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EDSYS : Automatique 4200046
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Abstract

Filtering theory basically relates to optimal state estimation in stochastic dy-
namical systems, particularly when faced with partial and noisy data. This
field, closely intertwined with control theory, focuses on designing estimators
doing real-time computation while maintaining an acceptable level of accu-
racy as measured by the mean square error. The necessity for such estimates
becomes increasingly critical with the proliferation of network-controlled sys-
tems, such as autonomous vehicles and complex industrial processes, where
the observation processes are subject to randomness in transmission and this
gives rise to varying information patterns under which the estimation must
be carried out.

This thesis addresses the important task of state estimation in continuous-
time stochastic dynamical systems when the observation process is avail-
able only at some discrete time instants governed by a random process. By
adapting classical estimation methods, we derive equations for optimal state
estimator, explore their properties and practicality, and propose and evalu-
ates sub-optimal alternatives, showcasing parallels to the existing techniques
within the classical estimation domain when applied to Poisson-distributed
observation processes.

The study covers three classes of mathematical models for the continuous-
time dynamical system and the discrete observation process. First, we con-
sider Itô stochastic differential equations with Lipschitz drift terms and con-
stant diffusion coefficient, whereas the lower-dimensional discrete observation
process comprises the nonlinear mapping of the state and additive Gaussian
noise. We propose easy-to-implement continuous-discrete suboptimal state
estimators for this system class. Assuming that a Poisson counter governs
discrete times at which the observations are available, we compute the ex-
pectation or error covariance process. Analysis is carried out to provide
conditions for boundedness of the error covariance process, as well as, the
dependence on the mean sampling rate.

Secondly, we study continuous-discrete ensemble filters for Ornstein–Uh-
lenbeck processes with discrete observations described by linear functions
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ii ABSTRACT

of state and additive Gaussian noise. Ensemble filters have gained a lot of
interest for state estimation in large-scale models with noisy measurements
where the computation of optimal gain is either computationally expensive
or not entirely feasible due to complexity of the dynamics. In this thesis, we
propose continuous-discrete McKean–Vlasov type diffusion processes, which
serve as the mean-field model for describing the limit dynamics of the ensem-
ble of particles. We study several kinds of mean-field processes depending
on how the noise terms are included in mimicking the state process and the
observation model. The resulting particles are coupled through empirical
covariances which are updated at discrete times with the arrival of new ob-
servations. With appropriate analysis of the first and second moments, we
show that under certain conditions on system parameters, the performance of
the ensemble filters approaches the optimal filter as the number of particles
gets larger.

Lastly, we consider the dynamical systems described by continuous-time
Markov chains with finite state space, and the observation process is obtained
by discretizing a conventional stochastic process driven by a Wiener process.
For this case, the L1-convergence of the derived optimal estimator to the
classical (purely continuous) optimal estimator (Wonham filter) is shown
with respect to increasing intensity of Poisson processes.

Keywords: nonlinear filtering, linear filtering, Poisson-distributed obser-
vations, random observations, ensemble filter, continuous-discrete filter



Résumé

La théorie du filtrage concerne essentiellement l’estimation optimale de l’état
dans les systèmes stochastiques, surtout avec des mesures partielles et bru-
itées. Ce domaine, fortement lié à la théorie du contrôle, se concentre sur la
synthèse d’estimateurs effectuant des calculs en temps réel pour minimiser
l’erreur quadratique moyenne. La nécessité de telles estimations devient de
plus en plus critique avec la prolifération de systèmes contrôlés par réseau,
tels que les véhicules autonomes et les processus industriels complexes, où les
processus d’observations sont soumis au caractère aléatoire de la transmis-
sion, ce qui donne lieu à des modèles d’information variables pour résoudre
le problème d’estimation.

Cette thèse aborde la tâche importante de l’estimation d’état dans les
systèmes dynamiques stochastiques en temps continu lorsque les mesures sont
disponible aux certains instants discrets defini par un processus aléatoire.
En adaptant les méthodes d’estimation classiques, nous développons des
équations pour un estimateur optimal d’état, explorons leurs propriétés et les
aspect pratiques, et proposons et analysons des alternatives sous-optimales,
présentant des parallèles avec les techniques existantes dans le domaine d’esti-
mation classique lorsqu’elles sont appliquées aux processus d’observation
Poisson-distribués.

L’étude couvre trois classes de modèles mathématiques pour le système
dynamique en temps continu et le processus d’observation discret. Tout
d’abord, nous considérons des équations différentielles Itôstochastiques avec
le champ de vecteur Lipschitz et un coefficient de diffusion constant, alors
que le processus d’observation discrète de dimension inférieure comprend la
fonction nonlinéaire de l’état et un bruit Gaussien additif. Nous proposons
des estimateurs d’état sous-optimaux continus-discrets, qui sont faciles à
implémenter pour cette classe de systèmes. En supposant qu’un compteur de
Poisson décrit les instants discrets auxquels les observations sont disponibles,
nous calculons le processus de covariance d’erreur d’estimation. L’analyse est
effectuée pour fournir les conditions de limitation du processus de covariance
d’erreur, ainsi que la dépendance au taux d’échantillonnage moyen.
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iv RÉSUMÉ

Deuxièmement, nous étudions les filtres d’ensemble continus-discrets pour
les processus d’Ornstein-Uhlenbeck avec des observations discrètes décrites
par des fonctions d’état linéaires et un bruit Gaussien additif. Les filtres
d’ensemble ont gagné beaucoup d’intérêt pour l’estimation d’état dans les
modèles à grande échelle avec des mesures bruitées où le calcul du gain op-
timal est soit coûteux en calcul, soit pas entièrement réalisable en raison de
la complexité de la dynamique. Dans cette thèse, nous proposons des pro-
cessus de diffusion de type McKean–Vlasov continus-discrets, qui servent de
modèle de champ moyen pour décrire la dynamique limite de l’ensemble des
particules. Nous étudions plusieurs types de processus de champ moyen en
fonction de la manière dont les termes de bruit sont inclus pour l’imitation
du processus d’état et du modèle d’observation. Les particulaires résultantes
sont couplées via des covariances empiriques qui sont mises à jour en temps
discrets avec l’arrivée de nouvelles observations. Avec une analyse appropriée
des premier et deuxième instants, nous montrons que sous certaines condi-
tions sur les paramètres du système, les performances des filtres d’ensemble
se rapprochent du filtre optimal quand le nombre de particulaires augmente.

Enfin, nous considérons les systèmes dynamiques décrits par des châınes
de Markov en temps continu avec un espace d’état fini, et le processus
d’observation est obtenu en discrétisant un processus stochastique conven-
tionnel piloté par un processus de Wiener. Dans ce cas, nous montrons la
convergence L1 de l’estimateur optimal vers l’estimateur optimal classique
(purement continu) (filtre de Wonham) quand l’intensité des processus de
Poisson augmente.

Les mots cles: filtrage nonlinéaire, filtrage linéaire, observations distribuées
par Poisson, observations aléatoires, filtre d’ensemble, filtre continu-discret
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Notation and Abbreviations

Number sets
• N: set of nonnegative integers {0, 1, 2, . . .}

• N+: set of positive integers {1, 2, 3 . . .}

• Z: set of integer numbers

• R: set of real numbers

• C: set of complex numbers

• [a, b]: closed interval {x ∈ R | a ≤ x ≤ b}

• ]a, b[: open interval {x ∈ R | a < x < b}

• [a, b[: interval {x ∈ R | a ≤ x < b}

• ]a, b]: interval {x ∈ R | a < x ≤ b}

Probability
• Law: law of a random variable

• L: generator

• N (µ,Σ): multivariate Gaussian distribution with mean µ and covari-
ance Σ

• N : Poisson process

• P[·]: probability of an event

• E[·]: expectation

• σ(·): the smallest sigma-algebra containing the argument
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x Notation and abbreviations: Notation and abbreviations

Symbols
• Xt− : = lim

s↑t
Xs

• ∆Xt: = Xt −Xt−

• µj(A): j-th eigenvalue of a matrix A

• ℜ: real part of a complex number

• [a]i: i-th element of a vector a

• [A]i,j: i, j-th element of a matrix A

• A⊤: transpose of a matrix A

• detA: determinant of a matrix A

• trA: trace of a matrix A

• ⊗: Kronecker product

Abbreviations
a.s. almost surely

càdlàg right continuous with left limits

FV finite variation

Lem. Lemma

ODE Ordinary differential equation

PDE Partial differential equation

Prop. Proposition

resp. respectively

s.t. such that

Th. Theorem

ucp uniformly on compacts in probability

wrt with respect to



Chapter 1

Introduction

Modern engineering applications continue to grow in complexity, and very
often they involve analysis of large volume of data. In filtering theory, the
analysis of data corresponds to accurately inferring the true state of a dy-
namical system amidst noisy observations. Due to the dynamic nature of the
variables which are modeled by differential equations with uncertainties, the
problem is intrinsically quite challenging and emerges as a cornerstone dis-
cipline for many applications ranging including cryptography, tracking and
guidance, speech recognition, image and video processing, genetics, finan-
cial modeling, etc. At its essence, filtering theory endeavors to distill signal
from noise, enabling practitioners to extract meaningful information from
imperfect and often incomplete observations.

In this thesis, we basically study the filtering problem for a certain class
of dynamical systems which are modeled by continuous-time stochastic dif-
ferential equations where the dynamics may be linear or nonlinear, and the
underlying state-space may be finite (Markov Chains), or infinite (Itô differ-
ential equations). The common element that appears in all the problems is
that the observation process is available only at some discrete time instants,
which is partly motivated by the fact that, in many applications, the measure-
ments are often not available at all times, and one needs to properly analyze
the filtering algorithm taking into consideration this loss of information due
to sampling of the observation process. In the sequel, we provide an overview
of some developments in the field of filtering theory which are relevant for
the topics studied in subsequent chapters, and also some details about the
discrete observation process and its implication in filtering problems.

1



2 CHAPTER 1. INTRODUCTION

1.1 Overview of the filtering results
The theory of signal filtering first emerged in the first half of the 20th cen-
tury in the pioneering works of Norbert Wiener [WH31; Wie49] and Andrey
Kolmogorov [Kol41], and gained invaluable contribution in 1960’s thanks to
the publication of Rudolf Kalman’s classic work [Kal60] and subsequent joint
work [KB61] on the derivation of the Kalman–Bucy filter. The Kalman–Bucy
filter is currently applied in numerous engineering and scientific fields, includ-
ing machine learning, medicine, finance, and robotics (see reviews [CR11;
Che03] and relevant references). The filtering theory finds relevance in prob-
lems of reconstruction, prediction, approximation, control, and stabilization
of partially observed (and noisy) processes or signals.

To define the filtering problem in the context of stochastic dynamical
systems, we consider a state process (xt)t≥0 described by a non-deterministic
evolution rule and an observation process (yt)t≥0, which provides partial noisy
measurements of the state. The problem is to compute the best estimator
(x̂t)t≥0 using the observations and the system model. To quantify best, one
has to specify some constraints and criteria which must be optimized when
computing the estimator. In this regard, we take the following elements into
consideration:

• the estimator is Yt-measurable, where Yt is the sigma-algebra generated
by observation process y on [0, t];

• the estimator minimizes the mean square of the error xt − x̂t, i.e., x̂t is
Yt-measurable integrable with the second moment stochastic processes
that solves the following

min
x̂t

E∥xt − x̂t∥2.

A generic solution to this problem is provided by choosing x̂t as the expec-
tation of the state process conditioned upon the observation process (up to
time t). Depending upon the system dynamics, this conditional distribution,
often called the posterior distribution, may or not be readily available in the
closed-form. Research over the years in the area of filtering theory goes in
the direction of computing this conditional distribution for different system
classes, and providing different numerical tractable approximations when it
is not readily computable. Here, we provide an overview of some techniques
that are relevant for the developments in subsequent chapters.

Markov chains: For Markov chains, the state process evolves over a finite
set and the transition from one value to another occurs at a random time
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instant. A probability distribution supported over this finite state space rep-
resents the evolution of the underlying state. The observation process is
described by a nonlinear function of the state plus a diffusion term driven by
Wiener process. The objective is to compute the conditional distribution of
the state process given the observation. Because of the finite state space, this
conditional distribution at each time instant is represented by a finite dimen-
sional vector. For continuous-time Markov chains, Wonham filters proposed
in [Won64] provide the evolution of conditional distribution in the form of
observation-driven finite-dimensional stochastic differential equations.

Linear Gaussian case: Probably the most commonly studied class of sys-
tems in filtering theory is where the state process and the observation process
are both linear in state and driven by standard Wiener process. The state
space is the Euclidean space, and hence not necessarily finite. However, un-
der the assumption that the initial condition is Gaussian, the state process
and the observation process remain Gaussian at all times. This allows us to
parameterize these processes entirely by the mean and covariance. Moreover,
the conditional posterior distribution, which we need for computing the mean
square estimate, is also Gaussian. Hence, as shown in [KB61] and several
books by now [AM79; KS72], filtering problem boils down to computing the
mean and the variance of the conditional distribution. The variance is ob-
tained from a completely deterministic, observation independent, quadratic
differential equation, also called the Riccati differential equation. The evolu-
tion of mean, on the other hand, is described by a linear stochastic differential
equation where the randomness is due to the innovation process of the ob-
servations, and it involves an injection gain described by the time-varying
covariance matrix. One can then analyze the properties of such filters under
system theoretic assumptions like controllability (with respect to diffusion
term) and the observability.

Nonlinear case: In case of dynamical systems described by nonlinear dif-
ferential equations, the state process is not necessarily Gaussian and the
conditional distribution is no longer characterized by the first and second
moments. The exact solution of the filtering problem requires us to compute
the conditional distribution at all times, and under certain hypothesis on sys-
tem data, one can derive partial differential equations (PDEs) for describing
the evolution of the conditional density. Several works have been pursued in
this direction, and one may refer to [Str60; Kus67b; Kus67a; Zak69; FKK72]
for development of the theory and the relevance of such results in different
applications. While the problem is relatively well-studied for linear dynam-
ical systems with closed-form solutions, the analysis and implementation of
nonlinear filters have proven to be a rather challenging problem. For this
reason, many research works have focused on providing relaxed versions of
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optimal filters for nonlinear systems, which are more amenable to imple-
mentation. However, from an analysis perspective, relatively fewer works
exist that rigorously quantify the performance of nonlinear filters. For these
reasons, nonlinear filtering continues to be an active area of research where
the search for effective implementation algorithms and analysis methods is
of interest for many applications [DJ11; GMP02; Han10; BS15; Tag+17;
YMM13; SGK16; KSY19; Kar+20].

Ensemble Filters: The closed form expression for optimal filters is very
often difficult to implement. In linear case, this may be due to higher order
Riccati equations where the number of differential equations gets very large
as the system dimension increases, and in the nonlinear case, we have to very
often look for solutions to stochastic PDEs for solving the problem. Ensem-
ble filters are similar in spirit to Monte-Carlo methods and are designed to
get an approximation of the optimal filter with much lighter computational
burden. The use of Monte-Carlo integration methods for approximating the
optimal distribution have gained significant interest in the literature [DFG01;
RAG03]. In the same spirit, [Eve94] introduced the technique of ensemble
Kalman filters to develop filtering methods for large scale applications re-
lated to geophysical sciences, so that the error covariance is computed from
a collection of state estimators rather than from a single (Riccati) differen-
tial equation. Since then, the use of ensemble Kalman filters have had a
notable impact where estimation with noisy data is required in large-scale
models. This approach is based on simulating the evolution of different par-
ticles through differential equations that are coupled through the associated
empirical mean and the empirical error covariance. Several review articles
[Che03; ESS22] and the books [Eve09] provide an overview of developments
in that area. In most of these works, we do not find much details about
the theoretical analysis of the proposed filtering techniques, and this area of
mathematical analysis of the ensemble Kalman filters has gathered attention
only very recently. Also, over the past decade, we see that the ensemble
filtering methods can be viewed from the lens of mean-field models described
by stochastic differential equations, and the particles are simply the approx-
imations of these mean field models. Recent review articles which elaborate
on this viewpoint are [BD23; TM23].

1.2 Random observation process
In many engineering applications and control systems in particular, an impor-
tant aspect to consider in implementation of filtering and control algorithms
is the loss of information from the measurements as the observations are
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transmitted between the plant and the estimator/controller. This may be
in the form packet dropouts at certain time instants, or due to mapping of
the information over an alphabet used for communication over channels with
finite capacity. Over the past two decades, researchers in control theory have
tried to study the effect of such loss in information due to communication
networks [HNX07; Sch+07]. In this thesis, we address the filtering prob-
lem in continuous-time stochastic systems when the observations cannot be
transmitted over the communication channel exactly and it is stipulated that
the observation process is randomly time-sampled. Such an abstraction for
the observation process is motivated by the use of certain communication
protocols as pointed out in [TT17].

Let us now recall some references that have addressed filtering problems
in the presence of measurement errors or communication uncertainties. For
continuous-time linear systems, filtering problems with randomly sampled
measurements have been studied in [Mic01] and [MJ02], where the authors
discretize both the observation and state processes, compute a conditional
density function, and use it to get the desired expectation. The papers [MS03;
Sin+04; HD07; Sch08; YFX11; DCS14; PSD19] consider a discrete-time lin-
ear dynamical system and analyze the performance of filtering algorithms
using the observations that have been transmitted over a communication
channel. A different toolset, based on relative entropy, is adopted in [MY18]
to study the stability and convergence of filters under relaxed assumptions
on observation channels. For continuous-time dynamical system driven by
white noise, one can adopt the structure of continuous-discrete observer pro-
posed in [Jaz07]. However, there are relatively fewer works for filtering in
continuous-time stochastic systems using irregular sampling [HMR11], and
such setup is further explored in this thesis.

Other than the filtering algorithms, there have been other control-theoretic
problems which have been studied when the measurements are randomly
time-sampled, or the dynamical system is subject to resets at random time
instants. In particular, [ACM00] addresses the optimal control in linear Itô
stochastic differential equations with different distributions on the sampling
process of the measurements. The reader may also refer to [HT06; AHS12]
for results on stability with resets at random times, and stabilization with
randomly sampled measurements. The book chapter [TCL18] provides an
overview of such results and some recent developments.

More often than not, in our work we will assume that the sampling pro-
cess (for the observations) is a Poisson counter. Consequently, this allows us
to consider differential equations driven by Poisson processes. One may find
an introduction to such classes of dynamical systems in [Bro09]. Based on the
same idea and notation, applications are provided in [BGG99; MGT99]. An-
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other advantage of considering the Poisson distribution for sampling process
is that the mean sampling rate is characterized by a scalar parameter. When
analyzing the performance of our filters subject to random sampling, this
allows us to analyze study the suboptimality and stability related estimates
in terms of the mean sampling rate.

1.3 Linear filters in closed form

We now revisit some of the basic results stated above, and motivate the mod-
ifications that appear when taking randomly sampled discrete observations
into consideration. We start with the case of linear Itô differential equations
in Gaussian setting. For this case, the closed form solution of the optimal
filter, the so-called Kalman–Bucy filter, can be presented directly. Moreover,
when dealing with discrete observations one can draw parallels rather easily
with the classical solution.

1.3.1 Case of continuous observations

In a linear conventional model, the processes are given as Itô differential
equations:

state xt ∈ Rn : dxt = Axtdt+Gdwt

continuous observations zt ∈ Rp : dzt = Cxtdt+ dηt,

where (xt)t≥0 is an Rn-valued diffusion process describing the state, and
(zt)t≥0 is an Rp-valued observation process. It is assumed that, for each
t ≥ 0, (wt)t≥0 is an Rm-valued, and (wt)t≥0 is an Rp-valued, standard Wiener
process with the property that E[dwt dw⊤

t ] = Imdt, and E[dηt dη⊤
t ] = V dt,

for each t ≥ 0. The matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are taken
as constant, and the processes (wt)t≥0, (ηt)t≥0 are independent and do not
depend on the state. The solutions of the stochastic differential equations
are interpreted in the sense of Itô stochastic integral. It follows that, if x0 is
Gaussian normally distributed then the process (xt)t≥0 is also Gaussian.

Using the classical results, see for example [Øks03, Th. 6.3.1], the opti-
mal estimator minimizing the mean square estimation error is given by the
conditional distribution E[xt | (dzs)0≤s≤t] which is Gaussian normal N (x̂t, Pt),
where Pt = E[(xt − x̂t)(xt − x̂t)⊤] denotes the covariance of the estimation
error. The mean x̂t and the covariance Pt of this conditional distribution are
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described by the following equations:

dx̂t = Ax̂tdt+ PtC
⊤V −1(dzt − Cx̂tdt),

drift gain×innovation

where Pt satisfies the following matrix-valued ordinary differential equation:

dPt = (APt + PtA
⊤ +GG⊤ − PtC

⊤V −1CPt)dt.

1.3.2 Case of Poisson-distributed observations
Our work is primarily aimed at studying filtering problem for continuous-
time systems where the amount of information provided by the output mea-
surements is limited not only by continuous white noise but also by time
sampling. In particular, the output measurement is stipulated to arrive ran-
domly at some discrete time instants only.

For the continuous observation model introduced in the previous section,
let us introduce the identifications yt ∼ dzt

dt
and vt ∼ dηt

dt
, so that vt is a white

Gaussian process, vt ∼ N(0, Vt); see [Jaz07, Chapter 4] for further details.
In other words the observation model is formally equivalent to yt = Cxt + vt.
Due to this observation, a natural approach to model observations at discrete
time instants {τk}k∈N would be as follows:

yτk
= Cxτk

+ vτk

where we additionally assume that the the instances τk are randomly dis-
tributed. We next show that this framework facilitates the handling of the
optimal estimator for each realization of the observation process.

Model description

In the light of above discussion, we can now write down the system with state
process in continuous-time, and observations in discrete-time in a compact
form using the following equations:

state xt ∈ Rn : dxt = Axtdt+Gdwt

discrete observations yτk
∈ Rp : yτk

= Cxτk
+ vτk

,

where {vτk
}k∈N is a sequence of independent Rp-valued normal random vari-

ables distributed as N (0, V ). The nondecreasing sequence {τk}k∈N is assumed
to be random. The particular case of our interest is when the time between
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two consecutive sampling instants is exponentially distributed, i.e., for each
k ∈ N,

P((τk+1 − τk) > h) = e−λh. (1.3.1)
For each realization of {τk}k∈N, one can construct the optimal filter for the
aforementioned continuous-discrete system by using the model of the system
for propagation of the estimate between two sampling instants, and updat-
ing the estimate at sampling times using the available measurements. This
approach has appeared in [Jaz07, Th. 7.1]. It is also provided in Section 2.6
by Th. 2.21.

Let us notice that (1.3.1) implies that a counting process defined as

Nt =
∑
k∈N

δ(τk≤t)

is a Poisson process with intensity λ. Consequently, observations can be
called Poisson-sampled or Poisson-distributed; the times of observations are
the arrival times of a Poisson process. Moreover, for t > 0, one may use the
increments dNt = limδ↓0 Nt − Nt−δ, as it equals 1 only at the observation
arrival time, and otherwise it equals zero. The rigorous definition and more
details can be found in Chapter 2.

Filtering equations

In the proposed notation, the continuous-discrete filtering system might be
rewritten in another form:

state xt ∈ Rn : dxt = Axtdt+Gdwt

discretely updated observations yt ∈ Rp : yt = CxτNt
+ vτNt

,

where vτNt
on t ∈ [0,∞[ coincides with vτk

for k ∈ N since the range of
values of Nt is the set of nonnegative integers. Integration with respect to
Poisson processes is discussed in Chapter 2, but here one can observe that
the observation process (yt)t≥0 is piecewise constant and it updates only at
times (τk)k∈N. The optimal estimator (x̂t)t≥0 can be written in a compact
form as follows:

dx̂t = Ax̂tdt+ PtC
⊤M−1

Pt
(yt − Cx̂t)dNt,

drift gain×innovation

where Pt := E[(xt − x̂t)(xt − x̂t)⊤ | (ys)0≤s≤t] and satisfies a matrix-valued
ordinary differential equation

dPt = (APt + PtA
⊤ +GG⊤)dt− PtC

⊤M−1
Pt
CPt dNt
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for MPt := CPtC
⊤ + V .

One should notice that the definitions of covariances are not the same.
Both are independent of the values of the observations, but for the continuous-
discrete process, the covariance is conditioned upon the observation times.
The study of the covariance matrix is important because the trace of the
covariance matrix gives some indicator of the filter’s performance. When
the sampling process is random, the error covariance is conditioned upon
the sampling process and the evolution of (Pt)t≥0 is no longer determinis-
tic. Nevertheless, we can study the expected performance of the filter with
respect to the sampling rate of the observation process. In addition to the
covariance being non-deterministic, we observe that the expression for the
injection gain is now changed; instead of the inverse of the noise variance
described by V −1, we see that now M−1

Pt
appears which also contains the

error covariance Pt and it complicates the analysis. This gives a glimpse of
some of the issues that arise in studying filters with discrete observations. In
Chapter 3, we will address them in detail while generalizing the system class
to include certain nonlinearities as well.

1.4 Ensemble filters
The exact closed-form solutions that one could obtain for linear Gaussian
systems are not so easy to obtain for other system classes, or even when the
process is not Gaussian. The generic solution given by the conditional expec-
tation of the state process given the observations is applicable for broader
settings, but this conditional distribution is not readily computable. It is
therefore interesting to develop techniques which allow us to approximate
the conditional distribution using simpler calculations. Also, for very high-
dimensional linear systems, the optimal solution requires solving matrix-
valued Riccati differential equation which can be computationally expensive.

The basic idea behind the design of ensemble filters is based on simulat-
ing several particles through differential equations that are coupled with each
other through the empirical mean and the empirical error covariance. More
recently, several research papers study estimation techniques based on ensem-
bles using the viewpoint of mean-field process described by stochastic differ-
ential equations. The review articles [BD23; TM23] advocate this approach.
The limiting behavior of these particles is described by a McKean–Vlasov
type diffusion process also called the mean-field process. In the literature,
this mean-field process is seen to be chosen in different ways, e.g., by adding
noise in the prediction term and the correction term of the Kalman–Bucy
process [DT18], or as a non-diffusion equation that is optimal in the measure
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transportation sense [TM20].
In contrast to these aforementioned works, our focus is on developing on-

line ensemble filters suitable for Poisson-distributed observations. For this
purpose, we propose a continuous-discrete limiting mean-field process and
show that the distribution of this process conditioned upon the discrete ob-
servations coincides with the optimal distribution of the optimal filter. We
use this process equation to describe a system of interacting particles driven
by empirical mean and covariance. These particles are shown to be consis-
tent with the proposed limiting process. This kind of analysis sets up the
groundwork for studying the performance of these filters as a function of the
mean sampling rate.

1.4.1 Working conjecture for vanilla ensemble filter

Let us consider the ensemble filter approach as another instance of the
conceptual similarities between the purely continuous case and those with
Poisson-distributed observations. In the literature on ensemble filters, we
find different methodologies for describing the equations that govern the mo-
tion of particles, depending upon whether the particle equations are purely
deterministic or they comprise identical copies of the noise processes that
appear in state and observation processes.

As a first instance, we consider the case where the particle dynamics in-
volve a copy of state process noise and the injection term involves a copy
of observation noise process. The generalization of this particular design
to the case of discrete observations can be carried out along the same lines
as described earlier for the Kalman–Bucy filter. However, the resulting im-
plementation is much different due to the interactions involved in ensemble
filters. We provide an overview of this approach and later in Chapter 4, we
provide a complete analysis of convergence to the optimal solution with the
increase in the number of particles.

Let us recall the linear Itô system with continuous observations, described
as follows:

state xt ∈ Rn : dxt = Axtdt+Gdwt

continuous observations zt ∈ Rp : dzt = Cxtdt+ dηt,

with usual assumptions on the system data as described earlier. The so-
called vanilla ensemble filter, also known as ensemble Kalman filter (EnKF),
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introduced in [Eve94], is described as,

dxi
t = Atx

i
tdt+Gdwi

t + Pm
t C

⊤V −1
(

dzt − (Cxi
tdt+ dηi

t)
)
, (1.4.1)

drift gain×innovation

where (wi
t, η

i
t) are independent copies of (wt, ηt) and

Pm
t := 1

m − 1

m∑
i=1

(xi
t − x̂m

t )(xi
t − x̂m

t )⊤, and x̂m
t := 1

m

m∑
i=1

xi
t.

Note that the injection gain in (1.4.1) does not depend on the exact error
covariance equation that is obtained from solving the Riccati differential
equation. Instead, in (1.4.1), we use the empirical covariance which in turn
is obtained from the empirical mean of different particles. Thus, the particles
are coupled to each other through empirical covariance.

The structure of (1.4.1) can be replicated for the case of Poisson-distributed
observations. Indeed, the innovation part, which is a zero-mean process,
should be the subtraction of the observation dynamics. Hence, it can be
written as

(
yt −Cxi

t +vi
Nt

)
dNt. Let us denote particles by si instead of xi to

highlight the transition to the Poisson case. Thus, one may anticipate that

Vanilla filter in Poisson case is

dsi
t = Ats

i
tdt+Gdwi

t + Pm
t C

⊤M−1
P m

t

(
yt − (Csi

t + vi
Nt

)
)

dNt, (1.4.2)

drift gain×innovation

where (wi
t, η

i
t) are independent copies of (wt, ηt) and

ŝm
t = 1

m

m∑
i=1

si
t, and Pm

t = 1
m − 1

m∑
i=1

(si
t − ŝm

t )(si
t − ŝm

t )⊤.

The notation MP m
t

is for CPm
t C

⊤ +V similarly to the linear optimal case. It
will be shown in Section 4.5 of Chapter 4 that this intuitive modification pro-
vides consistent results, in the sense that, the expected covariance converges
to optimal expected covariance as the number of particles gets large.

1.4.2 False conjecture for transport-inspired ensemble
filter

In the literature on ensemble filters, we have more recently seen algorithms
where equations of particles are developed from the principle of optimal trans-
port, and are purely deterministic (other than the stochastic observation pro-
cess entering the innovation part), see for example [TM20; BD23]. E.g., one
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may consider the transport-inspired filter, proposed in [TM20], that takes
the following form:

dxi
t = Atx

i
tdt+

1
2GG

⊤(Pm
t )−1(xi

t − x̂t)dt+Pm
t C

⊤V −1
(

dzt −C
xi

t + x̂t

2 dt
)
,

where once again, we take

Pm
t := 1

m − 1

m∑
i=1

(xi
t − x̂m

t )(xi
t − x̂m

t )⊤, and x̂m
t := 1

m

m∑
i=1

xi
t.

The foregoing particle equation contains the innovation part dzt −C
xi

t+x̂t

2 dt.
For the case of Poisson-distributed observations, it may be tempting to take
the corresponding innovation term as

(
yt −C

si
t+ŝt

2

)
dNt. Hence, a conjecture

for adapting transport-inspired filter to the case of Poisson-distributed ob-
servations is

dsi
t = Ats

i
tdt+

1
2GG

⊤(Pm
t )−1(si

t − ŝt)dt+Pm
t C

⊤M−1
P m

t

(
yt −C

si
t + ŝt

2

)
dNt.

where once again we take

Pm
t := 1

m − 1

m∑
i=1

(si
t − ŝm

t )(si
t − ŝm

t )⊤, and ŝm
t := 1

m

m∑
i=1

si
t.

Indeed, one can compute the dynamics of the empirical moments using the
chain rule, derived in Chapter 2. Surprisingly, as the number of particles
tends to infinity, the empirical covariance does not converge to the optimal
one. Instead, we propose to change the average si

t+ŝt

2 in the innovation part
to a parameterized sum. Namely, we prove that the following filter serves
our purposes:

Proposed transport-inspired filter for Poisson case:

dsi
t = Asi

tdt+ 1
2GG

⊤(Pm
t )−1(si

t − ŝm
t )dt+(

Pm
t C

⊤M−1
P m

t
(yt − Cŝm

t ) − Ξm
t (si

t − ŝt)
)

dNt,

where Ξt satisfies the following for t = τNt :

(Ξt − I)Pm
t (Ξ⊤

t − I) = Pm
t − Pm

t C
⊤(CPm

t C
⊤ + Vt)−1CPm

t .

More details about this design appear in Chapter 4.
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1.5 Nonlinear filtering in Markov chains
So far we discussed filtering problem for linear systems with Gaussian pro-
cesses. The natural question is how can one address similar questions for the
nonlinear setting. In the literature on filtering problems, probably the first
instances of nonlinear filtering appeared in the setting of Markov chains. Be-
cause of the finiteness of the state-space, the conditional distribution, which
solves the optimal filtering problem, is described by finitely many stochastic
differential equations. This is relatively easier to analyze than the stochastic
partial differential equations describing the optimal conditional distribution
for generic nonlinear Itô differential equations.

The pioneering work [Won64] introduces the optimal filter (called now
the Wonham filter). Over the past twenty-five years, we have seen a certain
interest in better understanding some system-theoretic properties of these
filters. Earlier papers in this direction studied stability with respect to ini-
tial conditions [OP96; BCL04; BD17] under different assumptions on the
underlying Markov chain, and tools such as Lyapunov exponents were de-
veloped to characterize the convergence rates for the decay in error due to
mismatched initial conditions. The PhD dissertation [Han07] revisits some
of these results and, in addition, provides results on robustness with respect
to unknown parameters in the models [Han07, Chapter 3]. Such connections
between system-theoretic tools and nonlinear filtering continue to develop in
more recent works [KMM19; KM21], where the authors develop a dual of
the filtering problem in the form of a backward stochastic differential equa-
tion and reformulate the stability of nonlinear filter in terms of stabilizability
properties of the dual system. The stability analysis of nonlinear filters con-
tinues to attract the attention of different communities [KSY19; Kar+20].
In the presence of communication channels, the stability of filters is treated
in [MY18], with connections to observability and information rates.

On a conceptual level, Wonham filter provides the optimal solution to
the filtering problem and the aforementioned works analyze how the solution
deviates from the optimal solution if the initial condition, or some system
parameters, are changed. In our work, we also consider the deviation of a
finite-state filter from the optimal solution. However, the source of this devi-
ation is considerably different; that is, we stipulate that the continuous-time
observation process is not available for measurement, but instead, the real-
izations of this observation process are available at some randomly drawn
time instants. In other words, the information used to compute the condi-
tional distribution is different in our setup. We are primarily interested in
defining an optimal filter for the continuous-time Markov chain subject to
this discrete information structure.
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1.6 Contribution of the thesis

1.6.1 Overview and comparisons

So far, we reviewed some known filtering techniques from the literature and
showed how those algorithms can be adapted for the case when the obser-
vation process is randomly time-sampled. The later chapters will provide
a more formal development of these filtering algorithms with discrete ob-
servations. In addition to the algorithm description, our focus is also on
analyzing the performance of these filters. For the Itô differential equations,
when studying the generalization of Kalman–Bucy filters, we study the sub-
optimality of this algorithm in the nonlinear setting. We also compute the
evolution of expected error covariance and the conditions under which it re-
mains bounded. In the process, we can also analyze the dependence of the
expected error covariance on the mean sampling rate of the observations.

For the case of ensemble filters, we draw connections with continuous-
discrete McKean–Vlasov type diffusion processes which are used to describe
the evolution of the particles. Since the individual particles do not provide
the exact optimal solution, it is important to carry out the suboptimality
analysis by looking at the difference between the empirical covariance (re-
spectively, empirical mean) and the optimal covariance (resp., optimal mean)
of the conditional distribution. We will also discuss tools that allow us to
study the convergence of ensemble filters to the optimal filters as the number
of particles gets large.

For the case of Markov chains, the discrete process that we consider is
different than the ones consider Itô differential equations. Here, our focus is
on studying the convergence of the discretized optimal filter to continuous-
time optimal filter as the mean sampling rate gets large.

An overview of our results, which appear in this thesis, is given in the
following table in the form of comparisons with some standard references.

Conventional case Poisson-distributed yτk

(optimal) Kalman–Bucy filter
[KB61; Jaz07] the linear optimal filter[TY20]

(optimal) Wonham filter [Won64] the optimal filter on Markov
chains[YT22]

vanilla, or ensemble Kalman fil-
ter[Eve94] the ensemble filter[TY24]

optimal-transport ensemble filter
[TM20; BD23] the ensemble filter[YT23]
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1.6.2 List of publications
The thesis is based on the following publications of the author:

Peer-reviewed international journals:

[TY20] Error covariance bounds for suboptimal filters with Lipschitzian
drift and Poisson-sampled measurements. A. Tanwani, O. Yufereva.
Automatica (2020)

[TY24] Convergence analysis of ensemble filters for linear stochastic
systems with Poisson-sampled observations. A. Tanwani, O. Yufereva.
To appear in IFAC-PapersOnLine (2024).

Peer-reviewed international conferences:

[YT22] Approximation of Nonlinear Filters for Continuous-Time Markov
Chains under Randomly-Sampled Observations. O. Yufereva, A. Tan-
wani. Proceedings of IEEE Conf. Decision & Control (2022).

[YT23] Transport Inspired Particle Filters with Poisson-Sampled Ob-
servations in Gaussian Setting. O. Yufereva, A. Tanwani. Proceedings
of IEEE Conf. Decision & Control (2023).

1.7 Structure of the thesis
Motivated by the need to model and process filtering problems with Poisson-
distributed observations, an introduction to stochastic differential equations
driven by a Poisson process is provided in Chapter 2. This chapter proposes
an approach for stochastic integration in a particular form and provides its
properties and comparison to known approaches. The main results are the
corresponding form of the chain rule (Prop. 2.14), the derivation of infinites-
imal generator (Prop. 2.19), and the implementation of analog of Dynkin’s
formula (Th. 2.20).

Chapter 3 studies a nonlinear case with a structural assumption on the
drifts. Similar assumptions can be found in works [GR73; Pic91]. In order to
have a computation-friendly estimator, a suboptimal filter is proposed, and
its performance under Poisson-sampled observations is analyzed. Moreover,
the proposed filter can be treated by computing a dynamical optimal gain
matrix, assuming the gain matrix is constant. The main results cover the
following points. Prop. 3.3 and 3.4 estimate the covariance of the proposed
filter for an arbitrary and the optimal gain matrices resp. Prop. 3.5 presents
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the expectation of the covariance with respect to the sampling rate (intensity
of the Poisson process). Convergence to a finite steady state with sufficient
condition is shown in Th. 3.12, and reformulation of the sufficient conditions
as an eigenvalue test is done in Prop. 3.14. For the linear case, the lower
bound on the sampling rate is given in Prop.3.17 and Prop.3.18 states the
monotonicity of expected covariances with respect to the sampling rate.

Chapter 4 investigates the ensemble filters. The sufficient conditions for
a continuous-discrete mean-field process to be an exact filter are stated in
Prop 4.2. These conditions can be met in different ways, and we propose
two types of ensemble filters satisfying these conditions. The consistency of
the transport-inspired ensemble filter is provided by Th. 4.4; notice that it
implies that the convergence with respect to the number of particles is not
needed. The consistency of the vanilla ensemble filter is shown by Th. 4.5,
while the stability follows from Prop. 4.8.

In Chapter 5, we restrict our attention to a system with a finite state
Markov chain state process, which also makes the optimal filter a Markov
chain. We are then interested in analyzing how the continuous-discrete filter,
derived for Poisson-distributed observations, differs from the continuous-time
filter. In particular, we assign Poisson distribution to the randomly drawn
time instants and look at the expectation of the conditional probability with
respect to the distribution of the sampling process. The main result, Th. 5.4,
shows that as Poisson intensity tends to infinity, the derived filter converges
to the classical one in L1. In addition, an optimal filter for uniform discrete
observations and an auxiliary process play a role in convergences proved by
intermediate statements (Lem. 5.3.5, Prop. 5.7).

The conclusion is provided in Chapter 6. First it recalls the problem
frames and the contribution of this work. Secondly it describes the various
future directions.



Chapter 2

Basic Tools

This chapter presents some basic tools for analysis of stochastic dynamical
systems that arise in studying filtering problem with discrete observations.
In particular, our attention is on Poisson-distributed observations which give
rise to differential equations driven by Poisson processes. Such a setup allows
us to investigate and pave the way for new methods. The problem setting
considered here presents a simple instance of studying discrete observations
and avoids several complexities which may not be necessary for the basic
understanding of the problem.

The primary object of the analysis is a Poisson process. We provide
its definition and comparison with generalized forms. Integration and the
corresponding chain rule are introduced as self-contained statements. They
can not be seen as new results as they are particular cases of more general
theories. However, the proposed methods are sufficient to deal with the cases
considered in this manuscript and fairly easy to comprehend, contributing to
the analysis.

2.1 Poisson process

An excellent introduction and numerous examples of applications for the
Poisson processes can be found in [SK08]. In order to study integration with
respect to the Poisson processes, it is beneficial to revisit the properties of
counting processes first. Such an approach is close to [Pro05].

17
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Poisson process as a counting process

Assume that a filtered1 probability space (Ω,F ,F = {Ft}t≥0,P) satisfies
the usual hypotheses, i.e. every Ft contains all sets of probability 0 and
F is complete. All functions are assumed to be càdlàg, that means right
continuous with left limits (from French: continue à droite, limite à gauche).
Definition 2.1. The process (Nt)0≤t≤∞ defined by

Nt =
∑
n≥1

1{t≥τn}

with values in N∪ {∞} where N = {0, 1, 2, . . .} is called the counting process
associated to the sequence (τn)n≥1.

The increment Nt − Ns counts the number of random time instances τn

that occur between the fixed times s and t. The Poisson process is one of the
counting processes. Moreover, note that if an adapted2 counting process has
stationary independent increments, it is a Poisson process, as shown below.

The random variable T = supn τn is the explosion time of (N)t≥0. If
T = ∞ a.s., then (N)t≥0 is a counting process without explosions. For
T = ∞, note that for 0 ≤ s < t < ∞, we have

Nt −Ns =
∑
n≥1

1{s<τn≤t}.

As we have defined, a counting process is not necessarily adapted to the
filtration F. Indeed, we have the following.
Theorem 2.2 ([Pro05, Ch.I, Th.22]). A counting process (N)t≥0 is adapted
if and only if the associated random variables (τn)n≥1 are stopping times3.

Note that a counting process without explosions has right continuous
paths with left limits; hence, a counting process without explosions is càdlàg.
Definition 2.3. An adapted counting process (N)t≥0 is a Poisson process if

1. (increments are independent of the past) Nt −Ns is independent
of Fs for any s, t, 0 ≤ s < t < ∞;

2. (stationary increments) the distribution of Nt −Ns is the same as
that of Nv−Nu for any non-negative s, t, u, v such that t−s = v−u > 0.

Therefore we consider only adapted processes.
1Here filtration {Ft}t≥0 means non-decreasing and right-continuous family of sub-σ-

fields of F .
2A process α(t, ω) : [0, ∞[×Ω → Rn is called Ft-adapted if for each t ≥ 0 the function

ω → α(t, ω) is Ft-measurable.
3A random variable T : Ω → [0, ∞] is a stopping time if the event {T ≤ t} ∈ Ft, every

t, 0 ≤ t ≤ ∞.
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Properties of Poisson processes

Further we recall the properties of Poisson processes related to its distribu-
tion.

Theorem 2.4 ([Pro05, Ch.I, Th.23]). Let (Nt)t≥0 be a Poisson process. Then

P (Nt = n) = e−λt(λt)n

n!
n = 0, 1, 2, . . ., for some λ > 0. Such λ is called the intensity of the Pois-
son process. That is, Nt has the Poisson distribution with parameter λt.
Moreover, (Nt)t≥0 is continuous in probability4 and does not have explosions.

Notice that Theorem 2.4 immediately implies the following facts on a
Poisson process (Nt)t≥0 with intensity λ.

1. The expectation E[Nt] = λt;

2. (Nt − λt)t≥0 is a martingale;

3. Almost all sample path of (N)t≥0 has a finite number of jumps on a
finite interval;

4. (Markov property) the distribution of (Nt+s − Nt) coincides with the
distribution of Ns for s ≥ 0;

5. (Strong Markov property [SK08, Th. 2.3.5]) the distribution of (Nτk+s−
k) coincides with the distribution of Ns for any s ≥ 0 and any arrival
time τk.

As an equivalent definition one may consider the following corollary.

Corollary 2.5 ([SK08, Th. 2.3.2]). If (N)t≥0 is a Poisson process of inten-
sity λ, then

1. N0 = 0;

2. its increments are independent, i.e. (Nt1 −Nt0), . . . , (Ntn −Ntn−1) are
independent for all 0 = t1 < . . . < tn;

3. for all t ≥ 0, the following infinitesimal property holds

P(Nt+δ −Nt = 0) = 1 − λδ + o(δ),
P(Nt+δ −Nt = 1) = λδ + o(δ),
P(Nt+δ −Nt ≥ 2) = o(δ).

4I.e. at an arbitrary time t almost all sample paths are continuous, while each sample
path is discontinuous on [0, ∞[.
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Hence, Corollary 2.5 provides us with infinitesimal behavior of a Poisson
process. If a time interval is fixed and the number of arrivals in the interval
is given, their distribution is described as follows.

Theorem 2.6 ([SK08, Th. 2.3.7]). If (Nt)t≥0 is a Poisson process with
intensity λ, then for all s, t > 0 and m = 1, 2, . . ., conditional on Nt+s −Ns =
m, the jump points J1 = J1(s, t), . . . , Jm = Jm(s, t) in ]s, s + t[ exhibit the
joint probability density function

fJ1,...,Jm (x1, . . . , xm | m jumps in total in ]s, s+ t[)

=
(
m!
tm

)
1 (s < x1 < · · · < xm < t+ s) .

That is, conditional random variables

(J1, · · · , Jm | m jumps in interval ]s, s+ t[)

are obtained by throwing m uniform independent identically distributed points
on the interval ]s, s+ t[ and listing them in the increasing order.

In particular, conditional on m = 1 (a single jump), the point J1 is
distributed by the uniform distribution on ]s, s+ t[.

2.2 Integration with respect to Poisson pro-
cess

For the details on Itô integration, we refer to [Øks03]. Integration with
respect to a Poisson process is a particular case of the integration with respect
to semimartingales, studied in [Pro05]. Employing the properties of Poisson
processes one concludes from [Pro05, Ch. II] the following

Definition 2.7. For an adapted càdlàg process (γt)t≥0 the stochastic integral
on interval ]t0, t1[ of (γt)t≥0 with respect to a Poisson process (Nt)t≥0 with
arrival times {τk}k∈N is

t1∫
t0

γsdNs =
∑

k:τk∈]t0,t1]
γτk
.

Notice that

1.
t1∫
t0
γsdNs =

t∫
t0
γsdNs +

t1∫
t
γsdNs for t ∈]t0, t1[,
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2.
t1∫
t0

(
γs + ζs

)
dNs =

t1∫
t0
γsdNs +

t1∫
t0
ζsdNs,

for adapted càdlàg processes (γt)t≥0, (ζt)t≥0. This makes it natural to consider
the more general stochastic integrals of the form

et1 = et0 +
t1∫

t0

αsds+
t1∫

t0

σsdws +
t1∫

t0

γsdNs,

where (wt)t≥0 is a Wiener process and α, σ, γ are càdlàg processes bounded
on compacts.

2.2.1 SDEs with a Poisson term
A fruitful technique that permits a unified treatment of time varying and
nonlinear problems was introduced in [Bro09]. It combines deterministic
integration with Poisson integration. Such framework provides sound intu-
ition for stochastic differential equations and their uses without allowing the
technicalities to dominate. Building upon this study, we combine Poisson
integration with Itô integration.

A sample path of (Nt)t≥0 has only a finite number of jumps on a finite
interval. Hence, for a sample path of a Poisson process (Nt)t≥0, an integral
with dNt can be defined as a Lebesgue–Stieltjes integral. Moreover, one can
consider the following stochastic integral equation

et1 = et0 +
t1∫

t0

f(s, es)ds+
t1∫

t0

G(s, es)dws +
t1∫

t0

g(s, es)dNs (2.2.1)

that is in differential form
des = f(s, es)ds+G(s, es)dws + g(s, es)dNs, (2.2.2)

where (wt)t≥0 is a Wiener process, (N)t≥0 is a Poisson process and functions
f,G, g satisfy Assumption 2.8.
Assumption 2.8 ([Gra92, hypothesis of Th. 1.2]). Let a triplet of integrable
càdlàg functions

f : [0,∞[×Rn → Rn,
G : [0,∞[×Rn → Rn×m,
g : [0,∞[×Rn → Rn

be such that for each compact set B in R+ there exists a constant K and
∥G(t, x) −G(t, y)∥2 + ∥f(t, x) − f(t, y)∥2 ≤ K∥x− y∥2; (2.2.3a)

∥g(t, x) − g(t, y)∥ ≤ K∥x− y∥ (2.2.3b)
for x, y ∈ Rn, t ∈ B.
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We define a solution of (2.2.2) in a particular way, allowed by the features
of the choice of differentials.

Definition 2.9. Let (w)t≥0 be a standard m-dimensional Wiener process and
(N)t≥0 be a Poisson process. Let functions f,G, g satisfy Assumption 2.8. An
Rn-valued càdlàg process (et)t≥0 is called a solution of

det = f(t, et)dt+G(t, et)dwt + g(t, et)dNt, e0 = ē (2.2.4)

if, for almost all sample paths of Poisson process (Nt)t≥0, it satisfies

det = f(t, et)dt+G(t, et)dwt, for t ∈]τk, τk+1[, k ∈ N, (2.2.5a)
eτk

= lim
s↑τk

(
es + g(s, es)

)
, for k ∈ N+, (2.2.5b)

eτ0 = e0 = ē. (2.2.5c)

This definition is easy to implement. In addition, the definition is consis-
tent with the general forms that are discussed in Section 2.2.2.

In a formal manner, the last term of equation (2.2.4) can be written with
the left limits: g(t−, et−)dNt. For the sake of brevity, this formal notation is
used only in ambiguous cases.

2.2.2 Comparison
There are methods of stochastic integration with respect to 1) martingales, 2)
semimartingales, and 3) random measures. They all can be found in [JS13].
The use of Poisson random measures is rather frequent, see e.g. [ØS19; PR16]
and references therein. Let us briefly describe approaches that develop more
general cases.

Semimartingales

Notice that a Poisson process Nt is a finite variation semimartingale, and
Definition 2.9 is consistent with integration with respect to semimartingales
given in [Pro05, Ch. II, Section 4]. This can be easily checked due to the fact
that Nt is a simple predictable process with decomposition Nt = ∑

i δτi≤t. In
this approach stochastic integration with respect to semimartingales can be
thought of as an extension of path-by-path Stieltjes integration thanks to the
following theorem.

Theorem 2.10 ([Pro05, Ch. II, Th. 17]). Let all paths of a semimartingale
(Ht)t≥0 have finite variation on compacts. If (gt)t≥0 is a càdlàg adapted
process, then

∫ t′

0 gtdHt is indistinguishable from the Lebesgue–Stieltjes integral
computed pathwise for t′ ∈]0,∞[.
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Jump diffusion

It is worth mentioning the book [ØS19] on stochastic differential equations
driven by Lévy processes5. Every càdlàg Lévy process is a semimartingale,
so this work focuses on a more nuanced case than [Pro05]. Moreover, a Lévy
process can be split as follows.

Theorem 2.11 ([ØS19, Th. 1.7]). Let (ηt)t≥0 be a Lévy process. Then ηt

has the decomposition

ηt = αt+ βB(t) +
∫

|z|<R
zÑ(t, dz) +

∫
|z|≥R

zN(t, dz), (2.2.6)

for some constants α ∈ R, β ∈ R, R ∈ [0,∞]. Here

Ñ(dt, dz) = N(dt, dz) − ν(dz)dt

is the compensated Poisson random measure of η(·), ν(·) is the corresponding
Lévy measure, and (B)t≥0 is an independent Brownian motion.

Equation (2.2.6) can be transformed into SDE with respect to dηt. Its
time homogeneous is called jump diffusion. It is the main object of [ØS19].
Note that instead of a Poisson process, equation (2.2.6) includes a Poisson
random measure. It has a Borel set as the second argument, which can
be considered as a spatial density of jumps. In our case, this argument is
implicitly assumed to be constant and so is always omitted. Our case is less
general and thus it inherits properties, including the conditions on existence
and uniqueness of SDEs.

Itô–Skorohod equations

Another similar case is presented in [Gra92], which calls the correspond-
ing objects as Itô–Skorohod equations. These equations can be recognized
as (2.2.6), however, the assumption λ = 1 appears in [Gra92] for the sake of
simplicity. Indeed, it can be easily changed to an arbitrary λ > 0 by rescaling
time.

In contrast to this possible rescaling, filtering problems impose constrains
on the system dynamics and using an appropriate intensity of Poisson pro-
cesses is crucial. Nonetheless, the existence and uniqueness conditions pro-
vided in [Gra92] for SDEs can be used in our case as well. Moreover, the
work [Gra92] also studies McKean–Vlasov equations with Poisson term, that
one will find in Chapter 4.

5An F-adapted process (ηt)t≥0 with η0 = 0 a.s. is called a Lévy process if ηt is contin-
uous in probability and has stationary, independent increments.
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2.2.3 Existence and uniqueness
Exploiting the similarity, we obtain that [Gra92, Th.1.2] provides suitable
existence and uniqueness conditions. For our case they can be reformulated
as follows.

Theorem 2.12 (Reformulation of [Gra92, Th.1.2]). If functions f,G, g sat-
isfy Assumption 2.8, then there exists a unique strong solution for the equa-
tion (2.2.4) starting at e0 = ē.

In addition, the following SDE is of specific interest to us:

det = Atetdt+ Γtdwt + [Ξtet + Ωt]dNt, e0 = ē (2.2.7)

which is easy to treat as far as a realization of the Poisson process is given.

Corollary 2.13. Let A,Γ,Ξ,Ω are càdlàg adapted processes, bounded on
compacts. There exists a unique strong solution for the equation (2.2.7).

Such equations are discussed in Section 2.4.

2.3 Chain rule
The chain rule involving Poisson processes is often used in this manuscript.
Our assumptions allows us to prove the chain rule in a direct way. Nonethe-
less, it can be considered as a corollary of [Pro05, Ch. II, Th. 31–32] on the
chain rule for semimartingales.

Proposition 2.14 (Chain rule). Let a càdlàg n-dimensional process (et)t≥0
satisfy

det = αtdt+ σtdwt + γtdNt,

where (wt)t≥0 is an m-dimensional Wiener process and α, σ, γ are càdlàg pro-
cesses bounded on compacts. If ψ : Rn → R is a twice differentiable function,
then6

dψ(et) =
∑

i

∂ψ(et)
∂[et]i

[αt]idt+ 1
2
∑
i,j

∂ψ(et)
∂[et]i∂[et]j

[σtσ
⊤
t ]i,jdt

+
∑

i

∂ψ(et)
∂[et]i

[σtdwt]i +
(
ψ
(
et + γt

)
− ψ(et)

)
dNt. (2.3.1)

6[·]i denotes the i-th element of the vector and [·]i,j denotes the (i, j)-th element of the
matrix.
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Proof. Recall that for almost all sample paths of the Poisson process (Nt)t≥0
the arrival times {τk}k∈N form an increasing sequence with limk τk = ∞. All
{τk}k∈N are stopping times. For an arbitrary time T > 0 let us consider the
integrals form of the processes (et)t≥0 and (ψ(et))t≥0 on [0, T ].

Let θ = sup
k∈N

{τk ≤ T}. Firstly, if T ̸= θ and say θ equals to a τn, then

eT = eτn +
T∫

τn

αtdt+
T∫

τn

σtdwt

since there are no jumps on ]τn, T ]. Hence we can apply the classical chain
rule [Øks03, Th. 4.2.1] and obtain

ψ(eT ) = ψ(eτn) +
T∫

τn

∑
i

∂ψ(et)
∂[et]i

[αt]idt

+
T∫

τn

1
2
∑
i,j

∂ψ(et)
∂[et]i∂[et]j

[σtσ
⊤
t ]i,jdt+

T∫
τn

∑
i

∂ψ(et)
∂[et]i

[σtdwt]i.

The integral
T∫

τn

(
ψ
(
et + γt

)
− ψ(et)

)
dNt equals zero as NT − Nτn = 0 and

can be added to obtain integral form of (2.3.1) formally.
Thus, it remains to consider the second case which is T = θ; it means

T = τn for a certain n ∈ N. In contrast to the classical proof, it suffices to
consider the following decomposition

ψ(eτn) − ψ(e0) =
∑

τk<T

[ψ(eτk+1) − ψ(emax{τk+1−ε,τk})]

+
∑

τk<T

[ψ(emax{τk+1−ε,τk}) − ψ(eτk
)]

where ε > 0 will tend to zero. The second sum excludes jumps and so
can be written in the form of classical Itô integrals. The first sum tends to∑

τk<T [ψ(eτk
) − ψ(eτ−

k
)] that is

∑
τk<T

[ψ(eτ−
k

+ γτ−
k

) − ψ(eτ−
k

)] =
τn∫
0

ψ(et + γt) − ψ(et)]dNt

that implies the differential form (2.3.1).
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2.4 Particular cases
Let us now consider a few basic elements which are described using the
notion of Poisson process. These examples will be used later in the context
of filtering problem as well.

Piecewise constant zero-mean process

Assume that {vk}k∈N is a sequence of independent random variables where
vk ∼ N (0, Vk). Consider a process (bt)t≥0 defined as

bt := vNt ,

for a Poisson process (Nt)t≥0. One should notice that the entities vNt are
defined for all t ≥ 0 since (Nt)t≥0 is N-valued process. In addition, each vk

for k ∈ N is used, since Nt → ∞ as t → ∞ and there is no explosion.
Indeed, the obtained process (bt)t≥0 is piece-wise constant, càdlàg and

jumps at the arrival times τk of the Poisson process only. Moreover,

bθ = vk, for θ ∈ [τk, τk+1[.

Since all τk are stopping times and due to the symmetry of the density of
each vk, one obtains then E[bt] = 0 for each t ≥ 0.

In what follows, instead of defining such a process (bt)t≥0 we define only
the sequence {vk}k∈N and then use explicitly the process (vNt)t≥0.

Jumps in linear Gaussian dynamics

In the linear Gaussian setting, a filtering problem with Poisson-distributed
observations produces equations of the form (2.4.1) below. It is crucial that
presence of jumps keeps the distribution normal.

Lemma 2.15. Assume that x̂0 ∈ Rn is given and the stochastic process
(x̂t)t≥0 satisfies

dx̂t = Atx̂tdt+Gtdwt + (Btx̂t + βNt)dNt, (2.4.1)

where (wt)t≥0 is m-dimensional standard Wiener process, {βk}k∈N is a se-
quence of independent Gaussian random variables, A,G and B are functions
of finite variation on compacts. Then x̂t is a Gaussian random variable for
each t ≥ 0.
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Proof. Notice that all τ1, τ2, . . . are stopping times and each t > 0 belongs to
only one interval ]τk, τk+1] for k ∈ N. For t ∈]0, τ1[ we have that (x̂t)t≥0 is an
Itô diffusion process and its density satisfies the corresponding Fokker–Plank
equation. Due to linearity it remains Gaussian and the left limit at τk is
Gaussian as well. At τ1, x̂ is defined as limt↑τ1(x̂t +Bx̂t + βNt), i.e. as a sum
of two independent Gaussian random variables. Thus, the jump preserves
the normality of the distribution. For all the further intervals ]τk, τk+1] the
same arguments are applicable.

Evolution of product of random variables

Consider an example of application of the chain rule. For a given stochastic
process (et)t≥0 it might be useful to compute the matrix ete

⊤
t , which will be

later used for computing the covariance matrices. Proposition 2.14 allows to
do it element-wise, and the following remark provides a matrix-valued form.
Remark 2.16. Let Rn-valued càdlàg process (et)t≥0 be defined as

det = Atetdt+ Γtdwt + [Ξtet + Ωt] dNt, e0 = ē

where wt is a standard Wiener process of dimension m, càdlàg processes
At,Γt,Ξt, and Ωt are bounded on compacts. For n × n-dimensional process
ete

⊤
t one obtains that e0e

⊤
0 = ēē⊤ and

dete
⊤
t = (Atete

⊤
t + ete

⊤
t A

⊤
t + ΓtΓ⊤

t )dt+ Γtdwte
⊤
t + etdw⊤

t Γ⊤
t

+
[
(I + Ξt)ete

⊤
t (I + Ξt)⊤ + (I + Ξt)etΩ⊤

t + Ωte
⊤
t (I + Ξt)⊤

+ ΩtΩ⊤
t − ete

⊤
t

]
dNt. (2.4.2)

Proof. By Proposition 2.14 one has element-wise dynamics of (ete
⊤
t )t≥0

d[ete
⊤
t ]ij = d[et]i[et]j = [et]i[Aetdt+ Γtdwt]j + [et]j[Aetdt+ Γtdwt]i

+ 1
2
∑

k

[Γt]ik[Γt]jkdt

+
[[
et + Ξtet + Ωt

]
i

[
et + Ξtet + Ωt

]
j

− [et]i[et]j
]
dNt

that can be rewritten as (2.4.2).

2.5 Expected value
Notice that randomness in the process of our interest (2.2.4) has two indepen-
dent sources: a Wiener process and a Poisson process. While the intensity
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of the Wiener process is always fixed, the intensity of the Poisson process
plays the role of a parameter that can be controlled. Nonetheless, taking an
expectation, one should assume that both intensities are fixed somehow.

Note that the defined process (2.2.4) is Markovian. Given an initial value
e0 = ē, an expectation at time t is taken with respect to the law of et

generated by the two stochastic processes. However, the initial value will be
usually omitted or provided as a condition, so E[et] or E[et | e0 = ē] can be
used depending on the context.

2.5.1 Infinitesimal generator
In this section the infinitesimal generator is derived for the processes driven
by a Poisson process. It allows to obtain an analog of Dynkin’s formula, but
the statements avoid using stopping times since their implementation does
not require this feature.

Definition 2.17. Given a real-valued function ψ : Rn → R, the (infinites-
imal) generator of a random process (xt)t≥0 is the linear operator ψ 7→ Lψ
defined by

Rn ∋ z 7→ Lψ(z) ∈ R

Lψ(z) := lim
ε↓0

1
ε

(
E
[
ψ
(
x(t+ ε)

) ∣∣∣x(t) = z
]

− ψ(z)
)
.

(2.5.1)

Remark 2.18. We obtain the expected value of ψ by integrating the genera-
tor, which can be seen as a generalization of the classical Dynkin’s formula:

E
[
ψ(x(t))

]
= E

[
ψ(e(0))

]
+ E

[∫ t

0
Lψ(x(s)) ds

]
. (2.5.2)

For our purposes, it is useful to compute an explicit expression of the
generator which can then be analyzed for studying the qualitative behavior
of E[ψ]. Here, we provide a statement specifically tailored for the following
process

dxt = f(xt)dt+G(xt)dω + g(xt, νNt)dNt (2.5.3)

where Nt is a Poisson process with intensity λ > 0, ω is a standard Wiener
process, and a sequence {νk}k∈N consists of i.i.d. random variables with
density ν(·).

Proposition 2.19. If the sampling process (Nt)t≥0 is Poisson with intensity
λ > 0, then the process (x(t))t≥0 described in (2.5.3) is Markovian. Moreover,
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for any function Rn ∋ z 7→ ψ(z) ∈ R with at most polynomial growth as
∥z∥ → +∞, we have

Lψ(z) = ⟨∇ψ(z), f(z)⟩ + 1
2tr

(
∂2ψ(z)
∂z2 G(z)G(z)⊤

)
+ λ

[ ∫
ψ
(
z + g(z, v)

)
dν(v) − ψ(z)

]
. (2.5.4)

Proof. The fact that (x(t))t≥0 is Markovian follows from the observation that
the future of x(t) depends on x(τNt).

Since the system under consideration is well-posed, we have, for ε > 0
small,

E
[
ψ
(
x(t+ ε)

) ∣∣∣x(t) = z
]

= E
[
ψ
(
x(t+ ε)

)(
1{Nt+ε=Nt} + 1{Nt+ε=1+Nt} + 1{Nt+ε−Nt≥2}

) ∣∣∣x(t)
]
. (2.5.5)

We now compute the conditional probability distribution of
(
x(t + ε)

)
for

small ε > 0 given x(t). Since the sampling process is independent of the
state joint, by definition of the sampling (Poisson) process we have, for ε ↓ 0,

P
(
Nt+ε −Nt = 0

∣∣∣Nt, x(t)
)

= 1 − λε+ o(ε),

P
(
Nt+ε −Nt = 1

∣∣∣Nt, x(t)
)

= λε+ o(ε),

P
(
Nt+ε −Nt ≥ 2

∣∣∣Nt, x(t)
)

= o(ε).

Using these expressions, we develop (2.5.5) further for ε ↓ 0 as

E
[
ψ
(
x(t+ ε)

) ∣∣∣x(t) = z
]

= E
[
ψ
(
x(t+ ε)

)(
1{Nt+ε=Nt} + 1{Nt+ε=1+Nt}

) ∣∣∣x(t)
]

+ o(ε)

= E
[
ψ
(
x(t+ ε)

) ∣∣∣x(t), Nt+ε = Nt

]
·
(
1 − λε+ o(ε)

)
+ E

[
ψ
(
x(t+ ε)

) ∣∣∣x(t), Nt+ε = 1 +Nt

](
λε
)

+ o(ε). (2.5.6)

The two significant terms on the right-hand side of (2.5.6) are now computed
separately. First, for ε ↓ 0, we have

E
[
ψ
(
x(t+ ε)

) ∣∣∣Nt+ε = Nt, x(t) = z
]

= ψ(z) + ε
〈
∇ψ

(
z
)
, f
(
z
)〉

+ 0.5εḠ(z) + o(ε),

leading to the first term on the right-hand side of (2.5.6) having the estimate

E
[
ψ
(
x(t+ ε)

) ∣∣∣Nt+ε = Nt, x(t) = z
]

·
(
1 − λε+ o(ε)

)
= ψ

(
z
)

+ ε
〈
∇ψ

(
z
)
, f(z)

〉
+ εḠ(z) − (λε)ψ

(
z
)

+ o(ε),
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where Ḡ(z) := 0.5tr
(
(∂2ψ(z)/∂z)G(z)G(z)⊤

)
. Concerning the second term

on the right-hand side of (2.5.6), we observe that conditional on Nt+ε =
1 + Nt, the probability distribution of τNt+ε is uniform over [t, t + ε[ by
Th. 2.6, i.e.,

P
(
τNt+ε ∈ [s, s+ s′[

∣∣∣Nt+ε = 1 +Nt

)
= 1
ε
s′

for [s, s + s′[ ⊂ [t, t + ε[. Since the sampling process is independent of the
state process, the preceding conditional probability is equal to

P
(
τNt+ε ∈ [s, s+ s′[

∣∣∣Nt+ε = 1 +Nt, x(t) = z
)
.

We define θ ∈ [0, 1[ such that τNt+ε = t + θε, x(t) = z; then θ is uniformly
distributed on [0, 1[ given Nt+ε = 1 + Nt. We also have, conditioned on the
same event,

x(τNt+ε) = x(t+ θε) = x(t+ θε−) + g(x(t+ θε−), νNt+θε− ),

and

x(t+ θε−) = x(t) + θεf̄
(
x(t)

)
+ o(ε),

where f̄(z) denotes the linear interpolation of the solution of (2.5.3) over
an interval of length ε starting from z. The above expressions then lead to,
conditioned on the event Nt+ε = 1 +Nt, x(t) = z and for ε ↓ 0,

x(t+ ε) = x(t+ θε) + (1 − θ)εf̄
(
x(t+ θε))

)
+ o(ε)

= x(t) + θεf̄
(
x(t)

)
+ g(x(t) + θεf̄

(
x(t)

)
, νNt)

+ (1 − θ)εf̄
(
x(t+ θε)

)
+ o(h)

= x(t) + θεf̄
(
x(t)

)
+ g(x(t), νt) + (1 − θ)εf̄

(
x(t+ θε)

)
+ θε∇xg(x(t), νt) · f̄(x(t)) + o(ε).
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Therefore, for ε ↓ 0,

E
[
ψ
(
x(t+ ε)

) ∣∣∣x(t) = z,Nt+ε = 1 +Nt

]
· (λε)

=
∫ 1

0
ψ
(
z + θεf̄(z) + g(z, v) + (1 − θ)εf̄

(
x(t+ θε)

)
+ θε∇zg(z, v) · f̄(z) + o(ε)

)
dν(v)dθ · (λε)

=
∫ 1

0

(
ψ
(
z + g(z, v)

)
+ ε⟨∇ψ

(
z + g(z, v)

)
, o(ε) + θf̄(z)

+ (1 − θ)f̄(x(t+ θε)) + θ∇zg(z, v) · f̄(z)⟩
)

dν(v)dθ · (λε)

=
(∫

ψ
(
z + g(z, v

)
dν(v) +O(ε)

)
· (λε)

= (λε)
∫
ψ
(
z + g(z, v)

)
dν(v) + o(ε).

Putting everything together, we arrive at

E
[
ψ
(
x(t+ h)

) ∣∣∣x(t) = z
]

= ψ(z) + ε
(

⟨∇ψ(z), f(z)⟩ + 1
2tr

(
∂2ψ(z)
∂z

G(z)G(z)⊤
))

− (λε)
(
ψ(z) −

∫
ψ(z + g(z, v))dν(v)

)
+ o(ε).

Substituting these expressions in (2.5.1), we see that for each z ∈ Rn, we get
the expression (2.5.4).

2.5.2 Expectation with nonlinear Poisson-driven term
The following theorem takes place due to the nature of a Poisson process and
makes a high impact for continuous–discrete filters analysis.
Proposition 2.20. Let a Rn-valued càdlàg process (et)t≥0 is defined as

det = Atetdt+ (Gt)dwt + (g(et) + vNt)dNt (2.5.7)

where (Nt)t≥0 is a Poisson process with intensity λ, the sequences {bk}k∈N,
{vk}k∈N consist of N (0, V )-distributed independent random variables, A,G
are càdlàg adapted processes, bounded on compacts, the function g is Lipschitz
continuous in the second argument and has finite variation on compacts in
the first argument. One obtains that

dêt

dt = Atêt + λg(t, êt). (2.5.8)
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Proof. Notice that

êt+ε = E[et+ε | e0 = z]

= z + E
[∫ t+ε

0
1 des | e0 = z

]
= E[ez

t ] + E
[∫ t+ε

t
1 des | et = E[ez

t ]
]

= E[ez
t ] + E [et+ε | et = E[ez

t ]]
= êt + E [et+ε | et = E[ez

t ]] ,

where ez
t denotes the random variable z+

∫ t
0 des. Now denote the deterministic

vector E[ez
t ] =: y. Hence

lim
ε↓0

1
ε

(êt+ε − êt) = lim
ε↓0

1
ε

E [et+ε | et = y] .

Using Corollary 2.5 one can split this expectation into three cases:

E
[
e(t+ ε)

∣∣∣ e(t) = y
]

= E
[
e(t+ ε)

(
1{Nt+ε=Nt} + 1{Nt+ε=1+Nt} + 1{Nt+ε−Nt≥2}

) ∣∣∣ e(t) = y
]

= E
[
e(t+ ε)

) ∣∣∣ e(t), Nt+ε = Nt

]
·
(
1 − λε+ o(ε)

)
+ E

[
e(t+ ε)

∣∣∣ e(t), Nt+ε = 1 +Nt

](
λε
)

+ o(ε)

the first case contains no jumps and is treated correspondingly:

lim
ε↓0

1
ε

(
1 − λε+ o(ε)

)
E
[
e(t+ ε)

) ∣∣∣ e(t) = y,Nt+ε = Nt

]
= lim

ε↓0

1
ε

(
1 − λε+ o(ε)

)
E
[∫ t+ε

t
Asesds+

∫ t+ε

t
(Gs + bNs)ds | e(t) = y,Nt+ε = Nt

]
= Aty = AtE[ez

t ] = Atêt.

For the second case we obtain that

lim
ε↓0

1
ε

(
λε+ o(ε)

)
E
[
e(t+ ε)

) ∣∣∣ e(t) = y,Nt+ε = 1 +Nt

]
= lim

ε↓0

1
ε

(
λε+ o(ε)

)
E
∫ t+ε

t
Asesds+

∫ t+ε

t
(Gs + bNs)dws

+
∫ t+ε

t
(g(s, es) + vNs)dNs | e(t) = y,Nt+ε = 1 +Nt


= lim

ε↓0

1
ε

(
λε+ o(ε)

)
E
[∫ t+ε

t
g(s, es)dNs | e(t) = y,Nt+ε = 1 +Nt

]
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and thanks to the Theorem 2.6, the last limit equals to λg(t, y), that is
λg(t, êt). Thus (2.5.8) holds.

2.6 Implementation in the linear filtering prob-
lem

Let us turn our focus to the continuous-discrete filtering system and summa-
rize the key findings that can be achieved. Let the filtering system consist of

state xt ∈ Rn : dxt = Axtdt+Gdwt (2.6.1a)
discrete observations yτk

∈ Rp : yτk
= Cxτk

+ vτk
, (2.6.1b)

where {vτk
}k∈N is a sequence of independent Rp-valued normal random vari-

ables distributed as N (0, V ) and

{τk}k∈N are the arrival times of a Poisson process Nt. (2.6.1c)

We let (Ω,F ,P) denote the underlying probability space.
First, for a given sequence {τk}k∈N, we recall the filter design based on

computing the covariance matrix exactly via the differential equations.

Theorem 2.21 ([Jaz07, Theorem 7.1]). Consider the state process (2.6.1a)
and the observation process (2.6.1b) with a strictly increasing real-valued se-
quence {τk}k∈N. The optimal filter is a Gaussian process, its mean x̂t de-
scribed as7

dx̂t/dt = Ax̂t, τk ≤ t < τk+1 (2.6.2a)
x̂τk

= x̂−
τk

+Kτk
(yτk

− Cx̂−
τk

) k ∈ N (2.6.2b)

and the variance Pt = E
[
(xt − x̂t)(xt − x̂t)⊤

]
that satisfies

dPt/dt = APt + PtA
⊤ +GG⊤, τk ≤ t < τk+1 (2.6.3a)

Pτk
= P−

τk
−Kτk

CP−
τk

k ∈ N (2.6.3b)

where Kτk
= P−

τk
C⊤(CP−

τk
C⊤ + Vτk

)−1.

7We use the notation x̂−
τk

:= lim
s↑τk

x̂s and P −
τk

= lim
s↑τk

Ps.
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Second, if we assume that a sequence (τk)k∈N that corresponds to the
arrival times of a Poisson process Nt, we can reformulate the mean and
covariance equations from Theorem 2.21 as differential equations driven by
this Poisson process.

Theorem 2.22 (Reformulation of [Jaz07, Th. 7.1]). The optimal filter for
the system (2.6.1a)–(2.6.1c) is a Gaussian process, its conditional mean x̂t =
E[xt | σ{y[0,t]}] satisfies

dx̂t = Ax̂tdt+Kt(yt − Cx̂t)dNt, (2.6.4)

and the covariance matrix Pt = E[(xt − x̂t)(xt − x̂t)⊤ | σ{y[0,t]}] satisfies

dPt = (APt + PtA
⊤ +GG⊤)dt−KtCPtdNt (2.6.5)

where Kt = PtC
⊤(CPtC

⊤ + Vt)−1.

In the above result, one may notice that by Lemma 2.15 the optimal
conditional distribution is Gaussian despite its moments are discontinuous
for each sample path.

Let us note that the definition of moments are not the same in the two
theorems above. Both are independent of the values of the observations,
but Theorem 2.22 involves the covariance matrix conditional on the random
arrival times of observations. It crucially differs because the trace of the
covariance matrix measures the performance of the filter; now the covari-
ance matrix is not deterministic anymore. Nonetheless, study extends to the
expected performance of the filter with respect to the sampling rate of the
observation process. By applying Proposition 2.20 to the process (2.6.5), we
get

Ṗt = APt + PtA
⊤ +GG⊤ − λPtC

⊤(CPtC
⊤ + V )−1CPt (2.6.6)

for the process Pt := E[Pt | P0]. In addition, equation (2.6.6) with

K = PtC
⊤(CPtC

⊤ + V )−1

can be rewritten as

Ṗt = (A− λKtC)Pt + Pt(A− λKtC)⊤ +GG⊤ + λKt(CPtC + V )K⊤
t .



Chapter 3

Suboptimal Filter with
Lipschitz Drift

We design suboptimal filters for a class of continuous-time nonlinear stochas-
tic systems when the measurements are assumed to arrive randomly at dis-
crete times under a Poisson distribution. The proposed filter is a dynamical
system with a differential equation and a reset map which updates the esti-
mate whenever a new measurement is received. We analyze the performance
of the proposed filter by computing the expected value of the error covari-
ance which is described by a differential equation. We study throughly the
conditions under which the error covariance remains bounded, which depend
on the system data and the mean sampling rate associated with the measure-
ment process. We also study the particular cases when the error covariance
is seen to decrease with the increase in the sampling rate. For the particular
case of linear filters, we can also compare the error covariance bounds with
the case when the measurements are continuously available.

3.1 Problem Formulation

3.1.1 System Class
Let us consider stochastic nonlinear systems of the Rn-valued state process

dxt = f(xt) dt+Gdwt (3.1.1a)

and the piecewise constant càdlàg measurements y, taking values in Rp, sat-
isfying

yτk
= h(xτk

) + vτk
(3.1.1b)

35
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for the arrival times τk of a Poisson process Nt.
The process noise w and the sensor noise v are assumed to be independent

Brownian motions. The drift term f : Rn → Rn, and the output map
h : Rn → Rp are both assumed to be continuous. For the sake of simplicity,
we will assume that the covariances of the process noise and sensor noise
remain constants over time and are denoted by W and V respectively.

3.1.2 Structural assumption on system nonlinearities
To analyze the performance of the nonlinear filters, we introduce a structural
assumption on the nonlinearities in the model (3.1.1).
(A1) There exist matrices A ∈ Rn×n, C ∈ Rp×n, the constants a, c such that

for all δ ∈ Rn

|f(x+ δ) − f(x) − Aδ| ≤ a |δ|, (3.1.2a)
|h(x+ δ) − h(x) − Cδ| ≤ c|δ|, (3.1.2b)

and the pair (A,C) is detectable. Moreover, the diffusion term is
constant, that is, G(x) = G ∈ Rn×m for every x ∈ Rn, with (A,G)
stabilizable.

Our goal is to work out the filtering equations in the previous section for this
particular class of nonlinear systems, and analyze the covariance of the esti-
mation error as a function of the parameters in the model and the observation
process.
Remark 3.1. In other words, the nonlinearities, that we consider, are to be
seen as the perturbations in the linear terms and the size of these perturba-
tions is handled by the constants a and c. If we write f(x) = Ax + fnl(x),
and h(x) = Cx + hnl(x), then Assumption (A1) requires that fnl is Lips-
chitz continuous with modulus a ≥ 0, and that hnl is Lipschitz continuous
with modulus c ≥ 0. This allows us to cover drift terms with at most linear
growth, and output measurements (from sensors) with bias and saturation.
Assumption (A1), however, rules out nonlinearities in diffusion coefficient
matrix G, and considering such nonlinearities is a topic of further investiga-
tions.

The conventional filtering problem deals with an Rp-valued continuous-
time observation process (zt)t≥0 described as

dzt = h(xt) dt+ dηt, (3.1.3)

where ηt is an Ft-adapted standard Wiener process, taking values in Rp, and
E[dηt dη⊤

t ] = Vtdt, with Vt ∈ Rp×p assumed to be positive definite.
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Remark 3.2. It is possible to consider time-dependence in nonlinearities f ,
g, h and the covariances of the noise. As a result, the matrices A,C,G,
the constants a, c, and the covariance matrices E[dωtdω⊤

t ], E[dηtdη⊤
t ] can

also be time-dependent. Such generalities can be addressed within the frame-
work of this chapter. In particular, the derivation of bounds in Proposi-
tion 3.3, Proposition 3.4, and Proposition 3.5 could be easily generalized with-
out much differences. However, the results of Section 3.5, Section 3.6, and
Section 3.6.3, where we analyze the stability of the differential equations as-
sociated with the bounds of the error covariance, require more careful analysis
for time-varying systems.

3.2 Suboptimal filtering
In what follows, we consider the dynamical system (3.1.1) under the assump-
tion (A1). As already mentioned, the exact filtering equations are not easy
to analyse. Thus, we propose a filter structure, which is clearly a suboptimal
solution and analyze the performance of this particular filter.

3.2.1 Filtering equations
For given values of randomly sampled time instants {τNt}t≥0, or in other
words, a fixed sample path of (Nt)t≥0, we define the estimate x̂t using the filter
(3.2.1), whose sample paths are càdlàg functions; a function ϕ : [0,∞[→ Rn

is a càdlàg function if lims↘t ϕs = ϕt for each t ∈ [0,∞[, and ϕt− := lims↗t ϕs

exists for each t ∈]0,∞[.

dx̂t = f(x̂t) dt (3.2.1a)
x̂τ+

Nt

= x̂τ−
Nt

+KτNt
(yτNt

− h(x̂τ−
Nt

)). (3.2.1b)

where x̂t is the state estimate, and Kτk
∈ Rn×p, k ∈ N, are the injection gains

that need to be designed appropriately. The estimate obtained from (3.2.1)
is, in general, not optimal for minimizing the mean square estimation error.
However, by analyzing the performance of the suboptimal filter in (3.2.1),
we can get an upper bound on the minimal mean square estimation error.

According to the notation of Chapter 2, one can rewrite (3.2.1) as

dx̂t = f(x̂t)dt+Kt(yt − h(x̂t))dNt.

This form explicitly shows dependence on the sampling process N ; however,
in this chapter, it is more convenient to estimate the filter performance of
the form (3.2.1).



38 CHAPTER 3. SUBOPTIMAL FILTER WITH LIPSCHITZ DRIFT

Hence, for the particular choice of filter in (3.2.1), we are interested in
computing bounds on the expectation (with respect to the sampling process)
of the error covariance and find conditions (involving the design parameter
Kτk

, k ∈ N) so that the resulting covariance is bounded. The dependency of
the error covariance on the sampling rate is also analyzed for specific cases.

3.2.2 Error covariance bounds with arbitrary injection
gains

The following statement describes a bound on the covariance of estimation
error resulting from (3.2.1) for a given value of sampling times.

Proposition 3.3. Consider system (3.1.1) under assumption (A1) and the
filter (3.2.1) with {τk}k∈N fixed. Let the process Pt, with P0 := E[(x0−x̂0)(x0−
x̂0)⊤], be defined by

dPt

dt = APt + PtA
⊤ + aPt + a tr(Pt)In×n +GG⊤, (3.2.2a)

for τNt ≤ t < τNt+1, and for k = Nt, let

Pτ+
k

= Pτ−
k

+ cPτ−
k

−Kτk
CPτ−

k
− Pτ−

k
C⊤K⊤

τk

+Kτk

(
(1 + c)CPτ−

k
C⊤ + (2c+ c2) tr (Pτ−

k
)Ip×p + V

)
K⊤

τk
. (3.2.2b)

Then, it holds that, for each t ≥ 0,

E[(xt − x̂t)(xt − x̂t)⊤ | Yt] ≤ Pt. (3.2.3)

Proof. We denote the state estimation error by et := xt − x̂t, so that the
resulting error dynamics are given by

det = (f(xt) − f(x̂t))dt+Gdwt =: f̃(xt, x̂t)dt+Gdwt (3.2.4a)

for t ∈ [τNt , τNt+1[, and for each k = Nt,

eτ+
k

= xτ+
k

− x̂τ+
k

= xτ−
k

− x̂τ−
k

−Kτk
(yτk

− h(x̂τ−
k

))
= eτ−

k
−Kτk

(yτk
− h(x̂τ−

k
)). (3.2.4b)

Under the small nonlinearity assumption (A1), we can write f(x) = Ax +
fnl(x) for some Lipschitz function fnl(·) with modulus a, so that

f̃(xt, x̂t) = f(xt) − f(x̂t) = Ae+ fnl(xt) − fnl(x̂t),
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where fnl(·) satisfies the bound, |fnl(xt)−fnl(x̂t)| ≤ a|et| for every xt, x̂t ∈ Rn.
In what follows, we denote E[(xt − x̂t)(xt − x̂t)⊤ | Yt] by E[ete

⊤
t ], and show

that, for each t ∈ [τNt , τNt+1[,
dE[ete

⊤
t ]

dt ≤ AE[ete
⊤
t ] + E[ete

⊤
t ]A⊤ + aE[ete

⊤
t ] + a tr(E[ete

⊤
t ]) In×n +GG⊤

and that, at the sampling instants

E[eτ+
k
e⊤

τ+
k

] − E[eτ−
k
e⊤

τ−
k

] ≤ Pτ+
k

− Pτ−
k
.

The bound in (3.2.3) then holds by observing that Pt satisfies (3.2.2a) over
[τNt , τNt+1[, and (3.2.2b) at t = τNt , with P0 = E[e0e

⊤
0 ].

Continuous part Let us first show that for every t ∈ [τNt , τNt+1[ we have
the inequality dE[ete⊤

t ]
dt

≤ dPt

dt
. On this time interval, let us consider the Itô

process in (3.2.4a):
det = f̃(xt, x̂t)dt+Gdwt,

and the function v : Rn → Rn×n given by, Rn ∋ e 7→ v(e) = ee⊤Rn×n, where
an element of the matrix v(e) is denoted by vk,l(e) = ekel. Consequently,
(v ◦ et)t≥0 is an Itô process, and applying Itô’s differential chain rule, we
obtain

dvk,l(et) =
n∑

i=1

∂vk,l(et)
∂ei

t

dei
t + 1

2

n∑
i,j=1

∂2vk,l(et)
∂ei

t∂e
j
t

dei
tde

j
t .

Substituting dei
t = f̃i(xt, x̂t)dt + ∑m

k=1 Gi,k(dwt)k and using Itô’s multipli-
cation table [KS98, Page 154], we have (dwt)i · (dwt)j = δijdt, dt · dt =
(dwt)i · dt = dt · (dwt)i = 0, and hence

dvk,l(et) =
n∑

i=1

∂vk,l(et)
∂ei

t

f̃i(xt, x̂t)dt

+ 1
2

n∑
i,j=1

∂2vk,l(et)
∂ei

t∂e
j
t

m∑
ki,kj=1

δki,kj
Gi,ki

Gj,kj
dt

+
n∑

i=1

m∑
j=1

∂vk,l(t, et)
∂ei

t

Gi,j(dwt)j

=
n∑

i=1

∂vk,l(et)
∂ei

t

f̃i(xt, x̂t)dt

+ 1
2

n∑
i,j=1

∂2vk,l(et)
∂ei

t∂e
j
t

⟨Gi, Gj⟩dt

+
n∑

i=1

m∑
j=1

∂vk,l(t, et)
∂ei

t

Gi,j(dwt)j,
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where ⟨Gi, Gj⟩ is the inner product of i-th and j-th rows of the matrix G.
We are interested in computing dE[v(et)]

dt
, and we have the following expression

for its coordinates:

dE[vk,l(et)]
dt = lim

ε→0

E[vk,l(et+ε)] − vk,l(et)
ε

= E
1
ε

∫ t+ε

t
dv(es)


Substituting the expression for dv(es), and using the fact that ws is a Wiener
process, we get

dE[vk,l(et)]
dt = lim

ε→0

1
ε

∫ t+ε

t
E
 n∑

i=1

∂vk,l(es)
∂ei

s

f̃i(xs, x̂s)+
1
2

n∑
i,j=1

∂2vk,l(es)
∂ei

s∂e
j
s

⟨Gi, Gj⟩

ds

and hence, recalling that, vk,l(et) = ek
t e

l
t,

dE[vk,l(et)]
dt = E

[
(elf̃k(xt, x̂t) + ekf̃l(xt, x̂t))

]
+ 1

2 (⟨Gk, Gl⟩ + ⟨Gl, Gk⟩) .

Thus,

dE[v(et)]
dt = E

[
f̃(xt, x̂t)e⊤ + ef̃(xt, x̂t)⊤

]
+GG⊤

= E
[
Aete

⊤
t + f̃nl(xt, x̂t)e⊤

t + et(Aet)⊤
]

+ E
[
etf̃nl(xt, x̂t)⊤

]
+GG⊤

≤ AE
[
ete

⊤
t

]
+ E

[
ete

⊤
t

]
A⊤ + aE

[
ete

⊤
t

]
+ aE

[
|et|2

]
In×n +GG⊤

= AE
[
ete

⊤
t

]
+ E

[
ete

⊤
t

]
A⊤ + aE

[
ete

⊤
t

]
+

a tr(E
[
ete

⊤
t

]
) In×n +GG⊤,

where we used the fact that f̃(xt, x̂t) = Aet + f̃nl(xt, x̂t), with f̃nl(xt, x̂t) :=
fnl(xt) − fnl(x̂t), and the last inequality was obtained using the bound1

ef̃⊤
nl + f̃nle

⊤ ≤ a ee⊤ + a|e|2In×n

and the fact that |e|2 = tr (ee⊤).
1It follows from the fact that, for each z, e ∈ Rn, and fnl ∈ Rn satisfying |fnl| ≤ a|e|,

we have that, z⊤(ef̃⊤
nl + f̃nle

⊤)z ≤ 2 |z⊤e| · |z⊤f̃nl| ≤ 2 a |z⊤e| · |z| |e|
≤ a z⊤ee⊤z + a|e|2z⊤z.
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Jump part To analyze the jump in error dynamics at time instants when
the new measurements are received, we first observe that, under (A1), h(x) =
Cx+ hnl(x), where hnl(x) satisfies the bound, |hnl(x− e) − hnl(x)| ≤ c|e|, for
all x, e ∈ Rn. Since xt is continuous, recalling that et = xt − x̂t and (3.2.4b),
it follows that, for k = Nt,

eτ+
k

− eτ−
k

= −(x̂τ+
k

− x̂τ−
k

) = −Kτk
(yτk

− h(x̂τ−
k

))
= −Kτk

(Cxτk
+ hnl(xτ−

k
) + vτk

− Cx̂τ−
k

− hnl(x̂τ−
k

))
= −Kτk

(Ceτ−
k

+ ỹτ−
k

+ vτk
)

where ỹτ−
k

:= hnl(xτ−
k

) − hnl(x̂τ−
k

). With this relation for jump in error value
at sampling instants, we can compute the change in the error covariance at
the sampling instants. We do so by noting that

E[eτ+
k
e⊤

τ+
k

] = E
[ (
eτ−

k
−Kτk

(Ceτ−
k

+ ỹτ−
k

+ vτk
)
)

·(
eτ−

k
−Kτk

(Ceτ−
k

+ ỹτ−
k

+ vτk
)
)⊤
]

= E[eτ−
k
e⊤

τ−
k

] − E[eτ−
k

(Ceτ−
k

+ ỹτ−
k

+ vτk
)⊤K⊤

τk

+Kτk
(Ceτ−

k
+ ỹτ−

k
+ vτk

)e⊤
τ−

k
]

+ E[Kτk
(Ceτ−

k
+ ỹτ−

k
+ vτk

)(Ceτ−
k

+ ỹτ−
k

+ vτk
)⊤K⊤

τk
]. (3.2.5)

We will now get a bound on the second and third terms on the right-hand
side. To do so, we observe that, for each K ∈ Rn×p, ỹ ∈ Rp, e ∈ Rn, such
that |ỹ| ≤ c|e|, we have

−Kỹe⊤ − eỹ⊤K⊤ ≤ cee⊤ + c|e|2KK⊤. (3.2.6)

This indeed follows from the fact that, for each z ∈ Rn, z⊤(−Kỹe⊤ −
eỹ⊤K⊤)z ≤ 2 |z⊤e| · |z⊤Kỹ| ≤ 2 c |z⊤e| · |K⊤z| |e| ≤ c z⊤ee⊤z+c|e|2z⊤KK⊤z.
Applying the inequality (3.2.6), the second term on the right-hand side of
(3.2.5) can be bounded as follows:

− E[eτ−
k

(Ceτ−
k

+ ỹτ−
k

+ vτk
)⊤K⊤

τk
−Kτk

(Ceτ−
k

+ ỹτ−
k

+ vτk
)e⊤

τ−
k

]

≤ −E[eτ−
k
e⊤

τ−
k

]C⊤K⊤
τk

−Kτk
CE[eτ−

k
e⊤

τ−
k

] + cE[eτ−
k
e⊤

τ−
k

]

+ c |e|2Kτk
K⊤

τk

= −E[eτ−
k
e⊤

τ−
k

]C⊤K⊤
τk

−Kτk
CE[eτ−

k
e⊤

τ−
k

] + cE[eτ−
k
e⊤

τ−
k

]

+ c tr (E[eτ−
k
e⊤

τ−
k

])Kτk
K⊤

τk
,
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where we used the fact that |eτ−
k

|2 = tr (E[eτ−
k
e⊤

τ−
k

]).
For the last term on the right-hand side of (3.2.5), we observe that, for

each C ∈ Rp×n, e ∈ Rn, and ỹ ∈ Rp satisfying |ỹ| ≤ c|e|, we have

Ceỹ⊤ + ỹe⊤C⊤ ≤ cCee⊤C⊤ + c|e|2Ip×p. (3.2.7)

This, in turn, leads to

E[Kτk
(Ceτ−

k
+ ỹτ−

k
+ vτk

)(Ceτ−
k

+ ỹτ−
k

+ vτk
)⊤K⊤

τk
]

= E[Kτk
(Ceτ−

k
e⊤

τ−
k
C⊤ + Ceτ−

k
ỹ⊤

τ−
k

+ ỹτ−
k
e⊤

τ−
k
C⊤ + ỹτ−

k
ỹ⊤

τ−
k

+ vτk
(Ceτ−

k
+ ỹτ−

k
)⊤ + (Ceτ−

k
+ ỹτ−

k
)v⊤

τk
+ vτk

v⊤
τk

)K⊤
τk

]
= Kτk

E[Ceτ−
k
e⊤

τ−
k
C⊤ + Ceτ−

k
ỹ⊤

τ−
k

+ ỹτ−
k
e⊤

τ−
k
C⊤ + ỹτ−

k
ỹ⊤

τ−
k

+ vτk
(Ceτ−

k
+ ỹτ−

k
)⊤ + (Ceτ−

k
+ ỹτ−

k
)v⊤

τk
+ vτk

v⊤
τk

]K⊤
τk

≤ Kτk

(
CE[eτ−

k
e⊤

τ−
k

]C⊤ + E[cCeτ−
k
e⊤

τ−
k
C⊤

+ c|eτ−
k

|2Ip×p + c2|eτ−
k

|2] + V
)
K⊤

τk

= Kτk

(
CE[x̃τ−

k
x̃⊤

τ−
k

]C⊤ + cCE[eτ−
k
e⊤

τ−
k

]C⊤

+ (c+ c2) tr (E[eτ−
k
e⊤

τ−
k

])Ip×p + V
)
K⊤

τk
.

Plugging this last bound in (3.2.5), we get

E[eτ+
k
e⊤

τ+
k

] ≤ E[eτ−
k
e⊤

τ−
k

] − E[eτ−
k
e⊤

τ−
k

]C⊤K⊤
τk

−Kτk
CE[eτ−

k
e⊤

τ−
k

]

+ cE[eτ−
k
e⊤

τ−
k

] +Kτk

(
(1 + c)CE[eτ−

k
e⊤

τ−
k

]C⊤

+ (2c+ c2) tr (E[eτ−
k
e⊤

τ−
k

]) + V
)
K⊤

τk

which is the desired statement.

3.2.3 Minimizing error covariance with suboptimal fil-
ters

In the result of Proposition 3.3, we computed bounds on the estimation error
covariance for arbitrary choice of gains. However, by choosing the gains in
a certain dynamic manner such that K in (3.2.1b) depends on Pt obtained
from equations of form (3.2.2a)-(3.2.2b), we can minimize Pt and E[ete

⊤
t ].

For the chosen class of filters, this optimal choice of dynamic gain and the
resulting covariance bound are indicated in the next result.
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Proposition 3.4. Consider system (3.1.1) under assumption (A1) and the
filter (3.2.1) with {τk}k∈N given. If the output injection gains Kτk

, k ∈ N, in
(3.2.1b) are chosen as

Kτk
= P ⋆

τ−
k
C⊤M−1

Pτk
(3.2.8)

where P ⋆ is obtained from
dP ⋆

t

dt = AP ⋆
t + P ⋆

t A
⊤ + aP ⋆

t + a tr(P ⋆
t )I +GG⊤, (3.2.9a)

P ⋆
τ+

k
= (1 + c)P ⋆

τ−
k

− P ⋆
τ−

k
C⊤M−1

Pτk
CP ⋆

τ−
k

(3.2.9b)

and MPτk
is defined as2

MPτk
:= (1 + c)CP ⋆

τ−
k
C⊤ + (2c+ c2) tr (P ⋆

τ−
k

)Ip×p + V, (3.2.10)

then, for each t ≥ 0, it holds that

E[(xt − x̂t)(xt − x̂t)⊤] ≤ P ⋆
t ≤ Pt (3.2.11)

where Pt is obtained as a solution of (3.2.2).
The proof of this statement follows from Proposition 3.3. It is noted that

Kτk
only affects the bound Pt at the jump times via (3.2.2b). The right-hand

side of (3.2.2b) is a quadratic convex function of Kτk
which is minimized by

choosing Kτk
as in (3.2.8).

3.3 Expectation of error covariance
In the previous section, we computed a bound on the error covariance for a
fixed sequence of time instants at which measurements are received. That
is, Pt is an upper bound on E[(xt − x̂t)(xt − x̂t)⊤ | Yt] along one particular
sample path as the realization of Pt depends on the observed sampling times.
It was initially stipulated that the random sampling instants are governed
by a Poisson process. It is thus of interest to compute the expected value of
Pt along all possible sample paths generated by Poisson sampling process.

Toward this end, it is noted that the evolution of Pt in (3.2.2) is governed
by a piecewise deterministic process, where Pt is obtained from the differential
equation (3.2.2a) between two sampling instants, and then at the sampling
times, Pt is reset according to the equation (3.2.2b). By Proposition 2.20 one
immediately obtains the following important result.

2For a given matrix P , the notation MP used in (3.2.10) will be used extensively in
the remainder of this article where we will change the matrix appearing in the subscript.
With V assumed to be symmetric positive definite, MP is a symmetric positive definite
matrix, whenever P is symmetric positive semidefinite.
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Proposition 3.5. Consider the process (Pt)t≥0 given by (3.2.2) with Kτk
=

K ∈ Rn×p for each k ∈ N, and assume that the sampling process (Nt)t≥0
has intensity λ > 0. Let Pt := E[Pt |P0] denote the expected value of the
covariance process at time t ≥ 0. Then, it holds that

Ṗt = (A−λKC)Pt+Pt(A−λKC)⊤+Πa(Pt)+GG⊤+λ cPt+λKMPtK
⊤,

(3.3.1)

where the linear operator Πa : Rn×n → Rn×n is defined as

Πa(P ) := aP + a tr(P )I, (3.3.2)

and the matrix MPt ∈ Rp×p is given by

MPt := (1 + c)CPtC
⊤ + (2c+ c2) tr (Pt)Ip×p + V. (3.3.3)

In particular, if we choose Kτk
= P ⋆

τ−
k

C⊤M−1
Pτk

, then the expected value of the
error covariance process governed by (3.2.9) is

Ṗ⋆
t = AP⋆

t + P⋆
t A

⊤ + Πa(P⋆
t ) + GG⊤ + λ cP⋆

t − λP⋆
t C

⊤M−1
P⋆

t
CP⋆

t . (3.3.4)

Remark 3.6. In (3.3.4), if we introduce the variable Kt := P⋆
t C

⊤M−1
P⋆

t
, then

(3.3.4) is equivalently written as

Ṗ⋆
t = (A− λKtC)P⋆

t + P⋆
t (A− λKtC)⊤

+ Πa(P⋆
t ) +GG⊤ + λ cP⋆

t + λKtMP⋆
t
K⊤

t .

This last equation resembles (3.3.1), the only difference being that a constant
K is replaced by a time-varying term Kt.

Thus, in linear case, an upper bound on the expectation (with respect
to sampling process) of error covariance is obtained by solving a nonlin-
ear differential equations. The boundedness of the solutions of equations in
Proposition 3.5 are analyzed in later sections.

Let us provide two examples for an illustration of the results presented
so far.

Example 3.7. Consider the nonlinear system described by the equations

dx1,t = sat(x2,t)dt+ dwt, dx2,t = (x1,t − x2,t)dt+ dwt

with the measurement process dzt = (1 + x1,t)dt + dηt. The noise processes
are normalized as dwt ∼ N (0, 1) and dηt ∼ N (0, 1). The function sat(·)
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(a) Constant gain K = [0.5 0.5]⊤. (b) Dynamic gain Kt = P ⋆
t C⊤M−1

P ⋆
t

.

Figure 3.1: Plot of tr(ete
⊤
t ) (blue curve) and tr(Pt) (yellow curve) along one

sample path (of sampling times) for two choices of Kτk
with λ = 10.

represents the standard saturation function, that is, for each z ∈ R, sat(z) =
z − fnl(z), where fnl is a Lipschitz function described as, fnl(z) = z − 1, if
z ≥ 1, fnl(z) = 0 if z ∈ [−1, 1], and fnl(z) = z + 1, if z ≤ −1. Hence, by
letting A = [ 0 1

1 −1 ], C = [ 1 0 ], G = [ 1 1 ]⊤, it is seen that Assumption (A1)
holds with a = 1, and c = 0. Associating a Poisson process of intensity λ, the
corresponding measurement equations are given by, yτNt

= 1 + x1,τNt
+ vτNt

,
where we take vτNt

∼ N (0, 1) for each t ≥ 0. For appropriately chosen
k1,τNt

, k2,τNt
∈ R, the proposed filter is then described by

dx̂1,t = sat(x̂2,t)dt, x̂1,τ+
Nt

= x̂1,τ−
Nt

+ k1,τNt
(yτNt

− x̂1,τ−
Nt

)

dx̂2,t = (x̂1,t − x̂2,t)dt, x̂2,τ+
Nt

= x̂2,τ−
Nt

+ k2,τNt
(yτNt

− x̂2,τ−
Nt

).

The simulation results for this example with two different choices of KτNt
:=

[k1,τNt
k2,τNt

]⊤ are reported in Figure 3.1 and Figure 3.2. For one particu-
lar choice of randomly determined sampling times, Figure 3.1a provides an
illustration of (3.2.3) in Proposition 3.3, where we plot tr(E[ete

⊤
t | Yt]) and

the bound tr(Pt) obtained from solving (3.2.2), with constant gain KτNt
=

[0.5 0.5]⊤ for each t ≥ 0. Similarly, Figure 3.1b is obtained by choosing
KτNt

= P ⋆
τNt
C⊤M−1

P ⋆
τNt

and is an illustration of inequality (3.2.11) stated in
Proposition 3.4. In Figure 3.2, we compute expectation with respect to the
sampling process. Figure 3.2a plots tr(E[E[ee⊤ | Yt]]), and its upper bound
tr(Pt) obtained from (3.3.1) with constant gain KτNt

= [0.5 0.5]⊤ for each
t ≥ 0, and choosing the intensity of Poisson sampling process λ = 10. In
Figure 3.2b, we choose KτNt

= P ⋆
τNt
C⊤M−1

P ⋆
τNt

, with the the theoretical upper
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(a) Constant gain K = [0.5 0.5]⊤. (b) Dynamic gain Kt = P ⋆
t C⊤M−1

P ⋆
t

.

Figure 3.2: Experimental value (blue curve) and theoretical upper bound
(red curve) for expectation (with respect to sampling process) of trace of
error covariance with λ = 10 for two choices of K.

bound tr(P⋆
t ) obtained from (3.3.4). We indeed observe that tr(P⋆

t ) has a
smaller value than tr(Pt), for each t ≥ 0. It is not obvious, for what choices
of gains KτNt

, we should get finite values of our bounds; such questions are
addressed in subsequent sections.

Example 3.8. Consider the linear stochastic system

dxt = Axtdt+Gdwt (3.3.5a)
dzt = Cxtdt+ dηt. (3.3.5b)

where dzt is the measurement process, and the processes wt, ηt satisfy the
same hypothesis as in system (3.1.1). If (A,C) is detectable and (A,G)
is stabilizable, then Assumption (A1) holds with a = c = 0. The output
observed at randomly sampled time instants is described by yτNt

= CxτNt
+

vτNt
, where for each t ≥ 0, vτNt

∼ N (0, V ). The filter (3.2.1) takes the form

dx̂t = Ax̂t dt, x̂τ+
Nt

= x̂τ+
Nt

+KτNt
(yτNt

− h(x̂τ−
Nt

)).

Inequality (3.2.3) in Proposition 3.3 holds, where Pt satisfies

Ṗt = APt + PtA
⊤ +GG⊤,

for τNt ≤ t < τNt+1, and for k = Nt,

Pτ+
k

= Pτ−
k

−Kτk
CPτ−

k
− Pτ−

k
C⊤K⊤

τk
+Kτk

(
CPτ−

k
C⊤ + V

)
K⊤

τk
.
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By choosing, Kτk
= Pτ−

k
C⊤M−1

Pτk
, for each k ∈ N, the covariance bound is

minimized and the resulting equations are given by (3.2.9) by setting a = c =
0.

Assuming that the sampling process is Poisson of intensity λ, and the
gain K is constant, the expected value of Pt is

Ṗt = (A − λKC)Pt + Pt(A − λKC)⊤ + GG⊤ + λK
(
CPtC

⊤ + V
)
K⊤.

However, by choosing Kτk
= P ⋆

τ−
k

C⊤M−1
Pτk

, the expected value of the error
covariance process governed by (3.2.9) in linear case is

Ṗ⋆
t = AP⋆

t + P⋆
t A

⊤ +GG⊤ − λP⋆
t C

⊤
(
CPtC

⊤ + V
)−1

CP⋆
t .

3.4 Evolution of error covariance
We are interested in studying the solutions of the equation (3.3.1) and (3.3.4),
which characterize the expected value of the error covariance resulting from
the suboptimal nonlinear filter when the available measurements are Poisson
distributed. In particular, we want to study conditions on the system dy-
namics and the sampling rates which guarantee boundedness of the solution.
In doing so, the following algebraic equation also plays an important role:

0 = AP + PA⊤ + Πa(P) + λcP +GG⊤ − λPC⊤M−1
P CP . (3.4.1)

In the remainder of this section, we provide a statement of the existence
of solution to the differential equation (3.3.4), and then study boundedness
of its solution and connections to steady state algebraic equations in the next
section.

To study Carathédory solutions to the differential equation (3.3.1), we
introduce the notation,

Ψ(P ,MP , K) := AλKP + PA⊤
λK + Π(P) +GG⊤ + λK⊤MPK. (3.4.2)

where MP is defined as in (3.3.3), and we take

AλK := (A− λKC) (3.4.3a)
Π(P) := Πa(P) + λ cP = aP + a tr(P)I + λcP . (3.4.3b)

It is readily seen that the particular choice of K = K = PC⊤M−1
P minimizes

Ψ(P ,MP , K) with respect to the ordering in the cone of positive semidefinite
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matrices. Indeed,

Ψ(P ,MP ,K)
= (A− λKC)P + P(A− λKC)⊤ + Π(P) +GG⊤

+ λKMPK⊤

= (A− λKC)P + P(A− λKC)⊤ + Π(P) +GG⊤

+ λKMPK
⊤ − λ(K − K)MP(K − K)⊤

= Ψ(P ,MP , K) − λ(K − K)MP(K − K)⊤

≤ Ψ(P ,MP , K). (3.4.4)

We can apply similar arguments to prove the following lemma which com-
pares the solutions of equations (3.3.1) and (3.3.4).

Lemma 3.9. Let P⋆
t be the solution of

Ṗ⋆
t = Ψ(P⋆

t ,MP⋆
t
,P⋆

t C
⊤M−1

P⋆
t
), P⋆

0 = P0,

and let Pt be the solution of

Ṗt = Ψ(Pt,MPt , K), P0 ≥ 0 given,

where MP⋆
t

and MPt are defined as in (3.2.10). Then, it holds that

P⋆
t ≤ Pt, ∀ t ≥ 0.

Proof. Notice that for P̃(t) = Pt − P⋆
t the minimum property (3.4.4) implies

˙̃P = Ψ(Pt,MPt , K) − Ψ(P⋆
t ,MP⋆

t
,P⋆

t C
⊤M−1

P⋆
t
)

≥ Ψ(Pt,MPt , K) − Ψ(P⋆
t ,MP⋆

t
, K)

= AλKP̃t + P̃tA
⊤
λK + Π(P̃t) + λKMP̃t

K⊤,

where MP̃ = MPt − MP⋆
t

is consistent and depends linearly on P̃t. So, we
have

˙̃P = AλKP̃ + P̃A⊤
λK + Π(P̃) + λKMP̃K

⊤ +Rt,

for some Rt ≥ 0. Since P̃(0) = 0, for t ≥ 0, P̃t is a solution of the following
Volterra equation

P̃t =
∫ t

0
es AλK (Π(P̃s) + λK⊤MP̃s

K)esA⊤
λK ds.

The matrix on the right-hand side is positive semidefinite, and hence Pt ≥
P⋆

t , for each t ≥ 0.
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A direct consequence of this observation is that the right-hand side of
(3.3.1) is minimized by choosing Kτk

as in (3.2.8). Even though the pertur-
bation Π is linear in P , the aforementioned choice of K makes the right-hand
side of (3.3.1) a nonlinear function in P , which is different from the quadratic
nonlinearity seen in Riccati differential equations. We are thus interested in
knowing whether there exists a solution to the resulting equation. To this
end, we will focus our attention on the initial value problem (3.3.4) with
P(0) = P0, where P0 is a positive semidefinite matrix.

Proposition 3.10. For each symmetric positive semidefinite matrix P0 ∈
Rn×n and a given T > 0, there exists a unique absolutely continuous solution
P : [0, T ] → Rn×n in the class of symmetric positive definite matrices such
that P(0) = P0 and the differential equation (3.3.4) holds for almost every
t ∈ [0, T ].

The proof of this result is given in Appendix B.1. In the infinite-time
horizon case we have a unique continuous solution P : [0,+∞[→ Rn×n in the
class of symmetric positive semidefinite matrices satisfying (3.3.4).

3.5 Conditions for bounded covariance

In this section, we study the conditions under which the error covariance Pt

stays bounded for all t ≥ 0. In doing so, we recall that the error covariance
can be compactly represented as Ṗt = Ψ(Pt,MPt , K) where Ψ is defined
in (3.4.2). For the purposes of this section, it is convenient to write Ψ in
an alternate form. To do so, we let Πc(P ) := c P + cKCPC⊤K⊤ + (2c +
c2) tr(P )KK⊤, and let

ΠK
λ (P ) := Πa(P ) + λΠc(P ),



50 CHAPTER 3. SUBOPTIMAL FILTER WITH LIPSCHITZ DRIFT

then we can write

Ψ(P ,MP , K)
= AP + PA⊤ + ΠK

λ (P) +GG⊤ + λKVK⊤

+ λ
[
KCPC⊤K⊤ −KCP − PC⊤K⊤

]
=
(
A− λ

2 I
)

P + P
(
A− λ

2 I
)⊤

+ ΠK
λ (P) +GG⊤

+ λKVK⊤ + λ
[
P − PC⊤K⊤ −KCP +KCPC⊤K⊤

]
=
(
A− λ

2 I
)

P + P
(
A− λ

2 I
)⊤

+ ΠK
λ (P) +GG⊤

+ λKVK⊤ + λ
[
(I −KC)P(I −KC)⊤

]
.

More compactly, by letting Aλ :=
(
A− λ

2I
)
, JK := (I −KC), we get

Ψ(P ,MP , K) := AλP + PA⊤
λ + ΠK

λ (P) + GG⊤ + λKVK⊤ + λJKPJ⊤
K .

(3.5.1)

Based on this representation, we can write the solution Pt to equation (3.3.1)
as follows:

Pt = eAλtP0eA⊤
λ t +

∫ t

0
eAλ(t−s)

[
ΠK

λ (Ps) + λJKPsJ
⊤
K

+GG⊤ + λKVK⊤
]
eA⊤

λ (t−s) ds.

Naturally, to study the bounds on Pt for large t, we consider the operator
FK

λ : Rn×n → Rn×n defined as:

FK
λ (P ) :=

∫ ∞

0
eAλt

[
ΠK

λ (P ) + λJKPJ
⊤
K

]
eA⊤

λ t dt. (3.5.2)

This dependence is stated in the following result:

Theorem 3.11. Consider the matrix valued function Pt described by (3.3.1),
and the following statements:

(S1) All the eigenvalues of the operator FK
λ , defined in (3.5.2), lie inside the

unit disk of the complex plane, that is,

ρ(FK
λ ) < 1

where ρ(·) denotes the spectral radius of its argument.
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(S2) There exists a positive semidefinite solution Q to the algebraic equation

0 = AλQ + QA⊤
λ + ΠK

λ (Q) +GG⊤

+ λKVK⊤ + λ(I −KC)Q(I −KC)⊤. (3.5.3)

Statement (S1) implies that (S2) holds. If (A,G) is controllable, then
(S2) implies that

lim
t→∞

Pt = Q, (3.5.4)

where Pt is the solution of (3.3.1) and Q is obtained from (S2).

Proof. The implication that (S2) follows from (S1) is a consequence of
[FCS98, Theorem 3.1: (d) ⇒ (b)].

The implication that (S2) implies (3.5.4) can be obtained as a result of
Lemma A.2 given in Appendix A. To apply this result, we need to show
that (Aλ, G) is controllable, where G is such that λKVK⊤ +GG⊤ = GG

⊤.
This indeed follows from the fact that (A,G) is controllable. To see this, we
use Lemma A.1 and show that (Aλ, G) is controllable. To prove the later
statement, let us proceed by contradiction. If (Aλ, G) is not controllable,
there exists v ∈ Rn such that v⊤(A − 0.5λI) = (µ − 0.5λ)v⊤ and v⊤G = 0,
where µ is an eigenvalue of A. This implies that v⊤A = µv⊤ and v⊤G = 0,
meaning (A,G) is not controllable, which is a contradiction.

We now prove a similar result for the nonlinear differential equation
(3.3.4).

Theorem 3.12. Consider the matrix valued function Pt described by the
nonlinear equation differential equation (3.3.4), and the following statement:

(S3) There exists a positive semidefinite solution Q to the algebraic equation

0 = AQ + QA⊤ + Πa(Q) + λ c Q − λQC⊤M−1
Q CQ +GG⊤ (3.5.5)

1. If (A,G) is stabilizable and there exists K such that (S1) holds, then
(S3) holds and (A− λQC⊤M−1

Q C) is a Hurwitz matrix.

2. If (A,G) is controllable, (S3) implies that,

lim
t→∞

Pt = Q, (3.5.6)

where Pt solves (3.3.4) and Q is obtained from (S3).
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Proof. To prove the first item, we first choose K1 such that (S1) holds.
Therefore, there exists a positive semidefinite matrix Q1 that solves the
matrix equation (3.5.3), and Q1 satisfies the fixed point equation, Q1 =
FK1

λ (Q1) + GK1 , where FK1
λ (·) is defined as in (3.5.2), and

GK1 =
∫ ∞

0
eAλt(GG⊤ + λK1V K

⊤
1 )eA⊤

λ tdt.

Due to linearity of FK1
λ , it readily follows that Q1 = FK1

λ (Q1) + GK1 =
(FK1

λ )i(Q1) + ∑i−1
j=0(FK1

λ )j(GK1), for each i ∈ N. Further, since the spectral
radius of FK1

λ is strictly less than one, there exist γ ≥ 0 and 0 < δ < 1 such
that ∥(FK1

λ )i∥ ≤ γδi for each i ∈ N. Consequently, let

GK1,i1(Q) := (FK1
λ )i1(Q) +

i1−1∑
j=0

(FK1
λ )j(GK1)

where i1 is chosen such that γδi1 < 1. Since GK1,i1 is a contraction mapping,
there is a unique solution of the equation Q = GK1,i1(Q), which we have
denoted by Q1. Further, let K2 := M−1

Q1C
⊤Q1, Q2 = GK2,i1(Q2), where Q2

can be obtained by successive approximations:

Q(1)
2 = 0, Q(k+1)

2 = FK2
λ (Q(k)

2 ) + GK2 ;

Indeed, GK2,i1(Q2) is well-defined since Aλ is Hurwitz. Notice that the se-
quence of Q(k)

2 is nondecreasing and nonnegative.
Recall that Q1 satisfies Ψ(Q1,MQ1 , K1) = 0, so that, from (3.4.4) and

our choice of K2, we have

0 = −Ψ(Q1,MQ1 , K1) ≤ −Ψ(Q1,MQ1 , K2)

which leads to (recall that JK2 = (I −K2C)),

0 ≤ −
∫ ∞

0
eAλt

(
AλQ1 + Q1A

⊤
λ + JK2Q1J

⊤
K2

+ ΠK2
λ (Q1) +GG⊤ + λK2V K

⊤
2

)
eA⊤

λ tdt

≤ Q1 −
∫ ∞

0
eAλt

(
ΠK2

λ (Q1) + JK2Q1J
⊤
K2

)
eA⊤

λ tdt− GK2 .

Let us show by induction that Q(k)
2 ≤ Q1 for each k. Firstly it holds for
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k = 1, and for k > 1,

Q(k+1)
2 = FK2

λ (Q(k)
2 ) + GK2

=
∫ ∞

0
etAλ

(
ΠK2

λ (Q(k)
2 ) + λJK2(Q(k)

2 )J⊤
K2

)
etA⊤

λ dt+ GK2

≤ Q1 −
∫ ∞

0
etAλ

(
ΠK2

λ (Q1 − Q(k)
2 )

+ λJK2(Q1 − Q(k)
2 )J⊤

K2

)
etA⊤

λ dt.

Since the second-term on the right-hand side is negative definite, for each
k ∈ N, Q(k)

2 is no greater than Q1 and consequently 0 ≤ Q2 ≤ Q1.
This procedure can be repeated to construct the sequences {Ki} and

{Qi} similarly. Since 0 ≤ Qi+1 ≤ Qi there exists Q = limi→∞ Qi, and
moreover, for MQ = (1 + c)CQC⊤ + (2c + c2) tr (Q)In×n + V, we obtain,
K = limi→∞ Ki = M−1

Q C⊤Q, and get Ψ(Q,MQ, K) = 0 where Q ≥ 0.
To complete the proof of first item, we next show that A−λKC is stable.

It is seen that Q satisfies the equation

Q =
∫ ∞

0
esA

λK

(
Π(Q) +GG⊤ + λKMQK

⊤
)

esA⊤
λK ds

≥
∫ ∞

0
esA

λKGG⊤esA⊤
λK ds.

Existence of positive semidefinite Q implies that the integral on the right-
hand side is bounded and since (A,G) is assumed to be stabilizable, it follows
that AλK is Hurwitz.

For the proof of second item in Theorem 3.12, we show that there are P t

and P t such that P t ≤ Pt ≤ P t and both converge to Q. Set KQ = QC⊤M−1
Q ,

AQ = A − λKQC, where AQ is Hurwitz stable by the first item. Denote by
P t the solution of Ṗ t = Ψ(P t,MPt

, KQ) = AλP t +P tA
⊤
λ +ΠKQ

λ (P t)+GG⊤ +
λKQV KQ

⊤+λ(I−KQC)P t(I−KQC)⊤, with P0 = P0 ≥ 0. By the minimum
property (Lemma 3.9) Pt ≤ P t. Let GQ be such that λKQV K

⊤
Q + GG⊤ =

GQG
⊤
Q. Using the same reasoning as in the proof of Theorem 3.11, it follows

from Lemma A.1 that (Aλ, GQ) is controllable. Then, applying Lemma A.2,
we have P t → Q as t → +∞.

Next, consider the function P t obtained by solving the equation, Ṗ t =
Ψ(P t,MPt

,P tC
⊤M−1

Pt
), with P(0) = 0. Due to zero initial condition, P t

enjoys a monotonicity property which is stated in the following lemma and
its proof appears in Appendix B.2.
Lemma 3.13. The solution Pt of the following Cauchy problem

dPt

dt = Ψ(Pt,MPt ,PtC
⊤M−1

Pt
), P0 = 0
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is monotone nondecreasing for t ∈ [0,+∞[.

Notice that the limit limt→+∞ P t exists as P t is monotone function by
Lemma 3.13 and this limit is bounded because of minimal property in Lemma 3.9
and Theorem 3.11. Moreover, this means that dP

dt
and d2P

dt2 are bounded too.
As P t ≥ 0 the equality limt→+∞ P t =

∫+∞
0

dPt

dt
dt implies that dPt

dt
→ 0 as

t → ∞. Since Q is a unique solution of the algebraic equation, it follows that
P t → Q as t → ∞.

It remains to prove that P t ≤ Pt. Let KPt := PtC
⊤M−1

Pt
and consider

P̃t := Pt − P t, so that P̃0 = P0, and

dP̃t

dt = Ψ(Pt,MPt , KPt) − Ψ(P t,MPt
,P tC

⊤M−1
Pt

)

≥ Ψ(Pt,MPt , KPt) − Ψ(P t,MPt
, KPt)

= (A− λKPtC)P̃ + P̃(A− λKPtC)⊤ + Π(P̃t)
+ λKPtMP̃t

KPt .

This leads to

P̃t = Φ(t, 0)P0Φ⊤(t, 0)

+
∫ t

0
Φ(t, s)

[
Π(P̃s) + λKPsMP̃s

K⊤
Ps

]
Φ⊤(t, s) ds

≥
∫ t

0
Φ(t, s)

[
Π(P̃s) + λKPsMP̃s

K⊤
Ps

]
Φ⊤(t, s) ds,

where Φ(t, s) is the fundamental matrix associated with A − λKPtC. From
this expression3, we obtain P̃t ≥ 0 and hence P t ≤ Pt.

3.6 Sufficient conditions for boundedness
In this section, we study some particular cases which provide sufficient con-
ditions to guarantee the boundedness of the error covariance matrix, based
on the results given in the previous section.

3.6.1 Eigenvalue assignment condition
Since the conventional design of the state estimators provide conditions for
bounded estimation error based on the eigenvalues of certain matrix, we
rewrite the conditions from previous section as an eigenvalue test.

3If Qt ≥
∫ t

0 Φ(t, s)(Π(Qs) + λKsMQs
Ks)Φ⊤(t, s)ds, then Qt ≥ 0.
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Proposition 3.14. For a given λ > 0 and K ∈ Rn×p, consider the matrices,4

AλK := (I ⊗ (A− λKC)⊤) + ((A− λKC)⊤ ⊗ I)
+ λ((KC)⊤ ⊗ (KC)⊤)

Σa := a(I ⊗ I + vec(I) · vec(I)⊤)
Σc := c(I ⊗ I + (KC)⊤ ⊗ (KC)⊤)

+ (2c+ c2) · (vec(I) · vec(I)⊤) · (I ⊗KK⊤)

and the following statement,
(S4) The matrix AλK + Σa + λΣc ∈ Rn2×n2 is Hurwitz.
Then (S4) implies (S2) stated in Theorem 3.11.
Proof. To prove this result, we will make use of [FCS98, Theorem 3.1(ii)].
Using this result, we just need to show that, if (S4) holds, then the matrix-
valued function R : [0,∞) → Rn×n satisfying the differential equation Ṙ =
Σ(R) has the property that ∥Rt∥ converges to zero, as t → ∞, where Σ(R) =
A⊤

λ R + RAλ +λJ⊤
KRJK + Π∗

λ,K(R) and Π∗
λ,K denotes the adjoint5 of ΠK

λ . In
particular,

Π∗
λ,K(R) = aR + a tr(R)I + λcR + λcC⊤K⊤RKC

+ λ(2c+ c2) tr(KK⊤R)I.

We now write the matrix differential equation in vectorial form, so that,
vec(Ṙ) = vec(Σ(R)), and using the properties of the Kronecker product of
the matrices, we observe that6

vec(Σ(R)) = (I ⊗ A⊤) vec(R) + (A⊤ ⊗ I) vec(R)
− λ(I ⊗ I) vec(R) + λ(J⊤

K ⊗ J⊤
K) vec(R) + vec(Π∗

λ,K(R)). (3.6.1)

Recalling the definition of Σa and Σc, the last term in (3.6.1) can be written
as, vec(Π∗

λ,K(R)) = Σa vec(R) + λΣc vec(R). Also, since JK = (I − KC),
the second to last term in (3.6.1) is rewritten as (I −KC)⊤ ⊗ (I −KC)⊤ =
(I⊗I)−((KC)⊤⊗I)−(I⊗(KC)⊤)+((KC)⊤⊗(KC)⊤) so that, vec(Σ(R)) =
(AλK +Σa +λΣc) vec(R). Clearly, if the matrix (AλK +Σa +λΣc) is Hurwitz,
then vec(Rt) converges to 0, as t → ∞, and, in particular, ∥Rt∥ converges
to 0 as well.

4The symbol ⊗ denotes the matrix Kronecker product.
5For a linear operator Π : Rn×n → Rn×n, its adjoint is a linear operator Π∗ : Rn×n →

Rn× that satisfies ⟨Π(M1), M2⟩ = ⟨M1, Π∗(M2)⟩, for all matrices M1, M2 ∈ Rn×n. Here,
the inner product over the space of matrices is defined as ⟨M1, M2⟩ = tr(M⊤

1 M2).
6For given matrices A, B, C, D of appropriate dimensions, we have: 1) (A⊗B)(C⊗D) =

AC ⊗ BD, and 2) If ABC = D, then vec(D) = (C⊤ ⊗ A) vec(B).
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3.6.2 A sufficient condition with c square and invert-
ible

In the particular case, when C is square and invertible, one can provide
certain conditions under which a particular choice of the gain matrix K
bounds the error covariance. This is captured by the following result:

Proposition 3.15. Consider the system (3.1.1) and the filter (3.2.1). As-
sume that C ∈ Rn×n is invertible and take K = C−1. Let

α :=
∫ ∞

0
e(A−0.5λI)te(A−0.5λI)⊤tdt (3.6.2)

Then, the error covariance is bounded if

a(n+ 1) + 2λc+ λn(2c+ c2) ∥C−2∥ < 1
α
. (3.6.3)

Proof. Based on the result of Theorem 3.11, it suffices to show that (3.6.3)
leads to the spectral radius of FK

λ being strictly less than 1. By letting K =
C−1, it is seen that FK

λ (P ) =
∫∞

0 eAλtΠK
λ (P )eAλt dt. We can now introduce

the bound
−∥P∥ ΠK

λ (I) ≤ ΠK
λ (P ) ≤ ΠK

λ (I) ∥P∥

so that, using the definition of α in (3.6.2), ∥FK
λ (P )∥ ≤ α ∥ΠK

λ (I)∥ ∥P∥.
Condition (3.6.3) ensures that α∥ΠK

λ ∥ < 1 because

ΠK
λ (I) = a(1 + tr(I))I + 2λcI + λ(2c+ c2) tr(I)C−2.

As a result, ∥FK
λ ∥ < 1 and in particular, the spectral radius of FK

λ is less
than 1.

In the proof of Proposition 3.15, we basically showed that, if C is invertible
and the nonlinearities are small enough, then for certain choice of K and λ
such that

∥FK
λ ∥ < 1 (3.6.4)

it follows that the spectrum of FK
λ lies within the unit disk of the complex

plane, that is, the statement (S1) holds. However, if C is not invertible,
then even for linear systems (a = 0 and c = 0), there may not exist λ and K
such that (3.6.4) holds. This is shown by the following example.

Example 3.16. Consider the dynamical system (3.1.1) with f(t, x) = Ax
and h(x) = Cx, G = I2×2, where A = [ 1 1

0 1 ]; C = [ 1 0 ]. With this example,
even if there are no nonlinearities, that is, a, c = 0, it is seen that, for
any λ > 0, there does not exist a K ∈ R2 such that (3.6.4) holds for this
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(a) Expectation with respect to sam-
pling times with constant gain K =
[1 2]⊤.

(b) One sample path with bound mini-
mizing gain.

Figure 3.3: Trace of error covariance and their theoretical upper bounds for
Example 3.16 with λ = 10.

system. To see this, observe that (3.6.4) translates to finding a matrix K such

that, λ
∣∣∣∫∞

0 et(A−0.5λI)JKJ
⊤
Ke

t(A−0.5λI)⊤dt
∣∣∣ < 1. We let K =

[
k1
k2

]
, for some

k1, k2 ∈ R. However, with straightforward computations involving matrix
exponential, we see that, the integral is finite for each λ > 2, and

et(A−0.5λI)JKJ
⊤
Ke

t(A−0.5λI)⊤ =
[
∗ ∗
∗ e(1−0.5λ)t(1 + k2

2)e(1−0.5λ)t

]
.

Clearly, with λ > 2, λ
∫∞

0 e(1−0.5λ)t(1 + k2
2)e(1−0.5λ)t > 1, and hence the condi-

tion (3.6.4) does not hold true.
However, it is possible to check that for each λ > 2, we can find K such

that (S4) holds true. For simulation purposes, we choose λ = 10 and see that
K = [1 2]⊤ satisfies the condition (S4), where we take Σa = Σc = 0. The
simulation results are reported in Figure 3.3. Moreover, since eigenvalues of
a matrix are continuous functions of its entries, the matrix AλK + Σa + λΣc

also has eigenvalues in open left-half of the complex plane, for small enough
values of a and c.

3.6.3 Dependence on sampling rate
It is interesting to investigate the dependence of the filter efficiency with
respect to the sampling rate λ of the Poisson measurement process. This
question has not been straightforward for the class of systems studied in
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Chapter 3, that is, the systems with (f, h) Lipschitz continuous. However,
some constructive statements can be derived for the linear system

dxt = Axt dt+Gdwt (3.6.5a)
yτk

= Cxτk
+ vτk

(3.6.5b)

for the arrival times τk of a Poisson process Nt. That is the system (3.1.1)
under (A1) with a = 0, c = 0.

A lower bound on sampling rate

We first provide a necessary lower bound on the sampling rate which ensures
that the error covariance remains bounded for all times. In what follows, we
denote an eigenvalue of A by µj(A) and its real part by ℜµj(A), j = 1, . . . , n.

Proposition 3.17. Consider system (3.6.5) with (A,C) detectable and (A,G)
is controllable. Then, for each λ < 2 max{ℜµj(A) | j = 1, . . . , n}, the solu-
tion to (3.3.1) is such that limt→∞ P(t) = ∞.

Proof. We first look at the differential equation

Q̇t = AλQt +QtA
⊤
λ +GG⊤

with initial condition Q0 = P0. It is clear that Qt stays bounded if and only
if

0 = AλQ+QA⊤
λ +GG⊤

has a symmetric positive definite solution Q. With (A,G) controllable, this
is the case if and only if Aλ is Hurwitz, that is,

λ > 2 max{ℜµj(A) | j = 1, . . . , n}.

We claim that Qt ≤ Pt, for every t ≥ 0. To see this, let Q0 = P0. Let
Q̃t = Pt −Qt, then

˙̃Qt = ψ1(Q̃t) + λ
[
(I −KC)Pt(I −KC)⊤ +KVK⊤

]
where

ψ1(Q̃t) = AλQ̃t + Q̃tA
⊤
λ +GG⊤.

Because of the zero initial condition, this equation has the solution given by

Q̃t =
∫ t

0
eAλ(t−s)

[
λ(I−KC)Ps(I−KC)⊤+GG⊤−λKVK⊤

]
eA⊤

λ (t−s) ds ≥ 0

and hence Q̃t ≥ 0, that is, Pt ≥ Qt for each t ≥ 0. As a result, Pt goes to
+∞ when Qt grows unbounded.
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Monotonicity relation

After deriving a lower bound that ensures boundedness, then next question is
to study how this steady state upper bound on the error covariance changes
as a function of the sampling rate.

Proposition 3.18. Consider system (3.6.5). Let λ1, λ2 ≥ 0 describe the
rate of Poisson measurement process and Pλ1, Pλ2 denote the corresponding
solutions to (3.3.4) with Pλ1(0) = Pλ2(0). For each λ2 ≥ λ1, we have

Pλ2(t) ≤ Pλ1(t), ∀ t ≥ 0. (3.6.6)

Proof. For a given λ, the solution to (3.3.4) satisfies

Ṗλ = Ψλ(Pλ,MPλ
,PλC

⊤M−1
Pλ

)

where, due to the linearity of the measurement map

Ψλ(Pλ,MPλ
,PλC

⊤M−1
Pλ

) = AP + PA⊤ +GG⊤ − λPλC
⊤M−1

Pλ
CPλ.

It therefore holds that
∂Ψλ

∂λ
≤ 0

and thus, for each λ2 ≥ λ1, we have

Ψλ2 ≤ Ψλ1 , ∀λ2 ≥ λ1.

In particular, Ṗλ2(t) ≤ Ṗλ2(t), for each t ≥ 0 and hence (3.6.6) holds.

3.6.4 Convergence with large sampling rate
We now compare the error covariance of the sampled system with the error
covariance of an estimator with continuous time measurements. Toward this
end, let us consider the optimal Kalman–Bucy filter for (3.3.5) with contin-
uously available output measurements, which is given by

dẑt = Aẑt dt+Kcont
t (dzt − Cẑt dt), (3.6.7)

with ẑ0 = E[x0]. To minimize the error covariance, the injection gain Kcont
t

for this estimator is obtained as

Kcont
t = RtC

⊤V −1 (3.6.8a)
d
dtRt = ARt + RtA

⊤ +GG⊤ − RtC
⊤V −1CRt. (3.6.8b)
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When t → ∞, the error covariance E[|xt − ẑt|2 | Yt] is given by the matrix R
that solves

0 = AR + RA⊤ +GG⊤ − RC⊤V −1CR. (3.6.9)
We are interested in knowing how the steady state error covariance for the
estimator using sampled measurements compares with R when we increase
the sampling rate λ, and in particular, when we let λ go to ∞.

The next result addresses these issues and to formulate it, we consider
the operator FK

λ which is obtained from FK
λ by setting ΠK

λ = 0 in (3.5.2),
that is,

FK

λ (P ) := λ
∫ ∞

0
etAλ(I −KC)P (I −KC)⊤etA⊤

λ dt, (3.6.10)

with ρ
(
FK

λ

)
denoting its spectral radius. We denote the Neumann series

associated with FK

λ by Nλ, so that Nλ :=
(
I − FK

λ

)−1
= ∑∞

j=0(F
K

λ )j. Thus,

if ρ
(
FK

λ

)
< 1, there exists ℓ such that

∥∥∥∥(FK

λ

)ℓ
∥∥∥∥ < 1, and we can write

Nλ =
(
I + FK

λ + · · · +
(
FK

λ

)ℓ−1)(
I +

(
FK

λ

)ℓ
+
(
FK

λ

)2ℓ
+ · · ·

)
=
(
I + FK

λ + · · · +
(
FK

λ

)ℓ−1)(
I −

(
FK

λ

)ℓ
)−1

.

Using triangle inequality7, it follows that ∥Nλ∥ ≤ βλ :=
∥∥∥I + FK

λ + · · · +(
FK

λ

)ℓ−1 ∥∥∥/(1 −
∥∥∥ (FK

λ

)ℓ ∥∥∥).
Theorem 3.19. Consider system (3.1.1) under (A1) with a = 0, c = 0, and
assume that (A,G) is controllable. Let R denote the steady state minimal
covariance of the estimator (3.6.7) that satisfies (3.6.9). Let K = Kcont =
RC⊤V −1 and assume that the operator FK

λ in (3.6.10) satisfies

ρ
(
FK

λ

)
< 1, (3.6.11)

for each λ > 0. Then the matrix Pλ ≥ 0 that solves (3.5.3), and provides
an upper bound on the error covariance due to filter (3.2.1) with Poisson
measurement process of intensity λ, satisfies

Pλ = R + Nλ

(∫ ∞

0
eAλtK

(
(1 − λ)V + λCRC⊤

)
K⊤eA⊤

λ tdt
)
. (3.6.12)

7We use the fact that
∥∥∥(I −

(
FK

λ

)ℓ
)−1 ∥∥∥ ≤ ∥I∥ +

∥∥∥(FK

λ

)ℓ ∥∥∥ +
∥∥∥(FK

λ

)ℓ ∥∥∥2
+ · · · =

∑∞
j=0

∥∥∥(FK

λ

)ℓ ∥∥∥j

=
(

1 −
∥∥∥(FK

λ

)ℓ ∥∥∥)−1
.
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In particular, if β∞ = lim supλ→∞ βλ, then

lim sup
λ→∞

∥Pλ∥ ≤ ∥R∥ + β∞∥K(CRC⊤ − V )K⊤∥. (3.6.13)

Proof. Consider the solution Pλ
t of (3.3.1) with ΠK

λ = 0 and K := RC⊤V −1.
Let Qλ

t = Pλ
t − R, then Qλ

t satisfies the following relation

Q̇λ
t = AλQλ

t + Qλ
tA

⊤
λ + (1 + λ)KVK⊤ + λ(I −KC)Pλ

t (I −KC)⊤ − λR
= AλQλ

t + Qλ
tA

⊤
λ + (1 + λ)KVK⊤ − λR + λ(I −KC)Qλ

t (I −KC)⊤

+ λ(I −KC)R(I −KC)⊤

= AλQλ
t + Qλ

tA
⊤
λ +KVK⊤ − λKVK⊤ + λ(I −KC)Qλ

t (I −KC)⊤

+ λKCRC⊤K⊤

where the last equality followed from the fact that

(I −KC)R(I −KC)⊤ − R = KCRC⊤K⊤ − 2RC⊤V −1CR
= −2KVK⊤ +KCRC⊤K⊤.

Because of condition (3.6.11) and Theorem 3.11, we have limt→∞ Pλ
t (t) = Pλ.

Hence, by letting Qλ := Pλ−R (which is not necessarily positive definite), we
have that limt→∞ Qλ

t (t) = Qλ. Moreover, Qλ solves the following algebraic
equation:

0 = AλQλ+QλA
⊤
λ +KVK⊤−λKVK⊤+λ(I−KC)Qλ(I−KC)⊤+λKCRC⊤K⊤

Alternatively, the matrix Qλ satisfies the equation,

Qλ = FK
λ (Qλ) + G

K

λ ,

where G
K

λ :=
∫∞

0 eAλtK
(
(1 − λ)V + λCRC⊤

)
K⊤eA⊤

λ tdt. Iterating the fixed
point equation, we get

Qλ =
(
FK

λ

)k
(GK

λ ) +
k−1∑
j=0

(
FK

λ

)j
(GK

λ ) k→∞= (I − FK
λ )−1(GK

λ ),

and hence we arrive at (3.6.12): Pλ = R + (I − FK

λ )−1(GK

λ ). The inequality
in (3.6.13) is obtained by taking the norms and using the bound

∥∥∥etAλ

∥∥∥ =∥∥∥etA · e−0.5tλI
∥∥∥ ≤ e(∥A∥−0.5λ)t, which results in

lim sup
λ→∞

∥∥∥GK

λ

∥∥∥ ≤
∥∥∥K(CRC⊤ − V )K⊤

∥∥∥ ,
along with the bound ∥Nλ∥ ≤ βλ.
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Chapter 4

Ensemble Filters

Ensemble filters have a notable impact if estimation with noisy data is re-
quired in large-scale models. This approach is based on simulating the evo-
lution of different particles through differential equations that are coupled
through the associated empirical measure or empirical moments. This chap-
ter presents the derivation of a continuous-discrete McKean–Vlasov type dif-
fusion process with additive Gaussian noise in the observation model, which
is used to describe the evolution of the particles. Such a process is proven to
be an exact filter on the one hand. Then, such an exact filter is approximated
by an ensemble of particles, and the equations for evolution of particles are
coupled through the empirical covariance.

Such an approach requires less computations for implementation than
the optimal ones based on solving Riccati differential equations. It is shown
that if the mean sampling rate of the observation process is sufficiently large,
then the empirical mean and the sample covariance of the ensemble filters
converge to the mean and covariance of the optimal filter, as the number of
particles tends to infinity.

4.1 Setup

4.1.1 Filtering system
Let us consider Rn-valued continuous-time state process

dxt = Axtdt+G dwt (4.1.1)

with Rp-valued discrete-time observations

yτk
= C x(τk) + vτk

, τk+1 ≥ τk, k ∈ N (4.1.2)

63
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where τk are the arrival times of a Poisson process Nt, wt is an Rm-valued
standard Wiener process, vτk

∼ N (0, V ) for each k ∈ N. We let (Ω,F ,P)
denote the underlying probability space. The matrices A ∈ Rn×n, C ∈ Rp×n

and G ∈ Rn×m are assumed to be constant.
The intensity λ > 0 of the Poisson process is counted as a parameter;

it affects the properties of the filter such as stability. Notice that Nt is
associated with τk as a counting process, i.e.

Nt =
∑

i

δτi≤t

and so its range of values is the set of natural numbers Hence the sequence
{vNt}t∈R+ coincides with the sequence {vτk

}k∈N.
The observations (4.1.2) restricted to an interval [0, t], as {yτk

| τk ∈ [0, t]}
generate the sigma-algebra Yt.

4.1.2 Optimal filter
To analyze the performance of an ensemble filter, one needs to be aware of the
optimal filter behavior. This section recalls the developments of Section 2.6.

Description by two moments

Let us recall that such filtering system has an optimal solution, given earlier in
Theorem 2.22, that consists in describing the Gaussian process x̂t = E[xt | Yt]
as follows:

dx̂t = Ax̂tdt+Kt(yt − Cx̂t)dNt, (4.1.3)

where Kt = PtC
⊤(CPtC

⊤ + Vt)−1 and the covariance matrix Pt = E[(xt −
x̂t)(xt − x̂t)⊤ | σ{Nt}] satisfies

dPt = (APt + PtA
⊤ +GG⊤)dt−KtCPtdNt. (4.1.4)

Expectation with respect to Poisson process

The expectation of the error covariance Pt with respect to Poisson process
can be obtained then by applying Proposition 2.20 to the processes (4.1.4).
Thus, we get

Ṗt = APt + PtA
⊤ +GG⊤ − λPtC

⊤(CPtC
⊤ + V )−1CPt (4.1.5)

for Pt := E[Pt | P0]. In addition, for the scalar case, it can be further studied
using Lemma B.1.
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4.1.3 Ensemble filter approach
Due to the linearity, and Gaussian noise, the distribution of the optimal esti-
mator is Gaussian and it suffices to have only its first and second moments.
However, the evolution of x̂t := E[xt | Yt], depends on the evolution of the
error covariance matrix and the computation of Pt is often costly for higher
dimensional systems.

On the other hand, using the ensemble approach, it is possible to com-
pute (an approximation) of the conditional distribution without solving the
differential equation for the evolution of covariance matrix.

This can be done by finding a process St that implicitly describes the
optimal filter. Namely, the following condition (4.1.6) is on the consideration.

Definition 4.1. For a filtering system with state process (xt)t≥0 and obser-
vation process (yt)t≥0, a stochastic process (st)t≥0 satisfying

Law(st | Yt) = Law(xt | Yt) ∀t ≥ 0 (4.1.6)

is called an exact filter.

Different processes might play the role of exact filters. It turns out that
there are several ways to construct exact filters that can be approximated
by computation-friendly methods and provide sufficiently good efficiency.
Such approximations are provided by an ensemble of particles whose limiting
behavior (as the number of particles tend to infinity) converges to St. The
computational advantage of this approach is that the simulation of particles,
in general, is more efficient and potentially applicable in nonlinear systems
as well (although there are very few instances of formal analysis in nonlinear
setting). As an example of approximating a process using the particles, one
can take for instance a result from [Szn91, Theorem 1.4, p.172] where it is
shown that if a process St satisfies a simple version of McKean–Vlasov type
equation

dSt = dBt +
(∫

b(St, S̄)µt(dS̄)
)

dt,

where µt(dS̄) is the law of St, Bt is a standard Brownian motion, the function
b is bounded and Lipschitz continuous and initial distribution is given, then
St can be approximated by an ensemble of m interacting particles Si

t , i =
1, . . . ,m with the dynamics

dSi
t = dBi

t + 1
m

m∑
j=1

b(Si
t , S

j
t )dt, i = 1, . . . ,m

and with the corresponding initial distributions. In particular, when the
number of particles m tends to ∞, each Si

t approaches a process which is
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an independent copy of the process St. For the filtering problem, with the
conventional observation process zt given in the form1 dzt = h(xt) dt + dηt,
the authors in [TM20] show that the property Law(St | Yt) ∼ Law(xt | Yt)
holds if St satisfies the following McKean–Vlasov type equation

dSt = AStdt+K1,t(St − Ŝt)dt+K2,t

(
dzt − CSt + CŜt

2 dt
)
, (4.1.7)

where Ŝt = E[St | Z[0,t]], and K1,t, K2,t are certain gain matrices. The authors
in [TM20] also show that this evolution rule minimizes certain cost associated
with the transportation of probability measures. The evolution equations for
each individual particle are then obtained from (4.1.7) by replacing Ŝt with
the empirical mean.

The above discussion shows one particular instance of ensemble filters
with continuous observations. There are other McKean–Vlasov type equa-
tions which serve as exact filters. The basic problem studied in this chapter
is to design ensemble filters for the continuous-time system (4.1.1) with the
discrete observation process (4.1.2), and this is done in following steps:

• Find a process st such that E(st | Yt) ∼ E(xt | Yt).

• Describe an ensemble of particles si
t, i = 1, . . . ,m coupled to each other

via empirical mean and empirical variance, such that, each si
t represents

an independent copy of st when m → ∞.

• Show that the empirical mean of the particles is consistent with the
optimal solution to the filtering problem.

4.2 Mean-field type model
To derive an exact filter for the continuous-discrete problem in a general
form, let us examine a suitable process s. Its parameters ∆t,Γt,Λt,Ξt,Θt,Ωt

are be càdlàg F -measurable processes, and the system is defined as follows

dst := Astdt+ ∆t(st − ŝt)dt+ Γtdw̄t + [Λtyt + Ξtst + Θtŝt + Ωtv̄t] dNt

(4.2.1a)
ŝt := E[st | Yt], (4.2.1b)
Qt := E[(st − ŝt)(st − ŝt)⊤ | Yt], (4.2.1c)

1Assuming E[dηt dη⊤
t ] = Vtdt, for positive definite Vt ∈ Rp×p.
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where w̄t ∼ N (0, I), v̄t ∼ N (0, Vt) are independent copies of wt and vt. One
can find a definition of solution of (4.2.1) and conditions for its existence in
Appendix C.

Namely, we are interested in the case that ŝ = x̂, and since x̂t is given in
(4.1.3) we need to obtain the following:

dŝt = Aŝtdt+QtC
⊤(CQtC

⊤ + Vt)−1(yt − Cŝt)dNt, (4.2.2a)
dQt = (AQt +QtA

⊤ +GG⊤)dt−QtC
⊤(CQtC

⊤ + Vt)−1CQtdNt (4.2.2b)

Let us derive equations for ŝ and Q from (4.2.1) and match them to equa-
tions (4.2.2). Straightforwardly, we have

dŝt = Aŝtdt+ [Λtyt + (Ξt + Θt)ŝt] dNt, (4.2.3)

Then, for the process et := st − ŝt we get

det = (A+ ∆t)etdt+ Γtdw̄t + [Ξtet + Ωtv̄t] dNt,

and

d[ete
⊤
t ]ij = d[et]i[et]j = [et]i[(A+ ∆t)etdt+ Γtdwt]j

+ [et]j[(A+ ∆t)etdt+ Γtdwt]i + 1
2
∑

k

[Γt]ik[Γt]jkdt

+
[[
et + Ξtet + Ωtv̄t

]
i

[
et + Ξtet + Ωtv̄t

]
j

− [et]i[et]j
]
dNt

so

dE[ete
⊤
t | Yt] = dQt = (AQt +QtA

⊤ + ∆tQt +Qt∆⊤
t + ΓtΓ⊤

t )dt

+ E
[(
et + Ξtet + Ωtv̄t

)(
et + Ξtet + Ωtv̄t

)⊤
− ete

⊤
t | Yt

]
dNt

= (AQt +QtA
⊤ + ∆tQt +Qt∆⊤

t + ΓtΓ⊤
t )dt

+
[
(I + Ξt)Qt(I + Ξt)⊤ −Qt + ΩtVtΩ⊤

t

]
dNt

From (4.2.3) and (4.2.2a) we get the following necessary condition

QtC
⊤(CQtC

⊤ + Vt)−1(yt − Cŝt)dNt = (Λtyt + (Ξt + Θt)ŝt)dNt. (4.2.4a)

To obtain (4.2.2) it is necessary to have(
AQt +QtA

⊤ +GG⊤
)

dt

=
(
AQt +QtA

⊤ + ∆tQt +Qt∆⊤
t + ΓtΓ⊤

t

)
dt, (4.2.4b)(

−QtC
⊤(CQtC

⊤ + Vt)−1CQt

)
dNt

=
(
(I + Ξt)Qt(I + Ξt)⊤ −Qt + ΩtVtΩ⊤

t

)
dNt, (4.2.4c)
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Moreover, conditions (4.2.4) are also sufficient. Summing up, we obtain the
following results.

Proposition 4.2. Let ∆t,Γt,Λt,Ξt,Θt,Ωt be càdlàg Yt-measurable processes.
The system (4.2.1) satisfies (4.2.2) if and only if for all t > 0

GG⊤ = ∆tQt +Qt∆⊤
t + ΓtΓ⊤

t (4.2.5a)

and for jump times τk

Λτk
= Qτk

C⊤(CQτk
C⊤ + Vt)−1, (4.2.5b)

Θτk
+ Ξτk

= −Qτk
C⊤(CQτk

C⊤ + Vτk
)−1C, (4.2.5c)

−Qτk
C⊤(CQτk

C⊤ + Vt)−1CQτk
=

(I + Ξτk
)Qτk

(I + Ξτk
)⊤ −Qτk

+ Ωτk
Vτk

Ω⊤
τk
, (4.2.5d)

To simplify equations below, the gain matrix is denoted by L, i.e.

Lt = QtC
⊤(CQtC

⊤ + Vt)−1.

There are different ways to choose the parameters in equation (4.2.1) such
that the conditions in Proposition 4.2 are met. Below we provide two spe-
cific choices that are inspired by the existing techniques in the literature on
ensemble filters.

1. ‘Transport-inspired’ case assumes Ωt = 0 and Γt = 0 so one can take
∆t = 1

2GG
⊤Q−1

t and obtain

dst := Astdt+ 1
2GG

⊤Q−1
t (st − ŝt)dt

+
(
Ltyt − LtCŝt + Ξt(st − ŝt)

)
dNt, (4.2.6)

Ξτk
: Qτk

Ξ⊤
τk

+ Ξτk
Qτk

Ξ⊤
τk

+ Ξτk
Qτk

= −Lτk
CQτk

. (4.2.7)

2. ‘Vanilla’ case assumes Ωt ̸= 0, ∆t = 0, and Θt = 0 so Γt = G, Ξt =
−LtC and one can take Ωt = −Lt

dst := Astdt+Gdwt + Lt

(
yt − Cst − vt

)
dNt, (4.2.8)
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4.3 Ensemble filters
For particles si, i = 1, . . . ,m, let the empirical mean and the empirical
covariance be

ŝm
t = 1

m

m∑
i=1

si
t, (4.3.1a)

Qm
t = 1

m

m∑
i=1

(si
t − ŝm

t )(si
t − ŝm

t )⊤. (4.3.1b)

The gain matrix becomes Lm
t = Qm

t C
⊤(CQm

t C
⊤ + Vt)−1. The corresponding

ensemble filters have the following forms:

1. ‘Transport-inspired’ ensemble filter:

dsi
t := Asi

tdt+ 1
2GG

⊤(Qm
t )−1(si

t − ŝm
t )dt

+
(
Lm

t yt − Lm
t Cŝt + Ξm

t (si
t − ŝm

t )
)

dNt, (4.3.2)

Ξm
τk

: Qm
τk

(Ξm
τk

)⊤ + Ξm
τk
Qm

τk
(Ξm

τk
)⊤ + Ξm

τk
Qm

τk
= −Lm

τk
CQm

τk
. (4.3.3)

2. ‘Vanilla’ ensemble filter:

dsi
t := Asi

tdt+Gdwi
t + Lm

t

(
yt − Csi

t − vi
t

)
dNt, (4.3.4)

The noises wi
t ∼ N (0, I), vi

t ∼ N (0, Vt) are independent copies of wt and vt

respectively, while the Poisson process Nt is common for all the equations.

Interaction of particles

Both proposed ensemble filters use the empirical covariance, that couples the
dynamics of particles. In addition, the transport-inspired case involves the
empirical mean.

In contrast to it, the vanilla ensemble filter has uncoupled continuous-time
part of the dynamics: between observations, each particle si follows

dsi = Asi
tdt+Gdwi

t, t ∈ (τk, τk+1).

Notice that this equation does not contain any interaction between the par-
ticles, while the independent noises are added and assures diversity of the
dynamics.
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Minimum number of particles

Despite the assumption that the number of particles is large enough to ap-
proximate the mean-field evolution accurately, it becomes essential to ascer-
tain the minimum number of particles required.

1. For transport-inspired ensemble filters, the minimum number of parti-
cles equals n, the dimension of the state process. This necessity arises
due to the requirement to compute the inverse of the matrix Qm

t at each
time t. The existence of this inverse is guaranteed only if the columns
of the matrix Qm

t are linearly independent. Therefore, to ensure this
condition the initial choice of at least n linearly independent particles
is imperative.

2. For the noise-driven ensemble filters, the minimum number of particles
equals 1. The proposed ensemble of particles is such that a single
particle evolution can be computed. In some cases, it is common to
take the coefficient of the empirical covariance equal to 1

m−1 . Then
it is critical to ensure that m − 1 ̸= 0, and at least two particles are
necessary.

In the sequel, we will look more closely at the aforementioned two classes
of ensemble filters. In particular, we analyze the consistency and approxima-
tion with respect to the optimal filter.

4.4 Transport-inspired ensemble filter
We recall that our proposed transport-inspired ensemble filter is described
by the following equations:

dsi
t := Asi

tdt+ 1
2GG

⊤(Qm
t )−1(si

t − ŝm
t )dt

+
(
Lm

t yt − Lm
t Cŝt + Ξm

t (si
t − ŝm

t )
)

dNt,

Ξm
τk

: Qm
τk

(Ξm
τk

)⊤ + Ξm
τk
Qm

τk
(Ξm

τk
)⊤ + Ξm

τk
Qm

τk
= −Lm

τk
CQm

τk
.

In this section, we show that these filters are indeed consistent with the
optimal filters and provide exact reconstruction of the optimal estimate for
a large enough number of particles.

The presence of the algebraic equation (4.3.3) requires to study condition
on its solvability.
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4.4.1 Solvability of the design parameters
The transport-inspired case require computation of the injection gains Lm

t

and Ξm
t (in the case of the ensemble filter) or Lm

t and Ξm
t respectively for

the mean-field type form. Without loss of generality one can consider the
mean-field type case, since these matrices can be viewed as functions of the
covariance.

The matrix Lτk
= Qτk

C⊤(CQτk
C⊤ + V )−1 can be computed directly,

while the matrix Ξτk
satisfies

Qτk
Ξ⊤

τk
+ Ξτk

Qτk
Ξ⊤

τk
+ Ξτk

Qτk
= −Lτk

CQτk
. (4.4.1)

Notice that in all cases the injection gains Lt and Ξt only apply at times of
observation updates. In these equations, we note that Qt gets updated due
to reset in st and ŝt with the arrival of new observations. Thus, the key step
for the simulation of the particles is to solve the algebraic equation (4.4.1)
at renewal times of the Poisson process. Solvability of this equation can be
guaranteed and carried out in following steps:

Step 1: We can find an invertible matrix Et such that EtE
⊤
t = Qt. This is

always possible because, for the number of particles m large enough,
Qt is symmetric and positive definite. Using the eigenvalue decompo-
sition, we can choose Et to be the matrix of orthonormal eigenvectors
multiplied by a diagonal matrix with square root of the eigenvalues.

Step 2: We then observe that (Qt − LtCQt) is positive semi-definite. This
follows from the fact that, we can write:

(Qt − LtCQt) = (I − LtC)Qt(I − LtC)⊤ + LtVtL
⊤
t

Step 3: Next, we compute the matrix Ft such that FtF
⊤
t = (Qt − LtCQt).

Due to the fact that (Qt−LtCQt) is symmetric positive semi-definite,
such a matrix Ft always exists.

Thus, using eigenvalue decomposition of the matrices Qt and (Qt − LtCQt),
we have an analytic solution. That is, for each renewal time t ≥ 0, we let
Xt = Ξt − I, then the quadratic equation becomes

XtEtE
⊤
t X

⊤
t = FtF

⊤
t

for which the solution is Xt = FtE
−1
t , that is, Ξt = I +Xt.
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4.4.2 Filter consistency
We now show that the ensemble filter (4.3.2) with the injection matrix Ξ
satisfying (4.3.3) is indeed consistent with the optimal filter.

Proposition 4.3. Let m ≥ n. The evolution of the sample mean ŝm
t and the

sample covariance Qm
t satisfies the following equations

dŝm
t = Aŝm

t + Lm
t (yt − Cŝm

t )dNt, (4.4.2a)
dQm

t =
(
AQm

t +Qm
t A

⊤ +GG⊤
)

dt− Lm
t CQ

m
t dNt. (4.4.2b)

where Lm
t = Qm

t C
⊤(CQm

t C
⊤ + V )−1.

Proof. The differential equation for ŝm
t can be obtained by taking the time

derivative of the equation ŝm
t = 1

m

m∑
i=1

si
t. Next, for an arbitrary i let us

consider the error variable ei
t := si

t − ŝm
t , and observe that

dei
t := d(si

t − ŝm
t ) = Aei

tdt+ 1
2GG

⊤(Qm
t )−1ei

tdt− Ξm
t e

i
tdNt.

Using the chain rule from Proposition 2.14, we get

dei
t(ei

t)⊤ =
(
Aei

t(ei
t)⊤ + 1

2GG
⊤(Qm

t )−1ei
t(ei

t)⊤

+ ei
t(ei

t)⊤A⊤ + 1
2e

i
t(ei

t)⊤(GG⊤(Qm
t )−1)⊤

)
dt

+
(
(ei

t − Ξm
t e

i
t)(ei

t − Ξm
t e

i
t)⊤ − ei

t(ei
t)⊤
)

dNt.

Using Qm
t = 1

m
∑m

i=1(si
t − ŝm

t )(si
t − ŝm

t )⊤ = 1
m
∑m

i=1 e
i
t(ei

t)⊤, we obtain that

dQm
t =

(
AQm

t +Qm
t A

⊤ +GG⊤
)

dt

+
(
Ξm

t Q
m
t (Ξm

t )⊤ − Ξm
t Q

m
t −Qm

t (Ξm
t )⊤

)
dNt.

Then we notice that assumption on Ξm
t is equivalent to

Ξm
t Q

m
t (Ξm

t )⊤ − Ξm
t Q

m
t −Qm

t (Ξm
t )⊤ = Lm

t CQ
m
t

which leads to (4.4.2b).

This result is quite elegant as the moments dynamics coincide with the
moments dynamics for the optimal filter (4.1.3)–(4.1.4). This allows us to
arrive at the following result which summarizes our findings for the transport-
inspired filter.
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Theorem 4.4. Let m ≥ n, P0 is positive definite, and Qm
0 = P0. For m-

particle system (4.3.2) with the injection matrix Ξ satisfying (4.3.3), if an
initial distribution of particles {si

0}i=1,...,m is such that

ŝm
0 = x̂0 and Pm

0 = P0,

then a normal distribution N (ŝm
t , P

m
t ) equals the distribution of the optimal

filter x̂t for all t ≥ 0.

The results of Proposition 4.3 and Theorem 4.4 therefore show that the
differential equations for empirical mean ŝm

t and covariance Qm
t are the same

as those given in Theorem 2.22. To build on this result and show that sm
t

and Qm
t are indeed consistent with x̂t and Pt, we also need consistency of

initial conditions. Assuming that s0 ∼ x0, we see that a realization of sm
0

approximates E[x0] if the number of particles m is large enough. In the
same way, for large enough m, a realization of Q0 approximates P0. Formal
analysis of this approximation and studying the effect of sampling rate on
the asymptotic behavior of the resulting error is a topic of further research.

4.5 Vanilla ensemble filter
In this section, we analyze the second class of ensemble filters, that is, the
vanilla filters. We recall that these filters are described by (4.3.4). We will
show that these filters actually approximate the optimal estimator as the
number of particles gets large. We begin with derivation of the moments
dynamics for the vanilla ensemble filter.

4.5.1 Dynamics of the moments
For an l-th particle sl we have

dsl
t := Asl

tdt+Gdw̄l
t + Lm

t

(
yt − Csl

t − vl
t

)
dNt

with empirical moments defined by (4.3.1a)–(4.3.1b).
In this case, we straightforwardly obtain that

dŝm
t = Aŝm

t dt+ 1√
mGdw̃m

t + Lm
t

(
yt − Cŝm

t − 1√
m ṽm

t

)
dNt (4.5.1)

where w̃m
t = 1√

m

m∑
i=1

w̄i
t ∼ N (0, I) and ṽm

t = 1√
m

m∑
i=1

v̄i
t ∼ N (0, Vt).
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For l = 1, . . . ,m, for the auxiliary process ql
t = sl

t − ŝm
t we get

dql
t = Aql

tdt+Gd(w̄l
t − 1√

mw̃m
t ) + Lm

t

[
Cql

t − v̄l
t − 1√

m ṽm
t

]
dNt,

and the chain rule provides

dql
t(ql

t)⊤ =
(
Aql

t(ql
t)⊤ + ql

t(ql
t)⊤A⊤ + (1 − 1

m)G(G)⊤
)

dt

+Gd(w̄l
t − 1√

mw̃m
t )(ql

t)⊤ + ql
td(w̄l

t − 1√
mw̃m

t )⊤G

+
[(
ql

t + Lm
t Cq

l
t − Lm

t (v̄l
t − 1√

m ṽm
t )
)(

ql
t + Lm

t Cq
l
t − Lm

t (v̄l
t − 1√

m ṽm
t )
)⊤

− ql
t(ql

t)⊤
]
dNt,

and, since ∑l q
l
t = 0, the terms like ∑l w̃

m
t (ql

t)⊤ eliminates, so it implies

dQm
t =

(
AQm

t +Qm
t A

⊤ + (1 − 1
m)GG⊤

)
dt

+ 1
mG

∑
l

dw̄l
t(ql

t)⊤ + 1
m

(∑
l

ql
td(w̄l

t)⊤
)
G

+
[
(I + Lm

t C)Qm
t (I + Lm

t C)⊤ −Qm
t

+ Lm
t

( 1
m
∑

l

v̄l
t(v̄l

t)⊤ − 1
m
∑

l

(I + Ξm
t )ql

t(v̄l
t)⊤ − 1

m
∑

l

v̄l
t(ql

t)⊤(I + Ξm
t )⊤

− 1
m

√
m
∑

l

ṽm
t (v̄l

t)⊤ − 1
m

√
m
∑

l

v̄l
t(ṽm

t )⊤ + 1
m ṽm

t (ṽm
t )⊤

)
(Lm

t )⊤
]
dNt.

4.5.2 Scalar case

Let us consider the scalar case to provide precise estimations. In particular,
the one-dimensional equations for empirical moments of the vanilla filters
simplify as follows. The empirical mean ŝm satisfies

dŝm
t = Aŝm

t + 1√
mGdw̃m

t + Lm
t

(
yt − Cŝm

t − 1√
m ṽm

t

)
dNt (4.5.2)
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and the empirical covariance satisfies

dQm
t =

(
2AQm

t +G2 − 1
mG2

)
dt+ 2G

m∑
ℓ=1

qℓ
t

(
dwℓ

t − 1√
mdw̃m

t

)

+
[

− Lm
t CQ

m
t − (Lm

t )2V + 1
m(Lm

t )2
m∑

ℓ=1
(vℓ

t)2 + 1
m(Lm

t )2(ṽm
t )2

− 2
m

√
m(Lm

t )2
m∑

ℓ=1
vℓ

t ṽ
m
t

− 2
m(1 − Lm

t C)Lm
t

m∑
ℓ=1

qℓ
t(vℓ

t − 1√
mLm

t ṽ
m
t )
]
dNt.

(4.5.3)

Let us compute the expectation Qm
t := E[Qm

t ] with respect to the noise terms
and, in addition, the sampling times of the Poisson counter. Using the fact
that vℓ

t and ṽm
t are mean zero processes, the Proposition 2.20 yields, for the

process Qm
t defined in (4.5.3), that

Q̇m
t = 2AQm

t +G2 − 1
mG2 − λ

(Qm
t )2C2

Qm
t C2 + V

+ λ

m
(Qm

t )2C2V

(Qm
t C2 + V )2 . (4.5.4)

4.5.3 Convergence of covariances
Consider the scalar version of optimal estimator equations (4.1.3)–(4.1.4) and
the scalar vanilla m-particle system (4.5.2)–(4.5.3). Let us state describe the
difference in the expected covariances depending on the number of particle,
and then prove the stated results consequently.

Theorem 4.5. Let Poisson intensity λ > 2A and number of particles m ≥ 1.
If a number Υ > 0 is such that Pt,Qm

t ≥ Υ for each t ≥ 0, then it holds that

E|Pt −Qm
t | ≤E0 exp{Aλ,Υt} + 1

m
(
G2 + λV C−2

)
|Aλ,Υ|−1,

for Aλ,Υ =2A− λ+ λ
V 2

(ΥC2 + V )2 ,

where E0 := |P0 −Q0| + 1
m (G2 + λV C−2) |Aλ,Υ|−1 is a constant.

Remark 4.6. If λ > 2A, m ≥ 1 and Υ := 1
2G

2/(λ − 2A), then Pt,Qm
t ≥ Υ

for each t ≥ 0. Indeed, by Lemma B.2 Qm
t ≥ (1 − 1

m)G2/(λ − 2A) and by
lemma B.1, Pt has a uniform lower bound min{P0, G

2/(λ− 2A)}.

Remark 4.7. Theorem 4.5 immediately implies that for each time t > 0 one
has E|Pt−Qm

t | → 0 as m → ∞ and initial conditions are such that Qm
0 → P0.
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Proposition 4.8. Let m ≥ 1. If the filtering system parameters satisfy2

2(λ− 2A)V
(
(1 − 1

m)G2C2 − AV
)

+ (1 − 1
m)2G4C4 > 0,

and λ > 2A+ (1 − 1
m)G2/min{P0, Q0}, then Aγ,Υ = 2A− λ+ λ V 2

(ΥC2+V )2 < 0
for Υ = (1 − 1

m)G2/(λ− 2A). In particular

lim supt→∞ |E[Pt] − E[Qm
t ]| ≤ |P0 −Q0| + 2

m (G2 + λV C−2) /|Aγ,Υ|.

Proof of Theorem 4.5

Proof. Using the fact that vℓ
t and ṽm

t are mean zero processes, the application
of Proposition 2.20 to the process Qm

t in (4.5.3) yields that Qm
t := E[Qm

t | Q0]
satisfies

Q̇m
t = 2AQm

t +G2 − 1
mG2 − λ

(Qm
t )2C2

Qm
t C2 + V

+ λ

m
(Qm

t )2C2V

(Qm
t C2 + V )2 . (4.5.5)

To analyze the difference between expected optimal and empirical covariance,
let us introduce Em

t := E[Pt − Qm
t ] = Pt − Qm

t , which satisfies the following
equation:

Ėm
t := d(Pt − Qm

t )/dt

= 2AEm
t + λ

(Qm
t )2C2

Qm
t C2 + V

− λ
P2

t C
2

PtC2 + V
+ 1

mG2 − λ

m
(Qm

t )2C2V

(C2Qm
t + V )2 .

Let us note what bounds can be derived. For the last term, the following
bounds hold

0 < (Qm
t )2C2V

(C2Qm
t + V )2 ≤ V C−2.

The nonlinear part transforms as follows

(Qm
t )2C2

Qm
t C2 + V

− P2
t C

2

PtC2 + V
= Q(1 − V

Qm
t C2 + V

) − P(1 − V

PtC2 + V
)

= −Em
t + V 2Em

t

(Qm
t C2 + V )(PtC2 + V ) .

2The inequality holds if AV ≤ G2C2, or the measurement noise covariance V is rela-
tively small.
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By assumption Pt,Qm
t ≥ Υ for all t ≥ 0. To get a bound on the evolution

of Em
t , let us study the derivative of (Em

t )2, that is,
d
dt(E

m
t )2 = 2Em

t Ėm
t

= (4A− 2λ+ 2λ V 2

(Qm
t C2 + V )(PtC2 + V ))(Em

t )2

+
(

2
mG2 − 2λ

m
(Qm

t )2C2V

(C2Qm
t + V )2

)
Em

t

≤ (4A− 2λ+ 2λ V 2

(ΥC2 + V )2 )(Em
t )2 + 2

m
(
G2 + λV C−2

)
|Em

t |

Consider the modified equation
d
dt

(Ēm
t )2 = 2Aλ,Υ(Ēm

t )2 + 2
m (G2 + λV C−2) Ēm

t

with Ēm
0 = |Em

0 | > 0, where Aλ,Υ = 2A − λ + λ V 2

(ΥC2+V )2 . One gets that
(Em

t )2 ≤ (Ēm
t )2 and so |Em

t | ≤ |Ēm
t |. The modified equation has the exact

solution:
Ēm

t = E0 exp{1
2Aγ,Υt} − 2

m (G2 + λV C−2) /Aγ,Υ,

where E0 = E0 + 2
m (G2 + λV C−2) /Aγ,Υ. Thus

|Em
t | ≤

∣∣∣∣(Em
0 + 2

m (G2 + λV C−2) /Aγ,Υ) exp{1
2Aγ,Υt} − 2

m (G2 + λV C−2) /Aγ,Υ

∣∣∣∣
≤ (|Em

0 | + 2
m (G2 + λV C−2) |A−1

γ,Υ|) exp{1
2Aγ,Υt} + 2

m (G2 + λV C−2) |A−1
γ,Υ|,

that completes the proof.

Proof of Proposition 4.8

Proof. Recall that by Lemma B.2 one has Qm
t ≥ (1 − 1

m)G2/(λ − 2A) and
by Lemma B.1, Pt has a uniform lower bound min{P0, G

2/(λ− 2A)}. Hence
taking Υ := (1 − 1

m)G2/(λ − 2A) the condition Pt,Qm
t ≥ Υ for all t ≥ 0 is

met.
Since all the hypothesis of Theorem 4.5 hold true, one has

|Et| ≤ (|E0| + 2
m (G2 + λV C−2) |A−1

γ,Υ|) exp{1
2Aγ,Υt} + 2

m (G2 + λV C−2) |A−1
γ,Υ|,

where Et = E(Pt −Qm
t ), Aλ,Υ = 2A− λ+ λ V 2

(ΥC2+V )2 .
Examine the condition Aλ,Υ < 0, that is λ − 2A > λ V 2

(ΥC2+V )2 . For λ̃ :=
λ− 2A and the assumed Υ := (1 − 1

m)G2/λ̃ it becomes

λ̃ >
(λ̃+ 2A)V 2λ̃2

((1 − 1
m)G2C2 + V λ̃)2

.
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Using simple algebraic manipulations, the last inequality holds if and only if
λ̃ > 0 and

2λ̃V ((1 − 1
m)G2C2 − AV ) + (1 − 1

m)2G4C4 > 0,

that is assumed. Thus it holds that

lim sup
t→∞

|Et| ≤ |E0| + 4
m
(
G2 + λV C−2

)
|A−1

γ,Υ|

= |P0 −Q0| + 2
m
(
G2 + λV C−2

)
/(λ− λ

V 2

(ΥC2 + V )2 − 2A)

= |P0 −Q0| + 2
m
(
G2 + λV C−2

)
/|Aγ,Υ|.

4.6 Numerical experiments
We will demonstrate the results of Section 4.4 and Section 4.5 through an
academic example. Consider the linear stochastic system

dxt = Axtdt+Gdwt (4.6.1a)
yτk

= Cxτk
+ vτk

, (4.6.1b)

where A =
[

0 3 1
2 −2 1

−2 1 −3

]
, C = [ 1 −1 2

1 0 1 ], G = [ 0.5 0.5 0.5 ]⊤, and vt is normally
distributed with mean (0, 0)⊤ and the constant variance V = [ 0.5 0.1

0.1 0.5 ].
To measure the effectiveness of the proposed ensemble of particles, we

compare them with the optimal estimator. We fix a reasonable Poisson
intensity λ = 10. For a simulated and fixed path of the state xt and the
observation noise vt, we compare the first and second moments.

The comparison can be conducted for a realization of a Poisson process,
as presented in Figures 4.1a–4.1b for the case of transport-inspired ensemble
filter. For the first moments (x̂t and ŝm

t ), we consider the time plot of ∥x̂t −
ŝm

t ∥. While x̂t is defined by the differential equation (4.1.3), to compute ŝm
t

we simulate particles si
t and take their empirical mean. Similarly, for the

second moments, to compute Pt, we need to solve the matrix differential
equation and Qm

t is computed as the empirical covariance of the simulated
ensemble of particles.

To get a more general picture we simulate 200 sample paths of the Poisson
process, and compare the averaged evolutions. E.g., for the time evolution
of ∥x̂t − ŝm

t ∥ we take its pointwise (in time) average, denoted as E∥x̂t − ŝm
t ∥
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(b) The second moment error.

Figure 4.1: Plot of error moments along one sample path for the deterministic
ensemble filter.
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Figure 4.2: Plot of error moments smoothed with respect to the sample paths
of Poisson process for the deterministic ensemble filter

and presented on Figure 4.2a. In the similar way, the smoothed evolution of
the second moments is provided by Figure 4.2b.

In the case of vanilla ensemble filter, it is interesting to consider dif-
ferent number of particles, so the plots are provided only for the average
behavior of the moments; i.e. 200 sample paths of the Poisson process are
simulated and then their pointwise average is computed. In this way, Fig-
ure 4.3a presents the error between the optimal and empirical means, while
Figure 4.3b describes the error between the covariances by presenting the
trace of the corresponding matrices.
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(a) The first moment error. (b) The second moment error.

Figure 4.3: Plot of error moments smoothed with respect to the sample paths
of Poisson process for the vanilla ensemble filter



Chapter 5

Convergence with Finite State
Space

In this chapter, the state process is assumed to be a continuous-time Markov
chain, which allows us to work with nonlinear processes. The observation
process model differs from the other chapters: observations are defined as
sampling from a continuous-time output process. This change allows us to
prove the convergence to the classical optimal filter.

The idea of using discrete observations aims to reduce computation com-
plexity at a low cost in its accuracy. It follows that interarrival times should
not be too large to prevent significant inaccuracy and should not be too small
to prevent overcomputation. In the case of random observations, one cannot
obtain a precise upper bound on the interarrival times. This chapter studies
the convergence of optimal filters as their expected value of interarrival times
tends to zero.

5.1 Setup

For the purpose of analytical tractability, we will consider the filtering prob-
lem for systems with finitely many states. In particular, we consider the
evolution of states described by a continuous-time Markov chain with an
observation process which is a nonlinear function of the state process with
additive Gaussian noise. We refer the reader to [MT09] for a standard expo-
sition on Markov chains and related stability notions. The classical solution
to the filter design problem for such systems is given by Wonham in [Won64],
which is in the form of continuous-time stochastic differential equations evolv-
ing over a simplex.

81
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State process

The dynamical systems considered in this chapter are described by a finite-
state continuous-time Markov chain (xt)t≥0. The notation S := {a1, . . . , ad}
is used to denote the state space and the matrix Λ := {λij} ∈ Rd×d, i, j ∈
{1, . . . , d}, denotes the transition intensities. The transition rates are such
that, λij ≥ 0, j ̸= i and ∑

j∈{1,...,d} λij = 0, for each i ∈ {1, . . . , d}. The
later condition is true only if λii ≤ 0, for each i ∈ {1, . . . , d}. For t ≥ 0,
let us denote the probability distribution of xt by p(t), so that, pj(t) =
P (x(t) = aj). Similarly, the distribution conditioned upon initial condition is
denoted by pij(t) = P (x(t) = aj | x0 = ai), and we let P (t) := [pij(t)] ∈ Rd×d

denote the matrix of transition probabilities. For each t ≥ 0, the matrix P (t)
is obtained from the transition matrix Λ by solving the following Chapman-
Kolmogorov equation:

Ṗ (t) = P (t)Λ, P (0) = Id×d.

For a given initial distribution of x0, given by pj(0), the distribution pj(t),
for each t ≥ 0, is

p(t) = P⊤(t) p(0) = p(0) +
∫ t

0

(
Λ⊤p(τ)

)
dτ, (5.1.1)

or, in the differential form, it can be written as ṗ(t) = Λ⊤p(t), subject to the
initial condition p(0).

5.1.1 Continuous-time optimal Wonham filter
Using the model from [Won64], an output process zt is assumed to be gen-
erated by state process xt and the observation noise ηt, which is assumed to
be a Wiener process independent of xt. It is described by the Itô equation

dzt = h(xs)ds+ dηt (5.1.2)

where h : S → R is a measurable function on S. For simplicity, we take
our observation process to be one-dimensional. The initial condition z0 is
assumed to be zero. The noise covariance is assumed to be constant and
denoted by R, that is, E[dη⊤dη] = R dt. We denote by σ{z[0,t]} the filtration
generated by (zs)s≤t. We recall that if ϕ is some square integrable function
of the signal process xt, then the ‘best estimate’ (in mean square sense) of
ϕ(xt) given the observations up to time t is

E
[
ϕ(xt) | σ{z[0,t]}

]
.
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To compute this conditional expectation, we are therefore interested in the
corresponding conditional probability

ρj
t := P(xt = aj |σ{z[0,t]}), j ∈ {1, . . . , d}. (5.1.3)

The classical Wonham filter provides a recursive expression for the condi-
tional probabilities ρt := [ρ1

t , . . . , ρ
d
t ]⊤ in the form of following stochastic

differential equation [Han07, Corollary 1.2.1]:

dρt = Λ⊤ρtdt+ (H − h)ρt(dzt − hdt), ρ0 = p(0) (5.1.4)

where h = ∑d
i=1 h(ai)ρi

t, and H denotes a diagonal matrix,

H := diag {h(a1), · · · , h(ad)}.

Due to the presence of dzt on the right-hand side of (5.1.4), ρt is a vector-
valued random variable, for each t ≥ 0. It is noted that the computation
of ρt requires continuous measurements of the process dzt.

5.1.2 Randomly-sampled observation process
Assume Nt is a Poisson process. The discretized and noisy observation pro-
cess is thus defined as

ẑt = ẑτNt
= zτNt

, t ≥ 0, (5.1.5)

where z satisfies the Itô equation (5.1.2). This type of the observation pro-
cess will be denoted by ẑ and should not be mistaken for the observation
process y, defined in other chapters. To condition the optimal estimator
on observations, we consider the filtration generated by (ẑs)s≤t, which is
σ{ẑ[0,t]} = σ{ẑτ1 , . . . , ẑτNt

}.

5.1.3 Problem statement
Our primary objective is to study the filtering problem subject to the random
sampling of the observation process. Toward this end, we first consider the
conditional probabilities

ρ̂j
t := P(xt = aj |σ{ẑ[0,t]}), j ∈ {1, . . . , d}, (5.1.6)

and develop an expression for the vector ρ̂t := [ρ̂1
t , . . . , ρ̂

d
t ]⊤, for each t ≥ 0,

using {ẑτk
| k ≤ Nt}. These developments are carried out in Section 5.2.

Next, we are interested in comparing ρ̂t with ρt. It is noted that ρ̂t, as
defined in (5.1.6) is random not only due to the observation noise ẑt, but
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it also depends on the random time instants (τk)k∈N. If we average out the
randomness due to sampling times and take the mean sampling rate of the
Poisson counter Nt to be large enough, then it is natural to compare the
resulting random variable with ρt. To formally state this intuition, we look
at the expectation of ρ̂t with respect to the sampling times, and show in
Section 5.3 that, for each t ≥ 0, the resulting random variable converges
to ρt in the mean as the sampling rate gets large.

5.2 Optimal filter
In this section, we develop expressions that allow us to compute the condi-
tional probability ρ̂j

t , for each j ∈ {1, . . . , d} and each t ≥ 0, for a single
realization of the random time instants {τk}k∈N. By developing a recursive
expression, it is possible to compute ρ̂j

t simply by updating the last stored
value as a function of the newly received information.

To present the recursive filter, we consider the innovation sequence ∆zNt

obtained from taking the difference of two consecutive measurements:

∆zNt = ẑτNt
− ẑτNt−1 = ξNt + ητNt

− ητNt−1 ,

where we used the notation

ξk :=
∫ τk

τk−1
h(xs) ds, k ∈ N.

With probability one, a Poisson process Nt yields finite number of random
variables ∆zi and ξi over a finite interval [0, t]. Notice that

p (∆z1, . . . ,∆zNt | x0, xt) = E
[
p (∆z1, . . . ,∆zNt , ξ1, . . . , ξNt)

∣∣∣ x0, xt

]
= E

[
Nt∏

k=1

1√
2πR∆τk

exp
[
−(∆zk − ξk)2

2R∆τk

] ∣∣∣∣ x0, xt

]

=
Nt∏

k=1

1√
2πR∆τk

E
[
exp

[
−

Nt∑
k=1

(∆zk − ξk)2

2R∆τk

] ∣∣∣∣ x0, xt

]

since ∆zi − ξi are independent for each i and are Gaussian with mean 0 and
variance R∆τi. Let

Ψn = Ψn(∆z, ξ,∆τ) := exp
(

−
n∑

k=1

(∆zk − ξk)2

2R∆τk

)
. (5.2.1)
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To get the expression for ρ̂j
t at t = τNt for Nt ∈ N, we observe that

ρ̂j
t = P(x(t) = aj | ẑτk

, k = 0, . . . , Nt) = P(x(t) = aj | ∆zk, k = 1, . . . , Nt)

=

d∑
i=1

pi(0)pij(t)E [ΨNt | x0 = ai, xt = aj]

∑d
l=1

d∑
i=1

pi(0)pil(t)E [ΨNt | x0 = ai, xt = al]

as the term
Nt∏

k=1

1√
2πR∆τk

cancels out from the numerator and the denomi-
nator. Then the numerator is the unnormalized conditional density. Let us
denote it as follows.

Definition 5.1. Let z̄[0,t] be a pure jump process realization with jumps only
at {τk}nt

k=1. For each t ≥ 0, and for each j ∈ {1, . . . , d}, define the function
U j(t, z̄[0,t]) as follows

U j(t, z̄[0,t]) :=
d∑

i=1
pi(0)pij(t)E

Ψnt

∣∣∣∣∣∣x0 = ai, xt = aj

 ,
where Ψnt is from (5.2.1) and xt is the state process.

Remark 5.2. One can consider U j
t as a function of a pure jump process z̄t

since {τk} is also defined by z̄t. The Markov chain x affects the value of U j
t

only by its transitional probabilities, not by realizations.

We define the evolution of U j
t with differential equations over the intervals

]τNt , τNt+1[, and via jumps at τNt , for all t ≥ 0. Firstly, if t ∈]τNt , τNt+1[, we
obtain

U j
t

= ∑d
i=1 pi(0)pij(t)E

ΨNt

∣∣∣∣∣∣x0 = ai, xt = aj


= ∑d

ℓ=1
∑d

i=1 pi(0)piℓ(τNt)pℓj(t− τNt)E
ΨNt

∣∣∣∣∣∣x0 = ai, xτNt
= aℓ, xt = aj


= ∑d

ℓ=1 pℓj(t− τNt)
∑d

i=1 pi(0)piℓ(τNt)E
ΨNt

∣∣∣∣∣∣x0 = ai, xτNt
= aℓ


= ∑d

ℓ=1 pℓj(t− τNt)U ℓ
τNt
.

It yields U̇ = UΛ for t ∈]τNt , τNt+1[. Secondly, for t = τNt with n = Nt > 1,
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the strong Markov property and independence of the different ηk give

E [ΨNt | x0 = ai, xτn = aj]
=

d∑
l=1

E
[
Ψn | x0 = ai, xτn = aj, xτn−1 = al

]
P(xτn−1 = al | x0 = ai, xτn = aj)

=
d∑

l=1
E
[
exp

(
− (∆zn−ξn)2

2R∆τn

) ∣∣∣ xτn = aj, xτn−1 = al

]
×E

[
Ψn−1 | x0 = ai, xτn−1 = al

]
×P(xτn−1 = al | x0 = ai, xτn = aj)

By Bayes rule and strong Markov property

pij(t)P(xτn−1 = al | x0 = ai, xτn = aj)

= P(xτn−1 = al | x0 = ai)P
xτn = al

∣∣∣∣∣∣ x0 = ai,

xτn = aj


= pli(τn−1)pjl(∆τn)

and then U j
τn

equals

d∑
l=1

d∑
i=1

pi(0)pij(t)E
[
exp

(
−(∆zn − ξn)2

2R∆τn

) ∣∣∣∣ xτn = aj,

xτn−1 = al

]

E
[
Ψn−1

∣∣∣∣ x0 = ai,

xτn−1 = al

]
P
(
xτn−1 = al

∣∣∣∣ x0 = ai,

xτn = aj

)

=
d∑

l=1

d∑
i=1

pi(0)pli(τn−1)pjl(∆τn)

E
[
exp

(
−(∆zn − ξn)2

2R∆τn

) ∣∣∣ xτn = aj, xτn−1 = al

]

E
[
Ψn−1

∣∣∣∣ x0 = ai, xτn−1 = al

]

=
d∑

l=1
pjl(∆τn)U l

n−1E
[
exp

(
−(∆zn − ξn)2

2R∆τn

) ∣∣∣∣ xτn = aj, xτn−1 = al

]
.

Thus the recursive rule for U is the following.

Proposition 5.3. For a Markov chain (xt)t≥0, a fixed sample path of Nt

associated with jump times τNt, the observations ẑt defined in (5.1.5), the
conditional density ρ̂t = (ρ̂1

t , . . . , ρ̂
d
t )⊤ is

ρ̂j
t = U j

t∑d
i=1 U

i
t

,
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where the vector Ut = (U1
t , . . . , U

d
t ) satisfies

U̇t = UtΛ t ∈]τNt , τNt+1[
Uτn = Kn lim

s↗τn

Us ∀τn = τNt

(5.2.2)

where lj-th component of the matrix Kn is the following

E

exp

−

(
∆zn −

∫ τn
τn−1

h(xs)ds
)2

2R∆τn


∣∣∣∣∣∣ xτn = aj,

xτn−1 = al

 .

5.3 Convergence in mean
We now turn to the question of comparing the filter obtained from randomly
sampled observations with the continuous Wonham filter. For this purpose,
we assume that the state process is a Markov chain. In what follows, we use
the notation Ez to denote expectation with respect to noise in z-process, and
Eλ to denote expectation with respect to the distribution of the Poisson sam-
pling process with intensity λ > 0. We also recall that σ(·) is used to denote
the filtration generated by its argument. Our main result is formulated as
follows:

Theorem 5.4. Let (xt)t≥0 be a continuous-time Markov chain with non-zero
initial distribution. For each t > 0, it holds that

lim
λ→∞

EλEz

∣∣∣∣E [xt | σ
{
ẑ[0,t]

}]
− E

[
xt | σ

{
z[0,t]

}] ∣∣∣∣ = 0.

The proof of this result is carried in the remainder of this section. An
outline of the main steps of the proof is drawn in Figure 5.1.

E
[
xt | σ

{
(H t

nz)[0,t]
}]

E
[
xt | σ

{
z[0,t]

}]

E
[
xt | σ

{
ẑ[0,t]

}]U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

in EλEz

λ→∞P. 5.7
L. 5.8
in EλEz

n→∞,∀λ>0

in Ez

n→∞

L.5.6

in EλEz

λ→∞Th.5.4

Figure 5.1: Schematic of convergences
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5.3.1 Intermediate results
Let us start with the definition of operators θ and H that are used excessively
in the sequel.

Definition 5.5. For n ∈ N, t > 0, let θt
n and H t

n be the following mappings:

θt
n(s) := max

{
mt
n

∈ [0, s] | m = 0, . . . , n
}
,

(H t
nv)s := H t

n(v)(s) = v (θt
n(s)) .

Using these definitions, one can now state the intermediate results which
are necessary for the proof of Theorem 5.4.

Lemma 5.6. Let (xt)t≥0 be a Markov chain with non-zero initial distribution.
For each t > 0, there is convergence in Ez-mean:

lim
n→∞

Ez

∣∣∣∣E [xt | σ
{
(H t

nz)[0,t]
}]

− E
[
xt | σ

{
z[0,t]

}] ∣∣∣∣ = 0.

The proof of Lemma 5.6 is a direct consequence of the arguments ap-
pearing in [Won64, Appendix 2] and is not carried out here. The vector
U (t, (H t

nẑ)t) below consists of the corresponding entries U j (t, (H t
nẑ)t) as con-

sidered in Definition 5.1.

Proposition 5.7. Let xt be a Markov chain with non-zero initial distribution.
For each t > 0, n ∈ N, there is convergence in EλEz-mean:

lim
λ→∞

EλEz

∣∣∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t))∥1

− E
[
xt | σ

{
H t

nz[0,t]
}] ∣∣∣∣∣∣ = 0.

The proof of Proposition 5.7 appears in below, after the final statement,
that we need for the proof of Theorem 5.4.

Lemma 5.8. Let (xt)t≥0 be a Markov chain with non-zero initial distribution.
For each t > 0 and each λ > 0 there is convergence in EλEz−mean:

lim
n→∞

EλEz

∣∣∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

− E
[
xt | σ

{
ẑ[0,t]

}] ∣∣∣∣∣∣ = 0.

The proof of Lemma 5.8 is provided below after the proof of Proposi-
tion 5.7.
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5.3.2 Proofs
Proof of Proposition 5.7

Proof. Recall that the j-th component of the conditional expectation E[xt |
σ{(H t

nz)[0,t]}] is Uj(t,(Ht
nz)t)

∥U(t,(Ht
nz)t)∥1

, as showed in Section 5.2. Then it is sufficient
to prove that for any ε > 0 there is sufficiently large λ > 0 such that

EλEz

∣∣∣∣∣ U j (t, (H t
nẑ)t)

∥U (t, (H t
nẑ)t) ∥1

− U j (t, (H t
nz)t)

∥U (t, (H t
nz)t) ∥1

∣∣∣∣∣ ≤ ε. (5.3.1)

In what follows, we use the notation τk for jump times of a Poisson process
and mt

n
for jump times of the ‘uniform’ process θt

n. Moreover, we recall that
a Poisson process Nt is associated with {τk} as Nt = sup{n ∈ N | τn ≤ t} for
t ∈ R.

In order to make H t
nẑ somehow similar to H t

nz, we need the probability
that at least one Poisson arrival time τk ∈ {τk}Nt

k=0 occurs between mt
n

−δ and
mt
n

for all m = 1, . . . , n and an arbitrary δ ∈]0, t
n
[. Since τk ≤ mt

n
if k ≤ Nmt

n
,

this condition can be formulated as

max
m=1,...,n

min
k=0,...,N mt

n

(
mt

n
− τk

)
≤ δ. (5.3.2)

The opposite event is

max
m=1,...,n

min
k=0,...,N mt

n

(
mt

n
− τk

)
> δ (5.3.3)

and its probability is the sum ∑n
m=1(1 − e−λδ)m−1e−λδ, that is (1 − e−λδ)n.

Using this, we can decompose the expectation Eλ

[
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

]
into the sum

(1 − e−λδ)nEλ

[
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

∣∣∣∣ eq. (5.3.3)
]

+

+
(
1 − (1 − e−λδ)n

)
Eλ

[
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

∣∣∣∣ eq. (5.3.2)
]
.

Let us take λ = 1/
√
δ and define δ later. Notice that Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1
≤ 1 and

(1 − e−λδ)n → 0 as λ → ∞. Then it remains to prove that

EλEz

(
U j (t, (H t

nẑ)t)
∥U (t, (H t

nẑ)t) ∥1

∣∣∣∣ eq. (5.3.2)
)

→ Ez

(
U j (t, (H t

nẑ)t)
∥U (t, (H t

nẑ)t) ∥1

)
.

Let us consider an arbitrary realization Nt satisfying (5.3.2). For an
arbitrary fixed zt, we obtain the process ẑt. Then both processes H t

nẑ and
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H t
nz are pure jump and all jumps occur at times mt

n
for m = 1, . . . , n only.

Hence the two processes U j(·, H t
nẑ) and U j(·, H t

nz) differ in their exponent
terms only. For U j (t, (H t

nz)t) we have jump times only at
{

mt
n

}
and the

exponent term straightforwardly contains the following sum

−
n∑

m=1

(
zmt

n
− z (m−1)t

n

−
∫ mt

n

(m−1)t
n

h(x̄s)ds
)2

(5.3.4)

For U j (·, H t
nẑ), employing the condition (5.3.2), we obtain that for each m =

1, . . . , n, there is a certain δm ∈ (0, δ) such that H
(
ẑmt

n

)
= ẑmt

n
= zmt

n
−δm

.
So the exponent term of U j (t, (H t

nẑ)t) contains a similar sum

−
n∑

m=1

(
zmt

n
−δm

− z (m−1)t
n

−δm−1
−
∫ mt

n

(m−1)t
n

h(x̄s)ds
)2

(5.3.5)

Thus a realization of Poisson process Nt defines only the sequence of δm,
which are uniformly bounded by δ. It immediately yields the convergence of
each component:

EλEz
{
|U j(t,H t

n(z)) − U j(t,H t
n(ẑ))|

}
→ 0 as δ → 0, i.e. λ → ∞.

To get the convergence of normalized values, notice that both fractions are
less than one and the denominators are bounded away from zero in the follow-
ing sense. Denote ω = mini pi(0); by linearity of the Kolmogorov equation,
none of pi,j(t) equals zero for t > 0. Hence, for each t > 0 there is a pair
(i, j) such that pi(0)pi,j(t) ≥ ω/d, and

∥U
(
t,H t

n(ẑ)
)

∥1 ≥ U j
(
t,H t

n(ẑ)
)

≥ ω/d E
[
exp eq. (5.3.5)

2Rt/n

∣∣∣∣ x0 = ai, xt = aj

]
.

Definition (5.1.2) of the process z implies the following chain of estimations: M∫
−M

exp
{
−1

2( x
R(t/n+δ)2 )

}
√

2πR(t/n+ δ)
dx


n

≤ P[max
m

|ηmt
n

−δm
− η (m−1)t

n
−δm−1

| ≤ M ]

≤ P[|eq. (5.3.5)| ≤ n(M + 2 max
l
al)2(t/n+ δ)2]

≤ P
[
∥U

(
t, (H t

nẑ)t

)
∥1 ≥ κM

]
→ 1 as M → ∞

where κM = ω/d exp
{

n(M+2 maxl al)2(t/n+δ)2

2Rt/n

}
and tends to 0 as M → ∞. For

∥U (t, (H t
nẑ)t) ∥1 we have the same estimation, but with zeros instead of δm

and δ. These inequalities defines a suitable δ = δ(ε) so that (5.3.1) holds.
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Proof of Lemma 5.8

Proof. In Section 5.2, we showed that Uj(t,ẑt)
∥U(t,ẑt)∥1

is the j-th component of

E
[
xt | σ

{
ẑ[0,t]

}]
.

Then it is sufficient to prove that for any ε, there exists D = D(ε) > 0 such
that for any n > t/D

EλEz

∣∣∣∣∣ U j (t, (H t
nẑ)t)

∥U (t, (H t
nẑ)t) ∥1

− U j (t, ẑt)
∥U j (t, ẑt) ∥1

∣∣∣∣∣ ≤ ε. (5.3.6)

If t/D =: MD ∈ N, we can consider MD disjoint intervals
]

tM
MD

, t(M+1)
MD

]
of

length D (for M = 1, . . . ,MD). Now we are interested in the case where at
most one jump of Nt occurs at each interval

]
tM
MD

, t(M+1)
MD

]
, i.e.

max
M=1,...,MD

N tM
MD

−N t(M−1)
MD

≤ 1. (5.3.7)

The probability of the event (5.3.7) is e−λt(1 + λD) t
D , and so it tends to

1 as D → 0. Therefore, for any D > 0, we decompose and estimate the
expectations of (5.3.6) as

2
(
1 − e−λt(1 + λD) t

D

)
+ e−λt(1 + λD) t

D

∑
i

pi(0)pij(t)

×EλEz

∣∣∣∣∣ U j (t, (H t
nẑ)t)

∥U (t, (H t
nẑ)t) ∥1

− U j (t, ẑt)
∥U j (t, ẑt) ∥1

∣∣∣∣∣
∣∣∣∣∣∣eq. (5.3.7)

 ,
and the first addend is less than ε/4 for every D ∈]0, D∗[ for a certain D∗.
In the same way, we can separate two cases: if total number of jumps of ẑ
on [0, t] is more than K = K(λ, ε) or if it is less or equal. The expecta-
tions of (5.3.6) conditioned on the first case are less than ε/4 if K is such
that e−λt∑∞

i=K
(λt)i

i! < ε/8. Indeed, it means that ε/4 is greater than the
value

∣∣∣∣ Uj(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

− Uj(t,ẑt)
∥Uj(t,ẑt)∥1

∣∣∣∣ times the probability that ẑ has more than
K jumps. Finally, let us get rid of the case of Poisson processes that contain
relatively small inter-arrival times, i.e. let us find L > 0 such that ε/4 bounds
from below the expectations of (5.3.6) conditioned on Poisson process with
inter-arrival time less than L. For a Poisson process, the probability of con-
taining all inter-arrival times greater than L is not less than e−λLK (since K
is the maximum number of jumps), i.e. it suffices to take L = L(λ, ε) such
that 1 − e−λLK ≤ ε/8.
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Let us denote by A the event that correspond to the inequality (5.3.7), the
condition that the number of jumps of ẑ is not more than K and the condition
that the inter-arrival times are greater than L. Consider a realization of Nt

from A. Denote by τk the corresponding jump times of H t
nẑ. Then jumps of

ẑ occur at τk − δk. So that H t
nẑ( tM

MD
) = ẑ( tM

MD
) for M = 1, . . . ,MD and so the

exponent term in U j(t,H t
nẑ) becomes

exp
∑

k

−(ẑ(τk) − ẑ(τk−1) −
∫ τk

τk−1
h(x̄s)ds)2

2R(τk − τk−1)

while the exponent term in U j(t,H t
nẑ) contains same values at times τk − δk.

Thus it is easy to see that we have convergence

EλEz

∣∣∣U j
(
t, (H t

nẑ)t

)
− U j (t, ẑt)

∣∣∣
∣∣∣∣∣∣ A

 → 0

for all components j. To get (5.3.6) it remains to estimate the denominators.
Denote ω = mini pi(0); by linearity of the Kolmogorov equation, none of
pi,j(t) equals zero for t > 0. Hence, for each t > 0 there is a pair (i, j) such
that pi(0)pi,j(t) ≥ ω/d, and so

∥U(t,H t
n(ẑ))∥1

≥ U j
(
t,H t

n(ẑ)
)

≥ ω/d E
[
exp

∑
k

−(ẑ(τk) − ẑ(τk−1) −
∫ τk

τk−1
h(x̄s)ds)2

2R(τk − τk−1)

∣∣∣∣ x0 = ai,

xt = aj

]
.

Here the sum contains not more than K elements, τk − τk−1 > L−D, xs are
from a finite set S, and the only remaining randomness in η is bounded as
 M∫

−M

exp
{
−1

2( x
Rt2 )

}
√

2πRt
dx


K

≤ (P[|ηt − η0| ≤ M ])K ≤ P[max
k

|ητk
−ητk−1| ≤ M ].

Thus, we have P[∥U(t,H t
n(ẑ))∥1 ≥ κ] → 0, as κ → 0. The same holds for

∥U(t, ẑ)∥1. This allows us to choose a suitable D ∈]0, D∗[ and conclude the
proof.

Proof of Theorem 5.4

The proof is essentially based on the schematic shown in Figure 5.1.
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Proof. By Proposition 5.7, for any ε1 there is large enough λ1 = λ(ε1) such
that for any λ ≥ λ1,

EλEz

∣∣∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

− E
[
xt | σ

{
(H t

nz)[0,t]
}] ∣∣∣∣∣∣ ≤ ε1.

By Lemmas 5.6 and 5.8, for any ε2, we can find n2 = n(ε2), such that for
every n ≥ n2, the following two inequalities hold:

EλEz
∣∣∣E [xt | σ

{
(H t

nz)[0,t]
}]

− E
[
xt | σ

{
z[0,t]

}] ∣∣∣ ≤ ε2,

EλEz

∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

− E
[
xt | σ

{
ẑ[0,t]

}] ∣∣∣∣ ≤ ε2.

In the first of these two inequalities, the expectation Eλ does not change
anything as inner parts are independent of Nt.

So for a given ε > 0, taking ε1 = ε2 = ε/3 and the corresponding λ1 and
n2, we immediately obtain that there exists λ(ε) such that for any λ ≥ λ(ε)
the required convergence property holds:

EλEz

∣∣∣∣E [xt | σ{ẑ[0,t]}
]

− E[xt |σ{z[0,t]}]
∣∣∣∣ ≤ ε.

5.3.3 Summary
In this chapter, we discussed the design of optimal filters for a continuous-
time Markov chain with a finite state space, coupled with an observation pro-
cess subjected to additive Gaussian noise, where measurements are available
at randomly sampled time instants. We initiate by articulating the optimal
filter within this context, followed by deriving a recursive formula encap-
sulating it as a continuous-discrete filter. Our principal contribution lies in
benchmarking the efficiency of our proposed filter against its continuous-time
analog the classical Wonham filter, which is based on a continuous observa-
tion process.

We demonstrate that by configuring the sampling scheme around a Pois-
son counter and incrementally increasing the mean sampling rate, the ex-
pected value of the posterior conditional distribution of our continuous-
discrete filter progressively aligns with the posterior distribution obtained
from a continuous Wonham filter.
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Chapter 6

Conclusions

6.1 Contribution

This work seeks to contribute to the field of filtering for continuous-time
systems, particularly focusing on challenges arising from limitations in out-
put observations due to continuous white noise and time-based sampling. It
specifically addresses the added complexity introduced by output observa-
tions arriving randomly at discrete instances. Through this lens, we examine
strategies for deriving bounds on the covariance of state estimation errors for
select classes of dynamical systems, employing our proposed filtering algo-
rithms.

Our findings cover the derivation of optimal estimators for both linear
dynamics and state processes governed by continuous Markov chains. In the
linear scenario, we investigated the estimator’s stability and its sensitivity to
changes in Poisson intensity, which reflects the observation frequency. For the
Markov chain model, we demonstrated the L1-convergence of our estimator
to the optimal estimator (Wonham filter) as the Poisson process intensity
increases.

Furthermore, for nonlinear systems featuring Lipschitz nonlinear dynam-
ics, we proposed formulas for a sub-optimal estimator, taking cues from the
optimal estimator in the linear case. This necessitated measuring the sub-
optimal filter’s efficiency relative to its optimal counterpart, especially under
the regime of random discrete observations where tuning the estimator could
enhance its performance or reduce computational demands. Our research elu-
cidates sufficient conditions that guarantee the boundedness of the expected
error covariance matrix.

Aiming to investigate the nonlinear problem, we opted for the ensemble
filter method, acknowledging its significance in large-scale models requiring

95
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noisy data estimation. However, at this stage the obtained results on en-
semble filters are restricted to the linear case. Our contributions include the
first derivation of a continuous-discrete McKean–Vlasov type diffusion pro-
cess with additive Gaussian noise in the observation model. This process is
validated as an exact filter, where the conditional expectation is same as the
optimal filter. Subsequently, this process is approximated by particle systems
interconnected through empirical covariance. Notably, while these ensemble
filters draw parallels with established methods in a continuous framework,
they exhibit unique dependencies on system parameters.

To summarize, this project contributes to the field of filtering for continuous-
time systems by providing new approaches for addressing the challenges as-
sociated with random sampling of output data. Additionally, it enhances the
existing methodologies for the analysis of both linear and nonlinear systems.

6.2 Further directions

6.2.1 Ensemble filters
Three immediate generalizations are important for the presented study on
ensemble filters.

Analysis of a ‘mixed’ ensemble filter

We showed that a mean-field type process is an exact filter if it satisfies the
(sufficient) conditions listed in Proposition 4.2. In addition to the vanilla and
transport-inspired ensemble filters considered in Chapter 4, one can consider
another possible option. The conditions are met if Ωt = 0, ∆t = 0, Γt = G
and

Ξτk
: Qτk

Ξ⊤
τk

+ Ξτk
Qτk

Ξ⊤
τk

+ Ξτk
Qτk

= −Lτk
CQτk

.

Hence, the exact filter becomes

dst := Astdt+Gdwt +
(
Ltyt − LtCŝt + Ξt(st − ŝt)

)
dNt,

where Qt = E[(st − ŝt)(st − ŝt)⊤] and ŝ = E[st | Yt] for the σ-algebra Yt

generated by observation process y up to time t.
Its structure combines the ‘continuous’ part of the vanilla filter and the

‘jump’ part of the transport-inspired filter. It allows us to avoid the heavy
computation of inverted covariance matrices in contrast to the case of the
transport-inspired filter. Using independent noises instead, similar to the
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vanilla filter, seems reasonable for the continuous part. Moreover, the non-
random choice of the jump part also seems feasible, and the price consists of
computation of the matrix Ξτk

. Since the times of computations are discrete
and isolated, the performance should improve. Nonetheless, the correspond-
ing ensemble filter requires investigation.

From scalar to multidimensional case

The principles of filtering theory using Poisson-distributed observations for
single-variable (or scalar) cases have provided key insights into the oper-
ations and characteristics of optimal and ensemble filters. These insights
cover various aspects, including the conditions for steady states and stabil-
ity. Although there has been considerable advancement in understanding and
applying these principles in scalar cases, the complexities of the real world
often require an approach that considers higher dimensional systems.

In real-world scenarios, systems often involve multiple interacting com-
ponents or variables. This complexity means that extending our research to
consider multiple variables at once is not just beneficial but essential for accu-
rately modeling such systems. Moving from single-variable to multi-variable
(or multi-dimensional) cases brings forth specific challenges and opportuni-
ties. Particularly, our understanding of steady states and stability in the
single-variable context needs to be carefully adjusted to fit the complexities
of multi-variable systems. This adjustment involves expanding the mathe-
matical definitions of stability to cater for multi-dimensional situations and
exploring how steady states can exist and be unique in such contexts.

Moving forward into multi-dimensional studies requires us to modify and
improve existing research methods. This may include upgrading computa-
tional methods to manage more complex calculations and developing new
theoretical models that can accurately represent multi-dimensional dynam-
ics. It is especially important to focus on how ensemble filters can be scaled
and how optimal filters perform when dealing with multiple dimensions.

From linear to nonlinear case

Unlike in linear systems, where convergence typically refers to moments con-
verging to true values, convergence in nonlinear systems often needs to be
understood in the weak sense. This means that the convergence pertains to
the distributions themselves, necessitating a nuanced approach. Specifically,
researchers can utilize the generators corresponding to the nonlinear filters
to demonstrate this form of convergence, providing a mathematical frame-
work for understanding how predictions from filters approximate the real
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system behavior over time. However, the exactness property seems feasible
using approaches similar to those employed in the linear case. Exactness, in
this context, refers to the filter’s ability to precisely estimate the state of a
system based on observations. However, the methodologies to demonstrate
this property in nonlinear systems adapt to focus on the distributions that
constitute solution to the filtering problem, not just their moments.

Another vital concept in the study of nonlinear filters is the propagation
of chaos property. This property describes how, in a large system, the ran-
domness or ’chaos’ in the state of individual elements becomes independent
as the system evolves. Proving this property for nonlinear filters is crucial
because it can help validate the filter’s performance in complex, dynamically
changing environments. A precise and rigorous proof of the propagation of
chaos in the context of nonlinear filtering remains an area for further inves-
tigation, while it seems promising and plausible.

The exploration of nonlinear ensemble filters presents a rich field of study,
diverging from linear case through its focus on distributions and requiring in-
novative approaches for proving convergence and exactness. The challenges in
proving convergence in the weak sense and the propagation of chaos property
highlight the need for continued research and methodological development
in this area.

6.2.2 Generalizing the sampling process
The current research framework is based on the assumption that observations
are sampled through a homogeneous Poisson process. This foundational
assumption prompts a compelling avenue for future exploration, particularly
in terms of how the nature of the sampling process influences the outcomes
of the study. Two major directions are proposed for further study along this
line:

1. Examination of Interarrival Time Assumptions: The initial aspect of
this exploration involves a critical assessment of the assumptions re-
garding the expected interarrival times within the sampling process.
A key question here is the sufficiency of bounding these interarrival
times for the purposes of the study. Does the mere limitation of these
intervals guarantee robustness in the findings, or is there a requisite
for the sampling process to adhere to the strong Markov property to
ensure that the future and past are conditionally independent given
the present? This inquiry will delve into the implications of these as-
sumptions and identify the necessary conditions for the validity of the
sampling process.



6.2. FURTHER DIRECTIONS 99

2. Investigation into Non-homogeneous Poisson Processes: Another promis-
ing research direction is the investigation into non-homogeneous Pois-
son processes as an alternative to the homogeneous sampling assump-
tion. This exploration would involve treating the intensity function
of the Poisson process as a variable parameter, thus allowing for an
examination of how variations in intensity affect the outcome of our
study. Within this context, there exists a potential for imposing re-
strictions or penalties on the changes in intensity, adding another layer
of complexity to the analysis. Such penalties could pertain to practical
limitations in the sampling technique or reflect theoretical constraints
intended to maintain certain conditions within the study.

By venturing into these areas, the research aims to deepen the under-
standing of how different sampling assumptions and modifications impact the
reliability and applicability of the findings. Each direction not only presents a
methodological challenge but also offers the potential to uncover new insights
into the dynamics of the processes under study.

6.2.3 Markov chain setup
Studying filtering problem for Markov chains helps to understand the dy-
namics of systems exhibiting nonlinear behavior. The key advantage is the
finiteness of the distributions that is feasible for numerical experiments and is
theoretical analysis. Such investigations provide insights into the properties
and performance of filters within nonlinear frameworks.

A significant focus within this realm is the study of the optimal estima-
tor and the impact of incoming observations on various aspects of system
estimation. Each observation carries the potential to significantly ameliorate
the estimator’s performance by refining its predictions. In contrast to the
continuous-time case, one can investigate how different properties are affected
by observations and which of them reflect the advantage of obtaining new
information provided by observations. The conjectures are the following.

1. Covariance Reduction: The arrival of observations may lead to a reduc-
tion in the covariance associated with the estimator. This reduction
signifies an increase in confidence regarding the state’s prediction, as
the estimator’s uncertainty decreases with additional information.

2. Entropy Reduction: Observations may also lead to a decrease in en-
tropy, which is a measure of the uncertainty or randomness of the sys-
tem’s state. A lower entropy value post-observation indicates a more
informed and less uncertain estimate of the system’s state.
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3. Distance to True Distribution: Another critical measure is the distance
between the estimated distribution and the true distribution of the
system’s state. Minimizing such a distance, one thereby enhances the
accuracy of the estimation process. Appropriate notion of a distance
also remains to discuss.

Preliminary analytical studies did not lead to a meaningful solution so far,
pointing out the need for more detailed investigation.

In addition, the approximation of nonlinear processes using Markov chains
has become a fundamental approach in efficiently modeling complex behav-
iors that linear models cannot capture. This method’s efficiency in various
domains suggests a promising avenue for extending Markov chain-based es-
timators into the realm of nonlinear processes. However, the intricacy of
nonlinear dynamics demands a thoughtful selection of methods and mathe-
matical frameworks for this expansion.



Appendix A

Auxiliary Results

Following results from the literature have been used in the analysis carried
out in Chapter 3.

Lemma A.1 ([Won68, Lemma 4.1]). Consider the equation, GG⊤ +KK⊤ =
GG

⊤, and let F be an arbitrary matrix of suitable dimension.

1. If (A,G) is controllable, then (A+KF,G) is controllable.

2. If (A,G) is stabilizable, then (A+KF,G) is stabilizable.

Lemma A.2 ([Won68, Lemma 5.1]). Let (A,G) be controllable, P0 ≥ 0 and
let P satisfy

Ṗt = APt + PtA
⊤ + Π(Pt) +GG⊤, P(0) = P0.

If there exists a constant matrix Q ≥ 0 such that AQ+QA⊤+Π(Q)+GG⊤ =
0, then Pt → Q as t → +∞.
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Appendix B

Additional Calculations

B.1 Proof of Proposition 3.10
Proof. To prove the existence of solution to equation (3.3.4), we first consider
the differential equation (3.3.1) with a time-varying K(·). The resulting time-
varying differential equation, subject to the initial condition P(0) = P0, has
the solution

Pt = φ(t,P ,MP , K) := Φ(t, 0)P0Φ⊤(t, 0) +
∫ t

0
Φ(t, s)

(
GG⊤

+ Π(Ps) + λKsMPsK
⊤
s

)
Φ⊤(t, s)ds.

For any given K(·) and a positive definite matrix MP ∈ Rp×p (affine in
P), we can find a solution of the Volterra equation Pt = φ(t,P ,MP , K)
by successive approximation. Let us construct a sequence of these solutions
Pi for i ≥ 1 such that M0 = Ip×p, K0 = C⊤, Pi+1(t) = φ(t,Pi+1,Mi, Ki),
Mi+1 = (1+ c)CPi+1C

⊤ + (2c+ c2) trPi+1Ip×p +V, and Ki+1 = M−1
i+1C

⊤Pi+1.
Notice that all Pi are positive semidefinite, all Mi are positive definite and so
invertible, all matrices Ki,Mi,Pi, i ∈ N, are measurable and bounded with
respect to t. Consider Qi(t) = Pi(t) − Pi+1(t) with Qi(0) = 0. From (3.3.1)
and (3.4.4), we get

Q̇i = Ψ(Pi,Mi, Ki) − Ψ(Pi+1,Mi+1, Ki+1)
≥ Ψ(Pi,Mi, Ki) − Ψ(Pi+1,Mi+1, Ki)
= (A− λKiC)Qi +Qi(A− λKiC)⊤ + Π(Qi)

+ λKi(Mi −Mi+1)K⊤
i

= (A− λKiC)Qi +Qi(A− λKiC)⊤ + Π(Qi)
+ λ(1 + c)KiCQiC

⊤K⊤
i + λ tr (Qi)(2c+ c2)KiK

⊤
i
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= (A− λKiC)Qi +Qi(A− λKiC)⊤ + Π(Qi)

+ λKi

(
(1 + c)CQiC

⊤ + tr (Qi)(2c+ c2)Ip

)
K⊤

i

so there exists a positive semidefinite matrix R such that

Q̇i = (A− λKiC)Qi +Qi(A− λKiC)⊤ + Π(Qi)

+ λKi

(
(1 + c)CQiC

⊤ + tr (Qi)(2c+ c2)Ip

)
K⊤

i +R.

Hence, Qi(t) can be rewritten as a solution of the equation

Qi(t) =
∫ t

0
Φ(t, s)(Π(Qi) + λKiMQi

K⊤
i +R)Φ⊤(t, s)ds,

implying that Qi(t) ≥ 0 for each i ≥ 1 and t ∈ [0, T ], as it can be calculated
by successive approximation with Qi(0) = 0. Consequently, the sequence
{Pi(t)}i∈N is non-increasing for each t ∈ [0, T ]. It also means that on the
finite segment [0, T ], Pi(t) is uniformly bounded by the number, sup{|P1(t)| |
t ∈ [0, T ]}, for every i ≥ 1 and t ∈ [0, T ]; consequently Mi(t) and Ki(t)
are uniformly bounded as well. Moreover, we let Pt = lim

i→∞
Pi(t), Mt =

lim
i→∞

Mi(t) = (1 + c)CPtC
⊤ + (2c + c2) tr(Pt)In×n + V , Kt = lim

i→∞
Ki(t) =

PC⊤M−1. So, the Volterra equation has the form: Pt = φ(t,P ,M,K) for
Mt and Kt defined above, meaning that the chosen solution P is well-defined
and unique.

B.2 Proof of Lemma 3.13
Let KPt = PtC

⊤M−1
Pt

and let Φ(t, s) denote the fundamental matrix associ-
ated with A− λKPtC. Then

Pt =
∫ t

0
Φ(t, s)(Π(Ps) +GG⊤ + λKPsMPsK⊤

Ps
)Φ⊤(t, s)ds. (B.2.1)

Let us fix an arbitrary τ ≥ 0 and define K̃Pt = KPt+τ . Further, let Φ̃(t, s)
be the fundamental matrix associated with A−λK̃PtC; then Φ̃(t, s) = Φ(t+
τ, s+ τ). Let P̃t be the solution of

˙̃Pt = Ψ(P̃t,MP̃t
, K̃Pt), P̃0 = 0,

then Pt ≤ P̃t, for each t ≥ 0, by minimum property. Moreover, we have the
following representations of P̃t−τ :

P̃t−τ =
∫ t−τ

0
Φ̃(t − τ, s)(Π(P̃s) + GG⊤ + λK̃PsMP̃s

K̃⊤
Ps

)Φ̃⊤(t − τ, s)ds
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=
∫ t−τ

0
Φ(t, s + τ)(Π(P̃s) + GG⊤ + λKPs+τ MP̃s

K⊤
Ps+τ

)Φ⊤(t, s + τ)ds

=
∫ t

τ

Φ(t, s)(Π(P̃s−τ ) + GG⊤ + λKPsMP̃s−τ
K⊤

Ps
)Φ⊤(t, s)ds

≤
∫ t

0
Φ(t, s)(Π(P̃s−τ ) + GG⊤ + λKPs

MP̃s−τ
K⊤

Ps
)Φ⊤(t, s)ds.

The last inequality, combined with (B.2.1), yields

Pt − P̃t−τ ≥
∫ t

0
Φ(t, s)(Π(Ps − P̃s−τ ) + λKPsM(Ps−P̃s−τ )K

⊤
Ps

)Φ⊤(t, s)ds

and hence we get Ps − P̃s−τ ≥ 0, for each s ≥ τ . By letting s = t + τ , we
obtain the desired monotonicity, that is, Pt ≤ P̃t ≤ Pt+τ , and this completes
the proof.

B.3 Properties of a scalar nonlinear ODE
Lemma B.1. Let Q0 > 0 and let Q : Rgeq0 → R satisfy the following differ-
ential equation

Q̇t = 2AQt + F 2 − λ
Q2

tC
2

QtC2 + V
(B.3.1)

where V > 0, F ̸= 0, λ > 0 and λ > 2A. The solution Q has one positive
steady state Q∗ that is

Q∗ = 2AV + F 2C2

2λ− 4A +

√√√√(2AV + F 2C2

2λ− 4A

)2

+ F 2

λ− 2A. (B.3.2)

Moreover, Q̇|Q=F 2/(λ−2A) > 0 and

Qt ≥ min{Q0, F
2/(λ− 2A)} for all t ≥ 0.

Proof. Notice that C2Qt + V > 0 for Qt ≥ 0. The equation (B.3.1) can be
written as follows

Q̇t = (2A− λ)C2Q2
t + (2AV + F 2C2)Qt + F 2

C2Qt + V
, (B.3.3)

The parabola
(2A− λ)C2Q2 + (2AV + F 2C2)Q + F 2

given by the right-hand side of (B.3.3) is concave because (2A− λ) < 0 and
is positive at Q = 0. Hence there is only one non-negative steady state Q∗,
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that is computed directly as in (B.3.2). It also means that for any Q0 > 0
and for all t ≥ 0

Qt ≥ min{Q0, Q∗
λ},

Qt ≤ max{Q0, Q∗
λ}.

In addition, plugging Q = F 2/(λ − 2A) into (B.3.1) one can obtain the
following expression

Q = λF 2V (V (λ− 2A) + F 2G2),

that is positive due to the assumptions on V, F and λ. Thus we obtain the
last statement of the lemma.

Lemma B.2. Let Qm
0 > 0 and let for t > 0 the scalar derivative Q̇m satisfy

Q̇m
t = 2AQm

t + F 2 − λ
(Qm

t )2C2

Qm
t C2 + V

+ λ

m
(Qm

t )2C2V

(Qm
t C2 + V )2 . (B.3.4)

where V, λ,m > 0 and moreover F ̸= 0 and λ ≥ 2A+ F 2/Q0 . The solution
Qm has a positive steady state and

Qm
t ≥ min{Q0, F

2/(λ− 2A)} t ≥ 0.

Proof. Since the dependence Q̇m of Qm is continuous, the existence of a
positive steady state follows from the facts that Q̇m|Qm=0 > 0 and

lim
Z→∞

Q̇m|Qm=Z = −∞.

The assumption λ ≥ 2A + F 2/Qm
0 follows both λ > 2A and Qm

0 >

F 2/(λ − 2A). The term λ
m

(Qm
t )2C2V

(Qm
t C2+V )2 is always positive. It allows get the

comparison
Q̇m|Qm=Z ≥ Q̇|Q=Z

for the process Q defined by (B.3.1). Hence Lemma B.1 implies that

Q̇m|Qm=F 2/(λ−2A) > 0.

Combining this with condition Qm
0 > F 2/(λ−2A) one has that Qm

t ≥ F 2/(λ−
2A) for all t ≥ 0.
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McKean–Vlasov Itô–Skorohod
equations

This section is about stochastic equation of the McKean–Vlasov type, which
depends on both a stochastic process and its law. The considered case is not
general since it is applied for linear filtering equations with constant diffusion.

Below Π(Z) denotes the space of probability laws on Z. Following the
results of [Gra92] and applying our notation (from Section 2.2), we obtain
the following.

Definition C.1 ([Gra92, Def. 2.1]). Let σ, b, g : Rd × Π(Rd) → R. An
Rn-valued process (Xt)t≥0 is a solution to the McKean–Vlasov stochastic dif-
ferential equation starting at X0 if

dXt =σ
(
Xt, P̄t

)
dωt + b

(
Xt, P̄t

)
dt+ g

(
Xt−, P̄t

)
dNt (C.0.1)

where P̄t = P̄0 ◦X−1
t is the law of Xt.

Despite the fact that it is unclear how to solve such equations, one may
study its approximation given by interacting particles.

Existence and uniqueness conditions are provided by [Gra92, Th. 2.1]
both for the particle system and the nonlinear McKean–Vlasov equation;
the assumptions are the following.

The m-particle system is

dX i
t =σ

(
X i

t , S
m
t

)
dωi

t + b
(
X i

t , S
m
t

)
dt+ g

(
X i

t−, S
m
t

)
dN i

t (C.0.2)

where the i-th particle starts at X i
0, Wiener process (ωi)t≥0 and Poisson

process (N i
t )t≥0 are independent; the empirical measure is

Sm
t = 1

m

m∑
i=1

δXi
t
.
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We wish to know what happens when the number of particles m goes to
infinity. It can be studied in terms of chaocity.

Definition C.2 ([Gra92, eq. (4.4)]). If E is a Polish space, Q is a probability
measure on E, Qm are symmetrical probability measures on Em, we say that
(Qm)m∈N is Q-chaotic if for any n ∈ N, f1, . . . , fn continuous bounded on E,

lim
m→∞

〈
Qm, f1 ⊗ · · · ⊗ fn ⊗ 1⊗m−n

〉
=

n∏
i=1

⟨Q, fi⟩

This means a fixed finite number of coordinates behave in the limit as
if they were independent, of law Q. It is equivalent to the fact that the
sequence of the (random) empirical measures of the m coordinates converges
in law, under the Qm, to (the deterministic) Q; see [Szn91].

Theorem C.3 ([Gra92, Th. 4.1]). Assume the sequence of the initial laws
for (C.0.2) is Q-chaotic. Then the sequence

(
Q̄K

)
K⩾1

solving (C.0.2) is P̄t-
chaotic, where P̄t is the McKean measure solving (C.0.1) starting at Q.
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stochastic geometry. Vol. 7. Springer, 2016.

[PSD19] M. Pezzutto, L. Schenato, and S. Dey. “Heavy-tails in Kalman
filtering with packet losses”. In: European Journal of Control 50
(2019), pp. 62–71.

[Pic91] J. Picard. “Efficiency of the extended Kalman filter for nonlinear
systems with small noise”. In: SIAM J. Control & Optimization
51.3 (1991), pp. 843–885.

[Pro05] P. E. Protter. Stochastic integration and differential equations.
Stochastic Modelling and Applied Probability. Springer, 2005.

[RAG03] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman
filter: Particle filters for tracking applications. Artech house, 2003.

[Sch08] L. Schenato. “Optimal estimation in networked control systems
subject to random delay and packet drop”. In: IEEE transactions
on automatic control 53.5 (2008), pp. 1311–1317.

[Sch+07] L. Schenato, M. Francesschetti, K. Poolla, and S. S. Sastry. “Foun-
dations of control and estimation over lossy networks”. In: Pro-
ceedings of the IEEE 95 (2007), pp. 163–187.

[Sin+04] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jor-
dan, and S. S. Sastry. “Kalman filtering with intermittent ob-
servations”. In: IEEE Transactions on Automatic Control 49.9
(2004), pp. 1453–1464.

[Str60] R. L. Stratonovich. “Conditional Markov processes”. In: Theory
of Probability & Its Applications 5.2 (1960), pp. 156–178.



114 BIBLIOGRAPHY

[SK08] Y. Suhov and M. Kelbert. Probability and Statistics by Exam-
ple. II. Markov chains: a primer in random processes and their
applications. Cambridge University Press, Cambridge, 2008.

[SGK16] T. Sutter, A. Ganguly, and H. Koeppl. “A variational approach
to path estimation and parameter inference of hidden diffusion
processes”. In: J. Machine Learning Research 17 (2016), pp. 1–
37.

[Szn91] A. S. Sznitman. “Topics in propagation of chaos”. In: Ecole d’été
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