and so Cnom =
⋂

d∈D
Ker(d).

(ii) Let us call Xnom the set of samples coherent with the normal behavior rep-
resented by the system model. By definition of a model-based ARR and using the
hypothesis that all faults are detectable, Xnom =

⋂
arr∈R

Ker(arr). All samples from

Cnom are measured on the system in nominal conditions, meaning that Cnom ⊆ Xnom,
because ARRs have been computed from an accurate model of the system. Therefore,⋂
d∈D

Ker(d) ⊆
⋂

arr∈R
Ker(arr). QED

4.3 Conclusions

4.3.1 Summary

DT4X is a data-driven algorithm that uses meta-knowledge from model-based di-
agnosis in order to perform diagnosis of a system whose model is unknown or only
partially known. DT4X trains a decision tree to diagnose a system. It:

• trains a multivariate decision tree, the expressions in each node are diagnosis
indicators that express relations between observable variables in a nominal case.

• is explicable in the sense that the obtained relations are data-based ARRs that
have physical meaning in the system, but it also gives an explanation of what
the diagnosability of the system is by looking at class distribution in the leaves
of the tree.

• uses symbolic classification to find diagnosis indicators without inputting an
expected analytical form.

• incorporates meta-knowledge from model-based diagnosis by tuning the classi-
fication function of symbolic classification to constrain it to look for diagnosis
indicators that are null for nominal cases and not null for at least a fault class.

DT4X is designed in a way that allows expert knowledge to be taken advantage
of. Indeed, the choice of relevant operators and system constants can help DT4X
converge faster.

However, there are some limitations to using DT4X:

• A labeled dataset has to be available. It has to contain classes from all faulty
faults (not necessarily in a big amount though, and not as much as nominal
cases).

• It is based on a genetic algorithm that is inherently random and can take a
variable, and hard to estimate, time to converge.

• Hyper-parameters can be hard to fine-tune. The value of ϵ and the parsimony
coefficient have a huge impact on the outcome of the training and there is no
rule on how to identify a good value for them.

68 Chapter 4. DT4X: Diagnosis Tree Enhanced with Meta-Knowledge

4.3.2 Perspectives

4.3.2.1 More Expert Knowledge

Future works could focus on inputting pre-made expressions in symbolic classification.
Indeed, some model knowledge of the system might be easy to obtain and it would be
interesting to be able to take advantage of it. Let us say that we know the equation
of a simple component of the system. In the current state of DT4X, it is not possible
to use this knowledge. One way to use it would be to initialize some expression trees
with this component equation during symbolic classification. It would save time for
symbolic classification.

4.3.2.2 Automatic Fitting of Hyper-Parameters

As mentioned previously, finding good hyper-parameters can be a very complex task.
Here are two ideas to solve this issue.

First, the parsimony coefficient p is used in this way:

fitfinal = p× len + fitinitial (4.6)

with len the len of the expression, fitinitial the fitness before applying the parsimony
coefficient, computed as described in Section 4.1.2 on page 46, and fitfinal the final
fitness, post application of the parsimony coefficient. Hence, the effect of p is very
dependent on the order of magnitude of len and fitinitial. With expressions of average
length 100 and fitinitial around 10e−6, if p ≥ 10e−7 its impact overshadows the impact
of fitinitial, which is not wished. Hence, the idea is to have an adaptive parsimony
coefficient that scales with the order of magnitude of fitinitial. It could even vary
online according to the fitinitial of the best candidate solution cbest.

Second, a similar reasoning could perhaps be applied to ϵ. Indeed, there are
algorithms able to automatically find the right threshold for a residual generator
with some labeled data. For instance, CUSUM tests (Riaz, Abbas, and Does, 2011)
are able to detect small variations in signals and could be used to find the right
threshold to separate two different sections of a residual generator signal.

4.3.2.3 Refitting Following Concept Drifts

The refit function allows to retrain part of the tree. This could potentially be used
to retrain a section of the tree that would not be relevant anymore because of a
concept drift in the dataset (for instance the studied system deteriorating and not
behaving exactly the same, or a component being replaced).

69

Chapter 5

DT4X Applications

This chapter goal is to showcase the performance of DT4X on four systems. First,
a very simple static system, the polybox, used to illustrate how DT4X is applied
and what the results are in an ideal case. Next, the full subtractor, a logic circuit,
is presented. Then, two dynamic systems, the water tanks and the 3D printer are
tested. Finally, a look back at what worked and what did not is taken and a few
perspectives on how to improve DT4X are discussed.

5.1 Application to Static Systems

5.1.1 Polybox

5.1.1.1 System Description

At first, let us begin with a fully solved and very simple static system: the polybox
(De Kleer and Williams, 1987). The point is to test DT4X on a simple case. If it
does not work on this case, no need to test it on a dynamical, noisy, high order, real
system.

The polybox is a fictional static system that contains five components: M1, M2,
M3, A1 and A2. These components are connected as shown on Figure 5.1. The M1,
M2 and M3 components are multipliers (the output equals the product of the inputs)
and the A1 and A2 components are adders (the output equals the addition of the
inputs).

Figure 5.1: The Polybox

Each component can malfunction, meaning the component does not produce the
correct output according to the inputs. Thus, there are five possible faults in this

70 Chapter 5. DT4X Applications

system. For the sake of simplicity, the fault associated with component M1 is called
fM1 and idem for the other components.

There are seven observable variables in this system: A, B, C, D, E, F and G. The
pairs in the dataset are of the shape (x, l) with x = (A, B, C, D, E, F , G) ∈ N7 and
l ∈ C with C the set of possible diagnoses (C is detailed below). For now, only non
ambiguous states (see Definition 6 on page 4) are considered as classes.

In the context of this study, two experiments have been made. One with single
faults only, meaning that only one component can be faulty. The other experiment is
with double faults (two components faulty at the same time) as well as single faults.
It can be noted that cases with triple, quadruple and all faults are very similar to the
double faults case, and work the same and thus are not tackled.

If only single faults are considered, C = {nominal, fM1, fM2, fM3, fA1, fA2}.

5.1.1.2 Results

A dataset of 1024 nominal samples and 1024 faulty samples, each being of one fault
type, has been randomly generated. A fault or a component malfunction is de-
fined as an output from this component that is different from the expected value.
Thus, a faulty component outputs the expected value plus a random modifier in
{−3,−2,−1, 1, 2, 3}. Then, this dataset is randomly split between a training set with
1434 samples and a testing set with 614 samples. The training set is fed to DT4X
with default hyper-parameters and the output decision tree is shown in Figure 5.2.
The accuracy for this decision tree on the test set is 80.78%.

Figure 5.2: Single Fault Polybox DT4X Decision Tree

The confusion matrix of this decision tree (computed on the test set) is shown in
Figure 5.3 on the facing page.

5.1.1.3 Comparison with Model-Based Results

In order to evaluate the quality of the found expressions, let’s compute them using
structural analysis (and the model of the system). The system equations are the
following:

e1 : AC + fM1 = x (5.1)

e2 : BD + fM2 = y (5.2)

5.1. Application to Static Systems 71

Figure 5.3: Confusion Matrix of the Single Fault Polybox Diagnosis
Tree

e3 : CE + fM3 = z (5.3)

e4 : x + y + fA1 = F (5.4)

e5 : y + z + fA2 = G (5.5)

With x, y and z being the internal states of the system (non-observable inner
variables).

Using the fault diagnosis toolbox we can display the structural model of the poly-
box (Figure 5.4). Either using this toolbox also, or using the Dulmage-Mendelsohn

Figure 5.4: Structural Model of the Polybox

decomposition (Dulmage and Mendelsohn, 1958), we compute MSO sets of equations.
The MSO sets for this system are:

MSO1 = {e1, e2, e4} (5.6)

MSO2 = {e2, e3, e5} (5.7)

MSO3 = {e1, e3, e4, e5} (5.8)

https://faultdiagnosistoolbox.github.io/

72 Chapter 5. DT4X Applications

Finally, for each MSO set, we can compute the associated residual generator by
eliminating non-observable variables in the equation set (and considering only the
nominal case).

rMSO1 = AC + BD− F (5.9)

rMSO2 = BD + EC −G (5.10)

rMSO3 = AC −EC + G− F (5.11)

The fault support of MSO1 is {fM1, fM2, fA1} and the fault support of MSO2 is
{fM2, fM3, fA2}. Hence, these two MSO sets are enough to obtain full detectability
of the faults. Since the fault support of MSO3 is {fM1, fM3, fA1, fA2}, we can deduce
that fM1 and fA1 are non-isolable, and idem for fM3 and fA2. This also means that
maximal isolability for this system can be obtained from two different MSO sets only
(no matter which ones).

The DT4X decision tree in Figure 5.2 on page 70 shows that the expressions found
by DT4X are identical to the three residual expressions from model-based diagnosis.
The classes present in the leaf nodes during training also reflect the diagnosability
of the system. Multiple runs of DT4X with different random seeds for symbolic
classification generate different trees. For this same data, sometimes the generated
tree ends up having the same expressions in node 1 and node 2. This reflects the fact
that only two residuals are necessary and sufficient to obtain maximal diagnosability
for this system.

We can represent the fault supports (computed from the model) using the fault
signature matrix (Table 5.1). We can also do the same for the expressions found with

nominal fM1 fM2 fM3 fA1 fA2
MSO1 0 1 1 0 1 0
MSO2 0 0 1 1 0 1
MSO3 0 1 0 1 1 1

Table 5.1: Fault Signature Matrix for the Single Fault Polybox (com-
puted from the model)

DT4X, by filling the signature matrix as described in Section 4.2.3.3 on page 64. The
obtained matrix is presented in Table 5.2 on the next page. Since the expression of
node 0 corresponds to MSO3, it makes sense to find the same fault signature. Node
1 corresponds to MSO2 and node 2 to MSO3 and their respective signatures could
match the ones of the MSO sets. However, we do not have enough information to
tell. The interesting part is that this information we are lacking is not mandatory
to obtain maximal diagnosability for this system. Indeed, by looking at Table 5.1
that fM1 and fA1 have the same signature, meaning that they are not isolable from
each other. The same can be said of fM3 and fA2. Other than those two pairs, the
decision tree managed to isolate all the classes. Thus, the obtained decision tree has
achieved maximal possible diagnosability of the polybox, despite having less overall
information (the ? cells of Table 5.2 on the next page).

5.1.1.4 Comparison with Other Machine Learning Algorithms

In order to evaluate the performance of DT4X and compare it with other algorithms
we use the f1-score. This metric expresses both precision and recall in a single metric
and can also take into account the imbalance of classes. In order to compute it, we
determine per-class f1-score and then take the average of those scores, weighted by

5.1. Application to Static Systems 73

nominal fM1 fM2 fM3 fA1 fA2
node 0 0 1 0 1 1 1
node 1 0 ? 1 ? ? ?
node 2 ? 1 ? 0 1 0

Table 5.2: Fault Signature Matrix for the Single Fault Polybox (com-
puted from DT4X tree)

true class size (class size in the dataset, not in the predictions). The expression of
the f1-score of class Ci is:

f1score(Ci) =
2TP

2TP + FP + FN
(5.12)

with TP the true positives (correctly predicted samples of Ci), FP the false positives
(sample from an other class predicted as belonging to Ci), FN the false negatives
(samples from Ci predicted as from an other class). The expression of the f1-score
for an algorithm A is given by:

f1score(A) =
1
|D|

∑
Ci∈C
|Ci|f1score(Ci) (5.13)

A high f1-score means that recall and precision are high, but also that there is no
imbalance between both.

The accuracy of DT4X decision tree compared to other default scikit-learn im-
plementations of common machine learning algorithms are shown in Table 5.3. The

Algorithm Scoring Time (s)
614 samples Accuracy (%) f1-score (%)

DT4X 0.04 80.78 74.25
sklDT 0.00 46.91 46.02
sklRF 0.01 46.09 38.41
sklLR 0.00 50.00 33.33
sklNB 0.00 49.67 34.17

sklSVM 0.02 50.16 33.69
sklKNN 0.01 48.05 37.43

Table 5.3: Single Fault Polybox Results

double fault polybox results are presented in Section B.1.1 on page 117 of Appendix B
on page 117.

DT4X outperforms other machine learning algorithms on this polybox case. How-
ever, its accuracy is far from 100%. This is because, as mentioned before, some faults
are not isolable from one another (this is known from model-based diagnosis). For
instance, fM1 and fA1 have the very same signature. Perhaps, this is also the reason
for which the standard machine learning algorithms are struggling. Thus, we ran
the same tests while considering the non-isolable classes as the same, merging them
together in one class that represents an ambiguous state. The results are presented in
Sections B.1.2 on page 117 and B.1.3 on page 118 of Appendix B on page 117. In that
context, the main thing to notice is that DT4X has perfect or near-perfect accuracy.
The only few samples that are misclassified in the double fault case are ones that
behave like data from other classes. This perfect accuracy is due to finding the exact

74 Chapter 5. DT4X Applications

expressions that the physical model would have allowed to compute. Obviously, with
noise and imperfect and hidden data, an accuracy this high can not be reached (but
this is also true with access to the full physical model of the system).

Overall, DT4X takes longer to train (around a thousand times longer than the
average for the machine learning algorithms), longer to test on data (which is way
more important than training that only has to be done once, hence why it is shown
in the tables), and has way higher accuracy.

In the node 2 of Figure B.3 on page 119 there is an interesting phenomenon. The
expression is made of two factors, with the right one being a diagnosis indicator for
the data, while the left one is simply never null (because it is the diagnosis indicator
from the first node and was evaluated as not null for the data in node 2). This
left factor does not affect whether the expression evaluated on the data is null or
not, because it is never null. This case is rather unlikely because it means that this
expression has to be randomly found before only the right part. Because symbolic
classification is based on a genetic algorithm, itself partly reliant on randomness, this
scenario can occur. It does not affect the performances of the tree. Also, this is more
likely to occur when working with natural numbers (otherwise, the left factor could
make the expression reach below the threshold ϵ). Finally, the higher the parsimony
coefficient is, the less likely it is to happen.

5.1.1.5 Other Variants

There is an infinite number of variants of the standard polybox shown in Figure 5.1
on page 69. We tried to run DT4X on two other kinds of polybox, in order to show
that it can perform consistently on simple static systems without noise. The results
are presented in Appendix B on page 117.

With the success that DT4X has on the polybox cases, it begs the question: how
would it behave on real world systems ? At first, we take a look at how it performs
for a very similar, yet concrete, category of systems, logic circuits.

5.1.2 Logic Circuits

5.1.2.1 Introduction

Logic circuits are physical or abstract electronic circuits designed to perform logical
operations on one or more binary inputs to produce one or more binary outputs.
These circuits are the building blocks of digital systems and are used extensively in
computers, calculators, communication devices, and various other electronic devices.

In a logic circuit, binary values (0 and 1) represent logical states (false and true,
respectively). The fundamental components of logic circuits are logic gates, which
are electronic devices that perform basic logic operations such as AND, OR, NOT
and XOR.

In this manuscript, we only deal with combinational logic circuits (Jain et al.,
1997), meaning circuits that produce outputs solely based on the current input values,
without considering past inputs or outputs (as opposed to sequential logic circuits,
Jahanirad, 2019). Combinational logic circuits are used to perform specific functions
like addition, subtraction, multiplication, and comparison.

Many works tackle fault diagnosis of combinational logic circuits (Lu et al., 2003;
Fujiwara and Toida, 1982; Smith et al., 2005). However, to the best of our knowledge,
no work looks for diagnosis indicators built with logic operators. Applying DT4X to
a logic circuit example shows that it is able to find diagnosis indicators in which the

5.1. Application to Static Systems 75

operators are logic gates, leading to a new kind of ARRs named data-based logic
ARRs.

Definition 50 (Logic ARR for a dataset D01). Consider a dataset of samples D01 =
{(x, l)}, x ∈ {0, 1}n, l ∈ C and C0 ∈ C the class of nominal samples. A relation of
the form d01(x′, ẋ′, ẍ′, ...) = r, with input x′, a subvector of x, and output r, a scalar
named residual, is a data-based logic ARR for the dataset D01 if, for all x such that
there exists a sample (x, C0) ∈ D01, it holds that r = 0, and all operators of d01 are
logic gates.

As a consequence, a data-based logic ARR is a particular case of data-based ARR
where all operators are logic gates.

Let us take a look at the full subtractor example.

5.1.2.2 System Description

The logic circuit example we consider is the full subtractor, shown on Figure 5.5. This
system computes D = A−B with A and B in {0, 1} and D the output difference.
If there is a carry over, it is outputted by Cout. It also accepts a potential previous
carry over that is inputted as Cin. Thus, the five observable variables in this system
are A, B, Cin, Cout and D. Each component (= logic gate) of the system can be
faulty. A fault is modeled as the output being fixed to a value (0 or 1), meaning it
always outputs the same value independently of the inputs. This is called a stuck-at
fault and is the most common way to represent a fault in combinational logic circuits
(Lu et al., 2003). Thus, the set of possible diagnosis classes C = {nominal, fXOR1,
fXOR2, fNOT 1, fAND1, fNOT 2, fAND2, fOR}.

Figure 5.5: The Full Subtractor

76 Chapter 5. DT4X Applications

A dataset with 125000 nominal samples and 125000 faulty samples is generated
by simulating the subtractor in Python. For each faulty sample, exactly one random
component malfunctions.

5.1.2.3 Masked Faults and Preprocessing

In a logical framework, among the generated faulty samples, a lot of them are identical
to nominal samples. This is called a masked fault.

Definition 51 (Masked Fault). A masked fault is a sample labeled as faulty that is
identical to a sample that is not faulty.

For instance, an AND gate is stuck at outputting 0 and receives (0, 0) as inputs.
It would have output 0, even if it was not faulty.

The main difference in the dataset between this use case and the polybox example
is that the subtractor dataset contains a lot of masked faults. More than 50% of the
faulty samples are masked faults. If DT4X were to be trained with this data, symbolic
classification would never find diagnosis indicators able to isolate faulty classes from
the nominal class because more than half the faulty samples are identical to nominal
samples. In other words, for any faulty class fi, there exists multiple samples x
such that both (x, fi) and (x, nominal) are in the dataset. Hence, the need for
preprocessing the data before running DT4X on it.

It is not possible to predict faults for samples that are identical to nominal samples.
But it is not necessary either. Hence, we preselect a new subset of D, named Dfaulty,
that only contains faulty samples that do not appear in the nominal sample set:
Dfaulty = D \ {x, ∃(x, nominal)}. It is important to notice that this process is not
specific to our use case. It can be applied to any combinatorial logic circuit. This
filtering does not presuppose any knowledge about the system. However, it can only
work on systems where variables can take a finite set of values1 such as logic circuits.

On our full subtractor use case, after that filtering, only 46384 faulty samples are
left.

5.1.2.4 Training and Results

Once the preprocessing is done, the data is reshuffled and split between two sets: the
training set with 137108 samples and the testing set with 34276 samples. DT4X is
trained with default parameters, a parsimony coefficient of 0.05 (in order to increase
the likelihood of short expressions) and an operator set of basic binary operators:
[OR, XOR, AND, NOT]. The obtained decision tree and its comparison with other
machine learning algorithms can be found in Figure 5.6 on the facing page and Ta-
ble 5.4 on the next page respectively. The confusion matrix is given in Figure 5.7 on
page 78.

DT4X has an accuracy and a f1-score that can compete with the best machine
learning algorithms. Also, it has something more. It finds diagnosis indicators, or
as defined in Definition 50 on the previous page, data-based logic ARRs. For in-
stance, let us look at the truth table of the expressions used in nodes. Table 5.5 on
page 79 shows this truth table in the nominal case. The found expressions have all
the properties required to be data-based logic ARRs. Indeed, they are expressions
made of observable variables and logic gates that are worth 0 for nominal data. In
this binary, non-noisy, framework, the data-based logic ARRs found by DT4X should
meet model-based ARRs if the training dataset is representative enough.

1for continuous systems, an interval could be considered. But then, how to discriminate samples
from non-isolable faults from samples that are "identical" to nominal ?

5.2. Application to Dynamic Systems 77

Figure 5.6: Single Fault Full Subtractor Decision Tree

Algorithm Scoring Time (s)
34276 samples Accuracy (%) f1-score (%)

DT4X 2.48 84.37 82.09
sklDT 0.00 85.07 84.48
sklRF 0.17 84.95 83.72
sklLR 0.00 73.09 61.73
sklNB 0.02 16.80 20.56

sklSVM 28.57 84.95 83.72
sklKNN 4.34 85.18 84.30

Table 5.4: Single Fault Full Subtractor Results

Another interesting aspect to look at is how these logic ARRs perform (analyt-
ically) on faulty cases. Let us consider the performance of the logic ARR found in
node 1 on faults fXOR1 and fXOR2 (Table 5.6 on page 79). This shows that indeed,
the expression has the properties of a residual whose fault support would be fXOR1
and fXOR2. It is sensitive to data from these faulty classes.

Now, let us study how it fares against dynamic systems, and also systems with
unclean (e.g. noisy) data.

5.2 Application to Dynamic Systems
This section showcases the performances of DT4X on the water tanks and the 3D
printer use cases.

78 Chapter 5. DT4X Applications

Figure 5.7: Confusion Matrix of the Full Subtractor Diagnosis Tree

5.2.1 Specifics about Dynamic Systems

DT4X trains from samples corresponding to specific time steps, which means it does
not take into account any temporal information such as the next or previous time
steps. Indeed, ideally DT4X would be used in a real-time context where the next
time steps are unknown, and only a limited amount of previous time steps are known.
Fortunately, there exist other ways to give information about dynamics of the system,
for instance giving time derivatives or integrals of the variables.

Thus, when working with dynamic systems, derivatives (and/or integrals) of the
variables are provided as input to DT4X alongside the variables themselves (Moham-
madi et al., 2023). In practice, in this manuscript, we only work with derivatives
and not integrals. Derivatives contain information about the system dynamics and
are needed to build relevant diagnosis indicators. This implies prior knowledge of the
highest derivative order required to obtain diagnosability. In the current implemen-
tation, numerical computation of the derivatives is performed for all the continuous
domain observable signals of x during the data preprocessing stage and added to the
feature vector given as input to DT4X.

One might consider that a more effective solution is to incorporate a derivative
operator to be used in the symbolic classification phases of DT4X. It would allow
candidate solutions to contain any order derivatives and to compose the derivative
operator and other operators. However, when processing a sample x, this would re-
quire accessing the neighboring samples, making this solution more resource-intensive
in terms of both memory and computational requirements. Also, deciding the size of
the window of neighboring samples is a problem as complex as deciding the maximum
derivative order (exactly equivalent, in fact).

The main issue encountered when working with derivatives is how to differenti-
ate noisy signals. Indeed, differentiating a noisy signal outputs unusable derivatives
because the noise amplitudes become much higher than the actual variations of the
derivative signals themselves. Many works mention this problem and focus on solving
it, either by denoising the original signal (Y.-M. Chen et al., 2016) with, for instance,

5.2. Application to Dynamic Systems 79

Inputs Outputs Diagnosis Indicators

A B Cin D Cout

(A&Cin)
ˆ¬(B&D)
¬̂(Cin&Cout)

A ˆ B
ˆ Cin ˆ D

Cin & (Cout D̂) &
((A&Cout) | (Cin&D))

0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0

Table 5.5: Truth Table of Diagnosis Indicators Found by DT4X for
the Full Subtractor System (in the nominal case)

Inputs Outputs Expression
fXOR1 fXOR2 fXOR1 fXOR2

A B Cin D Cout D Cout A ˆ B ˆ Cin ˆ D

0 0 0 1 0 1 0 1 1
0 0 1 0 0 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1
1 0 1 1 1 1 0 1 1
1 1 0 1 0 1 0 1 1
1 1 1 0 0 0 1 1 1

Table 5.6: Truth Table of Second Node Diagnosis Indicator for faults
fXOR1 and fXOR2. Once the data is filtered, the only data remaining
are visible faults, meaning a faulty component outputs the incorrect

value. This table is built in this specific context.

low pass filtering (Dolabdjian, Fadili, and Leyva, 2002), or by finding a way to differ-
entiate that is robust to noise (Sterten and Furtat, 2017; Fioretti and Jetto, 1994).
There is no method that works for all types of problems, and many such problems
still have no solution. After trying all the noisy differentiation methods present in
Van Breugel, Kutz, and Brunton, 2020, we can safely assume that no method is able
to compute relevant noisy derivatives for the dynamic system studied here, the water
tanks, submitted to sensor noise variance of between 2.5e−5 and 5e−4 amplitude.

5.2.2 Water Tanks

The system has been described in Section 3.4.1 on page 36. The following sections
describe how a dataset is built, DT4X is used and what the results are. Then, the
results are analyzed.

5.2.2.1 Dataset

A dataset of 110 simulations is generated, 10 simulations per fault type (and 10
faultless simulations). The sampling frequency is 50Hz. For the aforementioned rea-
sons, in this dataset, no noise is injected. The dataset contains measurements of four

80 Chapter 5. DT4X Applications

d1 0.0452
d2 0.0638
d3 0.0591
d4 0.0878
d5 1.4107
d6 2.0964

Table 5.7: System Constants

observable variables: y1, y2, y3, y4 and a label l corresponding to the fault type (or
nominal). As we know from expert knowledge that most interactions in the system
can be described with only first order derivatives, first order derivatives are computed
from the observable signals, using the gradient method of the NumPy package, and
added to the dataset.Since uref is the input of the system, it is known and is also
included in the dataset. Finally, known constants of the system are given to DT4X
as some form of expert knowledge injected into the algorithm. These are mostly
component constants. They are recapped in Table 5.7. They are given in the form
of features with a constant value. In the end, the dataset is split between a training
and a testing dataset. The training dataset contains 3080088 samples of 15 vari-
ables (uref , y1, y2, y3, y4, ẏ1, ẏ2, ẏ3, ẏ4, d1, d2, d3, d4, d5, d6) and the corresponding label
l. The testing dataset contains 770022 samples.

5.2.2.2 DT4X Results

DT4X is run on this dataset with O = {+,−,×, /,√,2 }. It uses default hyper-
parameters except a maximum number of generations of 35, a parsimony coefficient
of 0.002, Xr = 0.0001 and ϵ = 0.03. Those have been chosen according to expert
knowledge about the system and fine-tuned after a few trials and errors. The output
tree of DT4X is too large to be displayed here. It goes to depth 9 and consists of
58 nodes. Results in terms of accuracy and f1-score are presented in Table 5.8 and
compared with other traditional machine learning algorithms. The confusion matrix
of the results is given in Figure 5.8 on the next page.

Algorithm Scoring Time (s)
770022 samples Accuracy (%) f1-score (%)

DT4X 373.74 99.78 99.78
sklDT 0.10 99.996 99.996
sklRF 7.30 99.997 99.997
sklLR 0.14 77.52 75.75
sklNB 0.49 77.51 78.37

sklSVM - - -
sklKNN 15.10 99.998 99.998

Table 5.8: Water Tanks Results. The SVM did not finish training
after more than 30 hours, hence why it has no value.

DT4X has a very high accuracy on the water tanks. It is close to the best al-
gorithms but not better. In general, from all results we have seen so far, the best
machine learning algorithm tends to be the random forest classifier, or at least it is
always very close to the best one. This is very interesting because it allows some
comparisons with DT4X that also relies on decision trees. DT4X is much slower to

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

5.2. Application to Dynamic Systems 81

Figure 5.8: Confusion Matrix of DT4X for the Water Tanks

Figure 5.9: First Three Nodes of the Water Tanks Output Decision
Tree

make predictions. The reason for this prediction time is the multivariate aspect of
DT4X. It is much slower to estimate the value of a diagnosis indicator than it is to
compare the value of a feature in a node for a traditional decision tree. However, the
trees in a random forest are much deeper and more numerous but still manage to
predict way faster than DT4X. Perhaps, DT4X can be optimized to use GPUs like
the other machine learning algorithms in order to parallelize its computation process
and speed up its prediction time.

The trained decision tree is too large to fit on the manuscript. Its depth is 9 and it
contains 58 nodes. A small section of the tree is shown in Figure 5.9. The first thing
that catches the eye is that some expressions are rather long (and some nodes have
much longer expressions than what is shown here). Indeed, the expressions found by
DT4X are not analytically equal to model-based ARRs. In particular, for some nodes
with few samples, the expressions found tend to over-fit the data, generating these
long expressions. We tried to play with the parsimony coefficient, but giving a higher
one meant expressions were too short and did not pass the test T2 of DT4X (see
Section 4.2.2.1 on page 53). Despite that, the tree is really good on testing samples
(99.78% accuracy and f1-score), meaning that DT4X learned to separate the classes

82 Chapter 5. DT4X Applications

Hyper-parameter Value
O +,−,×, /,√,2, ||, sign,≥,≤
ϵ 0.001

number of generations 20

Table 5.9: Training Hyper-Parameters of DT4X for the 3D Printer.
Other hyper-parameters have default values.

correctly.
However, model-based diagnosis shows that not all classes are isolable in this

system, but DT4X says that they all are. Structural analysis says that Ff2 and Fl3

are structurally non-isolable, which means that the same ARRs are sensitive to these
faults. However, that does not mean that they react in the same way. In particular,
here, Ff2 is a sensor fault that is modeled as an additive signal, whereas Fl3 is a
leakage that is modeled as a constant parameter. They also have very different
possible values. This means that it is very likely that data is affected in a different
way depending on which fault occurs. Consequentially, despite being structurally
non-isolable, these faults can be isolated through data.

To summarize, on this system, DT4X managed to diagnose correctly 99.78% of
the unknown samples. It managed to get full diagnosability of the system and even
to isolate classes that were supposed to be non-isolable. However, it did not manage
to find model-based ARRs. Instead, it found data-based ARRs for the dataset used
to train it, as defined in Definition 47 on page 62.

5.2.3 3D printer

Let us now test DT4X on the 3D printer defined in Section 2.3 on page 14.

5.2.3.1 Dataset

DT4X is trained with the dataset described in Section 2.3 on page 14. However,
unlike in that section, sliding windows are not considered. A sample x of the dataset
is made of all variables at a specific time. The split between train and test is similar
to the statistical split defined in Section 2.3 on page 14, it shuffles all prints and splits
in two sets. However, contrary to when working with sliding windows, a sample in the
test set can not be found in the train set (neither can half of it, as with the windows).

Initially, we tried computing first order derivatives and giving that to DT4X.
Then, we also tried with integrals, out of curiosity2. It quickly became apparent that
computation is faster with integrals and accuracy is similar after the same number of
nodes are trained.

Consequentially, it was decided to use integrals of the variables in the set of fea-
tures. They are computed using the simpson function of scipy integrate, the Python
package. Initial conditions are set to 0.

Thus, DT4X has been trained using this dataset and the hyper-parameters pre-
sented in Table 5.9. The number of generations is set low because the training time
for one node with this data varies between two and six days on an AMD Ryzen 9
6900hx with 16 cores. This is due to the number of input variables and operators
and to the size of the dataset. With 54 prints of around 10 minutes and a sampling
rate of more than 300Hz, there is a huge number (12397858) of samples. Therefore,

2it was inspired by works such as D. Jung, 2020 that study performance of structural analysis
based on ARR computation using integrals or derivatives

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html#scipy.integrate.simpson

5.2. Application to Dynamic Systems 83

Variable Name Variable Description
accel_x_foot Acceleration measured by the board accelerometer

in the x axis
accel_y_foot Acceleration measured by the board accelerometer

in the y axis
accel_z_foot Acceleration measured by the board accelerometer

in the z axis
accel_x_head Acceleration measured by the nozzle

accelerometer in the x axis
accel_y_head Acceleration measured by the nozzle

accelerometer in the y axis
accel_z_head Acceleration measured by the nozzle

accelerometer in the z axis
gyro_x_head Angular velocity around the x axis measured by

the gyroscope in the IMU
gyro_y_head Angular velocity around the y axis measured by

the gyroscope in the IMU
gyro_z_head Angular velocity around the z axis measured by

the gyroscope in the IMU
magn_x_head Intensity of the magnetic field along the x axis

measured by the magnetometer of the IMU
magn_y_head Intensity of the magnetic field along the y axis

measured by the magnetometer of the IMU
magn_z_head Intensity of the magnetic field along the z axis

measured by the magnetometer of the IMU
imu_temp Temperature measured by the IMU

weight Measured weight of the plastic thread that is
equivalent to its tension

layer Number of the current print layer
temp_bed_actual Measured board temperature
temp_bed_target Target board temperature
temp_tool_actual Measured nozzle temperature
temp_tool_target Target nozzle temperature

Table 5.10: Measured Variables for the 3D Printer

we decided to perform some feature selection as a preprocessing step to reduce the
number of observable variables inputted in DT4X.

5.2.3.2 Preprocessing

The list of initial input variables is given in Table 5.10. To add to this list, there
are integrals for each of these variables, which means 38 variables. However, not
all variables bring the same amount of information with respect to diagnosis. In
order to know which variables are the most informative and useful for prediction
of the diagnosis classes, we ran a feature selection algorithm. We used the XGB-
Classifier from XGBoost as a classification algorithm. Once trained, the attribute
_feature_importance of the XGBClassifier ranks input variables in order of impor-
tance for the correct predictions. The outcome of this ranking is given in Table 5.11
on page 85. The feature importance value is a metric of how useful this variable has

https://xgboost.readthedocs.io/en/stable/get_started.html
https://xgboost.readthedocs.io/en/stable/get_started.html
https://xgboost.readthedocs.io/en/stable/

84 Chapter 5. DT4X Applications

Figure 5.10: Sample Distribution in the Dataset

been towards the prediction. It is a proportion. The 15 first variables constitute 85%
of the importance of the prediction. As a good balance between a low number of
variables and a high feature importance score, they are kept for training DT4X.

It is interesting to note what those variables are. Mostly temperature measures
and integrals of accelerations, which correspond to what 3D printing experts suggested
(nozzle and board temperatures and printing speed). The nozzle temperature seems
to be the most important factor. The layer number is also very important, this makes
sense because most faults appear during the first layers of a print. Hence, just by
looking at the layer number, it is possible to predict with a high likelihood whether a
fault is present. Nevertheless, a very weird factor appears: the integral of the intensity
of the magnetic field along the x axis. We do not have any satisfying explanation as
to why.

A second preprocessing step is performed, this time to reduce the size of the
dataset. Remember, this dataset is not balanced at all in terms of class size. The
distribution looks like Figure 5.10. In order to both balance the distribution and
reduce the overall number of samples, the practical solution is to remove samples
from the largest classes. In the end, all classes contain a similar amount of samples,
8678 on average. The dataset contains 78100 samples and 15 observable variables.
From this, 59325 samples constitute the training set and 19775 samples constitute
the testing set. With this setup, each node of DT4X takes between one and twelve
hours to train. It is still a lot, but way less than before the preprocessing.

5.2.3.3 DT4X Results

The refit function mentioned in Section 4.2.2.4 on page 59 is used to train the
nodes one by one. A first tree is recorded when reaching depth 2. It is given in
Figure 5.11 on page 86. It has an accuracy of 35.99% and its confusion matrix is
given in Figure 5.12 on page 86. The fully developed tree is too large to be shown in
a readable way here, but it has a depth of 7 and an accuracy of 70.02%. Its confusion
matrix is given in Figure 5.13 on page 87.

5.2. Application to Dynamic Systems 85

Feature Importance Variable Name
0.139814 temp_tool_target
0.100609 temp_tool_target_int
0.099177 temp_bed_target
0.071347 layer
0.065376 temp_bed_actual
0.053015 temp_tool_actual
0.050098 weight_int
0.041065 magn_x_head_int
0.034851 gyro_z_head_int
0.034337 accel_y_head_int
0.033921 imu_temp
0.032919 accel_y_foot_int
0.032515 accel_x_head_int
0.031605 accel_x_foot_int
0.027684 weight
0.023797 temp_bed_actual_int
0.022443 temp_bed_target_int
0.019976 temp_tool_actual_int
0.018627 layer_int
0.018281 accel_z_head_int
0.015477 accel_z_foot_int
0.006631 magn_y_head_int
0.005052 gyro_y_head_int
0.004331 magn_z_head_int
0.004029 gyro_x_head_int
0.003454 imu_temp_int
0.001849 accel_y_head
0.001838 magn_z_head
0.001584 accel_z_head
0.001143 magn_y_head
0.000998 gyro_y_head
0.000918 magn_x_head
0.000890 gyro_z_head
0.000245 accel_x_foot
0.000088 gyro_x_head
0.000006 accel_x_head
0.000006 accel_z_foot
0.000003 accel_y_foot

Table 5.11: Feature Importance of the Observable Variables for the
Prediction of the 3D Printer State

86 Chapter 5. DT4X Applications

Figure 5.11: Decision Tree Trained by DT4X on the 3D Printer
Dataset

Figure 5.12: Confusion Matrix of the Depth 2 Decision Tree for the
3D Printer

5.2. Application to Dynamic Systems 87

Figure 5.13: Confusion Matrix of the Decision Tree Trained by
DT4X on the 3D Printer Dataset

88 Chapter 5. DT4X Applications

5.2.3.4 Analysis

An initial purpose of the work presented in Section 2.3 on page 14 was to compare
the results with those of DT4X. However, due to restrictions on the input data for
explainability purposes3, DT4X ended up tested on the same dataset, but differently
preprocessed. Thus, comparing the two is not relevant anymore.

70% accuracy for the fully grown tree is far from enough if the goal is to indus-
trialize the process. Especially since new prints can look very different from what is
in the dataset making the predictions less accurate. There are multiple reasons for
which DT4X is hard to adapt to this 3D printing problem. The major ones are the
following:

• It is very complex to build a dataset that is representative of all printing con-
ditions. In particular, the geometry of 3D parts can vary drastically from one
print to another. Perhaps, this could be solved by building a dataset around
elementary geometrical shapes from which any part can be built.

• Computation time is so high that a lot of simplifications have been made. This
means that less information is available (less input variables), less operators
are used than in an optimal scenario, for instance the log operator is not used
because expert think it is not relevant for this system, but what if it is ?

• The data is very noisy. Accelerometers are very sensitive to noise and, with a
high sampling frequency, noise is hard to discriminate from the actual signal.

• Labeling is not perfect, being made by hand and some time step during tran-
sitive states might be mislabeled, or data might not correspond to the system
state.

• Feature selection made in the preprocessing step may be harmful to find proper
diagnosis indicator analytical expressions.

The main takeaway is that, in its current state, DT4X is not fit for large-scale prob-
lems such as the 3D printer case. Perhaps, optimizing symbolic classification for use
by a GPU (graphics processing unit) could speed up the process. However, it does
not use matrix operations, which is what GPUs do best.

5.3 Conclusions

5.3.1 Summary

This chapter shows how DT4X is applied to four different systems and displays nu-
merical results for the diagnosis of those systems. DT4X reaches maximum possible
performance for static systems while finding data-based ARRs that are the same as
the ones found through model-based diagnosis. In the context of logic circuits, DT4X
is able to find logic ARRs, a new theoretical concept that we define as data-based
ARRs made from logic gates. For all the static systems, DT4X reaches maximal
diagnosability. A process to get rid of masked faults is used as a preprocessing step.

On dynamic systems, DT4X is faced with a major drawback, the requirement to
compute noisy derivatives. It is able to match the performances of the best machine

3Indeed, working with features engineered from windows would not have given DT4X the oppor-
tunity to find real model-based ARRs. Had we known before conducting the machine learning tests
on the printer, we would have probably done it differently. Also, in the end, DT4X did not find
model-based ARRs...

5.3. Conclusions 89

learning algorithms on a clean dataset (without noise) for the water tanks example.
However, the found diagnosis indicators do not seem to correspond to model-based
diagnosis indicators. Actually, further analysis should be performed using formal
calculus to assess whether the found data-based ARRs are equivalent to some model-
based ARRs. This is considered for future works.

On the 3D printer use case, the data is noisy and not representative of all print
conditions. Hence, DT4X, just as the other machine learning algorithms, struggles
to reach good performances. Moreover, it faces scalability issues. Indeed, the size
of the dataset and the complexity of the problem in terms of number of operators,
number of observable variables and length of the found expressions make symbolic
classification in DT4X slow to compute.

5.3.2 Perspectives

The proposed method to remove masked faults in the context of logic circuits can not
be used as-is in continuous systems. However, masked faults plague datasets from
all systems. Developing such methods when working with fault diagnosis should be
more of a focus in future works.

For the water tanks use case, DT4X is able to isolate faults that are structurally
non-isolable. A goal of DT4X is to find diagnosis indicators that mimic the behavior
of model-based ARRs. A model-based ARR established from structural analysis
and the model of the system can separate the two non-isolable faults by having
different thresholds for each of them. However, structural analysis does not take into
account the fact that these faults may have a different numerical impact on residuals.
Interestingly enough, DT4X can inform about the cases in which the value of residuals
should be considered and not only the fact that they are non-zero.

On the 3D printer case, integrals seem to be more proficient than derivatives
(and easier to compute). The most likely theory is that noisy data made derivatives
completely meaningless (reflecting variations in the noise much more than in the
actual signal). Those questions are complex to answer, especially because of the
training time of each node in the tree, that does not allow for many experiments.

Being able to test DT4X on noisy data but with coherent derivatives could po-
tentially show that DT4X is resilient to noise. It would not solve, however, the issue
that computing derivatives from noisy data is required for dynamic system diagnosis
with DT4X.

Why are model-based ARRs not found by DT4X in the context of dynamic sys-
tems ? Indeed, the found expressions split the data correctly, but why did DT4X
select these rather than the model-based ones that are often shorter and less complex
in terms of operators ? Future works could focus on improving the loss function of
symbolic classification. Indeed, DT4X uses the log loss function. This takes into
account how good an expression separates the two studied classes. However, it does
not take into account the other classes present in a node. In practice, most model-
based ARRs are either fully sensitive to a class or not sensitive at all, meaning that
all samples from a class are classified the same way. This is not a general rule, as is
discussed in the next chapter with weakly detectable faults, but it is a tendency. Our
idea is to use this knowledge to improve the loss function of symbolic classification
by rewarding the prediction of all samples from other classes (other than the studied
pair) in the same way.

Another topic that can be explored is whether the expressions found by DT4X are
similar to model-based ARRs. Similar in the analytical sense, but also, similar on the
set of system operating conditions, or even similar on the training dataset of DT4X.

90 Chapter 5. DT4X Applications

For instance, if a diagnosis indicator of DT4X behaves exactly like a model-based
ARR on the dataset, despite being different on points outside the dataset, it means
that symbolic classification found a perfect solution w.r.t. the dataset and that the
only way to improve the results would be to diversify the dataset to better cover the
system operating conditions.

91

Chapter 6

Physics Informed DT4X

In this chapter, we describe how to enhance DT4X using more knowledge about the
system. We consider the cases where it is possible to a priori obtain the structural
model of the system (as defined in Section 3.1 on page 29). Is it possible to take
advantage of this information and enhance DT4X with this knowledge in order to
reach a higher accuracy and more relevant diagnosis indicators ? We propose PI-
DT4X, a variant of DT4X that takes as input the structural model of the studied
system and uses this information to enhance DT4X.

From the structural model, it is possible to assess the structural diagnosability
of the system (by identifying the MSO sets). This means that DT4X loses part of
its purpose. However, it still gives a lot of insight by identifying the exact diagnosis
indicator equations and allowing diagnosis of unknown samples.

PI-DT4X is mainly of interest for our scientific goal, less so for the industrial goal.
Still, we could imagine situations where the structural model of a system is available
despite the full analytical model itself not being available.

First, we introduce background concepts, namely symbolic regression and weakly
detectable faults. Then, we present PI-DT4X in depth, similarly to what was done
for DT4X. Last, PI-DT4X is applied to the polybox and the water tanks use cases
and conclusions are drawn from these experiments.

6.1 Background Concepts
PI-DT4X relies on symbolic regression whereas DT4X relies on symbolic classification.
PI-DT4X does not use symbolic classification because of a certain type of faults:
weakly detectable faults. This section aims at introducing symbolic regression and
weakly detectable faults.

6.1.1 Symbolic Regression

Similarly to symbolic classification (see Section 4.1.2 on page 46), symbolic regression
is a technique of machine learning and symbolic artificial intelligence where symbolic
expressions or rules are used to represent relationships between input variables and
an output variable. Unlike traditional statistical or machine learning approaches
that rely on predefined mathematical models, symbolic regression aims to discover
interpretable symbolic expressions directly from the data. Figure 6.1 on the next
page illustrates the training process of symbolic regression. It consists in estimating
a function f : Rn → R, knowing pairs (x, f(x)) with x = (x1, . . . , xn) ∈ Rn and
f(x) ∈ R. f is the actual function, the one that symbolic regression is trying to find
the expression of, or at least approximate as best as possible. Let us call cbest the
function found by symbolic regression that tries to be as similar to f as possible. cbest

92 Chapter 6. Physics Informed DT4X

Figure 6.1: Symbolic Regressor: during training, the green objects
are known and the red ones are unknown and learnt.

Figure 6.2: Symbolic Regressor: during testing, the green objects
are known and the red ones are unknown and predicted

can be used to find the image of a sample x by f . Figure 6.2 shows how prediction
of the class of a new sample x is performed once cbest has been found.

Definition 52 (Symbolic Regressor). We call symbolic regressor the function cbest

once it has been found through symbolic regression. cbest : Rn → R.

The estimation of f is done without assuming its structure; an analytical relation
is therefore just discovered. There are multiple ways to carry out this estimation.
As mentioned in Section 4.1.2 on page 46, a genetic algorithm can be used for that
purpose. However, symbolic regression being a much more widely spread technique
than symbolic classification, many algorithms have been implemented to train a sym-
bolic regressor. Petersen et al., 2019 propose an implementation that uses recurrent
neural networks to find the sequence of operators and variables that constitute f . Y.
Jin et al., 2019 use bayesian methods and Udrescu and Tegmark, 2020 use physically
informed neural networks. Al-Roomi and El-Hawary, 2020 present an alternative to
symbolic regression that uses different mechanism, search space and building strat-
egy while still solving the same problem. All those papers are very recent, showing a
growing interest by the scientific community in the field of research that is symbolic
regression. An important thing to notice is that symbolic classification can be seen as
a simple extension of symbolic regression. Hence why we mentioned in Section 4.1.2
on page 46 that despite symbolic classification known implementation only using ge-
netic algorithms, it is clear that it could be replaced with some of the algorithms
mentioned here.

In the context of this manuscript, we use the gplearn implementation of symbolic
regression that relies on a genetic algorithm (see Section 4.1.1 on page 45) and is based
on the work of Poli, Langdon, and McPhee, 2008. The main reason is that it allows
to save implementation time by reusing part of the code of DT4X. However, as is
discussed later, other implementations could have been selected.

Symbolic regression takes as inputs a dataset D = {(x, f(x))} and a set of opera-
tors O (e.g. +, ∗,−, /,√, ||, log, etc.). The genetic algorithm searches for the best ex-
pression cbest combining variables (x1, . . . , xn) and operators so that

∑
x∈D |cbest(x)−

f(x)| is minimal (cbest is as close to f as possible on D). It generates candidate
solutions in the form of expressions c : Rn → R. These expressions are represented
as expression trees (Preiss, 1998, defined and illustrated in Section 4.1.2 on page 46).
The candidate expressions are evaluated using a fitness function. The fitness function
can vary depending on the application of symbolic regression. By default, in gplearn

6.1. Background Concepts 93

Figure 6.3: De-
tectable Fault 1

Figure 6.4: De-
tectable Fault 2

it is the mean-squared loss given by:

Fitness(c) =
1
|D|

∑
(x,f (x))∈D

(f(x)− c(x))2. (6.1)

Following the principles described in 4.1.1 on page 45, an initial population of can-
didate expressions is randomly generated. Then, the individuals are evaluated using
the fitness function. A new generation of individuals is generated by reproducing
the previous ones. Candidates with a high fitness are more likely to be used in the
reproduction process. Reproduction can consist of various operations as presented in
Section 4.1.2 on page 46.

This process is repeated until a stopping criterion is reached. It can be a stagnat-
ing fitness or a fitness threshold being reached by a candidate expression.

Symbolic regression has applications in various domains, including regression anal-
ysis, time series prediction, regression tasks in healthcare, finance, and engineering, as
well as in scientific discovery where the goal is to identify mathematical relationships
in experimental data (Iwasaki and Ishida, 2021).

6.1.2 Weakly Detectable Faults

This chapter requires defining a specific type of fault, called a weakly detectable fault
(Mattias Nyberg, 2002).

Definition 53 (Weakly Detectable Fault for an MSO set). A weakly detectable fault
is a type of fault that affects the behavior of the system, but only affects the behavior
of the ARR associated to an MSO set for a short period of time after its occurrence,
and not afterwards. It is also said to be weakly detectable for the ARR associated to
the MSO set.

It can also be seen as a fugitive fault (Soldani et al., 2006).
This type of fault is obviously very hard to detect, as it does not leave a trace

in time and is not permanent. Even worse, when acquiring data from such a fault,
the data after the occurrence of the fault is labeled with this fault, despite the ARR
looking exactly as if the fault did not occur. It hence acts as a masked fault (see
Section 5.1.2 on page 74) after some time. Figures 6.3, 6.4, 6.5 on the following page,
6.6 on the next page show different examples of detectable faults. Figure 6.7 on the
following page shows an example of a non detectable fault (for this MSO set) whereas
Figure 6.8 on the next page shows an example of a weakly detectable fault. They all
come from the water tanks system presented in Section 3.4.1 on page 36.

94 Chapter 6. Physics Informed DT4X

Figure 6.5: De-
tectable Fault 3

Figure 6.6: De-
tectable Fault 4

Figure 6.7: Not De-
tectable Fault

Figure 6.8: Weakly
Detectable Fault

6.2 PI-DT4X
PI-DT4X means Physics-Informed DT4X, illustrating the fact that more system
knowledge is given to DT4X.

6.2.1 PI-DT4X Principle

Similarly to DT4X, PI-DT4X trains a binary decision tree to diagnose a system. The
inputs to PI-DT4X are:

• A training dataset D of samples (x, l) with x ∈ Rn the measurable variables of
the system and l ∈ C the associated diagnosis of the system.

• The structural model M of the system in the form of an incidence matrix (see
Section 3.1 on page 29).

• A set of operators O.

• Various hyper-parameters (see Section 6.1 on page 100).

The main difference with DT4X is the addition of M . Here, prior knowledge about
the system is passed both through M and O.

The core idea of PI-DT4X is to extract knowledge about model-based ARRs from
the structural model and use this knowledge combined with symbolic regression to
find the analytical expression of those ARRs. More precisely, from M , it is possible to
identify MSO sets (see Section 3.1 on page 29). Then, in each MSO set, it is possible to
know which variables are included in the associated ARR and their highest derivative
order (for dynamic systems). Also, it is possible to know the fault support of this
ARR. Those concepts are explained in Erik Frisk, Mattias Krysander, and Daniel
Jung, 2017 and implemented in the associated Fault Diagnosis Toolbox. Up to this

https://faultdiagnosistoolbox.github.io/

6.2. PI-DT4X 95

point, the only difference with Section 3.4.2 on page 39 is that we also extract the
highest derivative order of present variables.

However, PI-DT4X uses the same concepts as DT4X, starting with the concept
of diagnosis indicator as defined in Section 4.2.1 on page 52.

In the decision tree resulting of PI-DT4X, each node ni ∈ N that is not a leaf
contains a diagnosis indicator dni : Rn → R that is associated with an MSO set
MSOi. Each diagnosis indicator dni is used to partition the data into two disjoint
subsets, depending on whether dni(x) = 0 or dni(x) ̸= 0 for all x belonging to ni.
The two subsets are then sent to a different child node. Each leaf of the resulting
tree has a label that is the class predicted for the data reaching this leaf.

6.2.2 PI-DT4X Algorithm

The concept defined in Definitions 45 on page 53 and 46 on page 53 are used here as
well.

Algorithm 3 gives the pseudo-code of PI-DT4X. The arrow symbol with a plus
(← +) means that the value is appended to the variable.

Algorithm 3 PI-DT4X pseudo-code
Inputs: D, O, M , Untrained Decision Tree (n0), Hyper-Parameters
Output: Trained Decision Tree with Diagnosis Indicators

1: currentNodes← n0
2: MSOs← generateMSOs(M)
3: while currentNodes is not empty do
4: futureNodes← emptyList
5: for all node ∈ currentNodes do
6: if node is pure with label then
7: node is leaf
8: node← label
9: else

10: rank(MSOs)
11: for all MSO ∈MSOs do
12: vars ← extractVariables(MSO)
13: datasetMSO ← filterData(node)
14: for all target ∈ vars do
15: cbest ← symbolicRegression(vars, target, datasetMSO)
16: if check cbest then
17: lNode, rNode← split according to cbest

18: futureNodes← +lNode, rNode
19: break, break
20: end if
21: end for
22: end for
23: if not check cbest then
24: node is leaf
25: node← majority label
26: end if
27: end if
28: end for
29: currentNodes← futureNodes
30: end while

96 Chapter 6. Physics Informed DT4X

6.2.3 Detailed Explanation

During the training phase, a node ni ∈ N contains a subset of samples Dni ⊂ D.
Each sample (x, l) in ni verifies the conditions defined on the edges leading to ni

from the root node. At the beginning of PI-DT4X (line 1), the root node n0 contains
the entire dataset D.

generateMSOs takes as input the structural model M and generates all the MSO
sets for this system (line 2). This is done using the Dulmage-Mendelson decomposition
(Dulmage and Mendelsohn, 1958).

PI-DT4X builds the tree starting from the root node and then going through
every single node in their order of creation. The algorithm stops when no nodes are
left to deal with (line 3).

When reaching a node ni, PI-DT4X first checks whether ni is pure with label
(line 5) (see Definition 45 on page 53). If it is the case, ni is designated as a leaf and
the label label is associated with it (lines 6 and 7).

Otherwise, the goal is to find a new diagnosis indicator dni that splits the data
belonging to Dni (line 10 to 22).

Each non-leaf node is associated with an MSO set. When reaching node ni, the
rank function first eliminates all the MSO sets associated with nodes on the path
towards ni. They are not even considered for this node. Then, it ranks the remaining
MSO sets according to the data present in ni. The goal is to find the MSO set that
is the most likely to split evenly the classes present in ni, Cni ⊂ C. Cni only contains
classes that are relevant in ni (according to Definition 46 on page 53). The formula
used to compute the score scorei associated to each MSO set in a node ni is the
following:

ri(MSO) =
|{Cl ∈ Cni , Cl /∈ FS}|

|Cni |
(6.2)

scorei(MSO) =

{
2ri(MSO) if ri(MSO) < 0.5
2− 2ri(MSO) if ri(MSO) > 0.5

(6.3)

with FS the fault support of the ARR associated to MSO and Cni the set of classes
relevant in ni. ri means representativity in ni, it is a measure of how little FS covers
the classes in Cni . The score of an MSO is maximal (1) if the fault support of its ARR
contains exactly half the classes in Cni . It is minimal (0) either if ∀ Cl ∈ Cni , Cl /∈ FS
or if ∀ Cl ∈ Cni , Cl ∈ FS. Once the scoring is done for all available MSO sets, they
are ranked according to their score, with the highest score first (line 10).

Then, PI-DT4X iterates over the ranked MSO sets (line 10, Figure 6.9 on the
next page). Still using the structural model, observable variables included in the
ARR of the chosen MSO set are selected (line 12). Also, using the Fault Diagnosis
Toolbox (Erik Frisk, Mattias Krysander, and Daniel Jung, 2017), the derivatives that
are present in the ARR are also selected1. The selected variables are stored in vars.

Afterwards, Dni is filtered (line 13). Only data corresponding to the classes not
detectable by the ARR associated to MSOi is kept. In other words, data from classes
in the fault support of the ARR is filtered out. Figure 6.10 on the facing page shows
which classes are kept. Since the nominal class is never in the fault support of an
ARR, it is always kept (if present in the first place). After this filtering process,

1In practice, all required derivatives for all MSO sets are computed beforehand, so that they can
easily be used during PI-DT4X. Knowing which ones to compute is also deduced from the structural
model using the toolbox. Actually, from the algorithm in the toolbox, it is only possible to know the
maximum derivative order at which the variable is involved in the ARR. For instance, it says “ẍ1 is
involved in the ARR” but using this algorithm it is not possible to know whether x1 or ẋ1 is also
involved in the ARR. Thus, we always include all derivative orders up to the maximum.

6.2. PI-DT4X 97

Figure 6.9: Selection of an MSO Set Using the Structural Model

Figure 6.10: Classes Kept for Symbolic Regression. The green circles
show fault classes that are not in the fault support of the MSO set
(yellow boxes). In this case, it means that classes corresponding to

fault f3 and f5 are kept. The nominal class is also kept.

the remaining dataset is called datasetMSO. Then, PI-DT4X iterates over vars (line
14). The variable selected this way is called target. Figure 6.11 on the next page
illustrates this.

Symbolic regression is then used to find an expression made of operators from O
and observable variables stored in vars that fits the target variable target on samples
from datasetMSO (line 15). However, first, target is removed from vars, otherwise
fitting would be very easy and not very insightful.

Once an expression cbest is found by symbolic regression, it goes through three
tests to make sure this expression is relevant (line 16) (see Definition 46 on page 53).
Contrary to the context of DT4X, here we know that a diagnosis indicator is likely
to exist. However, sometimes, symbolic regression, being based on a genetic algo-
rithm that is intrinsically random, can stagnate and stop before finding this diagnosis
indicator. The following tests are defined to ensure this is not the case:

• T1 checks that the nominal data from the whole dataset D is well predicted
by cbest. If, for at least XT1% of the samples x in the nominal data, |cbest(x)−
target| < ϵ, then the test is passed successfully. This mainly ensures that the
expression is a diagnosis indicator. XT1 and ϵ are hyper-parameters of PI-DT4X.

98 Chapter 6. Physics Informed DT4X

Figure 6.11: Variable Selection during PI-DT4X. The circled vari-
ables are in the MSO set, thus they are selected. One of them is

arbitrarily set as the target.

• T2 checks that cbest fits correctly XT2% of the data used to find it through sym-
bolic regression. This test ensures that symbolic regression actually converged
during the training process. XT2 is a hyper-parameter of PI-DT4X.

• T3 checks that both child nodes that would be created if cbest was considered
valid would not be empty. Since cbest has been trained only on data outside
the fault support, it can predict well classes for this subset but wrongly classes
from its fault support. This is specifically likely when facing weakly detectable
faults (see Section6.1.2 on page 93), since a weakly detectable fault would still
be considered in the fault support despite the diagnosis indicator being verified
for its data. Let us consider ni whose ARR is ARRi, with fault support FSi;
for x ∈ Cwd with Cwd ∈ FSi a class corresponding to a weakly detectable fault,
by definition of a weakly detectable fault, it is very likely that |ARRi(x)| <
ϵ (it is the case for all x except the ones right after the fault occurrence).
Consequentially, a diagnosis indicator may not verify T3. The reason for which
T3 exists is not to filter out expressions that are not diagnosis indicators but
rather to avoid creating empty child nodes.

If one of these tests fails, the expression is declared invalid and a different target
is selected. If all targets lead to an invalid expression, the MSO set with the next
highest score is used. If all targets in all MSO sets are tested and no valid expression
is found, the node is declared a leaf and labeled with the majority class (lines 23 to
25).

However, if cbest verifies T1, T2 and T3, dni = cbest − target is declared a diag-
nosis indicator as it verifies all the properties of a diagnosis indicator as defined in
Definition 43 on page 52 (line 16).

Therefore, the data in node ni is split according to dni (line 17). The algorithm
evaluates dni on the samples within Dni . If the result is 0 (more or less ϵ), the sample
(x, l) is sent to the left child of the current node (lNode). If the result is different
from 0, the sample is sent to the right child (rNode) (line 18). Next, the two for
loops are exited and the algorithm goes on to repeat the same process with the next
node.

6.2. PI-DT4X 99

6.2.4 Design Motivations

This section aims at explaining why some choices have been made in the design of
PI-DT4X.

6.2.4.1 Symbolic Regression rather than Symbolic Classification

In DT4X, symbolic classification is used to discriminate two sets A and B of samples
corresponding to different classes. It can only converge if a relation exists that sepa-
rates those two sets, i.e. that is (almost) zero for the samples of say A and non zero
for those of B. In the context of PI-DT4X, a node is associated with an MSO set and
we are targeting to find the model-based ARR corresponding to this MSO set. From
structural analysis, we know which classes are in the fault support of this MSO/ARR,
say those in the set B. If we use symbolic classification to discriminate the classes of
the fault support of the MSO, i.e. set B, from the other classes in the set A, then we
should get the correct ARR. That is without taking into account weakly detectable
faults. Indeed, although a weakly detectable fault belongs to the fault support of
the MSO/ARR, a large majority of samples of this class are not detectable by the
ARR. Thus, symbolic classification can only fail to find a relation that discriminates
samples that are actually not discriminable. This is the reason why it was decided
to use symbolic regression instead of symbolic classification. Symbolic regression is
fed with the data of the classes outside the fault support of the considered MSO,
here those in the set A. If weakly detectable faults are in the fault support of the
MSO/ARR, they are not considered and the issue is avoided.

Now, let us mention that it is more complex for symbolic regression to converge
than it would have been for symbolic classification to discriminate because fitting
a variable is a harder constraint than separating two sets. Also, considering less
data means having less samples to train onto, which makes convergence less likely.
Note that we made these two observations in the first design stages of DT4X. We
experimented symbolic regression to find ARRs, and even on a case as simple as the
polybox, it was not able to converge towards an ARR. In the context of PI-DT4X,
giving the structural model helps narrow down the search space by giving a set of
classes outside the fault support of the MSO/ARR and giving the observable variables
that should be involved in the expression of the ARR. This additional "model-based"
information allows symbolic regression to converge towards relevant ARRs, as will be
presented in Section 6.3 on the next page.

It is worth mentioning that symbolic classification would work and probably be
more efficient than symbolic regression for cases without weakly detectable faults.
Also, if there was a way to identify which samples from the weakly detectable fault
class(es) are misclassified by the model-based ARR, it would be more efficient to
remove those samples from the training data of symbolic classification. This would
be a solution in the same vein as the one applied to logic circuits in Section 5.1.2
on page 74 for which faulty samples with the same observable variable values as
nominal samples were removed. This was made possible because values were binary
and trivially comparable. But in the case of dynamic systems considered here, the
values of observable variables are real numbers. Moreover, an ARR can evaluate to
zero for two very different samples, thus there is no basis for removing undetectable
faulty samples.

In the context of DT4X, weakly detectable faults are not such a prevalent issue
because a node in the tree is not associated to an MSO set and to a specific ARR.
If symbolic classification tries to separate two classes and one of them is or includes
a weakly detectable fault for an ARR of the system, symbolic classification will just

100 Chapter 6. Physics Informed DT4X

converge towards a different data-based ARR, for which this fault is not weakly
detectable.

6.2.4.2 Choice of the Target Variable

Using an arbitrary target target among the available observable variables vars is
another design decision we took. Our first idea was that higher order derivatives
would be the easiest targets to fit, because when solving the equations by hand, it
is natural to end up with a derivative equal to a combination of the static variables
(especially when coming from state-space form). However, this was experimentally
disproved. Indeed, in some MSO sets, with a derivative as the target, symbolic
regression did not converge, but managed to converge with a static variable as the
target (despite still having the derivative in the expression). Derivatives tend to have
way smaller amplitudes in the use cases we studied, perhaps this explains why they
are harder to fit. However, we also noticed that when symbolic regression converges
no matter which variable is the target, it does so faster (computationally) when fitting
higher order derivatives. Hence, the choice to just pick targets in an arbitrary order.

6.2.5 PI-DT4X Hyper-Parameters

Hyper-parameters of PI-DT4X are very similar to the ones of DT4X. They are re-
capped in Table 6.1. The PI-DT4X hyper-parameters and their roles are described

PI-DT4X hyper-parameter Default Value
purity threshold Xp 0.95

relevance threshold Xr 0.001
performance on nominal threshold XT1 0.95
indicator performance threshold XT2 0.90

ϵ 0.01
Symbolic Regression Default Value

population size 5000
maximum number of generations 50

stagnation number 4
proportion of samples used 1

parsimony coefficient 0.02

Table 6.1: List of PI-DT4X hyper-parameters and their default val-
ues

in Section 6.2.3 on page 96.
All parameters for symbolic regression have exactly the same role and description

as the ones for symbolic classification described in Section 4.2.2.3 on page 58. The
main difference is that there is no classification function and ϵ is not used in symbolic
regression, but ϵ from PI-DT4X actually plays the same role, as threshold for the
diagnosis indicator.

6.3 Applications

6.3.1 Polybox

The polybox case study has been defined in Section 5.1.1 on page 69. In this section,
we only consider the single fault scenarios, with the same dataset as in Section 5.1.1

6.3. Applications 101

Figure 6.12: Structural Model of the Polybox. In the figure, M1
means fM1 (idem for the others) and e1 is the equation corresponding

to component M1, e2 to M2, e3 to M3, e4 to A1, e5 to A2.

Components Observables Fault Support
MSO1 M2, M3, A2 B, C, D, E, G fM2, fM3, fA2
MSO2 M1, M3, A1, A2 A, C, E, F, G fM1, fM3, fA1, fA2
MSO3 M1, M2, A1 A, B, C, D, F fM1, fM2, fA1

Table 6.2: List of Components and Observables in each MSO set
along with the Fault Support of the Corresponding ARR. All computed

from the structural model using the fault diagnosis toolbox.

on page 69. As a reminder, the structural model is given in Figure 6.12 with equations
e1, e2 e3 e4 and e5 given in Section 5.1.1.3 on page 70.

The MSO sets, as obtained through the Dulmage-Mendelson decomposition, are
presented in Figure 6.13 on the following page. The fault diagnosis toolbox gives the
list of observables included in the ARR of each MSO set (see Table 6.2). Since the
polybox is a static system, all highest derivative orders are 0. The fault support of
the associated ARR is also displayed in the table. PI-DT4X is run on the data with
this information and default hyper-parameters. The output decision tree is presented
in Figure 6.14 on the following page. The results are presented in Table 6.3 on the
next page. They are compared with results from DT4X. It is important to keep in
mind that DT4X already had maximum accuracy on the polybox case. Therefore, it
makes sense that they would both have the same accuracy on the same dataset. The
training times show how much faster knowing the structural model makes PI-DT4X.
This is largely explained by the fact that, from the structural model knowledge, we
already know that some classes are non isolable from each other. PI-DT4X identifies

102 Chapter 6. Physics Informed DT4X

Figure 6.13: MSO Sets of the Polybox. A dot means that the equa-
tion of the component (horizontal axis) belongs in the equation (MSO)

set (vertical axis).

Figure 6.14: Decision Tree from PI-DT4X for the Single Fault Poly-
box

Accuracy f1-score Scoring Time (s) Training Time (s)
PI-DT4X 81.95 75.61 0.19 31.09

DT4X 81.95 75.61 0.03 1296.34

Table 6.3: Results from PI-DT4X compared with Results from
DT4X for the polybox

6.3. Applications 103

Figure 6.15: Structural Model of the Water Tanks. e6 and e7 are
the differential constraints.

that no ARR can split those classes and does not try to find a diagnosis indicator
that splits them.

However, DT4X has a faster prediction time. The reason is that PI-DT4X has to
filter observable variables before evaluating the diagnosis indicator. It is important to
note that, while it is not visible in the data presented in Table 6.3 on the facing page,
PI-DT4X always finds the model-based ARRs as diagnosis indicators. It has been
run more than 20 times and always finds the correct expressions right away. On the
other hand, DT4X finds all the correct expressions (meaning the model-based ARRs)
around fifty percent of the time. Its accuracy barely decreases when it happens.
Taking that into account, PI-DT4X performs better but requires knowledge about
the system that might be complex to obtain (the structural model).

Let us study how PI-DT4X fares against a more complex system in the water
tanks.

6.3.2 Water Tanks

6.3.2.1 System Description

The water tanks system has been defined in Section 3.4.1 on page 36.
As a reminder, the structural model of the water tanks is presented in Figure 6.15.

From the structural model, we use the fault diagnosis toolbox to compute all MSO
sets and establish which observable variables are present in the ARR of each MSO
set, along with their highest derivative order and the fault support of the ARR. All
of this is summarized in Table 6.4 on the next page.

6.3.2.2 Dataset

The dataset used here is the same as the one for DT4X (see Section 5.2.2.1 on page 79)
except that the sampling frequency is 5Hz, and second order derivatives of y2 and

104 Chapter 6. Physics Informed DT4X

Equations Observables Fault Support
MSO1 e5, e9, e11 y2, y4 fh2 , ff2 , fl3 , fc2

MSO2 e3, e4, e8, e10 y1, y3 fh1 , ff1 , fl1 , fc1

MSO3 e2, e7, e9, e10, e11 y2, y3, y4, ẏ2 fh2 , ff1 , ff2 , fl2 , fl3

MSO4 e2, e5, e7, e10, e11 y3, y4, ẏ4 ff1 , ff2 , fl2 , fl3 , fc2

MSO5 e2, e5, e7, e9, e10 y2, y3, ẏ2 fh2 , ff1 , fl2 , fc2

MSO6 e2, e3, e4, e7, e8,
e9, e11

y1, y2, y4, ẏ2 fh1 , fh2 , ff2 , fl1 , fl2 ,
fl3 , fc1

MSO7 e2, e3, e4, e5, e7,
e8, e11

y1, y4, ẏ4 fh1 , ff2 , fl1 , fl2 , fl3 ,
fc1 , fc2

MSO8 e2, e3, e4, e5, e7,
e8, e9

y1, y2, ẏ2 fh1 , fh2 , fl1 , fl2 , fc1 ,
fc2

MSO9 e1, e4, e6, e8 uref , y1, ẏ1 fa, fh1 , fc1

MSO10 e1, e3, e6, e8, e10 uref , y1, y3, ẏ1 fa, fh1 , ff1 , fl1

MSO11 e1, e3, e4, e6, e10 uref , y3, ẏ3 fa, ff1 , fl1 , fc1

MSO12 e1, e2, e3, e6, e7,
e8, e9, e11

uref , y1, y2, y4, ẏ1, ẏ2 fa, fh1 , fh2 , ff2 , fl1 ,
fl2 , fl3

MSO13 e1, e2, e3, e5, e6,
e7, e8, e11

uref , y1, y4, ẏ1, ẏ4 fa, fh1 , ff2 , fl1 , fl2 ,
fl3 , fc2

MSO14 e1, e2, e3, e5, e6,
e7, e8, e9

uref , y1, y2, ẏ1, ẏ2 fa, fh1 , fh2 , fl1 , fl2 ,
fc2

MSO15 e1, e2, e3, e4, e6,
e7, e9, e11

uref , y2, y4, ẏ2, ẏ4, ÿ2 fa, fh2 , ff2 , fl1 , fl2 ,
fl3 , fc1

MSO16 e1, e2, e3, e4, e5,
e6, e7, e11

uref , y4, ẏ4, ÿ4 fa, ff2 , fl1 , fl2 , fl3 ,
fc1 , fc2

MSO17 e1, e2, e3, e4, e5,
e6, e7, e9

uref , y2, ẏ2, ÿ2 fa, fh2 , fl1 , fl2 , fc1 ,
fc2

Table 6.4: List of Equations and Observables in each MSO set along
with the Fault Support of the Corresponding ARR. All computed from
the structural model using the fault diagnosis toolbox. The equation

numbers refer to Figure 6.15 on the previous page.

6.3. Applications 105

Hyper-parameter Value
O +,−,×, /,√,2

ϵ 0.02
number of generations 150

population size 30000
parsimony coefficient 2e−6

Table 6.5: Training Hyper-Parameters of PI-DT4X for the Water
Tanks. Other hyper-parameters have default values.

Figure 6.16: Decision Tree of PI-DT4X for the Water Tanks

y4 have been computed and added as input. Then, it is split between a training
and a testing dataset. The training dataset contains 308088 samples of 17 variables
(uref , y1, y2, y3, y4, ẏ1, ẏ2, ẏ3, ẏ4, ÿ2, ÿ4, d1, d2, d3, d4, d5, d6) and the corresponding label
l. The testing dataset contains 77022 samples.

6.3.2.3 Results

PI-DT4X is used to train a decision tree with default hyper-parameters except the
ones presented in Table 6.5. The functions are chosen according to knowledge of
what type of operations the components incur. The population size and number of
generations have been increased to allow the algorithm enough time to converge. ϵ
and the parsimony coefficient are experimentally fine-tuned until reaching a good
trade-off between exploration time and diagnosis indicator quality. This is discussed
further.

The resulting diagnosis tree is presented in Figure 6.16. In addition to the infor-
mation that was already present in trees from DT4X, in each non-leaf node we can
find the variable that is fitted through symbolic regression, the MSO set associated
with this node (in the form of a list of equations) and the features of x that are used.

106 Chapter 6. Physics Informed DT4X

From the model-based equations presented in Section 3.4.1 on page 36 we can
compute a few ARRs:

ARR1 = y4 − d6
√

y2 (6.4)
ARR2 = y3 − d5

√
y1 (6.5)

ARR3 = ẏ2 −
d3
d5

y3 +
d4
d6

y4 (6.6)

ARR9 = ẏ1 − d1uref + d2
√

y1 (6.7)
(6.8)

In the tree, node 0 contains ARR1, node 1 contains ARR2, node 3 contains ARR3
and node 4 almost contains ARR9. Node 4 almost contains ARR9 because there is an
additional term, that is negligible compared to the ARR, at the end of the expression.
This shows that PI-DT4X is able to find some model-based ARRs purely using data
guided by the structural model, which is a very good sign. The nodes that contain
the model-based ARRs split the data in a very convincing way, almost all data from
each class end up together in the same child node.

However, when looking at the nodes that did not find model-based ARRs, a very
different story is told. The classes used to train symbolic regression (classes that do
not belong in the fault support of the MSO set of that node) are always classified
correctly, going to the left child node. However, the other classes get split a bit
randomly, which is a big concern for the final diagnosis. That is the reason why the
tree has not been expanded until having only pure leaves.

The reason this is occurring is because the threshold ϵ has been relaxed. Indeed,
with the default ϵ value, the test T1 never passed, even for the real model-based
ARRs, which means that the tree stopped expanding after the first two nodes (with
ARRs without derivatives). Even though no noise has been added to signals, round-
ing errors when computing derivatives make it so that the value of the expression cbest

found by symbolic regression is slightly off the target variable when the expression
includes derivatives. In order for the correct expression to pass T1 (or T2 for that
matter), ϵ had to be relaxed. This means that some expressions with good perfor-
mance on the training data manage to pass all three tests but are not model-based
ARRs and thus poorly detect samples from their fault support. This also explains
that nodes 0 and 1, that use static MSO sets (in the sense that their ARR does not
involve derivatives), find the correct model-based expressions right away.

A potential solution is mentioned in the perspectives, for future works to explore.

6.4 Conclusion

6.4.1 Summary

PI-DT4X is a data-driven algorithm that performs diagnosis of a system. It uses
meta-knowledge from model-based diagnosis. It is an alternative to DT4X to be
used when the structural model of the studied system is available (indeed, PI mean
Physically Informed). Each node of the output decision tree is associated with an
MSO set, computed from the structural model. Symbolic regression is used to fit an
observable variable in order to learn a diagnosis indicator that corresponds to the
ARR of the MSO set associated with the current node.

PI-DT4X is shown to have good performances on the polybox case and to converge
much faster and avoid useless symbolic regressions using knowledge of the structural

6.4. Conclusion 107

model. On the water tanks case, it is able to find some diagnosis indicators that are
model-based ARRs. However, when those model-based ARRs are not found, it is
worse than DT4X at discriminating classes and diagnosing the system.

6.4.2 Perspectives

6.4.2.1 Data Normalization

In order to solve the relaxed ϵ issue, a solution would be to have a dynamic ϵ that
adapts to each node, as mentioned in Chapter 4 on page 45. Another solution could
perhaps be to normalize the signals in the dataset so that one well-chosen value of
ϵ would fit all MSO sets. However, that would not solve the derivative computation
rounding error issue.

6.4.2.2 Enhanced Symbolic Regression

The main takeaway from the state of the art of symbolic regression method is that
there are many ways to perform it. They are quite recent and most of them came out
during development of DT4X and PI-DT4X, hence why they have not been tested
yet. Future works could focus on studying the impact of each symbolic regression
algorithm. Furthermore, this notion of exploring the space of candidate solutions
reminds us of another field of machine learning: reinforcement learning. This begs
the question, can reinforcement learning be used as an efficient replacement to genetic
algorithms ?

6.4.2.3 PSO Sets Rather than MSO Sets

Symbolic regression is really good at finding static ARRs, as shown by both the
polybox results and the water tanks results, where it never fails to find a static
model-based ARR. From a PSO set of equations, many residuals can be computed.
Sometimes, a PSO set that contains only dynamic MSO sets (in the sense that those
MSO sets all have associated ARRs that contains derivatives) can be used to compute
a static ARR. It would be interesting to study if PI-DT4X could be improved by not
only considering MSO sets but all the PSO sets available in each node and always
choosing those that can be solved with a static ARR.

6.4.2.4 Learning the Structural Model

The main reason to use DT4X rather than PI-DT4X is that the structural model
is very rarely easy to obtain. Would it be possible to learn the structural model
through the data ? Our idea is to use graph neural networks and in particular graph
convolutional networks (Kipf and Welling, 2016) combined with structure learning
(W. Jin et al., 2020) in order to learn the structural model from the data. Indeed,
as mentioned in Section 3.1 on page 29, the structural model can be represented by
a bipartite graph. Links in the graph can be learned using structure learning. This,
however, requires finding an objective function that makes use of the knowledge of
the graph in order to learn the correct links and build the bipartite graph of the
structural model.

109

Chapter 7

Conclusions and Perspectives

7.1 Main Contributions
This manuscript research relies on the belief that model-based diagnosis can be used
in conjunction with data-driven methods to transcend their respective limitations.
This thesis scientific purpose is to develop new methods that apply that principle.
This thesis industrial goal is to setup these new methods on real industrial systems
and analyze their performances.

First, we applied traditional machine learning to a new use case, the 3D printer,
in order to study the performances and examine how to complement machine learning
with model-based methods (see Chapter 2 on page 7).

After studying the literature in the domain of combined model-based and data-
driven diagnosis, we proposed a new method, heavily inspired by existing methods,
that combines structural analysis and machine learning in order to learn residual
generators from data. This algorithm performs well but lacks explainability (see
Chapter 3 on page 29). One of the goals of hybrid AI diagnosis is to use model
knowledge (or model-based diagnosis meta-knowledge) to give a useful explanation
as to why a fault occurs. Useful explanation is understood as able to give some
information about the system’s state, or give a solution to fix the fault, such as
modifying the correct parameter of the system.

With the learnings from the first two experiments, we designed a novel algorithm
that focuses on giving an explanation: DT4X. DT4X is a data-driven approach that
trains a multivariate decision tree by finding diagnosis indicators that act as the mul-
tivariate criteria to split the data at each node. The discovered diagnosis indicators
behave like analytical redundancy relations from model-based diagnosis. They are
found using symbolic classification, whose goal is to try to separate two classes, the
nominal class and a faulty class (see Chapter 4 on page 45).

DT4X reaches perfect performances on simulated, static systems with clean data
such as the polybox and some variations. It is able to find novel analytical redun-
dancy relations made of logic gates that we named logic ARRs when trained on logic
circuit data. It reaches a good accuracy on a dynamic system with clean data but
delivers complex ARRs that hardly can be considered as useful relations in terms of
explainability. For a complex, very noisy, dynamic system as the 3D printer, DT4X
reaches medium performances and is believed to be hardly scalable to systems of this
size, at least in its current shape (see Chapter 5 on page 69).

Finally, PI-DT4X, an alternative to DT4X, takes advantage of knowing the struc-
tural model of the studied system. From the structural model, it computes MSO sets
and looks for their associated ARR using symbolic regression. For that purpose, the
dataset is restricted to the observable variables present in the ARR and to the faults
not detectable by this ARR. Obtained trees for the polybox and the water tanks use
cases are presented and show that the structural model is a powerful tool to orient the

110 Chapter 7. Conclusions and Perspectives

use of data to look for model-based analytical redundancy relations (see Chapter 6
on page 91).

7.2 Conclusions
The goal we set at the beginning was to design a data-driven diagnosis method that:

• learns system information from the data;

• uses meta-knowledge (i.e. knowledge about the way the method works) from
model-based methods;

• allows for expert knowledge to be exploited to enhance diagnosis;

• is explicable (i.e. allows to identify what causes a fault to occur in order to be
able to correct it).

Both DT4X and PI-DT4X use meta-knowledge from model-based methods in
conjunction with a symbolic method in order to find data-based ARRs.

These data-based ARRs are input-output relations that describe the behavior of
a subpart of the system. ARRs are relations that, previous to this work, could only
be found using the model of the system. In that sense, they also give information
about the system.

Expert knowledge can and has to be used in order to choose the correct operators
to give as input to both DTX4 and PI-DT4X. Additionally, for dynamic systems,
expert knowledge can help find the correct derivative order to use for input data.
These are the two main ways expert knowledge can be used for now. Future works
could explore how to use already known relations (for instance if the equation of a
component is known, meaning part of the model of the system is known) to initialize
candidate solutions during symbolic algorithms, as mentioned in Section 4.3.2.1 on
page 68.

Finally, SA-ML, DT4X and PI-DT4X are able to isolate the faults, which can be
used to correct the system. However, one goal of explainability in our case is to provide
an explanation as to why a fault occurs, not only which fault occurs. SA-ML does
not provide any explanation towards that goal. DT4X and PI-DT4X both give some
insights. Indeed, the path of the leaf of a fault contains multiple data-based ARRs of
which we can extract a few properties: the faults that are isolated by it. Depending on
the order in which the ARRs are present on the path, it might be possible to identify
how components are connected, and once the fault is identified, a set of potential
components causing the fault can be identified in some cases. Obviously, this is not
direct explainability and requires an in-depth additional analysis.

To sum up, both DT4X and PI-DT4X are data-driven diagnosis methods that
learn system information from the data by using meta-knowledge from model-based
methods. They allow for some expert knowledge to be used to improve accuracy. Both
provide some kind of explanation that is not explicit and requires further analysis.

7.3 Perspectives
Various perspectives are given in each chapter. We want to highlight a specific one,
the automated computation of hyper-parameters of DT4X. Some hyper-parameters
(namely ϵ and the parsimony coefficient) have a significant impact on the outcome of
DT4X. For now, their value is chosen based on expertise and looking at the order of

7.4. Closing Thoughts 111

magnitude of data. However, automatically estimating these parameters, and even
better, adapting them along the run of DT4X would drastically ease working with
DT4X and improve the results. It would provide trees of better quality in terms of
computation time and found diagnosis indicators which would lead to better class
separation and more accurate diagnosability. The same reasoning also works for PI-
DT4X.

For DT4X, a few properties have been identified (see Section 4.2.3 on page 62).
There are a lot of corollaries or theorems left to be found and the same questions
can be asked about PI-DT4X. Which DT4X theorems also apply to PI-DT4X ? Is it
possible to find experimental conditions that are sufficient to consider that DT4X is
run in an ideal scenario (see Definition 48) ? This can be the focus of future works.

7.4 Closing Thoughts
To the best of our knowledge, DT4X is the first method to exploit symbolic classifi-
cation in order to find residual generators. We took the different ideas we had around
symbolic classification, trying to build an algorithm that should, theoretically, output
a correct diagnosis by using the discovered residual generators, or diagnosis indica-
tors. In hindsight, a lot of design choices were not optimal or even flat out incorrect.
Exploring different algorithms for symbolic classification should have been a priority.
We came to realize that many alternatives to genetic algorithms exist too late in
the research process to be able to backtrack without having to re-implement many
things from scratch. In the same vein, the importance of having a clean dataset when
working with a real system (as opposed to simulation) was valued highly, but still
not highly enough. We cannot emphasize enough how paramount the importance
of the quality of a dataset is. The version of the 3D printer dataset presented in
the manuscript is actually the third version of the dataset. We made multiple ex-
perimental designs, replaced the whole measuring system, had people from various
backgrounds, including 3D printing experts, give their thoughts and still, the results
show that what is learned from the dataset can not be applied to a print with a
different geometry.

Despite all that, we hope that DT4X and PI-DT4X advance the state of the art
about what can be achieved through symbolic classification for diagnosis. This first
draft of a data-driven algorithm using meta-knowledge from model-based diagnosis
can be improved in many ways, and, hopefully, future works will show how to solve
the limitations we encountered during our research.

113

Appendix A

3D Printer Instrumentation

Two Pi cameras were used to record the print, also linked to Raspberry boards but
each on a different Raspberry Pi to avoid overloading the CPU (Core Processing
Unit). Indeed, it led to data loss when we ran all sensor computations, including the
cameras, on the same Raspberry Pi. The first camera was placed at the same level
as the bed, with a field of view covering the whole printing area (See Figure A.2 and
Figure A.3).

The second one was placed directly on the nozzle, and has a focal distance of
2 cm which allows it to capture more details of the printing process and check on
the filament quality when it leaves the nozzle (See Figure A.4 and Figure A.5).
These signals were not used because the goal is to anticipate the apparition of faults.
Cameras did not show any sign prior to fault occurrences.

114 Appendix A. 3D Printer Instrumentation

Figure A.1: Pin Mapping for the 3D printer Instrumentation

Figure A.2: Bed Camera Setup

Figure A.3: Bed Camera View

Appendix A. 3D Printer Instrumentation 115

Figure A.4: Nozzle Camera Setup

Figure A.5: Nozzle Camera View

117

Appendix B

DT4X Applied to the Polybox

B.1 Polybox

B.1.1 Double Faults

When considering double faults, C = {nominal, fM1, fM2, fM3, fA1, fA2, fM1&M2,
fM1&M3, fM1&A1, fM1&A2, fM2&M3, fM2&A1, fM2&A2, fM3&A1, fM3&A2, fA1&A2}.
This experiment also uses a randomly generated dataset of 7776 nominal samples
and 7776 faulty samples, each being of one random fault combination (either single or
double fault). A faulty component outputs the expected value plus a random modifier
in J−15 , 15K∗ but in the case of double faults, the value of the two modifiers are
neither the same nor the opposite of each other, in order to avoid fault cancellation.
This dataset is randomly split between a training set with 10887 samples and a testing
set with 4665 samples. The training set is injected into DT4X with default hyper-
parameters and the output decision tree is shown in Figure B.1. The corresponding
confusion matrix (computed on the test set) is shown in Figure B.2.

The accuracy of this decision tree compared to other default scikit-learn imple-
mentations of common machine learning algorithms are shown in Table B.1.

Algorithm Scoring Time (s)
4665 samples Accuracy (%) f1 Score (%)

DT4X 0.39 64.37 58.56
sklDT 0.00 50.53 50.03
sklRF 0.08 56.03 47.61
sklLR 0.00 51.36 34.86
sklNB 0.01 51.38 36.54

sklSVM 1.04 54.98 43.14
sklKNN 0.08 55.26 46.65

Table B.1: Double Fault Polybox Results

B.1.2 Merged Classes Single Faults

Once the non-isolable classes have been merged, C = {nominal, fM1|A1|(M1&A1), fM2,
fM3|A2|(M3&A2), f(M1&M2)|(M1&M3)|(M1&A2)|(M2&M3)|(M2&A1)|(M2&A2)|(M3&A1)|(A1&A2)}.
The randomly generated dataset is composed of 7776 nominal samples and 7776 faulty
samples, each being of one fault type (in C). A faulty component outputs the ex-
pected value plus a modifier in {−3,−2,−1, 1, 2, 3}. This dataset is randomly split
between a training set with 12442 samples and a testing set with 3110 samples. The
training set is fed to DT4X and the output decision tree is shown in Figure B.3. The
corresponding confusion matrix (computed on the test set) is shown in Figure B.4.

118 Appendix B. DT4X Applied to the Polybox

Figure B.1: Double Fault Polybox Decision Tree

The accuracy of this decision tree compared to other default scikit-learn imple-
mentations of common machine learning algorithms are shown in Table B.2.

B.1.3 Merged Classes Double Faults

Let us consider the double fault case when me merge the non-isolable classes together.
C = {nominal, fM1|A1, fM2, fM3|A2}. The randomly generated dataset is composed
of 7776 nominal samples and 7776 faulty samples, each being of one fault type. A
faulty component outputs the expected value plus a random modifier in J−15 , 15K∗

but in the case of double faults, the value of the two modifiers are neither the same
nor the opposite of each other, in order to avoid fault cancellation. This dataset is
randomly split between a training set with 12442 samples and a testing set with 3110
samples. The training set is fed to DT4X and the output decision tree is shown in
Figure B.5. The corresponding confusion matrix (computed on the test set) is shown
in Figure B.6.

The accuracy of this decision tree compared to other default scikit-learn imple-
mentations of common machine learning algorithms are shown in Table B.3.

B.2. Second Polybox 119

Figure B.2: Confusion Matrix of the Double Fault Polybox Diagnosis
Tree

Figure B.3: Single Fault Polybox Decision Tree with Merged Classes

B.2 Second Polybox

B.2.1 Single Fault

A variant is presented in Figure B.7. It also has seven observable variables and if
only single faults are considered, C = {nominal, fM1, fA1, fA2, fA3}. Results for
the single fault case and the double fault case are presented in Section B.2.1 and
Section B.2.2 respectively of Appendix B.

C = {nominal, fM , fA1, fA2, fA3}. 7776 nominal samples and 7776 faulty sam-
ples, each being of one fault type. A faulty component outputs the expected value
plus a modifier in {−3,−2,−1, 1, 2, 3}. 12442 training samples and 3110 testing sam-
ples. Decision tree: Figure B.8. Confusion matrix: Figure B.9. Comparison with
other algorithms: Table B.4. Model-based equations (true residuals for comparison):
Table B.5 with ecomp the equation that corresponds to component comp.

120 Appendix B. DT4X Applied to the Polybox

Figure B.4: Confusion Matrix of the Single Fault Polybox Diagnosis
Tree with Merged Classes

Algorithm Scoring Time (s)
3110 samples Accuracy (%) f1 Score (%)

DT4X 0.25 100.00 100.00
sklDT 0.00 60.23 59.87
sklRF 0.06 56.17 50.95
sklLR 0.00 49.71 33.01
sklNB 0.00 49.65 33.57

sklSVM 0.81 51.00 35.79
sklKNN 0.06 53.83 46.61

Table B.2: Single Fault Polybox with Merged Classes Results

B.2.2 Double Fault

C = {nominal, fM , fA1, fA2, fA3, fM&A1, fM&A2, fM&A3, fA1&A2, fA1&A3, fA2&A3}.
7776 nominal samples and 7776 faulty samples, each being of one fault type. A faulty
component outputs the expected value plus a random modifier in J−15 , 15K∗ but in
the case of double faults, the value of the two modifiers are neither the same nor the
opposite of each other, in order to avoid fault cancellation. 12442 training samples
and 3110 testing samples. Decision tree: Figure B.10. Confusion matrix: Figure B.11.
Comparison with other algorithms: Table B.6.

In this case, DT4X managed to always perfectly find the fault indicators of the
system. They are the same as the ones obtained from model-based diagnosis.

B.3 Third Polybox

B.3.1 Single Fault

Another polybox variant is presented in Figure B.12. This variant contains an O
component that outputs the opposite of its input (out = −in).

B.3. Third Polybox 121

Figure B.5: Double Fault Polybox Decision Tree with Merged
Classes

Figure B.6: Confusion Matrix of the Double Fault Polybox Diagnosis
Tree with Merged Classes

C = {nominal, fO, fA1, fM1, fM2}. 2401 nominal samples and 2401 faulty sam-
ples, each being of one fault type. A faulty component outputs the expected value
plus a modifier in {−3,−2,−1, 1, 2, 3}. 3842 training samples and 960 testing sam-
ples. Decision tree: Figure B.13. Confusion matrix: Figure B.14. Comparison with
other algorithms: Table B.7. Model-based equations (true residuals for comparison):
Table B.8.

B.3.2 Double Fault

C = {nominal, fO, fA1, fM1, fM2, fO&A1, fO&M1, fO&M2, fA1&M1, fA1&M2, fM1&M2}.
2401 nominal samples and 2401 faulty samples, each being of one fault type. A faulty
component outputs the expected value plus a random modifier in J−15 , 15K∗ but
in the case of double faults, the value of the two modifiers are neither the same nor
the opposite of each other, in order to avoid fault cancellation. 3842 training samples
and 960 testing samples. Decision tree: Figure B.15. Confusion matrix: Figure B.16.
Comparison with other algorithms: Table B.9.

This variant is a bit more tricky for DT4X because when A = 0 or B = 0 some
faults are hidden (or being identical to other faults). There are ways to deal with

122 Appendix B. DT4X Applied to the Polybox

Algorithm Scoring Time (s)
3110 samples Accuracy (%) f1 Score (%)

DT4X 0.23 99.84 99.84
sklDT 0.00 67.07 66.78
sklRF 0.06 73.44 69.04
sklLR 0.00 50.80 34.23
sklNB 0.00 54.37 44.41

sklSVM 0.69 68.26 51.06
sklKNN 0.06 66.78 62.05

Table B.3: Double Fault Polybox with Merged Classes Results

Figure B.7: The Second Polybox

this issue (see Section 5.1.2) but in this simple case the solution was to not input 0
at all for A or B. However, this led to issues similar to the ones encountered in the
double fault cases of Section 5.1.1. Indeed, since A and B cannot be null, they do not
affect the behavior of the whole expression with respect to the nominal case. Hence
the expression found in the node 2 of the tree presented in Figure B.13.

B.3. Third Polybox 123

Figure B.8: Single Fault Second Polybox Decision Tree

Algorithm Scoring Time (s)
3110 samples Accuracy (%) f1 Score (%)

DT4X 0.20 87.94 83.76
sklDT 0.00 50.35 49.81
sklRF 0.06 51.86 44.24
sklLR 0.00 49.32 32.59
sklNB 0.00 49.32 32.59

sklSVM 0.69 51.80 37.85
sklKNN 0.06 56.43 47.67

Table B.4: Single Fault Second Polybox Results

Equation set Residual Expression
MSO1 {eM , eA2} A ∗B + D−G

MSO2 {eM , eA1, eA3} A ∗B + C + E − F

MSO3 {eA1, eA2, eA3} C + E − F −D + G

Table B.5: Model-Based Residuals for the Second Polybox

Algorithm Scoring Time (s)
3110 samples Accuracy (%) f1 Score (%)

DT4X 0.25 70.51 64.57
sklDT 0.00 57.68 57.17
sklRF 0.06 61.77 57.20
sklLR 0.00 49.55 32.83
sklNB 0.00 50.45 37.50

sklSVM 0.69 61.93 56.73
sklKNN 0.06 60.26 55.98

Table B.6: Double Fault Second Polybox Results

124 Appendix B. DT4X Applied to the Polybox

Figure B.9: Confusion Matrix of the Single Fault Second Polybox
Diagnosis Tree

Figure B.10: Double Fault Second Polybox Decision Tree

B.3. Third Polybox 125

Figure B.11: Confusion Matrix of the Double Fault Second Polybox
Diagnosis Tree

Figure B.12: The Third Polybox

Algorithm Scoring Time (s)
960 samples Accuracy (%) f1 Score (%)

DT4X 0.07 88.65 84.58
sklDT 0.00 18.96 19.30
sklRF 0.02 22.92 20.40
sklLR 0.00 48.75 31.95
sklNB 0.00 48.75 31.95

sklSVM 0.08 48.75 31.95
sklKNN 0.01 39.90 29.53

Table B.7: Single Fault Third Polybox Results

126 Appendix B. DT4X Applied to the Polybox

Figure B.13: Single Fault Third Polybox Decision Tree

Figure B.14: Confusion Matrix of the Single Fault Third Polybox
Diagnosis Tree

Equation set Residual Expression
MSO1 {eM1, eM2} A ∗E −B ∗D
MSO2 {eO, eA1, eM2} (A−B) ∗B −E
MSO3 {eO, eA1, eM1} (A−B) ∗A−D

Table B.8: Model-Based Residuals for the Third Polybox

B.3. Third Polybox 127

Figure B.15: Double Fault Third Polybox Decision Tree

Figure B.16: Confusion Matrix of the Double Fault Third Polybox
Diagnosis Tree

128 Appendix B. DT4X Applied to the Polybox

Algorithm Scoring Time (s)
960 samples Accuracy (%) f1 Score (%)

DT4X 0.08 70.21 64.27
sklDT 0.00 32.40 33.26
sklRF 0.03 44.27 37.81
sklLR 0.00 50.73 34.15
sklNB 0.00 50.73 34.19

sklSVM 0.10 50.73 34.15
sklKNN 0.01 49.38 38.18

Table B.9: Double Fault Third Polybox Results

129

Bibliography

Abonyi, Janos and János Abonyi (2003). Fuzzy model identification. Springer.
Ademujimi, Toyosi Toriola, Michael P Brundage, and Vittaldas V Prabhu (2017).

“A review of current machine learning techniques used in manufacturing diagno-
sis”. In: Advances in Production Management Systems. The Path to Intelligent,
Collaborative and Sustainable Manufacturing: IFIP WG 5.7 International Con-
ference, APMS 2017, Hamburg, Germany, September 3-7, 2017, Proceedings, Part
I. Springer, pp. 407–415.

Alpaydin, Ethem (2021). Machine learning. MIT press.
Ankenbrandt, Carol A (1991). “An extension to the theory of convergence and a

proof of the time complexity of genetic algorithms”. In: Foundations of genetic
algorithms. Vol. 1. Elsevier, pp. 53–68.

Åström, Karl Johan and Peter Eykhoff (1971). “System identification—a survey”. In:
Automatica 7.2, pp. 123–162.

Bártolo, Paulo Jorge (2011). Stereolithography: materials, processes and applications.
Springer Science & Business Media.

Basak, Jayanta and Raghu Krishnapuram (2005). “Interpretable hierarchical clus-
tering by constructing an unsupervised decision tree”. In: IEEE transactions on
knowledge and data engineering 17.1, pp. 121–132.

Baumann, Felix and Dieter Roller (2016). “Vision based error detection for 3D print-
ing processes”. In: MATEC web of conferences. Vol. 59. EDP Sciences, p. 06003.

Beardwood, Jillian, J. H. Halton, and J. M. Hammersley (1959). “The shortest path
through many points”. In: Mathematical Proceedings of the Cambridge Philosoph-
ical Society 55.4, pp. 299–327. doi: 10.1017/S0305004100034095.

Bishop, C.M. (2006). Pattern Recognition and Machine Learning. p. 209. Springer.
Blanke, M. et al. (2006). Diagnosis and Fault-Tolerant Control. Springer-Verlag Berlin

Heidelberg.
Brion, Douglas AJ and Sebastian W Pattinson (2022). “Generalisable 3D printing

error detection and correction via multi-head neural networks”. In: Nature com-
munications 13.1, p. 4654.

Brodley, Carla E. and Paul E. Utgoff (Apr. 1995). “Multivariate decision trees”. In:
Machine Learning 19.1, pp. 45–77. issn: 1573-0565.

Cassar, J. and M. Staroswiecki (1997). “A structural approach for the design of failure
detection and identification systems”. In: IFAC Conference on Control of Indus-
trial Systems, vol. 30(6), pp. 841-846.

Chen, Yi-Ming et al. (2016). “Variable-order fractional numerical differentiation for
noisy signals by wavelet denoising”. In: Journal of computational physics 311,
pp. 338–347.

Chen, Z. et al. (2021). “Graph Convolutional Network-Based Method for Fault Diag-
nosis using a Hybrid of Measurement and Prior Knowledge.” In: IEEE transactions
on cybernetics. issn: 2168-2275. doi: 10.1109/TCYB.2021.3059002.

Chow, E. Y. and A. Willsky (1984). “Analytical redundancy and the design of ro-
bust failure detection systems”. In: IEEE Transactions on Automatic Control 29,
pp. 603–614.

https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1109/TCYB.2021.3059002

130 Bibliography

Console, Luca, Claudia Picardi, and D Theseider Duprè (2003). “Temporal decision
trees: Model-based diagnosis of dynamic systems on-board”. In: Journal of artifi-
cial intelligence research 19, pp. 469–512.

Costa, Vinícius G. and Carlos E. Pedreira (May 2023). “Recent advances in decision
trees: an updated survey”. In: Artificial Intelligence Review 56.5, pp. 4765–4800.
issn: 1573-7462. doi: 10.1007/s10462-022-10275-5.

Davidor, Yuval (1991). Genetic Algorithms and Robotics: A heuristic strategy for
optimization. Vol. 1. World Scientific.

De Kleer, Johan and Brian C Williams (1987). “Diagnosing multiple faults”. In: Ar-
tificial intelligence 32.1, pp. 97–130.

Deb, Kalyanmoy (1998). “Genetic algorithm in search and optimization: the technique
and applications Proceedings of International Workshop on Soft Computing and
Intelligent Systems”. In: ISI, Calcutta, India) ., pp. 58–87.

Delli, Ugandhar and Shing Chang (2018). “Automated Process Monitoring in 3D
Printing Using Supervised Machine Learning”. In: Procedia Manufacturing 26,
pp. 865–870.

Dolabdjian, Ch, J Fadili, and E Huertas Leyva (2002). “Classical low-pass filter and
real-time wavelet-based denoising technique implemented on a DSP: a comparison
study”. In: The European Physical Journal-Applied Physics 20.2, pp. 135–140.

Duan, Zhihe et al. (2018). “Development and trend of condition monitoring and fault
diagnosis of multi-sensors information fusion for rolling bearings: a review”. In:
The International Journal of Advanced Manufacturing Technology 96, pp. 803–
819.

Dulmage, A. L. and N. S. Mendelsohn (1958). “Coverings of Bipartite Graphs”. In:
Canadian Journal of Mathematics 10, pp. 517–534. doi: 10.4153/CJM-1958-
052-0.

Düştegör, D. et al. (2006). “Structural Analysis of Fault Isolability in the DAMADICS
benchmark”. English. In: Control Engineering Practice 14.6, pp. 597–608. doi:
10.1016/j.conengprac.2005.04.008.

Fioretti, Sandro and L Jetto (1994). “Low a priori statistical information model for
optimal smoothing and differentiation of noisy signals”. In: International journal
of adaptive control and signal processing 8.4, pp. 305–320.

Frisk, E. and M. Nyberg (Sept. 2001). “Brief A Minimal Polynomial Basis Solution
to Residual Generation for Fault Diagnosis in Linear Systems”. In: Automatica
37.9, pp. 1417–1424. issn: 0005-1098. doi: 10.1016/S0005-1098(01)00078-4.

Frisk, Erik, Mattias Krysander, and Daniel Jung (2017). “A toolbox for analysis
and design of model based diagnosis systems for large scale models”. In: IFAC-
PapersOnLine 50.1, pp. 3287–3293.

Fujiwara and Toida (1982). “The complexity of fault detection problems for combi-
national logic circuits”. In: IEEE Transactions on computers 100.6, pp. 555–560.

Fürnkranz, Johannes (2010). “Decision Tree”. In: Encyclopedia of Machine Learning.
Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, pp. 263–
267. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_204.

García, Salvador et al. (2016). “Big data preprocessing: methods and prospects”. In:
Big data analytics 1, pp. 1–22.

Garlotta, Donald (Apr. 2001). “A Literature Review of Poly(Lactic Acid)”. In: Jour-
nal of Polymers and the Environment 9.2, pp. 63–84.

Gerges, Firas, Germain Zouein, and Danielle Azar (2018). “Genetic Algorithms with
Local Optima Handling to Solve Sudoku Puzzles”. In: Proceedings of the 2018
International Conference on Computing and Artificial Intelligence. ICCAI ’18.

https://doi.org/10.1007/s10462-022-10275-5
https://doi.org/10.4153/CJM-1958-052-0
https://doi.org/10.4153/CJM-1958-052-0
https://doi.org/10.1016/j.conengprac.2005.04.008
https://doi.org/10.1016/S0005-1098(01)00078-4
https://doi.org/10.1007/978-0-387-30164-8_204

Bibliography 131

Chengdu, China: Association for Computing Machinery, pp. 19–22. doi: 10.1145/
3194452.3194463.

Gilpin, Leilani H et al. (2018). “Explaining explanations: An overview of interpretabil-
ity of machine learning”. In: 2018 IEEE 5th International Conference on data
science and advanced analytics (DSAA). IEEE, pp. 80–89.

Goh, Guo Dong, Swee Leong Sing, and Wai Yee Yeong (2021). “A review on machine
learning in 3D printing: applications, potential, and challenges”. In: Artificial In-
telligence Review 54.1, pp. 63–94.

Goupil, Louis, Elodie Chanthery, et al. (2022). “A survey on diagnosis methods com-
bining dynamic systems structural analysis and machine learning”. In: 33rd In-
ternational Workshop on Principle of Diagnosis–DX 2022.

— (2023). “Tree based diagnosis enhanced with meta knowledge”. In: 34th Interna-
tional Workshop on Principles of Diagnosis (DX’23).

Goupil, Louis, Louise Travé-Massuyès, et al. (June 2024). “Tree based Diagnosis
Enhanced with Meta Knowledge Applied to Dynamic Systems”. In: 12th IFAC
Symposium on Fault Detection, Supervision and Safety for Technical Processes.
Ferrara, Italy.

Greenacre, Michael et al. (2022). “Principal component analysis”. In: Nature Reviews
Methods Primers 2.1, p. 100.

Grefenstette, John J (1993). “Genetic algorithms and machine learning”. In: Pro-
ceedings of the sixth annual conference on Computational learning theory, pp. 3–
4.

Han, Jun and Claudio Moraga (1995). “The influence of the sigmoid function param-
eters on the speed of backpropagation learning”. In: From Natural to Artificial
Neural Computation. Ed. by José Mira and Francisco Sandoval. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp. 195–201. isbn: 978-3-540-49288-7.

He, Kun et al. (2018). “Intelligent fault diagnosis of delta 3D printers using attitude
sensors based on support vector machines”. In: Sensors 18.4, p. 1298.

Holland, John H. (1992). “Genetic Algorithms”. In: Scientific American 267.1, pp. 66–
73. issn: 00368733, 19467087. url: http://www.jstor.org/stable/24939139
(visited on 04/12/2024).

Hollerbach, John, Wisama Khalil, and Maxime Gautier (2016). “Model identifica-
tion”. In: Springer handbook of robotics, pp. 113–138.

Iwasaki, Yuma and Masahiko Ishida (2021). “Data-driven formulation of natural laws
by recursive-LASSO-based symbolic regression”. In: arXiv.

Izenman, Alan Julian (2013). “Linear discriminant analysis”. In: Modern multivariate
statistical techniques. Springer, pp. 237–280.

Jahanirad, H (2019). “Efficient reliability evaluation of combinational and sequential
logic circuits”. In: Journal of Computational Electronics 18.1, pp. 343–355.

Jain, Jawahar et al. (1997). “A survey of techniques for formal verification of combi-
national circuits”. In: Proceedings International Conference on Computer Design
VLSI in Computers and Processors. IEEE, pp. 445–454.

Jin, Wei et al. (2020). “Graph structure learning for robust graph neural networks”.
In: Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 66–74.

Jin, Ying et al. (2019). “Bayesian symbolic regression”. In: arXiv.
Jin, Z, Z Zhang, and GX Gu (2019). Autonomous in-situ correction of fused deposition

modeling printers using computer vision and deep learning. Manuf Lett 22: 11–15.
Joyce, James (2003). “Bayes’ theorem”. In.

https://doi.org/10.1145/3194452.3194463
https://doi.org/10.1145/3194452.3194463
http://www.jstor.org/stable/24939139

132 Bibliography

Jung, D. (2020). “Residual Generation using Physically-Based Grey-Box Recurrent
Neural Networks for Engine Fault Diagnosis”. In: arXiv preprint arXiv:2008.04644.
url: https://arxiv.org/abs/2008.04644.

Jung, D. and C. Sundstrom (2017). “A Combined Data-Driven and Model-Based
Residual Selection Algorithm for Fault Detection and Isolation”. In: IEEE Trans-
actions on Control Systems Technology 27.2, pp. 616–630. doi: 10.1109/tcst.
2017.2773514.

Keesman, Karel J (2011). System identification: an introduction. Springer Science &
Business Media.

Kipf, Thomas N and Max Welling (2016). “Semi-supervised classification with graph
convolutional networks”. In: arXiv preprint arXiv:1609.02907.

Kleinbaum, David G et al. (2002). Logistic regression. Springer.
Kotsiantis, Sotiris B (2013). “Decision trees: a recent overview”. In: Artificial Intelli-

gence Review 39, pp. 261–283.
Kotsiantis, Sotiris B, Ioannis Zaharakis, P Pintelas, et al. (2007). “Supervised machine

learning: A review of classification techniques”. In: Emerging artificial intelligence
applications in computer engineering 160.1, pp. 3–24.

Krüger, Jacob et al. (2018). “Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin”. In: Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems.
Association for Computing Machinery, pp. 105–112.

Krysander, M., J. Åslund, and E. Frisk (Jan. 2010). “A Structural Algorithm for
Finding Testable Sub-models and Multiple Fault Isolability Analysis”. In: 21st
Annual Workshop Proceedings, phm society.

Lepot, Mathieu, Jean-Baptiste Aubin, and François H.L.R. Clemens (2017). “Inter-
polation in Time Series: An Introductive Overview of Existing Methods, Their
Performance Criteria and Uncertainty Assessment”. In: Water 9.10.

Li, Kang, Jian-Xun Peng, and George W Irwin (2005). “A fast nonlinear model iden-
tification method”. In: IEEE Transactions on Automatic Control 50.8, pp. 1211–
1216.

Li, Shi et al. (2020). “An adaptive data fusion strategy for fault diagnosis based on
the convolutional neural network”. In: Measurement 165, p. 108122.

Lissovoi, Andrei and Pietro S Oliveto (2019). “On the time and space complexity of
genetic programming for evolving Boolean conjunctions”. In: Journal of Artificial
Intelligence Research 66, pp. 655–689.

Liu, Siyu et al. (2022). “Simple Structural Descriptor Obtained from Symbolic Clas-
sification for Predicting the Oxygen Vacancy Defect Formation of Perovskites”.
In: ACS Applied Materials & Interfaces 14.9. PMID: 35196010, pp. 11758–11767.
doi: 10.1021/acsami.1c24003.

Ljung, Lennart (1995). System identification. Univ.
Loja, Rene Vinicio Sanchez et al. (2020). “One-shot Fault Diagnosis of 3D Printers

Through Improved Feature Space Learning”. In: Ieee Transactions on Industrial
Electronics 2020.2020.

Lu, Shyue-Kung et al. (2003). “Combinational circuit fault diagnosis using logic em-
ulation”. In: 2003 IEEE International Symposium on Circuits and Systems (IS-
CAS). Vol. 5. IEEE, pp. V–V.

Manning, Timmy, Roy D Sleator, and Paul Walsh (2013). “Naturally selecting so-
lutions: the use of genetic algorithms in bioinformatics”. In: Bioengineered 4.5,
pp. 266–278.

Mohammadi, Arman et al. (2023). Analysis of Numerical Integration in RNN-Based
Residuals for Fault Diagnosis of Dynamic Systems. arXiv: 2305.04670 [cs.LG].

https://arxiv.org/abs/2008.04644
https://doi.org/10.1109/tcst.2017.2773514
https://doi.org/10.1109/tcst.2017.2773514
https://doi.org/10.1021/acsami.1c24003
https://arxiv.org/abs/2305.04670

Bibliography 133

Mothilal, Ramaravind K, Amit Sharma, and Chenhao Tan (2020). “Explaining ma-
chine learning classifiers through diverse counterfactual explanations”. In: Proceed-
ings of the 2020 conference on fairness, accountability, and transparency, pp. 607–
617.

Murota, K. (Jan. 2009). Matrices and Matroids for Systems Analysis. Vol. 20. Springer.
isbn: 978-3-642-03993-5. doi: 10.1007/978-3-642-03994-2.

Nyberg, Mattias (2002). “Criterions for detectability and strong detectability of faults
in linear systems”. In: International Journal of Control 75.7, pp. 490–501.

Oliveto, Pietro S and Carsten Witt (2015). “Improved time complexity analysis of
the simple genetic algorithm”. In: Theoretical Computer Science 605, pp. 21–41.

Pérez, G. et al. (July 2017). “Fault-driven structural diagnosis approach in a dis-
tributed context”. In: 20th World Congress of the International Federation of
Automatic Control, pp.14819–14824. url: https://hal.archives-ouvertes.
fr/hal-01579467.

Pérez-Zuñiga, CG et al. (2018). “Decentralized diagnosis via structural analysis and
integer programming”. In: IFAC-PapersOnLine 51.24, pp. 168–175.

Petersen, Brenden K et al. (2019). “Deep symbolic regression: Recovering mathemat-
ical expressions from data via risk-seeking policy gradients”. In: arXiv preprint
arXiv:1912.04871.

Peterson, Leif E (2009). “K-nearest neighbor”. In: Scholarpedia 4.2, p. 1883.
Petsiuk, Aliaksei L. and Joshua M. Pearce (2020). “Open source computer vision-

based layer-wise 3D printing analysis”. In: Additive Manufacturing 36, p. 101473.
Poli, Riccardo, William B. Langdon, and Nicholas Freitag McPhee (2008). A field

guide to genetic programming. (With contributions by J. R. Koza). Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk.

Preiss, Bruno R. (1998). “Expression Trees”. In: Retrieved December 20, p. 2010.
Priyam, Anuja et al. (2013). “Comparative analysis of decision tree classification

algorithms”. In: International Journal of current engineering and technology 3.2,
pp. 334–337.

Refaeilzadeh, Payam, Lei Tang, and Huan Liu (2009). “Cross-Validation”. In: Ency-
clopedia of Database Systems. Springer US, pp. 532–538.

Riaz, Muhammad, Nasir Abbas, and Ronald JMM Does (2011). “Improving the per-
formance of CUSUM charts”. In: Quality and Reliability Engineering International
27.4, pp. 415–424.

Riedmiller, Martin and A Lernen (2014). “Multi layer perceptron”. In: Machine
Learning Lab Special Lecture, University of Freiburg 24.

Rigatti, Steven J (2017). “Random forest”. In: Journal of Insurance Medicine 47.1,
pp. 31–39.

Rojas, Raul and Raúl Rojas (1996). “The backpropagation algorithm”. In: Neural
networks: a systematic introduction, pp. 149–182.

Rong, Shen and Zhang Bao-Wen (2018). “The research of regression model in machine
learning field”. In: MATEC Web of Conferences. Vol. 176. EDP Sciences, p. 01033.

Al-Roomi, Ali R and Mohamed E El-Hawary (2020). “Universal functions originator”.
In: Applied Soft Computing 94, p. 106417.

Rudin, Cynthia (2019). “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead”. In: Nature machine intel-
ligence 1.5, pp. 206–215.

Shao, Haidong et al. (2021). “A novel approach of multisensory fusion to collaborative
fault diagnosis in maintenance”. In: Information Fusion 74, pp. 65–76.

https://doi.org/10.1007/978-3-642-03994-2
https://hal.archives-ouvertes.fr/hal-01579467
https://hal.archives-ouvertes.fr/hal-01579467

134 Bibliography

Singh, Amanpreet, Narina Thakur, and Aakanksha Sharma (2016). “A review of
supervised machine learning algorithms”. In: 2016 3rd International Conference
on Computing for Sustainable Global Development (INDIACom), pp. 1310–1315.

Slimani, Amel et al. (2018). “Fusion of model-based and data-based fault diagnosis
approaches”. In: IFAC-PapersOnLine 51.24, pp. 1205–1211.

Šljivic, M et al. (Oct. 2019). “Comparing the accuracy of 3D slicer software in printed
enduse parts”. In: IOP Conference Series: Materials Science and Engineering
659.1, p. 012082.

Smith, Alexander et al. (2005). “Fault diagnosis and logic debugging using Boolean
satisfiability”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 24.10, pp. 1606–1621.

Soldani, Siegfried et al. (2006). “Intermittent fault detection through message ex-
changes: a coherence based approach”. In: IFAC Proceedings Volumes 39.13.

Steinwart, Ingo and Andreas Christmann (2008). Support vector machines. Springer
Science & Business Media.

Sterten, Jo and Yurii Furtat (2017). “Regularized Methods of Noisy Signals Differen-
tiation in Real Time”. In.

Stevens, Trevor (2016). “GPlearn”. In: Github. url: (https://gplearn.readthedocs.
io/en/stable/intro.html).

Subias, Audine and Louise Travé-Massuyes (2006). “Discriminating qualitative model
generation from classified data”. In: 20th International Workshop on Qualitative
Reasoning (QR-06), pp. 129–136.

Svärd, Carl et al. (Dec. 2011). “A Data-Driven and Probabilistic Approach to Resid-
ual Evaluation for Fault Diagnosis”. In: Proceedings of the IEEE Conference on
Decision and Control, pp. 95–102. doi: 10.1109/CDC.2011.6160714.

Tax, D.M.J. and R.P.W. Duin (2002). “Using two-class classifiers for multiclass clas-
sification”. In: 2002 International Conference on Pattern Recognition. Vol. 2, 124–
127 vol.2.

Travé-Massuyès, L., T. Escobet, and X. Olive (2006). “Diagnosability Analysis Based
on Component-Supported Analytical Redundancy Relations”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics - Part A: Systems and Humans 36.6,
pp. 1146–1160. doi: 10.1109/TSMCA.2006.878984.

Udrescu, Silviu-Marian and Max Tegmark (2020). “AI Feynman: A physics-inspired
method for symbolic regression”. In: Science Advances 6.16, eaay2631.

Uhlmann, Eckart et al. (2018). “Cluster identification of sensor data for predictive
maintenance in a Selective Laser Melting machine tool”. In: Procedia manufac-
turing 24, pp. 60–65.

Van Breugel, Floris, J. Nathan Kutz, and Bingni W. Brunton (2020). “Numerical Dif-
ferentiation of Noisy Data: A Unifying Multi-Objective Optimization Framework”.
In: IEEE Access 8, pp. 196865–196877. doi: 10.1109/ACCESS.2020.3034077.

Virgolin, Marco and Solon P. Pissis (2022). Symbolic Regression is NP-hard. arXiv:
2207.01018 [cs.NE].

Voydie, Dorian et al. (2023). “Machine Learning Based Fault Anticipation for 3D
Printing”. In: 22nd World Congress of the International Federation of Automatic
Control (IFAC 2023).

Wang, Chengcheng et al. (2020). “Machine learning in additive manufacturing: State-
of-the-art and perspectives”. In: Additive Manufacturing 36, p. 101538.

Webb, Geoffrey I, Eamonn Keogh, and Risto Miikkulainen (2010). “Naive Bayes.” In:
Encyclopedia of machine learning 15.1, pp. 713–714.

Yang, Li and Abdallah Shami (2020). “On hyperparameter optimization of machine
learning algorithms: Theory and practice”. In: Neurocomputing 415, pp. 295–316.

(https://gplearn.readthedocs.io/en/stable/intro.html)
(https://gplearn.readthedocs.io/en/stable/intro.html)
https://doi.org/10.1109/CDC.2011.6160714
https://doi.org/10.1109/TSMCA.2006.878984
https://doi.org/10.1109/ACCESS.2020.3034077
https://arxiv.org/abs/2207.01018

Bibliography 135

Yang, Qingsong (2004). Model-based and data driven fault diagnosis methods with
applications to process monitoring. Case Western Reserve University.

Yegnanarayana, Bayya (2009). Artificial neural networks. PHI Learning Pvt. Ltd.
Yen, Chih-Ta and Ping-Chi Chuang (2022). “Application of a neural network inte-

grated with the internet of things sensing technology for 3D printer fault diagno-
sis”. In: Microsystem Technologies 28.1, pp. 13–23.

Zerilli, John (2022). “Explaining machine learning decisions”. In: Philosophy of Sci-
ence 89.1, pp. 1–19.

Zhang, Shaohui et al. (2021). “Pre-classified reservoir computing for the fault diagno-
sis of 3D printers”. In: Mechanical Systems and Signal Processing 146, p. 106961.

Zheng, Alice and Amanda Casari (2018). Feature engineering for machine learning:
principles and techniques for data scientists. " O’Reilly Media, Inc."

	Abstract
	Acknowledgements
	Preamble
	Introduction
	Scientific Goals
	Industrial Context
	Manuscript Organization
	Useful Concepts and Notations
	The System
	Diagnosis

	Machine Learning Based Diagnosis
	Background
	Dataset
	Machine Learning
	General Principles
	Classic machine learning algorithms

	State of the Art of 3D Printing Diagnosis Methods
	Machine Learning Applied to the 3D Printer
	System Description
	3D Printer Fault Types
	Measuring Equipment
	Data Collection
	Data Preprocessing
	Feature Engineering
	Training
	Results
	Takeaways

	Conclusions

	Hybrid AI Diagnosis
	Background - Structural Analysis
	Important notions
	Diagnosis via Structural Redundancy

	State of the Art
	Hybrid AI Diagnosis Methods
	Machine learning and structural analysis

	Variation on an hybrid AI Diagnosis method
	The SA-ML Method

	Application to a dynamic non-linear system
	System description: the two tanks system
	Structural Analysis
	Establish the Structural Model
	Identify the MSO Sets and Compute the Fault Signature Matrix
	Select a Subset with Maximal Isolability

	Training for each MSO Set
	Dataset Preprocessing
	Training
	Best Algorithm Selection

	Final Results

	Conclusions

	DT4X: Diagnosis Tree Enhanced with Meta-Knowledge
	Background
	Genetic Algorithms
	Symbolic Classification
	Decision Trees
	Training a Decision Tree
	Using a Tree
	Multivariate vs Univariate

	DT4X
	Principle
	DT4X Algorithm
	Detailed Explanation
	Classification Function
	Hyper-Parameters
	Refitting
	Implementation Architecture
	Time Complexity

	DT4X Properties
	Inherent Properties
	Unicity of Diagnosis Indicators on a Path
	Necessary and Sufficient Fault Signature Matrix
	Bounded Amount of Data Required to Train
	Kernel Intersection of Data-Based ARRs from DT4X is Included in the Kernel Intersection of Model-Based ARRs

	Conclusions
	Summary
	Perspectives
	More Expert Knowledge
	Automatic Fitting of Hyper-Parameters
	Refitting Following Concept Drifts

	DT4X Applications
	Application to Static Systems
	Polybox
	System Description
	Results
	Comparison with Model-Based Results
	Comparison with Other Machine Learning Algorithms
	Other Variants

	Logic Circuits
	Introduction
	System Description
	Masked Faults and Preprocessing
	Training and Results

	Application to Dynamic Systems
	Specifics about Dynamic Systems
	Water Tanks
	Dataset
	DT4X Results

	3D printer
	Dataset
	Preprocessing
	DT4X Results
	Analysis

	Conclusions
	Summary
	Perspectives

	Physics Informed DT4X
	Background Concepts
	Symbolic Regression
	Weakly Detectable Faults

	PI-DT4X
	PI-DT4X Principle
	PI-DT4X Algorithm
	Detailed Explanation
	Design Motivations
	Symbolic Regression rather than Symbolic Classification
	Choice of the Target Variable

	PI-DT4X Hyper-Parameters

	Applications
	Polybox
	Water Tanks
	System Description
	Dataset
	Results

	Conclusion
	Summary
	Perspectives
	Data Normalization
	Enhanced Symbolic Regression
	PSO Sets Rather than MSO Sets
	Learning the Structural Model

	Conclusions and Perspectives
	Main Contributions
	Conclusions
	Perspectives
	Closing Thoughts

	3D Printer Instrumentation
	DT4X Applied to the Polybox
	Polybox
	Double Faults
	Merged Classes Single Faults
	Merged Classes Double Faults

	Second Polybox
	Single Fault
	Double Fault

	Third Polybox
	Single Fault
	Double Fault

	Bibliography

