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Abstract

Deep Learning, a subset of artificial intelligence, has considerably improved the capabilities
of machines in several fields. Deep Learning is based on the architecture of neural networks.
This thesis introduces neural networks, some of their different architectures and fields of ap-
plication, as well as the learning process, the mini-batch stochastic gradient descent. Neural
network models are then employed in two applications: crystal growth characterization and
nanophotonics inverse design. In the first application, three tasks are performed: the de-
tection of substrate deoxidation using an autoencoder to compress RHEED images, followed
by a convolutional neural network to classify sequences of the compressed data into oxidized
and deoxidized; the classification of the surface reconstructions into (2× 4) and c(4× 4) and
finally the azimuthal RHEED construction using two architectures, one to track the center
of gravity of the specular spot using a semantic segmentation model and the second for de-
termining the orientation of the crystal with respect to the incident electron beam of the
RHEED system using residual neural networks. Afterwards, thin slices are trimmed across
the specular point and plotted as a function of the azimuthal angle to obtain the azimuthal
RHEED. In the second application, the nanophotonics inverse design problem is introduced
before implementing Deep Learning architectures to circumvent this problem. The first ar-
chitecture is the tandem network, a generative model involving two networks, the second
one is the conditional variational autoencoder, a variant of the autoencoder and the last
architecture is the so-called “neural adjoint” method, a gradient-based optimization method.
Furthermore, a graph neural network surrogate model is proposed to represent the nanos-
tructures in the form of graphs and predict the optical properties. Finally, its interpolation
and extrapolation capabilities are tested, followed by fine-tuning to include the extrapolation
data in the training field of the model.

Keywords:

Deep-Learning RHEED crystal growth nanophotonics inverse design Graph Neural
Network
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Résumé

Le Deep Learning, un sous-ensemble de l’intelligence artificielle, a considérablement amélioré
les capacités des machines dans plusieurs domaines. L’apprentissage profond est basé sur
l’architecture des réseaux de neurones. Cette thèse présente les réseaux de neurones, cer-
taines de leurs différentes architectures et domaines d’application, ainsi que le processus
d’apprentissage, la descente de gradient stochastique. Des modèles de réseaux de neurones
sont ensuite utilisés dans deux applications : la caractérisation de la croissance des cristaux
et la conception inverse en nanophotonique. Dans la première application, trois tâches sont
effectuées : la détection de la désoxydation du substrat à l’aide d’un autoencodeur pour
compresser les images RHEED, suivi d’un réseau de neurones convolutionnel pour classifier
les séquences de données compressées en oxydées et désoxydées; la classification des recon-
structions de surface en (2 × 4) et c(4 × 4) et enfin la construction du RHEED azimutal
à l’aide de deux architectures, l’une pour le suivi du point spéculaire à l’aide d’un modèle
de segmentation sémantique et la seconde pour déterminer l’orientation du cristal par rap-
port au faisceau d’électrons incident du système RHEED à l’aide de réseaux de neurones
résiduels. Ensuite, de fines tranches sont rognées à travers le point spéculaire et tracées en
fonction de l’angle azimutale pour obtenir le RHEED azimutal. Dans la deuxième applica-
tion, le problème de conception inverse en nanophotonique est présenté avant de mettre en
œuvre des architectures d’apprentissage profond pour contourner ce problème. La première
architecture est le réseau tandem, un modèle génératif impliquant deux réseaux, la seconde
est l’autoencodeur variationnel conditionnel, une variante de l’autoencodeur, et la dernière
architecture est la méthode dite de “neural adjoint”, une méthode d’optimisation basée sur le
gradient. En outre, un modèle de réseau de neurones de graphes est proposé pour représen-
ter les nanostructures sous la forme de graphes et prédire les propriétés optiques. Enfin, ses
capacités d’interpolation et d’extrapolation sont testées, suivies d’un réglage fin pour inclure
les données d’extrapolation dans le champ d’entraînement du modèle.

Mots clés:

Apprentissage profond RHEED croissance des cristaux nanophotonique conception
inverse Réseaux de neurones de graphes
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General introduction

Artificial Intelligence (AI) is the science of making machines do things that would require
intelligence if done by human being [1]. It encompasses a broad range of technologies aimed
at enabling machines to perform tasks that typically require human intelligence, such as
learning, reasoning, problem-solving, perception and language understanding. Deep Learn-
ing, a subset of AI, involves neural networks with many layers (hence the term "deep") that
are capable of learning representations of data with multiple levels of abstraction. Unlike
traditional machine learning algorithms, which often require manual feature extraction, deep
learning models can automatically discover features from raw data. This capability has led
to significant advancements in various domains such as computer vision [2], natural language
processing [3], speech recognition [4] and more.
At the heart of deep learning are the above-mentioned neural networks, inspired by the struc-
ture and function of the human brain. These networks consist of interconnected layers of
neurons, where each neuron applies a transformation to its input and passes the result to
the next layer. Training these networks involves adjusting the parameters of the connections
based on the error of the neural network predictions, typically using a method called back-
propagation. This training process is computationally intensive and requires large datasets,
but recent advances in hardware (e.g. GPUs) and the availability of big data allowed to scale
these models significantly. The impact of Deep learning is profound across various indus-
tries. For example, in healthcare, it is used for diagnosing diseases from medical images and
predicting patient outcomes [5]. In automotive, it powers autonomous vehicles by enabling
real-time image recognition and decision-making [6].

This technology is also being used in the manufacture of semiconductor components such
as Molecular Beam Epitaxy (MBE) as a characterisation tool. Therefore, in a first step, we
are employing this technique to characterize the mechanisms of crystal growth, in particu-
lar to the processes of substrate deoxidation, surface reconstruction and Azimuthal RHEED
construction. In a second step, we are employing it in the field of nanophotonics by demon-
strating Deep Learning inverse design methods and the use of Graph Neural Networks on
the direct problem.

MBE is a controlled method for fabricating high-quality crystalline layers to create semicon-
ductor devices. It involves the deposition of atomic or molecular beams onto a substrate in
an ultra-high vacuum environment. The process allows for precise control over the thickness,
composition and doping of the deposited layers, making it ideal for creating complex semicon-
ductor structures with atomic layer precision. The MBE process begins with the preparation
of a substrate, typically a wafer, which is then heated to a high temperature for purifying
and to promote adhesion of the deposited atoms. Source materials, often in solid form, are
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heated in separate effusion cells to produce beams of atoms or molecules. These beams travel
in a straight line to the substrate, where they condense and form a crystalline layer. The
growth of these layers can be monitored and controlled in real-time, allowing for the creation
of structures with precise atomic configurations. A typical MBE characterization tool is the
Reflection High-Energy Electron Diffraction (RHEED).

RHEED is a powerful in-situ characterization technique used in MBE to monitor the growth
of thin films in real-time. In RHEED, a beam of high-energy electrons (typically 10-20 keV) is
directed at the surface of the growing film at a shallow angle. The electrons interact with the
surface atoms, resulting in a diffraction pattern that provides information about the surface
structure and growth dynamics. RHEED patterns are sensitive to changes in the surface
morphology, crystal structure and growth rate. As the film grows, the diffraction pattern
evolves, allowing operators to monitor the growth process and make real-time adjustments
to the deposition parameters. The analysis of RHEED patterns can reveal important infor-
mation about the formation of new atomic layers, the occurrence of surface reconstructions
and the crystal orientation.
The analysis of RHEED images is traditionally performed using manual or semi-automated
methods, which can be time-consuming and subject to human error. Recently, deep learning
techniques have been applied to automate and enhance the analysis of RHEED images. By
training convolutional neural networks (CNNs) on large datasets of RHEED images, it is
possible to develop models that can accurately classify different surface structures, detect
defects and sample orientation and more growth parameters. Deep learning models can pro-
cess RHEED images in real-time, providing immediate feedback on the growth process. This
capability would enable more precise control over the MBE process, leading to more efficient
fabrication and thus higher-quality devices. Additionally, the use of deep learning can un-
cover subtle patterns and correlations in RHEED data that might be missed by traditional
analysis methods.

Deep Learning is also employed in the field of Nanophotonics. The research field of nanopho-
tonics studies light-matter interactions on the nanometer scale. It involves the design and
fabrication of nanostructures that can manipulate light. Nanophotonic devices have applica-
tions in areas such as telecommunications, sensing, imaging and quantum computing. The
ability to control light at the nanoscale opens up new possibilities for creating compact and
efficient photonic devices. One of the major challenges in nanophotonics is the inverse design
problem, which involves determining the nanostructure that will produce a desired optical
response. This is a complex and computationally intensive task with the simulation-based
traditional methods. The use of generative deep learning models as well as gradient-based
iterative methods offers the possibility of reducing the time and computing power required
for inverse design problems.

In nanophotonics, geometric deep learning can be used to solve the forward problem, which
involves predicting the optical response of a given nanostructure. Geometric deep learning is
a rapidly emerging field that extends deep learning techniques to non-Euclidean data, such
as graphs [7]. By training graph neural networks on datasets of nanostructures (represented
as graphs) and their corresponding optical responses, it is possible to develop models that
can make accurate and fast predictions. These models can be used to accelerate the inverse
design process by providing rapid evaluations of candidate structures and gradients of the
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optical properties. The application of geometric deep learning to nanophotonics represents a
promising approach for overcoming the limitations of traditional design methods such as the
slowness and the handling of complex structures.

The thesis is structured as follows:

Chapter 1 consists of an introduction to Deep Learning, explaining the basis of neural net-
work models. Namely the artificial neuron and its activation functions, as well as different
architectures handling different types of data. The chapter also explains the neural network
training process and concludes with a selection of architectures for data generation (vari-
ational autoencoder and generative adversarial network), compression (autoencoder) and
segmentation (U-Net).

In Chapter 2, we present the characterization of raw RHEED images with neural network
models, in particular on the detection of substrate deoxidation, the categorization of surface
reconstructions and the construction of Azimuthal RHEED.

Chapter 3 is about how to deal with the inverse problem in nanophotonics. We explain a
number of architectures that allow to overcome the complications of inverse problem, such as
the tandem network, the conditional variational autoencoder and the neural adjoint method.
This chapter ends with a demonstration of graph convolutional networks (GCNs) to solve
nano-photonics forward problems, illustrated by two examples, namely the electric polariza-
tion of infinitely-high nano-cylinders and the reflectivity of thin-film multilayer stacks.
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Chapter 1

Introduction to Deep Learning

1.1 Introduction
To introduce this first chapter dedicated to deep learning, we will begin by situating it in
the field of Artificial Intelligence (AI) which is the science of making machines do things that
would require intelligence if done by human being [1]. Then comes the Machine Learning
(ML), a subset of AI that focuses on the development of algorithms aimed to enable machines
to learn from data and perform on some specific tasks. Deep Learning (DL) is a part of ML
and characterized by the use of deep neural networks to automatically learn from data [8].
At the core of deep learning are the artificial neural networks, which are composed of inter-
connected layers of neurons. Each neuron processes inputs through a set of weights and a
bias, applying an activation function to generate an output. A neural network architecture
typically includes an input layer, multiple hidden layers and an output layer. The depth
(number of layers) and the complexity of these networks enable deep learning models to
capture intricate patterns and representations in the data. Neural networks are inspired by
the structure and function of the human brain. Deep learning algorithms have the ability to
automatically learn and extract intricate patterns and features from large datasets. Through
different training methods like supervised, unsupervised and reinforcement learning, deep
learning models can generalize patterns and make predictions, enabling advancements in
areas like computer vision, natural language processing, autonomous driving and robotics.
Deep learning has ushered in a new era of AI, providing the tools and techniques needed
to tackle some of the most challenging and impactful problems across industries thanks to
complex and deep artificial neural networks. The following section elucidates the concept of
artificial neuron.

1.2 Artificial neuron
The artificial neuron is the fundamental building block of each artificial neural network.
This section presents its constituent components and operational principle with which it
transforms data.
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Figure 1.1: Artificial neuron. Each input xi is associated with a weight wi. The weighted sum is
computed and added to the bias b before passing through the activation function that produces the
neuron output.

1.2.1 Principle

The artificial neuron is a mathematical model that processes inputs through weighted sum-
mation and nonlinear transformation inspired by the way biological neurons work in the
human brain [9]. Its ability to learn and adapt through training underpins the functionality
of neural networks, driving advancements in various fields of AI and machine learning.

A single artificial neuron receives one or more inputs, typically denoted as x1, x2, ..., xi. Each
input element is a single numerical value and represents an information coming into the neu-
ron and associated with a weight (w1, w2, ..., wi) which represents the importance or strength
of that input element. The neuron calculates a weighted sum of its inputs by multiplying
each input by its corresponding weight and then summing them up [10]. In addition to the
weighted sum, a bias term (often denoted as b) is added to the result. The bias allows the
neuron to adjust the threshold for the activation. The weighted sum and the bias addition
make up the linear part of the neuron and can be expressed as follows:

n∑
i=1

(xiwi) + b (1.1)

With n representing the number of inputs, xi is the i− th input, wi is the weight associated
with the i− th input and b is the bias vector.

As shown in Figure 1.1, the result of the weighted sum with bias is then passed through an
activation function denoted as f . The activation function introduces non-linearity into the
neuron and determines whether the neuron should produce an output signal or not. There
are various activation functions used in practice, such as the sigmoid, ReLU (Rectified Linear
Unit) and softmax. The choice of the activation function type depends on where it is in the
network (in a hidden or a final layer) and the specific problem. We will break down the
activation functions in the next section. The output of the neuron y represents its response
or activation level. In many cases, this output is used as an input to other neurons in the
network, forming the basis for complex computations in neural networks. The neuron output
with an activation function f is expressed as [11]:
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f

(
n∑

i=1

(xiwi) + b

)
(1.2)

The purpose of the weighted sum and the bias addition is to allow the neuron to learn and
adapt to different patterns in the data. During the training process, the weights and biases
are adjusted using optimization algorithms like gradient descent to minimize the error be-
tween the neural network predictions and the targets.

1.2.2 Activation functions
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Figure 1.2: Curves of activation functions (green) and their respective derivatives (blue) where x is
the function input and y its output. a) linear, b) sigmoid, c) Hyperbolic Tangent (tanh), d) Rectified
Linear Unit (ReLU), e) Leaky ReLU with a = 0.3 and f) Exponential Linear Unit (ELU) with α = 1.

In neural networks, activation functions are mathematical functions applied to the output of
a neuron to determine its final output. The activation functions can be divided into two cate-
gories: linear activation and non-linear activations. Consecutive linear layers can be trivially
replaced by a single linear layer. On the other hand, non-linear activations add non-linearity
to the network, allowing it to approximate complex and non-linear functions [12]. Therefore,
using nonlinear activation functions is crucial in any deep ANN in order to perform hierar-
chical feature extraction [13]. However, the neural network training process can suffer from
the vanishing (very small) or exploding (very big) gradient problem that limits the network
learning capabilities. The main culprit of vanishing or exploding gradient is the choice of
the activation function [14]. Below is a description of the most commonly used activation
functions as well as their mathematical expressions where x is the input.

Linear activation: Linear activation, also known as identity activation function, has the
equation of a straight line:
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y = x (1.3)

Linear activation function is typically used at the output layer of regression neural networks
as the output in this case may have any big or small values. Examples of curves for the linear
activation and its derivative are shown in Figure 1.2a showing that the gradient of the linear
activation is constant and thus, does not cause vanishing or exploding gradient issues.

Sigmoid (Logistic Function): The sigmoid function is a non-linear activation function
that maps its input from the range ] −∞; +∞[ to a range in [0; 1]. The sigmoid activation
function can be defined as follows:

σ(x) =
1

1 + e−x
(1.4)

It is particularly useful in binary classification problems as last-layer activation function as
its output can be interpreted as a probability of a certain class. It has a smooth and continu-
ous derivative as shown in Figure 1.2b, rendering it suitable for gradient-based optimisation
algorithms. However, it can suffer from vanishing gradient problems in deep networks as the
logistic function is flat far from the origin [15].

Softmax : The softmax activation function is used in the output layer of neural networks
for multi-class classification problems. It is a normalized combination of multiple sigmoid
functions and converts a vector of scores into a probability distribution over multiple classes
[12].

softmax(xi) =
exi∑n
j=1 e

xj
(1.5)

Hyperbolic Tangent (Tanh): The Tanh function is a non-linear activation function similar
to the sigmoid but maps its input to a range in [−1; 1].

tanh(x) =
e2x − 1

e2x + 1
(1.6)

Like sigmoid, it has a smooth and continuous derivative as shown in Figure 1.2c, rendering
it suitable for gradient-based optimisation algorithms. While the TanH function is more
effective than the sigmoid function in mitigating the vanishing gradient problem, it is still
susceptible to this issue for very large or small input values. The TanH activation function
is especially used in the hidden layers of recurrent neural networks which is introduced in
Section 1.5.

Rectified Linear Unit (ReLU): In modern neural networks, ReLU and its variants are
commonly used in hidden layers. ReLU activation is computationally efficient and helps
mitigate the vanishing gradient problem. It returns zero for negative inputs and linearly
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scales positive inputs. Examples of curves for the ReLU activation and its derivative are
shown in Figure 1.2d. It can be expressed as follows:

ReLU(x) =

{
x if x > 0

0 else
(1.7)

As ReLU sets all negative values to zero and since the gradient of 0 is 0, neurons arriving at
large negative values cannot recover from being stuck at 0. The neuron effectively dies and
the problem is known as the ’dying ReLU’ problem. This can lead the network essentially
to stop learning and under-perform [16]. ReLU function is also susceptible to the exploding
gradient problem for very large positive input values.

Leaky ReLU : Leaky ReLU is a variant of ReLU that allows a small non-zero slope for
negative inputs in order to address the "dying ReLU" problem.

Leaky ReLU(x) =

{
x if x > 0

ax else
(1.8)

Where a is a small positive constant (a = 0.3 in practice).

Examples of curves for the Leaky ReLU activation and its derivative are shown in Figure
1.2e. This variant brings non-zero gradient for negative inputs. Another ReLU variant is the
Parametric ReLU (PReLU) with the same expression than Leaky ReLU except that a
is a learnable parameter and determined through the neural network training process.

Exponential Linear Unit (ELU): It is also a variant of the ReLU function. The ELU
activation function brings a smooth curve for the negative inputs, which serves to mitigate
the issue of "dying ReLU". Examples of curves for the ELU activation and its derivative are
shown in Figure 1.2f. It can be defined as follows:

ELU(x) =

{
x if x > 0

α(ex − 1) else
(1.9)

Where α is the slope of the negative section (α = 1 in practice).

As the output layer of a neural network produces the final response, its activation function
is chosen according to the task that is performed. Although the most commonly used acti-
vation functions are introduced above, the Table 1.1 recapitulates the choice of the last-layer
activation functions according to the task to perform.

Now that the key component (artificial neuron) has been explained, some typical neural
network architectures are presented in the following. Each architecture is aimed for specific
tasks and data.
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Task Output type Final activation function

Regression Continuous linear
Classification Binary sigmoid
Classification Multiple class scores softmax

Table 1.1: The first column presents the task to perform, the second column is the neural network
output type and the third column contains the kind of activation function to use.

1.3 Multilayer perceptron

output layer

hidden layer

hidden layer

input layer

Figure 1.3: Multilayer Perceptron (MLP) architecture. This architecture contains an input layer
to retrieve information, two hidden layers in which the process of transformation and extraction of
the characteristics takes place and an output layer of single neuron that outputs the neural network
prediction.

The MultiLayer Perceptron (MLP) is a feedforward artificial neural network architecture
that consists of multiple layers of interconnected neurons. Each layer contains one or more
neurons and, as shown in Figure 1.3, these neurons are organized into an input layer, one or
more hidden layers and an output layer [17]. It is designed to model complex relationships
between inputs and outputs and to capture patterns in data through its layered structure.

The input layer of the MLP serves as the entry point for the input data. Each neuron in the
input layer corresponds to an input feature for instance a pixel value from an input image
or an element from an input vector. If there are n input features, n neurons are needed in
the input layer. Between the input and output layers, MLPs can have one or more hidden
layers. The number of neurons in each hidden layer can vary depending on the complexity
of the problem and the design of the network. Each neuron in a hidden layer is connected
to every neuron in the previous layer through weighted connections. The hidden layers learn
to identify and extract features and correlations from their inputs. The output layer of the
MLP produces the network predictions. The number of neurons in the output layer depends
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on the specific task. For instance, in binary classification, there might be one output neuron
outputting 0 or 1 according to the predicted class, while in multi-class classification, there
would be one neuron per class.

1.4 Convolutional neural network
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Figure 1.4: Convolutional Neural Network architecture. The input RGB image is convolved by
several (here two) convolutional kernels with the same channel dimension. Each kernel dimension
operates on the corresponding image dimension, the resulting three matrices (one for each input
channel) are summed along the depth dimension leading to one feature map per kernel. The output
feature maps are then passed through batch normalization, activation function and pooling layers
for feature extraction and dimensionality reduction. The pooling layer typically keeps the highest
value of each window of four elements. The extracted characteristics are then further processed, for
example they can be flattened into a vector that can constitute the model prediction or fed to a
MLP depending on the task.

Convolutional Neural Network (CNN) is a well-known deep learning architecture inspired by
the visual cortex of mammals [18]. As its name indicates, CNN involves convolution opera-
tions and is designed to capture spatial patterns in structured grid data such as images and
have achieved remarkable success in various computer vision tasks including image classifi-
cation, object detection and facial recognition thanks to their ability to automatically learn
and extract meaningful features from data [19].

The main elements of a convolutional neural network are illustrated on Figure 1.4. A typical
block of convolution is constituted as follows:

Learnable kernels (also called filters) slide over the input data to perform convolution opera-
tions, producing feature maps. Each filter automatically specializes in detecting a particular
pattern [19]. Dozens or hundreds of filters are typically used per convolution layer in a
medium-sized model (a few million parameters).

After convolution, a Batch Normalization layer is typically applied to the features in order
to keep data normalized during forward propagation. This layer speeds up the training pro-
cess and prevents against overfitting. As it is presented in Section 1.7, the training data is
processed in batches (a small subset of the database) and the Batch Normalization is based
on the assumption that the statistics of the batch are similar as the total dataset statistics,
therefore it is particularly helpful for large models with large available quantities of data. [13].
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Then, an activation function is applied to the feature maps. This step introduces non-
linearity into the network, allowing it to learn complex relationships within the data. Pooling
layers are often included after activation to downsample feature maps and reduce spatial
dimensions. Max-pooling is a common operation in which the maximum value within a local
region of the feature map is selected, preserving the most salient information. After many
convolution blocks and pooling layers, the extracted features are flattened along spatial or
depth dimension and represents the prediction as such or are fed to a MLP in order to perform
further processing.

1.5 Recurrent neural network

Figure 1.5: Recurrent neural network architecture. The input layer takes the input data then passes
it to the hidden layer that uses in a loop its previous value and the current input both associated
to weight matrices (WHH , WIH). The result is fed to the output layer which calculates the final
value in the base of the received result associated to a weight (WHO). The bias b is not taken into
account to simplify the figure. Readapted from [20].

The architecture of a Recurrent Neural Network (RNN) is designed to handle sequential
data [21], making it particularly useful for tasks such as natural language processing, time
series prediction and speech recognition. While it will not be used in this thesis, RNNs rep-
resent an important class of Deep Learning models, therefore it will be briefly discussed in
this section. A RNN is characterized by its recurrent connections that allow it to maintain a
hidden state and process sequences of variable length. Recurrent neural networks have been
an interesting and important part of neural network research during the 1990’s [21].

We illustrate the basic RNN architecture in Figure 1.5. A RNN starts with an input sequence,
which could be a sequence of words in a sentence, a time series of data or any other form of
sequential data. The key feature of an RNN is the hidden state, which serves as a memory
of previous inputs in the sequence. At each time step t, the RNN updates its hidden state
ht based on the current input xt and the previous hidden state ht−1. At each new input, the
hidden state is updated using its previous state and the current input as expressed below [20]:

ht = f( WIHxt +WHHht−1 + bH ) (1.10)

Where WIH and WHH are weight matrices, f is an activation function (commonly the hyper-
bolic tangent (tanh) or the Rectified Linear Unit (ReLU)), ht−1 is the previous hidden state
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and bH is the bias of the hidden state.

At each time step, the RNN can produce an output yt based on the current hidden state
ht. This output can be used for various purposes depending on the task. For example, in
language modeling, it can be used to predict the next word in a sentence. The output at
each time step can be computed as:

yt = g( WHOht + bO ) (1.11)

Where WHO is the weight matrix, g is an activation function used to transform the hidden
state into the desired output format and bO is the output bias.

RNNs process the input sequence one element at a time, updating the hidden state and
producing an output at each time step. This allows them to capture dependencies that span
across multiple time steps. However, standard RNNs suffer from the vanishing gradient prob-
lem, which can limit their ability to capture long-range dependencies.

RNNs are trained using backpropagation through time (BPTT), a variant of the backpropaga-
tion algorithm. BPTT calculates gradients with respect to the network parameters (weights
and biases) by unrolling the network in time, treating it as a deep feedforward neural network.
These gradients are then used to update the parameters through optimization techniques like
gradient descent [22].

Over the years, various RNN variants and improvements have been introduced to address
the limitations of standard RNNs. Some of these include Long Short-Term Memory (LSTM)
networks and Gated Recurrent Unit (GRU) networks, which have better capabilities for cap-
turing long-range dependencies and mitigating the vanishing gradient problem. Because of
the sequential processing, it cannot be well parallelized and therefore was mostly replaced by
the attention-based architectures like transformers [13].

MLPs, CNNs and RNNs have limitations regarding the data format. Sometimes, none of the
above presented architectures are well suited and data may be ideally expressed as graphs.
Hence, the following section is about graph neural networks, an architecture that allows to
handle graph data.

1.6 Graph neural network
The architecture of a Graph Neural Network (GNN) is designed to process and learn from
data structured as graphs, which represent relationships or connections between entities.
GNNs have gained significant popularity in various domains, including social network anal-
ysis, recommendation systems and biology.

The first step in using a GNN is to represent the data as a graph. A graph is composed
of nodes (vertices) and edges (connections between nodes). Each node represents an entity,
while edges represent relationships or interactions between entities. Graphs are the unique
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a) b)

Figure 1.6: Undirected and directed graphs. An a) undirected graph have relations between nodes
that are two-way where in b) directed graph the relations between nodes are one-way.

non-Euclidean data structure for machine learning as the Euclidean distances between entities
of a graph do not matter [23]. Additionally, nodes and edges can have associated attributes
or features which are often represented as vectors.

There are two types of graphs, directed and undirected. As shown in Figure 1.6, in undi-
rected graphs, the relation and messages between two linked nodes are two-way while in
directed graphs, the relation and messages between two linked nodes are just one-way. A
graph can also be dynamic or static, dynamic when the features or the topology vary with
time, this kind of graphs are used in Dynamic GNN [24]. A graph is heterogeneous when
nodes and edges have different types and are handled with heterogeneous GNN [25]. These
cases, however, are out of the scope of the present work. We are here focusing on GNNs that
act on undirected, static and homogeneous graphs.

GNN have been successful in various applications where data is naturally represented as
graphs, offering a powerful tool for tasks in node-level, edge-level and graph-level. Node-level
tasks include node classification to categorize nodes into many classes or node regression to
predict continuous values for nodes. Edge-level tasks include for instance link prediction to
determine whether two given nodes are linked. Graph-level tasks include for example graph
classification and graph regression [23].
The message passing allows nodes to communicate and aggregate information from their
neighbors. At each layer of the GNN, nodes collect information from their neighboring
nodes, update their own feature representations and then pass this updated information to
their neighbors in the next layer through aggregate and combine stages.

The message passing operation can be represented as [26]:

m(k)
v = AGGREGATE({ h(k−1)

u ∀u ∈ N (v) }) (1.12)

h(k)
v = COMBINE( h(k−1)

v ,m(k)
v ) (1.13)

Where, m(k)
v and h

(k)
v represent the message vector and feature vector respectively for node

v at layer k and u are neighboring nodes of v. AGGREGATE is a function that aggregates
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information from neighboring nodes and COMBINE is a function that combines the aggre-
gated information m

(k)
v with the current representation h

(k−1)
v of node v.

The final layer of the GNN produces the desired outputs based on the learned representations.
The specific task at hand determines the form of the output layer. For node classification, it
might involve a softmax layer for predicting node labels. For graph classification, there could
be a pooling operation to produce a graph-level representation. This section ends with the
recapitulation in Table 1.2 in order to summarize the above presented architectures, their
respective handled data types and activation functions typically used in hidden layers. The
following section explains the process of artificial neural network training with stochastic
gradient descent.

Artificial neural network Data type Hidden layers activation

Multi-layer perceptron Vectors ReLU
Convolutional neural network Matrices (images) ReLU

Recurrent neural network Sequential (time-dependent) Hyperbolic Tangent

Graph neural network Graphs ReLU

Table 1.2: Comparison of different artificial neural networks in terms of their handled data type
and commonly used activation functions in the hidden layers.

1.7 Neural network training

Task Output type Loss function

Regression Continuous MeanSquaredError(MSE)
Classification Binary BinaryCrossEntropy
Classification Multiple classes CrossEntropy

Table 1.3: The first column presents the task to perform, the second column is the neural network
output type and the third column contains the kind of loss function to use.

Stochastic gradient descent (SGD) is an optimization algorithm used to iteratively update
the neural network parameters (weights and biases) during the training phase in order to
minimize the loss function, i.e. the error between the network prediction and the target,
gradually [27]. As shown in Table 1.3, the loss function is chosen based on the task to perform
(and so on the neural network output). Weights and biases are initialized randomly with
small values, for instance samples from a normal or uniform distribution. The initialization
process can have an impact on the convergence and performance of the neural network model
training [28]. To elucidate the neural network training process, we cover key concepts such
as gradient, chain rule, automatic differentiation and minibatch SGD in the following.
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Figure 1.7: Stochastic gradient descent (SGD) and computation graph. (a) main steps of the
training loop using SGD algorithm. The steps corresponding to the circled numbers are explained
below. Automatic differentiation tool transforms the neural network architecture into computation
graph on which it performs (b) the forward pass and (c) backward pass by computing the gradient
of simple functions in the model using chain rule.

1.7.1 Gradient

During training, step by step, the model parameters (weights) are modified at once in a way
that decreases the model loss. The gradient is the mathematical operator that describes how
the loss varies in function of the model parameters. The derivative ∂f

∂x
gives the slope of the

tangent to the function and therefore quantifies the rate of change of the function. Moreover,
the derivation can be applied to scalar functions (mapping scalar into a scalar) as well as
tensor functions (mapping tuple of scalars to a scalar) and the derivative of a tensor function
is called gradient. For a tensor differentiable function, the gradient represents the curvature of
the multidimensional surface described by the function. All the functions (scalar product, +,
etc) used in neural network models are differentiable and transform their inputs in a smooth
and continuous way. Chaining such functions results in a bigger and still differentiable
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function. In deep learning, if we know the rate of change of the loss function with respect to
the weights, then we know in which direction to change the weights in order to decrease the
loss and thus make the predictions better. Small changes in the model parameters results
in a small, predictable change in the loss value. For instance, a model with single neuron
without bias that predicts ypred for an input x:

ypred = w · x
loss_value = loss(ypred, ytrue)

loss_value = loss(w · x, ytrue)
(1.14)

where loss is the loss function. As x and ytrue are constant for a given batch of data, the
loss_value is just function of weights w. The gradients of the loss with respect to w represent
the fundamental principle of the stochastic gradient descent. However, neural networks in
practice involve complex expression by stacking many layers, each layer implementing simple
mathematical functions. This chaining of multiple functions makes it difficult to compute the
gradient of the whole model simultaneously. That is where the backpropagation algorithm
comes in using chain rule.

1.7.2 Chain rule

Backpropagation is a way to use the derivatives of simple operations( such as addition, ReLU
or tensor product) to easily compute the gradient of complex combinations of those simple
operations. A neural network consists of many tensor operations chained together, each of
which has generally a simple, known derivative. If a variable z depends on the variable y,
which itself depends on the variable x then z depends on x via the intermediate variable y.
In this case, the chain rule is expressed as ( Leibniz’s notation):

dz
dx

=
dz
dy

dy
dx

(1.15)

1.7.3 Automatic differentiation

Nowadays, neural networks are implemented in modern frameworks, such as keras [29] and
PyTorch [30], that are capable of automatic differentiation. The automatic differentiation
makes it possible to retrieve the gradients of arbitrary functions in a neural network archi-
tecture [31]. Automatic differentiation is implemented with the so-called computation graph.
Computation graphs are a type of graph that can be used to represent mathematical ex-
pressions. It is a directed acyclic graph of operations (tensor operations for neural network),
directed because such graphs have nodes with only one-way orientation and acyclic because
theses orientations never form a closed loop. Illustrations of computation graph and gradient
determination using chain rule for a model comprising one layer of single neuron are shown
in Figures 1.7b and 1.7c, respectively. In a first step, the automatic differentiation tool trans-
forms the neural network structure into a graph computation in the background; and in the
second step, the forward pass is performed. During the forward pass, the automatic differ-
entiation tool calculates also the gradients of each mathematical operation along the graph.
These results are then used in the chain rule during the backward pass. The backpropagation
is the application of chain rule to a computation graph, it starts with the final loss value
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and works backward from the top layer to the bottom layer, computing the contribution that
each parameter had in the loss value. It "back propagates" the loss contributions of different
parameters in a computation graph [31].

In training phase, processing the entire training dataset, by batches, constitutes an epoch.
Training typically continues for multiple epochs to allow the neural network refine its param-
eters.

1.7.4 Minibatch stochastic gradient descent

For a given differentiable function, it is theoretically possible to identify its minimum, which
is defined as a point where the derivative is equal to zero. This can be achieved by computing
all the points where the derivative is equal to zero and selecting the one with the lowest value.
This would involve evaluating the function for all possible values of every parameter wi. This
is inefficient for a neural network of millions of parameters. It is rather efficient to modify the
model parameters little by little on the loss value for a random batch of data. Because the
neural network is a differentiable function, it is possible to compute the gradient and update
the weights in the opposite direction from the gradient so that the loss becomes a little less
every time [31].
As schematically shown in Figure 1.7a, one efficient approach is to utilise minibatch stochas-
tic gradient descent which operates in mainly five steps:

1. Randomly draw a batch of training samples, x and corresponding targets, ytrue.
2. Run the model on x to obtain the predictions, ypred (forward Pass).
3. Compute the loss of the model on the current batch.
4. Compute the gradient of the loss with respect to the model parameters (backward pass)
5. Move the parameters a little in the opposite direction from the gradient by computing

wupdated
i = wi − learning_rate · ∂loss

∂wi

(1.16)

where learning_rate is a hyperparameter that controls the step size of parameter updates.
The term stochastic refers to the fact that each batch is drawn randomly.

Some variants of SGD take into account the previous weight updates, rather than just looking
at the current value of gradients. This is SGD with momentum. The concept of momentum
addresses two issues of SGD, namely the convergence speed and local minima [32]. Momen-
tum helps accelerate the process in the right direction by accumulating the gradients of past
steps. Weight update with momentum revisits the previous equation 1.16 of weight update
by adding a new term:

wupdated
i = wi − learning_rate · ∂loss

∂wi

+ η · vi (1.17)

η is the momentum coefficient (between 0.5 and 0.9 in practice) and vi is the retained gradient
from past updates.
The weight update is performed using an optimizer which is the algorithm through which
the model updates its parameters. Adam optimizer [32] performs such weight update with
momentum, the name Adam is derived from "adaptive moment estimation".
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1.7.5 Overfitting and underfitting

under-fitting

a) c)b)

appropriate-fitting over-fitting

Figure 1.8: Underfitting and overfitting. The aim of the model here is to separate the squares
from the triangles. The red curve shows the limit learned by the neural network in situations of
under-fitting, appropriate-fitting and over-fitting.

It is also crucial to monitor the model’s performance on a separate validation dataset to
detect overfitting and underfitting. Overfitting is when a model learns to fit the training
data too closely and it then generalizes poorly to new data and underfitting occurs when the
model is trained with insufficient amount of data (e.g. learning just the mean value of the
entire dataset) [33]. In Figure 1.8 is shown the effects of these problems in case of categorizing
two distinct populations.

Once the training process is completed and the model has achieved satisfactory performance
on the validation set, it can be evaluated on a test dataset to assess its generalization ability.
Testing provides an unbiased estimate of the model’s performance on unseen data.
Complex architectures of Deep Learning perform specific tasks, a selection of such neural
networks is explained in the following section.

1.8 A selection of commonly used architectures
This section provides an overview of the most commonly used neural network architectures,
which also serve as a basis for other more sophisticated architectures. In particular, this
section presents the autoencoder, variational autoencoder VAE, U-Net and generative adver-
sarial network GAN, covering the architecture and the operating principle.

1.8.1 Autoencoder

Autoencoders are a class of neural networks used for unsupervised learning, dimensional-
ity reduction and representation learning. They are designed to encode data into a lower-
dimensional representation and then decode it back to its original form.

As depicted in Figure 1.9, an autoencoder consists of two main parts [34]:

The encoder network compresses the input data into a lower dimension. It is made up of
one or more layers of neurons, with each layer progressively downsampling the dimensions of
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Figure 1.9: Autoencoder architecture. The encoder takes an input x and produces a latent space
that is fed into the decoder to output the reconstructed data x̂.

the data until a final representation called latent space or bottleneck which is the central layer
of the autoencoder. It has the smallest number of neurons, capturing the most important
features of the input data in a compressed form. In inference mode, the encoder only can be
used as a compressor.

The decoder network takes the encoded representation as input and reconstructs the original
input data. Like the encoder, it also consists of one or more layers but each layer upsampling
the data dimension. It mirrors the encoder’s structure, progressively increasing the dimen-
sionality back to the original input size; thus, the final layer of the decoder produces the
reconstructed input and the number of neurons in this layer matches the number of features
in the original input data.

Autoencoders are used for various purposes, including:

Anomaly detection: Autoencoders can learn to reconstruct normal data accurately, making
them effective for detecting anomalies or outliers in the data [34].

Feature learning: Autoencoders can discover meaningful features in the data, making them
useful for feature extraction [35].

Several variants of autoencoders have been developed to address specific tasks like Variational
Autoencoders (VAEs) which combine autoencoders with probabilistic modeling, allowing
generative capabilities and better handling of continuous data [36].

1.8.2 Variational autoencoder

Variational Autoencoders (VAEs) are a type of generative model that extend the concept
of traditional autoencoders by introducing probabilistic elements into the encoding and de-
coding processes. They are designed to learn a probability distribution over the input data,
enabling the generation of new data samples that are similar to the original data [37]. VAEs
have applications in various fields, including image generation and data augmentation. A
VAE consists of two main components: the encoder and the decoder. Figure 1.10 shows the
VAE architecture. These components are similar to those in a traditional autoencoder but
with significant differences in their operation due to the probabilistic nature of VAEs.
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Figure 1.10: Variational autoencoder architecture. The encoder takes an input x and produces
parameters mean µz and the standard deviation σz of a probability distribution. A latent variable
z is computed from that distribution and fed to the decoder that outputs the reconstructed data x̂

The encoder in a VAE maps the input data to a latent space, but instead of directly pro-
ducing a point estimate like the regular autoencoder, it outputs parameters of a probability
distribution. The latent space in a VAE is characterized by a continuous, multidimensional
probability distribution. The encoder produces two vectors for the mean µ and the logarithm
of the variance σ. Sampling directly from the encoder outputs ( µ and σ ) introduces stochas-
ticity into the model and, in the training phase, this would require to compute gradients with
respect to random elements which is problematic in the backprobagation algorithm. In order
to circumvent this, a sample, typically z = µ+ σ · ϵ with ϵ a variable of normal distribution
with mean 0 and standard deviation 1, is drawn from the encoder-produced distribution [38].
This sampling is the so-called reparameterization trick enabling to make the sample z deter-
ministic and differentiable for the backprobagation algorithm and forces the VAE to learn
that similar inputs are mapped to similar regions in the latent space and, therefore, assures
continuity of the latent space.
The decoder in a VAE maps the sample z back to the data space, aiming to reconstruct
the input data. Thus, the output of the decoder is a reconstructed version of the input
data, which can be compared to the original input to compute the reconstruction loss and in
inference, the decoder only can be employed as a generative model.

During the training process, in addition to the likelihood cost function, a Kullback-Leibler
loss function is optimized in order to set a compact latent space. Variants of VAE have been
developed to address specific challenges and enhance their performance, for instance, the
Conditional VAE (cVAE) that extends VAE by conditioning the input data on additional
information [39], allowing the model to generate data based on specific conditions, such as
generating images of a specific class.

1.8.3 Generative adversarial network

GANs consist of two neural networks, a generator and a discriminator which are trained
together in a competitive manner. GANs have gained popularity for their ability to generate
realistic data, making them valuable in various applications such as image generation, data
augmentation and generative art. Figure 1.11 shows the GAN architecture.

The generator network takes a random normally distributed noise with variance = 1 as in-
put. This makes the latent space automatically smooth and compact. It tries to produce
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Figure 1.11: GAN architecture. The generator outputs generated from random noise. The discrim-
inator determines whether its input is fake or real

synthetic data that is indistinguishable from real data. The discriminator network takes both
real data and synthetic data as input and attempts to distinguish between them (binary clas-
sification) [40].

The training process of GANs is framed as a game, where the generator and discriminator
are adversaries. The objective is to find an equilibrium where the generator produces data
that is so realistic that the discriminator cannot reliably distinguish between real and syn-
thetic samples. Generator and discriminator losses can be MSE and BinaryCrossEntropy
respectively.

The generator and discriminator are trained iteratively, each step of training loop involving
the following:
The generator generates synthetic data samples from random noise. The discriminator eval-
uates both real and synthetic samples and calculates its loss. Gradients from the discrimina-
tor’s loss are backpropagated to update the discriminator’s parameters. The generator’s loss
is computed based on the discriminator’s evaluation of its generated samples and gradients
from this loss are backpropagated to update the generator’s parameters. This process con-
tinues iteratively until the generator works satisfactory. In a way, the discriminator acts as a
learned, problem-specific loss function. Training GANs can be challenging due to issues like
mode collapse (where the generator produces limited diversity) and training instability. Var-
ious techniques have been developed to address these challenges such as Wasserstein GANs
(WGANs) [40].

GANs have many applications in diverse fields:

Image generation: GANs can create high-quality and realistic images [41], leading to appli-
cations in art and fashion.

Super-Resolution: GANs can enhance the resolution of images, making them valuable in
medical imaging and satellite imagery.
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General latent representation learning: An example will be shown in the last chapter of the
thesis, where a GAN is used to learn a latent representation of nanostructure geometries.

1.8.4 U-Net

input x output x̂

bottleneck

encoder decoder

Figure 1.12: U-Net architecture. The encoder takes an input x and produces a latent space that is
fed into the decoder to output the reconstructed data X̂

Even though it will not be used in this thesis, U-Nets represent an important class of Deep
Learning models, thus it will be briefly discussed in this section. U-Net is a convolutional neu-
ral network (CNN) architecture initially designed for biomedical image segmentation tasks.
It has become a widely used model due to its effectiveness in segmenting images with high
spatial resolution. U-Net derives its name from its U-shaped architecture, shown in Fig-
ure 1.12, which consists of an encoder path and a corresponding decoder path with skip
connections between them.
The encoder path of U-Net resembles a typical convolutional network [42]. It consists of
multiple convolutional layers followed by max-pooling layers. Each convolutional layer is
responsible for extracting features from the input data while reducing its spatial dimensions
through downsampling while expanding the depth dimension.
The decoder path is designed to reconstruct the segmented output from the encoded fea-
tures. It consists of upsampling layers followed by convolutional layers. Each upsampling
step increases the spatial dimensions until they are back to the original size of the input image.

Importantly, skip connections are established between corresponding layers of the encoder
and decoder paths. These skip connections concatenate feature maps from the encoder with
those from the decoder at the same spatial resolution. This allows the network to localize
and preserve fine-grained details during the upsampling process [43]. The final layer of U-
Net typically consists of a convolutional layer followed by a softmax activation function (for
multi-class segmentation) or a sigmoid activation function (for binary segmentation). This
layer generates the final segmentation mask, which predicts the class label or probability for
each pixel in the input image.
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1.9 Conclusion
In conclusion, the core of neural network architectures is the artificial neuron that computes
the weighted sum of its inputs and potentially adds a bias vector and applies an activa-
tion function in order to introduce non-linearity into the network. Different types of deep
learning models in the field of deep neural network serve for specific roles. Convolutional
neural networks excel at processing grid-like data, making them ideal for tasks like image
classification and object detection. They leverage convolutional layers to extract spatial fea-
tures, making them a cornerstone of computer vision. Graph neural networks are designed
for graph-structured data, allowing them to model complex relationships and dependencies.
They have applications in many fields like social networks and recommendation systems.
Multilayer perceptrons are versatile and often used for general-purpose deep learning tasks.
With fully connected layers, they are effective for tasks like regression and classification on
data with high level features and are the foundation of deep learning. Recurrent neural
networks specialize in sequential data, for instance in natural language processing and time
series analysis. Their recurrent connections enable them to capture temporal dependencies.

These data-driven models are trained with optimization algorithms such as minibatch stochas-
tic gradient descent. We presented a selection of complex architectures. Autoencoders in-
volve a encoder-decoder architecture with a latent space (bottleneck) in between. Varia-
tional autoencoders are close to the autoencoders except that the latent space corresponds
to a probability distribution whereas generative adversarial networks have a generator and a
discriminator that distinguishes generated and real data during training. U-Net is used for
image segmentation which consists of classification at pixel level.
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Chapter 2

Deep Learning for automatization of
RHEED patterns monitoring

2.1 Introduction
Molecular Beam Epitaxy is used to create systems where materials with dissimilar properties
are joined at an atomically sharp interface [44]. MBE can be seen as a refined form of vac-
uum evaporation in which directed neutral thermal atomic and molecular beams impinge on
a heated substrate under ultra-high vacuum (UHV) conditions according to [45,46]. MBE is
the gold-standard for the growth of epitaxial materials; this is due to the fact that MBE en-
ables a high-level of control over the growth process [44]. This level of control is rooted in how
the constituent elements are delivered to the growing surface of the thin film. Each element
is individually heated to a temperature where evaporation/sublimation takes place, which
creates a beam of atoms or molecules. These beams are directed towards a substrate crystal
with an atomically flat surface. There, the elements adsorb, undergo diffusion on the surface
and finally chemically bond. The temperature of the substrate can be tuned to an optimum
value which, in a simplistic view, maximizes surface diffusion to confine nucleation and growth
at the proper atomic sites. Furthermore, MBE growth takes place under ultrahigh vacuum
(UHV) < 1× 10−9 Torr (for comparison, atmosphere is 760 Torr). The atomic beams suffer
no scattering in route to the substrate, which enables highly uniform growth while minimizing
both thermal leakage among the cells and elemental cross-contamination [47]. To monitor
the material growth in MBE, Reflection High-Energy Electron Diffraction (RHEED) became
an essential tool.

RHEED is a widely used in situ control method for MBE [48–51]. RHEED diffraction pat-
terns provide information about the crystal surface with atomic resolution and since the
ultrahigh vacuum in typical growth chambers allows an easy integration of electron beam
systems in MBEs, RHEED has become a standard in situ characterization instrument in
MBE, enabling unprecedented accuracy in monitoring the crystal growth, an overview illus-
tration of the MBE-RHEED system is provided in Figure 2.1. RHEED is highly sensitive to
several key MBE parameters such as the growth rate, the crystal structure, the lattice pa-
rameter and strain, etc [52–56]. However, RHEED images can be difficult to interpret, since
the diffraction patterns produce information in the Fourier space. Furthermore, the actual
recorded patterns are very sensitive to calibration and often also dynamic variations in the
patterns over several time scales contain valuable information, rendering even more challeng-
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Figure 2.1: MBE and RHEED illustration. Growing sample, rotating around the surface normal,
under constituting material beams with an electron beam arriving at a very small angle. The
electrons are then diffracted by the surface atoms into the RHEED screen, where produced surface
patterns are monitored.

ing. Real-time exploitation of RHEED data is therefore often limited to easily accessible
information such as the deposition rate. Sophisticated analysis is usually done a posteriori,
on recorded RHEED images or videos. Due to the complexity of the task, RHEED interpre-
tation usually requires experienced operators, possessing years of machine-specific training.

This chapter on RHEED characterization using Deep Learning is structured as follows, sec-
tion 2.2 is about the state-of-the-art focusing on the two most commonly used techniques
(PCA and Deep Learning) for RHEED automatization monitoring, in section 2.3 we present
our published work on substrate deoxydation detection by Deep Learning; the commercial
substrate has a thin oxide film on top that needs to be removed to allow crystalline surface
for the MBE growth. Section 2.4 contains our work on surface reconstruction monitoring.
Surface reconstruction refers to the rearrangement of surface atoms of the material in growth
affecting the surface morphology and electronic properties of the material. Typical examples
of images from c(4× 4) and (2× 4) surface reconstructions can be found in Figure 2.20. Fur-
thermore, the Azimuthal RHEED, map of RHEED intensity as a function of azimuthal angle
enables detecting long periodicities and epitaxial orientations, we propose a Deep-Learning
method determining the azimuthal angle from raw RHEED patterns in section 2.5.3.

2.2 State-of-the-art
In recent years, the crystal growth characterization witnessed significant advancements in the
analysis of RHEED images using statistical analysis methods such as Principal Component
Analysis (PCA) and Deep Learning. The complexity and richness of RHEED data present
challenges in extracting meaningful information. To address this, researchers have turned to
advanced statistical techniques to unlock deeper insights into crystalline structure, surface
morphology and growth dynamics. However, as of the moment of writing this thesis, only a
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few works have reported RHEED analysis with statistical or machine learning methods. In
this section, we therefore discuss the most relevant works in this area, to give an idea of the
state of the art on the automatization of RHEED patterns monitoring and focus on PCA
which the principle is explained below and Deep Learning that has emerged as a cutting-edge
approach for RHEED image analysis.

2.2.1 Principal component analysis

Principle

Principal Component Analysis (PCA) is a dimensionality reduction technique used to trans-
form high-dimensional data into a lower-dimensional space while preserving the most im-
portant information [57, 58]. The fundamental principle of PCA is to identify and extract
the directions (principal components) along which the data varies the most. By projecting
the data onto these principal components, one can capture the most significant variability
and reduce the dimensionality of the dataset. PCA achieves this by performing eigenvalue
decomposition (EVD) or singular value decomposition (SVD).

Eigenvalue decomposition. The eigen-decomposition applies to squared matrices. Let X
be a (n × n) data matrix. The covariance matrix is calculated from the centered data. It
represents the pairwise covariances between different features. For two variables A and B,
the covariance is given by [59]

cov(A,B) =
1

n− 1

n∑
i=1

(Ai − Ā)(Bi − B̄) (2.1)

Where Ā is the mean of feature A.
Then the unit eigenvectors v and eigenvalues λ of the covariance matrix C are calculated.

Cv = λv (2.2)

The eigenvectors represent the directions of maximum variance and the corresponding eigen-
values indicate the magnitude of the variance along those directions. The eigenvectors are
ranked based on their corresponding eigenvalues. The eigenvector with the highest eigenvalue
represents the direction of maximum variance and subsequent eigenvectors capture decreasing
amounts of variance [59]. The first p selected eigenvectors (principal components) form the
feature vectors, a matrix of those principal components in columns. The dataset is projected
onto the selected principal components to obtain the transformed data in a lower-dimensional
space.

TransformedData = FeatureV ector × CenteredData (2.3)

Where FeatureV ector is the transpose of the principal components matrix so that the
eigenvectors are now in the rows, with the most significant eigenvector at the top and
CenteredData is the mean-adjusted data transposed [59].
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Singular value decomposition. As we cannot do an eigen-decomposition on data of arbi-
trary shape, because its matrix representation (all data-samples as vectors stacked together)
is in general not square and invertible, the SVD is a generalized form that can be applied
to rectangular matrices [60]. Let X (n × m) be a data matrix with n observations and m
variables and n > m, two orthogonal matrices U (n× n) and V (m×m) exist, as well as a
diagonal matrix S = diag(σ1, ..., σn) (n×m) with σ1 ≥ σ2... ≥ σn ≥ 0 such that [60, 61]

X = U × S × V T (2.4)

The column vectors of U = [u1, ..., un] are called the left singular vectors of X, the column
vectors of V = [v1, ..., vm] are the right singular vectors of X and represent the eigen vectors
of the variables, the diagonal values of S are the singular values representing the square root
of the eigenvalues and the dimensionality reduction is accomplished by discarding the com-
ponents that correspond to the lowest eigenvalues [62]. The data transformation is performed
as in equation (2.3), a linear transformation of vector/matrix multiplication. On the other
hand, Deep learning uses non-linear activation functions, so it is more expressive in the sense
that it can develop a non-linear decomposition and hence has the potential to describe data
with less components than PCA. In the following sections, we present the most relevant works
that handle RHEED patterns analysis with machine learning and Deep Learning algorithms
so far.

Classification of in situ reflection high energy electron diffraction images by prin-
cipal component analysis [63]

This study proposes an unsupervised learning for RHEED image classification during the
MBE growth of GaAs by two algorithms. The first one extracts features from the data
and the second one performs the clustering of those features into different categories. PCA
is used for feature extraction and the density-based spatial clustering of applications with
noise (DBSCAN) method to group the data with similar features into the same group. The
RHEED images were collected during the MBE growth of GaAs on an n-type GaAs (001)
substrate. The (2× 4) and c(4× 4) pattern images were taken at substrate temperatures of
580 ◦C and 480 ◦C, respectively. The collected images were 1024× 1024 pixel uncompressed
14 bit grayscale images. The exposure time of all collected images was 23 ms. The images
were obtained in the [110], [11̄0], [1̄1̄0] and [1̄10] directions while rotating the substrate at 12
rpm. A data set of 219 images of the (2× 4) pattern and 46 images of the c(4× 4) pattern
was used for dataset preprocessing, image resizing and vectorization. Each 1024× 1024 pixel
image was resized to 512× 512 pixel and converted to a 1× 262144 matrix for PCA.

Figure 2.2(a) shows a scatter plot of the coefficients of the two most significant principal
components PC1 and PC2. One point in the plot indicates the coefficient of each PC. These
coefficients represent the size of the basis vectors PC1 and PC2 reflected in a data set image.
The symbol of each plot point is expressed in four types according to the temperature and
direction at which each point is measured. In the upper left part and upper right part, the
RHEED images were obtained in the [110] direction and [11̄0] direction of the c(4× 4) pat-
tern, respectively. Meanwhile, other RHEED images in the lower left part and lower right
part were obtained in the [110] direction and [11̄0] direction of the (2×4) pattern, respectively.
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Figure 2.2: PCA and DBSCAN methods for RHEED patterns clustering. Clustering of the principal
component analyzed RHEED patterns classified by (a) growth condition and (b) DBSCAN clustering
model. Readapted from [63].

Figure 2.2(b) shows the result of clustering the scatter plot shown in Figure 2.2(a) by the
DBSCAN method. The clustering parameter ε and the minimum number of points were 970
and 5, respectively. The clusters 1, 2, 3 and 4 corresponded to (2 × 4)[11̄0], (2 × 4)[110],
c(4×4)[11̄0] and c(4×4)[110], respectively. The detailed results are displayed in the confusion
matrix shown in Table 2.1 where two patterns (2 × 4), which had a lot of data and high
density, displayed relatively high accuracy (over 99%). In contrast, the c(4× 4) pattern had
a relatively low accuracy. However, if the No group points, which were not included in any
cluster, were included in the nearest cluster, cluster 4, an accuracy of more than 87% could
be obtained in the c(4× 4) pattern.

Directions Cluster 1 Cluster 2 Cluster 3 Cluster 4 No group
(2× 4)[11̄0] 100.0% 0.0% 0.0% 0.0% 0.0%
(2× 4)[110] 0.0% 99.1% 0.0% 0.9% 0.0%
c(4× 4)[11̄0] 13.0% 0.0% 87.0% 0.0% 40.3%
c(4× 4)[11̄0] 0.0% 4.3% 0.0% 60.9% 30.4%

Table 2.1: Confusion matrix for the classification model. Readapted from [63].

Big-Data Reflection High Energy Electron Diffraction Analysis for Understand-
ing Epitaxial Film Growth Processes [64]

An unsupervised learning approach on RHEED images is proposed in this study using prin-
cipal components analysis, k-means clustering and Fast Fourier Transform to identify the
areas in the RHEED pattern with the most statistical variance and identify transitions in
the growth mode. Here we will take the two first machine learning approaches. As a test
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case, the authors of [64] analyze a RHEED data set acquired for growth of a 25 unit cell-
thick film of La3/8Ca5/8MnO3 (LCMO) on an etched (001) SrT iO3 substrate by Pulsed
Laser Deposition (PLD).

Figure 2.3: PCA on RHEED data. The PCA of the entire acquired data set is shown above with
the (a) eigenvectors and (b) eigenvalues plotted. The decomposition results in a set of eigenvectors
(images), which when multiplied by the respective time-dependent eigenvalues, can reproduce the
entire movie. The intensity of the RHEED beam was altered twice during the acquisition; these
times are marked with x and are clearly visible in the plotted eigenvalues. A small segment of the
data set is highlighted in yellow in (b) and data in this time window were reanalyzed by PCA with
the results shown in Figure 2.4.

PCA. The eigenvectors (components) in this decomposition are 2D images. Figure 2.3 shows
the (a) first six eigenvectors and (b) the time-dependent eigenvalues. The first six eigenvec-
tors (out of 1054) account for 75.7% of the statistical variance in the data set. Limiting
the analysis to these 6 PC thereby represents a very large decrease in data size while still
retaining the majority of the information. The eigenvalues indicate periodic oscillations, due
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to the growth, as well as two large changes in baselines indicated by the “x” marks on the
component 2 plot in Figure 2.3b, where the intensity of the RHEED beam was manually
adjusted, at t =∼ 65 s it was increased and at t =∼ 110 s it was decreased. The first
eigenvector represents a mean intensity profile, while the second component appears to show
some additional spots more suggestive of a 3D or imperfect 2D growth. The third component
appears to be mostly pure streaks.

Figure 2.4: PCA on RHEED, segment B. The smaller time-series segment marked B in Figure 2.3
was reanalyzed with PCA; the results are plotted above with the (a) eigenvectors and (b) eigenvalues.
Components 4 and 5 show extra spots characterizing them as imperfect layer-by-layer (LBL) growth
modes.

In order to reduce the effect of the manual intensity change on the decomposition, the data
were analyzed by PCA restricted to time windows t = 70 s and t = 108 s, referred to as
“segment B” and outlined in the component 1 plot in Figure 2.3b. In this second decompo-
sition, shown in Figure 2.4, it is interesting to note that there is a little periodicity in the
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sixth component and in the eigenvector the two side spots are clearly shifted down, while the
specular spot is shifted up, with respect to the other components. In the used PLD setup
there is a thermal expansion of the substrate suspension system over time through heating,
which effectively changes the incident angle of the beam toward more gliding angles, so the
authors estimate that component 6 may be partly a result of an adjustment due to this
thermal expansion. Components 4 and 5 appear to show extra transmission spots and may
be related to either 3D growth modes, or imperfect layer by layer growth while Components
2 and 3 are indicative of 2D growth. Here we note the ability of PCA to identify the relevant
behaviors and modes that are present in the data set, as well as in reducing the data set to
a manageable size.

K-means clustering. K-means clustering is a vector quantization method in which the
RHEED image sequence is partitioned into K clusters based on statistical similarity [65]. It
is less evident from the PCA analysis whether there are any significant changes in the growth
modes occurring in the film, even though there appear to be several components related to
different types of growth. To explore this aspect the authors use the k-means clustering
approach to split the RHEED image sequence into k clusters as depicted in Figure 2.5. Each
observation (image) belongs to the cluster with the nearest mean.
A dendrogram is a hierarchical grouping diagram used to organise data into a tree structure
based on similarities [66]. A hierarchical clustering is shown in Figure 2.5a using a dendrogram
in order to determine the optimum cluster number and indicates that this RHEED image
sequence can be grouped into 10 clusters. The 10 groups are shown boxed in blue in the
dendrogram. The k-means approach was applied to the RHEED image sequence and the
data set was divided into 10 distinct clusters. The mean of all members of the individual
clusters was computed and is plotted in the upper panel in Figure 2.5b, while the temporal
distribution of the clusters is shown in the lower panel in Figure 2.5b. Three important
clusters between times 70 s and 110 s are bounded by blue dashed rectangles in the upper
and lower panels and they indicate a streaky pattern reminiscent of a more disordered type
of surface. The four clusters bounded by green dashed rectangles appear to show more spot-
like diffraction patterns and are less streaky, indicating significantly less disorder in the film
once it is growing at these thicknesses. This second set of cluster begins appearing after
t ∼ 115 s based on the timeline in the lower panel in Figure 2.5b. This suggests that at
t ∼ 115 s there is a crossover to a more ordered growth pattern. The authors confirmed
these results with Scanning Tunneling Microscope (STM) topography images. It is notable
that k-means clustering can readily identify the presence of growth mode transitions and
provides a statistical method to determine the transition point.

Machine-learning-assisted analysis of transition metal dichalcogenide thin-film
growth [65]

In this study, a ML-assisted in situ RHEED analysis, including PCA and K-means clus-
tering, is performed to understand the epitaxial growth of ReSe2 thin films, with different
thicknesses, on graphene. The authors prepared ReSe2 thin films, with varied thicknesses,
on graphene substrates. Figure 2.6a shows the atomic structure of the distorted 1T (1T’)
ReSe2. Figure 2.6b–d show the schematic models of the graphene substrate and ReSe2 thin
films with 0.3 and 3 unit cells (UC), respectively. Initially, the bilayer graphene substrate
was prepared, yielding a sharp RHEED pattern as shown in Figure 2.6e. After 4 min of film
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Figure 2.5: k-Means clustering on RHEED data. (a) Dendrogram of the RHEED image sequence,
with leaves grouped into 10 clusters. (b) The result of k-means clustering of the entire data set
is shown in the upper and lower panels in this portion of the figure. The upper panels reveal the
image obtained by averaging the members of each cluster, while the timeline in the lower panel
indicates the temporal dependence of the clusters. At about 115 s, the pattern changes from being
dominated by streaks (indicating a more disordered three-dimensional growth) to a clear 2D growth
mode dominated by specular and side spots.

growth, additional streaks of the ReSe2 lattice emerged in the RHEED pattern, indicated
by red arrows in Figure 2.6f. After 62 min of deposition, the RHEED pattern of graphene
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completely disappeared, leaving only the ReSe2 streaks, as shown in Figure 2.6g.

Figure 2.6: Growth and characterization of ReSe2 thin films. a) Crystal structures of 1 T’ ReSe2.
b–d) Schematic models of the graphene substrate and ReSe2 thin films with 0.3UC and 3UC. e–g)
RHEED images; and the black and red arrows in the RHEED images indicate the bilayer graphene
substrate and ReSe2 diffraction streak, respectively. Readapted from [65].
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Figure 2.7: PCA results: a) Six PCs of the RHEED video for the 3UC-thick ReSe2 thin film and b)
the corresponding score plots. Component 1 (PC1) shows the diffraction signal of graphene, while
component 2 (PC2) contains the signals of both the graphene and ReSe2 layers. Component 3–6
(PC3-6) show the signal of only the 2D growth of ReSe2 layer. c–e) The intensity plots of the (c)
original RHEED video and d, e) modifed RHEED video. Blue and orange lines denote the (0,0) and
(2,0) diffraction streaks of the ReSe2 thin film, respectively. Readapted from [65].

PCA. First, the RHEED video of the ReSe2 film is analyzed by PCA. Figures 2.7a,b show
the first six principal components (PCs) and their corresponding score values. The six com-
ponents add up to 98.95% of statistical variance in the dataset, implying most of the dataset
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can be represented by a few components and scores. Especially, PC1 has the most variation
(91.98%) in the RHEED video. The PC1 in Figure 2.7a shows two major characteristics.
First, the positive (red) area well matches the graphene pattern shown in Figure 2.6e. On the
contrary, the negative (blue) area matches with the (-2,0) and (2,0) diffraction points of ReSe2
(surrounded on Figure 2.6g). The score 1, defined as the change of PC1 over time, decreases
gradually and undergoes a sign change from positive to negative near the third dashed line
in Figure 2.7b. This result implies that in the initial RHEED video, a gradually decreasing
trend of the graphene signal is primarily observed. The second component, PC2, dominates
the ReSe2 streaks and minor diffraction points on the graphene and SiC substrates. The
negative value of PC2 represents the epitaxial 2D growth of the ReSe2 thin film, which is
evidenced by the similar RHEED pattern of ReSe2 in Figure 2.6g. The positive (red) region
of PC2 includes the graphene diffraction streaks and several additional spots in the middle.
The initial decrease in score 2 (Figure 2.7b) indicates that the substrate pattern disappears
and the ReSe2 pattern begins to emerge, corresponding to the first dashed line. Conversely,
PC3–6 contain the (-2,0) and (2,0) diffraction signals of the 3UC (3 Unit cells) ReSe2 layers.
The corresponding scores 3–6 exhibit an oscillating behavior (Figure 2.7b). In the MBE
growth, the oscillating behaviors of specular or diffraction spots are used to estimate the film
thickness and to analyze the growth modes [67]. Although, the contribution of PC3–6 to the
entire RHEED signal is < 2%, they contain physical meaning about the film thickness and
its growth mode. In Figure 2.7c, the (0,0) peak intensity gradually declines, representing the
graphene contribution, which is well correlated to score 1. To separate the weak ReSe2 signal
from the original video, the authors made the modifed RHEED data using mPCA (modi-
fied Principal Component Analysis), it consists of consecutively subtracting graphene-related
components (PC1 and PC2) from the raw RHEED video ("original - PC1,2" as mentioned in
Figure 2.7d,e). Figure 2.7d,e show the intensity plot of the (0,0) (blue lines) and (2,0) (orange
lines) streaks obtained from the mPCA video sets. In Figure 2.7d, the subtraction of PC1
mainly changes the intensity plot within the initial period up to the third dashed line (23
min). This change indicates the signal transition from graphene to ReSe2, consistent with
the sign change in score 1 (indicated with an arrow in Figure 2.7b). In Figure 2.7e, further
subtractions of PC1 and PC2 result in stable oscillations for both blue and orange curves.
Such oscillatory behaviors of the (0,0) and (2,0) streaks are likely linked to the layer-by-layer
film growth, as mentioned in [51]. The consistent oscillating behaviors of the blue and or-
ange curves in Figure 2.7e provide accurate information about the film thickness such that
the resulting film thickness of 3UC is consistent with the illustration presented in Figure 2.6c.

K-means clustering. For comparison with the PCA results, the authors of [65] analyzed
the same RHEED dataset by categorizing the images using K-means clustering, employing
a different number of clusters (K=2–6). A cluster can be represented by its centroid, which
is the arithmetic mean of the data in the cluster. Figures 2.8a,b show the time-dependent
clustering for each K value and the corresponding centroids. As K is increased from 2 to
6, more divided sections appear for the initial growth time (i.e. <35 min), implying that
the major pattern change mostly occurs at the initial duration. The boundaries between the
clusters show good alignment with the vertical dashed lines for K=5 and 6 (Figure 2.8a).
As shown in Figure 2.8c, the cost function (the accumulated differences between the clusters
and the original data) is used to determine the valid number of clusters. The cost function
is saturated when K>4. To investigate the evolution of the centroids in detail, the difference
between the adjacent centroids (∆Ci(i+1)) is plotted as shown in Figure 2.8d by subtracting
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Figure 2.8: K-means clustering analysis of the RHEED video of the 3UC ReSe2. a) Clusters with
number of clusters (K=2–6) and b) their corresponding centroids. c) Cost function as a function of
K. d) Difference between the adjacent centroids for K=6. Reprinted from [65].

a former centroid (Ci) from a latter one (Ci+1). Here, the positive (red) and negative (blue)
regions represent the emerging and disappearing characteristics in the RHEED patterns, re-
spectively. A distinct feature of ∆C12 is the emerging ReSe2 streak signal (indicated with red
arrows), which corresponds to the emerging ReSe2 signal in the PCA. The graphene signal
(black arrows) shows a gradually disappearing trend up to ∆C45 (23 min). This boundary
corresponds to the third dashed line, at which the graphene signal nearly disappears as score
1 becomes negative in the PCA (Figure 2.7b). After the graphene signal disappears, ∆C56

mostly shows the intensity variations in the ReSe2 streaks, implying a homoepitaxial growth
regime. Therefore, the results obtained by K-means clustering with K>4 are consistent with
those of the PCA.

2.2.2 Deep Learning

Classification of Reflection High-Energy Electron Diffraction Pattern Using Ma-
chine Learning [68]

The authors in this study propose a measurement method for identifying the RHEED pattern
of GaAs substrates using a CNN model to classify (2×4) and c(4×4) surface reconstructions
as illustrated in Figure 2.9.

(2× 4) pattern images were taken at a substrate temperature of 580 ◦C and c(4× 4) pattern
images were taken at 480 ◦C. RHEED patterns from [110], [11̄0], [1̄1̄0] and [1̄10] directions
were obtained with one rotation while rotating the substrate at 12 rpm. In case of no
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Figure 2.9: Binary classification of surface reconstructions. The RHEED system pattern images
are fed to a neural network for binary classification. Reprinted with permission from [68]. Copyright
2020 American Chemical Society.

significant change in the incident angle and position of the electron gun due to rotation,
the same RHEED image was obtained in [110] and [1̄1̄0] directions, as well as [11̄0] and
[1̄10] directions. The collected RHEED images were stacked side-by-side as [110] + [11̄0] and
[1̄1̄0] + [1̄10] as shown in Figure 2.10, the stacked images are resized to 512× 128 pixels. A
total dataset of 340 (2× 4) images and 111 c(4× 4) images is used to train a CNN.

Figure 2.10: Data preprocessing for surface reconstruction classification. RHEED pattern images
from [110], [11̄0] are stacked side-by-side as well as the patterns from [1̄1̄0] and [1̄10] directions in
order to have different features in the same image. Reprinted with permission from [68]. Copyright
2020 American Chemical Society.

n = 451 predict: (2× 4) predict: c(4× 4)
Actual: (2× 4) 100.0% -
Actual:c(4× 4) - 100.0%

Table 2.2: Confusion matrix of the binary classification model in [68].

The model is trained for 20 epochs. After learning, (2× 4) and c(4× 4) are distinguished by
a 100.0 % probability for all test data (Table 2.2). As the authors said, this high accuracy at
small epochs is attributed to the observations in a limited environment, only few classification
categories and relatively little data. Relatively small data sets reduce the number of out-
of-reference data sets, which increases the accuracy. However, this comes at the cost of the
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generalizing capacity of the neural network. The model risks to break down if the input
data changes, e.g. due to slight changes in the machine geometry or due to RHEED window
deterioration.

Figure 2.11: Results of the surface reconstruction classification model. Guessing probability of
several test data sets. Reprinted with permission from [68]. Copyright 2020 American Chemical
Society.

Figure 2.11 shows the test data as well as its guessing probability. Figures 2.11a,b represent
typical (2× 4) and c(4× 4) image data, respectively, on which the predictions made by the
neural network are displayed. On the other hand, (c) and (d) show images not taken from
the exact [110]/[11̄0] angles. Despite the images in this unusual measurement environment,
the established model correctly classifies the two patterns.

Multiclass classification of reflection high-energy electron diffraction patterns
using deep learning [69]

In this study, the authors (also of [68]) report a multiclass classification model for RHEED
patterns using a CNN. The model was trained using images from three categories of patterns
(GaAs (2 × 4), GaAs c(4 × 4) and InAs QD). The RHEED dataset is prepared as in the
previous section; a difference is that the images are for this case resized to 256 × 128 pixels
for fast calculation. 340 GaAs (2 × 4) images, 111 GaAs c(4 × 4) images and 143 InAs QD
spot pattern images were prepared to train the multiclass CNN of which the architecture is
depicted in Figure 2.12.

In classification problems, performance metrics such as accuracy, precision, recall and F1 score
can be used to evaluate the predictive performance. Precision is the ratio of the correctly
predicted positive images to the total number of predicted positive images. Recall is the ratio
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Figure 2.12: Multiclass classification model architecture. The classification model consists of three
convolution blocks, two fully connected layers and three outputs corresponding to GaAs (2 × 4),
GaAs c(4× 4) and InAs QD with Softmax as final activation function. Reprinted from [69].

n = 119 predicted:
(2× 4)

predicted:
c(4× 4)

predicted:
InAs QD

Total F1

Actual:
GaAs(2× 4)

100.0% - - 57.1% (68) 1.0

Actual:
GaAsc(4×4)

- 100.0% (23) - 19.3% (23) 1.0

Actual:
InAs QD

- - 100.0% (28) 22.7% (28) 1.0

Total 57.1%(68) 19.3% (23) 22.7% (28) 100.0%
(119)

1.0

Table 2.3: Confusion matrix of the multiclass classification model in [69].

of correctly predicted positive images to all the images in the actual class. The F1 score is
the weighted average of precision and recall.
The neural network model is trained for 30 epochs where the accuracy is converged to 100%.
Consequently, the established model can distinguish (2× 4), c(4× 4) and spot patterns with
a 100.0% probability for 119 images of the test data. Since there were no false positive or
negative cases, the F1 score for evaluating the model is 1.0 as shown in the confusion matrix
in Table 2.3. As in the previous section, the authors consider that this high accuracy at
small epochs was provided by observations in a controlled environment (fluorescent screen
in a dark environment; same detector; same exposure time), grayscale images without color
channels, only three classification categories and relatively short-term datasets.
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Application of machine learning to reflection high-energy electron diffraction
images for automated structural phase mapping [70]

This work proposes a deep learning-based analysis method for automating the identification
of different RHEED pattern types that occur during the growth of a material.

Figure 2.13: U-net architecture for RHEED pattern features extraction. Schematic diagram of
U-Net and example results: (a) A simplified schematic of the U-Net model that takes in an RHEED
pattern and outputs a binary mask of features of interest. (b) An example of input RHEED pattern
containing both spot and streak features to the U-Net model. (c) The predicted masks for spot and
streak features are shown in gray and orange colors, respectively. Reprinted from [70].

Identification of diffraction features. In terms of image analysis, the intensity varia-
tions, which can range from very low to exceeding the dynamic range of the camera, can be
particularly problematic. Thus, as the first step in the RHEED image analysis pipeline, the
authors of [70] created a system for extracting the diffraction pattern features of interest.
This helps to reduce the dynamic range problem since it allows different pattern regions to
be separated and analyzed individually. This step can be approached as a standard image
segmentation task and a U-net is used which the architecture is depicted in Figure 2.13.

Separating diffraction regions. Since the spot and streak features in RHEED images are
typically well separated spatially, a Connected Component labeling algorithm implemented
by the Scikit-Image Python library is used to give each connected area a unique label. The
algorithm works by finding and connecting neighboring pixels classified by the U-Net as ei-
ther a spot or a streak. Pixels from disconnected areas are grouped into different regions.

Tracking the direct beam. The authors implemented an object tracking algorithm that
matches regions from the current frame to regions from the previous frame. According to the
authors, the Intersection over Union (IoU) tracking algorithm is sufficient for this application,
as it selects the region that mostly overlaps with the previously matched direct beam region.
The degree of overlap is measured by the IoU, which is given by

IoU =
|A ∩B|
|A ∪B|

(2.5)
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where A and B are the two masked areas in the two consecutive images. Tracking the shared
region between image frames is done by finding the region pairs with the highest IoU value.
The naïve approach to identify the direct beam spot as the top one is only used in the first
image of the series or when the algorithm loses track of the direct beam.

Figure 2.14: Extracted regions for RHEED features identification. Analysis of the peak location
periodicities: (a) Diagram illustrating how peaks are grouped based on the distance from the origin.
Solid lines show peak locations. Step 1: lists all the peaks discovered. Step 2: The peak closest
to the origin is selected and labeled in red. Based on this peak, its multiplicity is constructed and
shown in the red dash line with an error box. Step 3: Any peaks that are within the range of the
error box are considered to be in the same base distance and are labeled in red. (b) All labeled peaks
overlaid on the original diffraction pattern. The number shows the average peak distance from the
origin normalized by the multiplicity. The red dash line highlights the position of peaks that are
analyzed and grounded in (a). Reprinted from [70].

Identifying structural phases. The horizontal distances between diffraction spots or
streaks represent different atomic spacings. Even if any internal structure of the streaks or
the vertical positions of the spots are ignored, the horizontal spacings alone can be used to
generate a fingerprint of a structural phase and thus distinguish different crystal phases. The
trained U-Net model is used to create the spot and streak masks for each cropped image; these
masks are then used to extract individual pattern features. For each spot and streak type
feature, the signal is integrated vertically, compressing the image data in the analysis window
to a one-dimensional feature. The central positions of the diffraction spots and streaks are
found by the peak finding algorithm implemented in the SciPy python library. The distances
between the extracted peak locations and the central specular peak can be used to discover
periodicities in the atomic spacings. The analysis of the periodicity is done by finding sets
of distances that are multiples of a base distance. This is achieved by determining all hori-
zontal distances present in each image and picking the shortest distance of a peak from the
specular position. The algorithm then iteratively extracts the base distances by choosing
at each step the smallest unselected distance and adding it to the list of base distances. It
then determines all peak distances that are multiples of the current base distance within a
given tolerance and marks these distances as selected, assuming that all these peaks belong
to the same base distance. The algorithm continues until all distances have been selected,
producing a set of base distances characterizing each image. An illustration of the algorithm
is depicted in Figure 2.14.
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Phase mapping by region intensity. The horizontal spacing information is sufficient for
detecting the presence of a given phase, but not for quantifying its abundance. The authors
developed an algorithm to compute the relative intensity for each base peak distance, helping
to quantify the phase composition of a multiphase sample. The algorithm computes the in-
tensity relative to the total intensity for each identified base distance for each RHEED image.
However, different RHEED images have different base distances; thus, a “unification” step
is required to express them as a fixed-length vector for later pattern clustering. Here, the
density-based spatial clustering of applications with noise (DBSCAN) algorithm is used to
group similar base distances into clusters. The number of clusters, i.e., the overall number
of distinct base distances, determines the total number of base distances, thus the size of the
vector. Each vector provides a unique representation of the RHEED image of a sample, with
components representing the relative intensity at a specific base distance, as shown in Figure
2.15. Sample identifier notation: sample made at 10−A Torr at B◦C is denoted as A-B. For
instance, the sample 5-600 was made at 10−5 Torr of PO2 at the substrate temperature of
600 ◦C. Figure 2.15b shows a growth parameter phase map with extracted feature vectors
for the iron oxide growth mapping experiment which is compared to a human-labeled X-ray
diffraction (XRD is a material analysis technique [71]) mapping result in Figure 2.15c. As
can be seen there, regions containing similar vectors generally match well with the XRD
measurement shown in Figure 2.15c.

Interpretation and analysis of RHEED feature mapping. The autors first present
an analysis of just the RHEED features to show that one can achieve a semiquantitative
analysis of phase mapping using RHEED data only. Phase compositions can be inferred
from the extracted phase map from RHEED patterns when combined with knowledge of
known materials phases and their structures. The phase map predominately consists of two
distances: 13.83 and 20.38 nm−1. α−Fe2O3 is isostructural to sapphire thus epitaxial growth
is expected. The first distance, 13.83 nm−1, is in proximity to the α − Fe2O3 (101̄0) plane.
Thus, the first distance shown as a green pie slice in the phase map represents the epitaxially
grown hematite (α − Fe2O3) phase. The second distance, 20.38 nm−1, appears at both low
and high temperatures and suggests a different phase. Comparing the distance with various
lattice planes of high-symmetry FexOy phases, the authors identify the distance to be the
Fe3O4 (022̄) plane. More detailed info about overall crystallinity can also be extacted.

2.2.3 Conclusion

Machine learning and Deep Learning techniques each have their advantages and disadvan-
tages. The choice between the two depends on the resources available and the task in hand,
whether the algorithms should be lighter or more precise. PCA and k-means are easy to
use and efficient, but PCA is just a linear transformation and can fail to handle complex
patterns; k-means needs to be re-done on new data. Deep Learning, on the other hand, is
non-linear and thus can handle more complex characteristics with fast inference once trained,
but requires a lot of high-quality data and training can be expensive. In the following section,
we propose an approach of GaAs substrate deoxidation detection using Deep Learning.
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Figure 2.15: Phase mapping of iron oxide films: (a) Raw RHEED images recorded at the end
of each deposition. (b) The extracted regions’ intensities of each base distance from the RHEED
pattern form a feature vector. Each feature vector is represented by a pie chart where each pie
slice’s area shows the relative intensity of each base distance. The color encodes the base distance
of the region intensity as shown in the legend. The unit of the distance is nm−1. (c) The red and
blue scatter points show the XRD phase map of the hematite (α− Fe2O3) and magnetite (Fe3O4)
phases, respectively. The presence of a phase is plotted as a circle. The size of the circle indicates
if the phase is major or trace material in a particular sample. Reprinted from [70].
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2.3 Substrate deoxydation detection for GaAs growth
In this section, most of the content is from our paper at [35]. We present an approach for
automated surveillance of GaAs substrate deoxidation in MBE reactors using deep-learning-
based RHEED image-sequence classification. Our approach consists of an unsupervised au-
toencoder (AE) for feature extraction, combined with a supervised convolutional classifier
network. We demonstrate that our lightweight network model can accurately identify the ex-
act deoxidation moment. Furthermore, we show that the approach is very robust and allows
accurate deoxidation detection for months without requiring retraining. The main advantage
of the approach is that it can be applied to raw RHEED images without requiring further
information such as the rotation angle, temperature, etc.

2.3.1 Context and motivation

A common application of RHEED is the monitoring of the native oxide removal from com-
mercial substrates prior to crystal growth. Surface oxidation of a few nanometers due to
exposure to oxygen is unavoidable during transport of epitaxial substrates, which renders
their surface noncrystalline. In order to grow crystalline material on the substrate surface,
this oxide needs to be removed before any epitaxial material deposition, which is usually done
by heating. In the case of gallium arsenide (GaAs), the substrate is slowly heated to around
610 °C, while stabilizing the crystal with a constant arsenic flux of around 1.2∗10−5 Torr, to
avoid As evaporation [72]. Once the oxide is removed, in order to avoid damaging the crystal,
further temperature ramping stops. Usually the temperature is in fact decreased. To detect
the moment of deoxidation, the MBE operator supervises the RHEED image during tem-
perature increase and once the diffraction pattern of a crystalline surface starts to form, the
operator manually ends the heating procedure. Not only is the constant presence of the op-
erator required, but also due to its manual character the deoxidation procedure is error-prone.

Automatic detection of the deoxidation is challenging, first because RHEED patterns are
often weak since the raw substrate surfaces are not atomically flat and second because the
RHEED image contrast is dependent on some parameters such as filament current or electron
beam angle and hence is not exactly constant in each run. Finally, the substrate is usually
lying on a rotating sample holder; hence, the RHEED pattern constantly changes.

Since the native oxide layer of a new substrate is not crystalline, the RHEED electron beam
is scattered at the surface and does not create a clear diffraction pattern. On the other hand,
without an oxide layer the RHEED electrons are diffracted by the atomic lattice of the now
crystalline surface. However, the transition from oxidized to deoxidized is not instantaneous
and during the deoxidation the classification is often difficult. Furthermore, due to the
rotation of the sample, the diffraction pattern continuously changes and, especially during
the deoxidation process, the pattern arises not similarly clearly for different rotation angles.
Our operator classifies the surface as deoxidized when a clear diffraction pattern occurs
repeatedly during at least one full rotation cycle of the substrate. Our goal is to automatically
determine the moment of full oxide removal from a GaAs substrate with high precision by
monitoring the RHEED pattern during the deoxidation process. However, as mentioned
above, the image dynamics due to the constant rotation of the sample is a challenge for an
algorithmic evaluation. Furthermore, disordered bright spots can occur also from oxidized

54



surfaces. Therefore, an algorithmic classification is not entirely trivial. By feeding short video
sequences of several consecutive RHEED images to a classification neural network, we aim at
determining the oxidation state of the substrate surface, in order to reduce the necessity of
human supervision of the substrate cleaning process, which can take some tens of minutes.

2.3.2 Dataset preparation

To train a neural network on deoxidation reconnaissance, we generate a training dataset by
capturing RHEED videos before and after the oxide removal procedure. The images are
collected in real time at 24 frames per second, while the sample rotates with 12 rounds per
minute. Hence, we capture 120 images per full rotation. The RHEED video is thereby cap-
tured image by image, using a CMOS camera (Allied Vision Manta G319B) with 44 pixel
binning, resulting in raw images of (416× 444) pixels at 12 bit grayscale intensity resolution.
Those images are converted to 8 bit format and resized to (100× 100) pixels.

In total we collected videos containing a total of 7644 RHEED images from five substrate
oxide removal procedures within a period of a few days. 3110 of these images correspond
to deoxidized surfaces, the rest are images from GaAs surfaces covered by a native oxide
layer. GaAs surface oxides decompose at temperatures of around 580− 630 ◦C [73]. On our
commercial substrates we typically observe deoxidation at around 610 − 630 ◦C. Substrate
temperatures at which oxidized videos were taken are slightly lower, around 550 − 600 ◦C
(videos were recorded during ramping of the temperature). Deoxidized images were taken di-
rectly after oxide removal, at around 610 ◦C. During and after deoxidation, the As4 pressure
for surface stabilization is held at 1.2× 10−5 Torr. We use 20% of the dataset for validation
and the remaining 80% for training.

In addition to the oxidized and deoxidized image sets, we also captured images during the
full deoxidation procedure. These are not used during training and serve for testing of the
algorithm. RHEED images during a further deoxidation were captured around 6 months after
generation of the initial dataset. These serve for an assessment of the long-term stability of
the classification.

2.3.3 Neural network architecture

Our deoxidation monitor deep-learning model is composed of two stages, as depicted schemat-
ically in Figure 2.16. The first stage is a feature extractor network, compressing the full
RHEED pattern images into compact latent vectors. This is done separately image by im-
age. The second stage is the actual classification network. Its inputs are sequences of latent
vectors, corresponding to short RHEED videos. We implemented the models in Python using
Keras with TensorFlow as the backend [29,74].

As a feature extractor we use a deep convolutional autoencoder (AE) neural network, which
has been reported to offer slightly superior compression quality compared to other dimen-
sionality reduction methods such as principal component analysis (PCA), especially at high
compression rates. We note, however, that AEs require in general more computational re-
sources. Thus, if computation speed is crucial, PCA could be used instead, for situations
where a moderate reduction in encoding performance is expected [75]. The model details of
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Figure 2.16: Deoxydation-detection neural network architecture. In a CNN autoencoder (AE,top),
each RHEED image is first compressed through a convolutional encoder into a 1D latent vector of
length N. Training target of the AE is reconstruction of the original image from the latent vector
(through the decoder stage, only used during training). The second stage of the model is a classifier
CNN model (bottom right), taking as input a sequence of L latent vectors, corresponding to a series
of RHEED images. These L latent vectors are stacked and passed into a CNN for classification into
two classes: oxidized and deoxidized. All convolutions are followed by batch normalization (BN)
and ReLU activation. Reprinted with permission from [35]. Copyright 2023 American Chemical
Society.

our AE are shown in the top row of Figure 2.16. A RHEED image goes through the encoder
stage, being compressed into a latent vector of dimensionality N. For training, the latent vec-
tor is fed into a decoder stage, which is an exact mirror of the encoder, except for replacing
convolution layers by transpose convolution layers, maxpooling by upsampling and apply-
ing zeropadding if required, to maintain correct image dimension. Through non-supervised
training, the autoencoder learns to reconstruct the unlabeled input images from their learned
latent vector representation. We optimized the network for low parameter number, in order
to have a computationally efficient model. To this end we do not double the number of
channels once a depth of 128 kernel filters is reached.

We also compared the architecture with a ResNet [76, 77], replacing the single convolutions
by residual convolutional blocks each of which employing a sequence of three convolutions.
The performance is similar and offers no advantage in deoxidation classification, at the cost
of higher neural network parameter count. This applies to the specific problem discussed
here, for other problems the slightly improved accuracy offered by a ResNet may very well
be beneficial.

The second stage of our model is the actual classification network. Because the MBE sample
is rotating, the RHEED images are constantly varying. Especially during deoxidation, the
surface is not atomically flat and signatures of oxide removal often occur in the RHEED
patterns only when the electron beam is aligned with the crystal lattice of the substrate. For
a high accuracy, we therefore classify sequences of RHEED images which will be in detail
explained below.
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2.3.4 Results
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Figure 2.17: Detection accuracy of deoxidation moment. The impact of the sequence length as
well as of latent vector dimension is tested on a video captured during a full deoxidation. The video
consists of 31,819 RHEED images, the last 6,000 are shown. Deoxidation occurs around 1800 frames
before the sequence end (indicated by a red dotted line).The RHEED video is captured with 24
frames per second. Top row: with an increase in sequence length L, the latent dimension of the
autoencoder is fixed to N =50. Bottom row: with an increase in latent dimension N, the sequence
length of the classifier is fixed to L =15.

We test whether the network is capable of determining the exact moment of deoxidation on
a set of images captured during the entire deoxidation procedure. As illustrated in Figure
2.17, first we fix the latent size to N = 50 and increase the sequence length successively from
L = 1 to L = 15. We find that starting from sequence length of L = 5 the network works
accurately and is essentially error-free. It detects the precise moment of deoxidation with an
agreement of a few seconds compared to the estimation of the human operator. We then fix
the sequence length to L = 15 and vary the latent dimension between N = 1 and N = 70.
For latent vectors of dimension N = 10 or larger, we find again quasi error-free classification
and precise determination of the deoxidation moment.

In Figure 2.18, we show the classification results for a full video from a deoxidation run
6 months after the network training. While we observe a slightly reduced classification
certainty regarding the exact moment of deoxidation, the non retrained neural network still
performs sufficiently well on the deoxidation detection. We want to note that after training
the pretrained network for a few additional epochs on a small set of new images, the fidelity
of the network reaches the same confidence as observed in the right-hand panels of Figure
2.17. We demonstrated that the model accurately identifies the exact surface deoxidation
moment and that the performance is robust during at least 6 months of MBE operation
without requiring retraining.

2.3.5 Conclusion

In conclusion, we presented a deep-learning model based on a 2D convolutional autoencoder
combined with a 2D CNN classifier to detect the surface oxidation state of GaAs substrates
from raw RHEED image sequences, as typically available in molecular beam epitaxy. Our
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Figure 2.18: Test on six months newer data. (a) RHEED image of a deoxidized GaAs surface
along [110] incidence, from training data, and(b) its reconstruction by the autoencoder with latent
vector length N = 50. (c) RHEED image under the same incidence angle (along [110]), but 6
months later, after having performed more than 200 hours of crystal growth. In particular an
increased metalization of the upper third of the RHEED screen is clearly visible, along with as light
displacement of the diffraction pattern due to repeated alignment procedures. (d) Its reconstruction
by the same autoencoder as used for (b), hence without retraining on new data. (e) Evaluation of
the RHEED video from a full deoxidation run, recorded 6 months after the training data, without
retraining the network model. Latent dimension N = 50, sequence length L = 15.

model consists of a first autoencoder neural network, which learns to compress individual
RHEED images to a low dimensional latent space. Sequences of consecutive, compressed
RHEED images are then classified for their surface oxidation state through a second con-
volutional network. We presented a systematic analysis of classification performance as a
function of used compression ratio as well as RHEED video sequence length. We demon-
strated that the model accurately identifies the exact surface deoxidation moment and that
the performance is robust during at least 6 months of MBE operation without requiring re-
training. While our specific, trained network will of course work only with the MBE setup
and RHEED screen used for our training data generation, a generalization to other growth
chambers can simply be done by training the same models on the relevant data. Video
recording is straightforward; we demonstrated that the approach works well with data from
only five deoxidation recordings and we proved it to function reliably during at least several
months. In consequence, our approach is very appealing thanks to its simplicity and low
computational cost. Without requiring additional hardware it can be easily set up in any
RHEED-equipped MBE instrument.
As the RHEED provides a wealth of information about the growing sample surface, we present
in the following section a Deep Learning model to monitor the surface reconstruction.
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2.4 Surface reconstruction monitoring
Surface reconstruction monitoring using RHEED is a powerful technique in epitaxial thin
film growth. RHEED offers real-time insights into surface morphology, crystalline structure
and growth dynamics during thin film deposition processes. By analyzing the diffraction
patterns produced when high-energy electrons interact with the growing surface, surface
reconstructions can be monitored and provide valuable information for optimizing growth
conditions and controlling material properties. In this aspect, this section covers a Deep
Learning method to classify c(4×4) and (2×4) surface reconstructions. In contrast to [68,69]
where pre-processed RHEED images at very specific crystal orientations where necessary, our
goal is to develop a model capable to distinguish between surface reconstructions from raw
data, in the same way as we did in the previous section with deoxidation detection.

2.4.1 Context and motivation

c(4x4)(2x4)

Ga As

Figure 2.19: (2× 4) and c(4× 4) surface reconstruction illustrations. The atoms on the surface of
the crystal are subject to rearrangements depending on the growth conditions, such as temperature.
The scheme on the left illustrates a (2 × 4) surface reconstruction of GaAs, while the one on the
right depicts a reconstruction of c(4× 4). Readapted from [78].

Surface reconstruction refers to the rearrangement of surface atoms of the material under
growth. The (001) GaAs surface can be terminated by either Ga or As atoms and has two
dangling bonds for each surface atom that experiences inter-atomic forces from only the bulk
side [79]. Due to this imbalance and in order to eliminate such dangling bonds, the surface
atoms undergo complex reconstructions by assuming positions with different spacing and
symmetry, as shown in Figure 2.19, from the bulk atoms.

Surface reconstruction in the case of Gallium Arsenide (GaAs) using Molecular Beam Epitaxy
(MBE) and monitored by Reflection High-Energy Electron Diffraction (RHEED) is a crucial
aspect of semiconductor devices fabrication. Many atomic structures are observed during
GaAs growth, however we mainly focus on the As-rich (2 × 4) and c(4 × 4) as the surface
during the MBE growth is stabilized under significant As flux and usually shows the (2× 4)
and c(4× 4) reconstructions, RHEED patterns of such surfaces are depicted in Figure 2.20.
These reconstructions are formed critically depending on the preparation conditions [79] and
affect the surface morphology and electronic properties of the material. Detailed knowledge
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of the surface reconstructions on GaAs(001) is essential for fabricating high speed electronic
and optoelectronic devices, because the surface reconstruction plays an important role in
the homo- and heteroepitaxy on GaAs(001) [79]. Larsen P et al. reported in [80] measure-
ments on their experiment about substrate temperature Ts and As2 fluxes JAs2 for different
surface reconstructions; for c(4 × 4), Ts = 475 ◦C and JAs2 = 5 × 1014 mol.cm−2.s−1, for
(2 × 4), Ts = 565 ◦C and JAs2 = 2 × 1014 mol.cm−2.s−1 and for (3 × 1), Ts = 630 ◦C and
JAs2 = 2× 1014 mol.cm−2.s−1.

Following the first observation of the (2×4) reconstruction on surfaces prepared by ion bom-
bardment [81], atomic structures of the (2 × 4) surface have been a subject of continuing
interest [80,82]. Cho first reported in [83] that the (2× 4) and c(8× 2) reconstructions were
formed on the As- and Ga-stabilized surfaces, respectively, prepared by MBE. The c(4× 4)
reconstruction of the GaAs(001) surface is usually observed under extremely As-rich MBE
conditions [79]. Chang et al. first reported that the c(4× 4) reconstruction is observed dur-
ing the MBE growth when the As/Ga flux ratio is increased or the substrate temperature is
lowered [84,85]. With a temperature range of [645− 775] ◦C, the disordered (2× 1)+ (1× 2)
changes to a predominantly c(4×4) surface via a (2×2) transitional surface [86]. Controlling
material surface during MBE growth requires an effective monitoring of the changes taking
place on the surface including reconstructions. The data preparation is explained below.

2.4.2 Dataset preparation

For training, we use a dataset of 3150 images containing 1610 of (2 × 4) images and 1540
of c(4 × 4) images. Examples from each category are shown in Figure 2.20, the first line
represents (2 × 4) surface images and the second line c(4 × 4) surface images. The data
is collected with same equipments as in 2.3.2. All the data is put together, then split into
85% for training and 15% for validation. The training set is aimed to be used by the neural
network during training process in order to adjust its parameters (weights and biases). The
validation set is also used during training, not to fit the model parameters but to get an
idea of the precision of the neural network on new data. Two separate sets of 5433 and 5816
images are captured during the temperature increase and decrease and serve to detect the
surface reconstruction transiting from c(4 × 4) to (2 × 4) and vice versa; these sets are not
used for training the model and are valid to judge the model efficiency. The model predictions
are shown in Figure 2.24 and Figure 2.25.
The raw images are (416 × 444) grayscale from 0 to 255 pixel values, in preprocessing we
resized them into (138 × 148) by dividing spatial dimensions by 3 and taking the closest
integer value; the pixel values are then divided by 255.0 to be in the range of [0 − 1] for an
optimum training process. We trained the model for continuous sample rotation, contrary
to [68] that trains the model for specific azimuth angles. In our case, the prediction of a
video sequence showed more precision than predicting single images, after comparison, the
sequences of 6 images showed the most accurate prediction; Thus, the model is predicting
surface reconstruction for sequences of size (138 × 148 × 6), the images are stacked in the
channel dimension. In the following section, we present the neural network architecture and
explain why it was chosen.
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a) (2x4)

b) c(4x4)

Figure 2.20: (2 × 4) and c(4 × 4) RHEED pattern examples: a) Five images representing (2 × 4)
surfaces; b) Five images representing c(4× 4) surfaces.

2.4.3 Neural network architecture

Convolutional neural networks have seen a gradual increase of the number of layers, starting
from AlexNet [87], VGG [88], Inception [89] to Residual networks [76, 90] and have led to a
series of breakthroughs for image classification [87, 91, 92]. Thanks to these architectures, a
neural network can be configured by stacking many weight layers like VGGNet proposed by
the Visual Geometry Group in [88]. The depth can be significantly further increased (up to
more than 1000 layers) by using residual blocks with skip connections [93], instead of bare
convolution layers. The problem that residual neural networks solve is the observation that
the performance of convolutional neural networks deteriorates for very deep architectures,
hence if too many layers are added. There is an ongoing debate about the origin of the prob-
lem, part of the problem are vanishing gradients in early layers for deep architectures [94]. To
overcome this problem of accuracy degradation, Deep residual networks are known to allow
the construction of deep architectures while maintaining a good performance [93]. Mascaren-
has et al. carried out in [95] a comparison between VGG16 (13 convolution layers and 3 fully
connected layers) [88], VGG19 that contains 16 convolution layers and 3 fully connected lay-
ers and ResNet50 [96] made up of 48 convolution layers, 1 Max Pooling layer and 1 average
Pooling layer on image classification problem; with Categorical cross-entropy as loss function,
the authors concluded that ResNet is the best architecture with an accuracy of 0.9733 while
VGG16 and VGG19 achieved 0.9667 and 0.9707 respectively; the accuracy is based on the
confusion matrix.

Taking into account these developments of neural network architectures, our choice is the
residual networks that consists of Residual blocks also called "Residual units" that involves
a main path of weight layers, batch normalization and activations alongside which a skip
connection as depicted in Figure 2.21.
The original residual unit can be expressed as [90]

yl = h(xl) + F (xl,Wl) (2.6)
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Figure 2.21: Original ResNet and identity mappings ResNet blocks. At the left is the original
ResNet Unit where the input xl goes through the main path that contains weight layers followed
by batch normalization and ReLU activation except for the last layer which the output is added to
an identity skip connection. The result is then fed to a ReLU activation function. At the right,
for the Identity Mappings ResNet, the technique of "full pre-activation" is applied where the batch
normalization and activation function come before the weight layer. The result of the main path
is added to the skip connection without activation after the element-wise addition. Readapted
from [90].

xl+1 = f(yl) (2.7)

where xl and xl+1 are the input and the output of l-th residual unit, F is a residual function,
h is the skip connection and f is a ReLU activation function after the element-wise addition
between the skip connection and the output of the Residual function. The authors of [90]
proposes to make f and h identities, with these conditions, we can put Eq.(2.7) into Eq.(2.6)
and get

xl+1 = xl + F (xl,Wl) (2.8)

Recursively, we have xl+2 = xl+1 +F (xl+1,Wl+1) = xl +F (xl,Wl) +F (xl+1,Wl+1) that leads
to

xL = xl +
L−1∑
i=l

F (xi,Wi) (2.9)

The expression of Eq.(2.9) shows that any feature xL of any deeper unit L can be represented
as the feature xl of any shallower unit l plus a residual function in a form of

∑L−1
i=l F . Hence,

it can be observed that the gradient of the linear component xl is equal to one. In forward
propagation, the feature xL = x0 +

∑L−1
i=0 F (xi,Wi), of any deep unit L, is the summation

of the outputs of all preceding residual functions plus x0 (except in a few rare cases in the
architecture where the skip connection is a convolution to match the dimensions with the
residual output). In the backward propagation and denoting the loss function ε, from the
chain rule of backpropagation
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∂ε

∂xl

=
∂ε

∂xL

∂xL

∂xl

=
∂ε

∂xL

(
1 +

∂
∑L−1

i=l F (xi,Wi)

∂xl

)
(2.10)

Eq.(2.10) indicates that the gradient ∂ε
∂xl

can be decomposed into two additive terms: ∂ε
∂xL

that

propagates information directly without concerning any weight layers and ∂ε
∂xL

(
∂
∑L−1

i=l F (xi,Wi)

∂xl

)
that propagates through the weight layers. Theses direct propagations in forward and back-
ward are based on the conditions that skip connections h are identity functions and the use
of full pre-activation for the residual function F which makes identity the operation after the
element-wise addition between the skip connection and the residual output for each unit. To
shed light on the importance of the identity shortcut, the authors of [90] analyze a modifica-
tion of the identity mappings ResNet by taking h(xl) = λlxl where λl is a modulating scalar
and found

xL =

(
L−1∏
i=l

λi

)
xl +

L−1∑
i=l

(
L−1∏
j=i+1

λi

)
F (xi,Wi) (2.11)

which results in propagation to:

∂ε

∂xl

=
∂ε

∂xL

(
L−1∏
i=l

λi +
∂
∑L−1

i=l (
∏L−1

j=i+1 λj)F (xi,Wi)

∂xl

)
(2.12)

and as the first additive term is modulated by the factor
∏L−1

i=l λi, for a deep network, if
λi > 1 for all i, this factor can be exponentially large and on the contrary if λi < 1, this
factor can be exponentially small and vanish, which blocks the backpropagated signal from
the shortcut and forces it to flow through the weight layers and results in optimization diffi-
culties. Further experiments for prove are done in [90].

We adopt the Identity Mappings Residual Network reported by He Kaiming et al. in [90] for
characteristics extraction using the ResNet block implemented in our previous work in [13],
the detailed architecture is shown in Figure 2.22, the numbers on the right of the blocks in-
dicate how many times the residual units are stacked before the MaxPooling operation that
reduces the data size or the flatten layer. Our Residual neural network architecture shown
in Figure 2.22 consists of residual units involving three convolution layers each preceded by
batch normalization and LeakyReLU activation function respecting the two identity condi-
tions analyzed in [90]. A convolution shortcut is used two times in the stack of 14 ResNet
blocks for dimensionality matching, the consequence is minimal as explained in [90]. The
following section reports the ResNet training process, hyperparameters and accuracy on the
test datasets.

2.4.4 Results

Our neural network is trained with keras (TensorFlow as backend). We use some mod-
ules to optimize learning rate on the fly and save the best model during training process.
ModelCheckpoint saves the model each time the validation loss improves during the training
process to keep at the end the best version of the model, EarlyStopping stops the training
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Figure 2.22: Residual neural network architecture for (2×4) and c(4×4) monitoring. The block of
identity mappings ResNet also called "residual unit" at the top right is made up of three sub-blocks
each containing a batch normalization, LeakyReLU activation and 2D convolution which the result
is added to a shortcut of the block input. The architecture of the whole neural network at the left
contains a stack of identity mappings ResNet blocks to extract informations from input images and
2D MaxPooling layers for dimensionality reduction. The result is then flattened and fed to a MLP
with a dense layer followed by a batch normalization and LeakyReLU activation before the output
Dense layer with sigmoid activation function.

process if no improvement of the validation loss for 15 epochs and ReduceLROnPlateau re-
duces the learning rate by a factor of 10 if no improvement of the validation loss is observed
for 3 epochs. The curves of training loss, validation loss and learning rate are shown in Figure
2.23, curves are plotted in logarithmic for a better view. The training is launched with a
batch size of 16, Adam optimizer with a learning rate of 1e − 3 and binary_crossentropy
as cost function. For an initial number of epochs of 80, the EarlyStopping callback stopped
the process at the 28th epoch, the best model according to the validation loss is saved at the
13th epoch by the ModelCheckpoint callback. The learning rate is decreased five times until
the 28th by factor 10 and goes from 10−3 to 10−8.

In Figure 2.24, we have the ResNet model prediction on the test data captured during
the temperature increase from 620◦C to around 670◦C. As the temperature increases, the
material surface passes from c(4× 4) to (2× 4). But this transition is not abrupt. Because
the last activation function is sigmoid, the network output is in the range [0 − 1], we set
a threshold of 0.5 to classify as class 0 (i.e. c(4 × 4)) when the prediction is smaller than
the threshold and class 1 (i.e. (2 × 4)) when the prediction is bigger than 0.5. The raw
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Figure 2.23: ResNet training history. The curve at the top is the model training loss falling sharply
in the first 5 epochs. The curve in the middle shows the validation loss used by all the three callbacks
(ModelCheckpoint, EarlyStopping and ReduceLROnPlateau) in order to monitor the training.
The curve in the farthest down is the optimizer learning rate controlled by the ReduceLROnPlateau
and decreases by a factor of 10 each time the validation loss does not improve for 3 epochs. It is
plotted in logarithmic to allow a clear view as its value gets very small along the epochs.

prediction, the thresholded one and the corresponding thermocouple temperature are shown
in Figure 2.24. The MBE chamber is then cooled down from 680◦C back to 620◦C, Figure
2.25 shows the ResNet prediction during temperature decrease, the noise prediction in the
last images is due to the fact that the thermocouple temperature is lower than the actual
sample temperature as the temperature needs time to go down on the sample side indicating
that there is still the presence of some (2× 4) zones. Usually, c(4× 4) starts to form at lower
temperatures.

2.4.5 Conclusion

We presented a Deep Learning technique for surface reconstruction classification using resid-
ual network architecture. The best version of the model is saved during the training process
thanks to the implemented callbacks. The surface identification is performed on data cap-
tured during MBE chamber heating (transition from c(4 × 4) to (2 × 4)) and cooling down
(transition from (2 × 4) to c(4 × 4)) to evaluate the efficiency of the model. The neural
network detects quite well the surfaces during temperature changes. The following section
reports our work on Azimuthal RHEED construction from raw RHEED patterns.
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Figure 2.24: Surface reconstruction prediction during heating. The curve on the top shows the
neural network raw prediction on the test samples of the data and indicates that the surface passes
from c(4 × 4) to (2 × 4) just before the 3000th sequence (of images). The middle curve shows the
prediction with threshold, > 1 values are raised to 1 and < 1 values to 0. The plot has three parts,
first part of class 0 from 0 to ∼ 2600, a second part of uncertainty from ∼ 2600 to ∼ 3000 and the
last part after ∼ 3000 corresponding to the class 1. The curve at the bottom is the corresponding
thermocouple temperature increasing during growth. This captured window goes from 620 to 670
◦C. The surface change occurs at a temperature of around 640 ◦C.

2.5 Azimuthal RHEED construction
Raw RHEED patterns are difficult to interpret directly and therefore are typically pre-
processed in some way. A common way to prepare RHEED patterns is the so-called Az-
imuthal reflection high-energy electron diffraction (ARHEED), in which slices through the
specular spot of RHEED patterns are drawn in a polar plot as a function of the azimuthal
angle (the rotation angle). ARHEED is the map of intensity obtained by arranging, as a
function of the azimuthal angle, a single horizontal slice through the specular spot of each
RHEED image [97]. ARHEED offers a relatively straightforward interpretability and allows
to detect periodicities or epitaxial crystal orientations. ARHEED is employed to investigate
the growth and epitaxial orientation of the crystal during MBE [98]. An Azimuthal RHEED
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Figure 2.25: Surface reconstruction prediction during cooling down. The curve on the top shows
the neural network raw prediction on the test data. The middle curve is the thresholded prediction,
0 to ∼ 4000 is classified as class 0 but after ∼ 4000, the model falls in uncertainty as the surface is
not completely c(4x4) instantaneously for the same temperature than before heating in Figure 2.24.
The curve at the bottom is the corresponding thermocouple temperature during decreasing to get
back to same initial temperature of 620 ◦C as in the bottom curve of Figure 2.24.

of a c(4 × 4)-reconstructed GaAs surface is illustrated on Figure 2.26. This section aims to
draw the ARHEED from raw RHEED images by detecting the specular spot with semantic
segmentation and determining the azimuthal angle via regression using ResNet.

2.5.1 Context and motivation

During MBE, it is essential to grow layers with substrate rotation to ensure uniformity [99].
Therefore, it is important to develop methods that allow access to the reciprocal lattice
of rotating substrates [99]. Xiang et al. show in [100] that it is possible to obtain the
entire reciprocal space structure of a 2D material by rotating the sample around the surface
normal and measuring the RHEED patterns as a function of the azimuthal angle which
makes ARHEED extremely interesting for surface characterization. A typical difficulty is
associated with the fact that in the ultra-high vacuum MBE chambers, the rotational stage
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Figure 2.26: Azimuthal RHEED illustration. Azimuthal RHEED of a GaAs c(4× 4)-reconstructed
surface. Reprinted from [99].

is coupled magnetically and the rotation is often not perfectly smooth. This makes it difficult
to determine the crystal angle with high accuracy. Determining the crystal azimuthal angle
from the RHEED pattern itself is therefore very interesting for high-accuracy ARHEED.
Kikuchi lines, illustrated in Figure 2.31 with red lines, contain information on the sample
orientation. They are (for samples with a cubic crystal lattice) 4-fold symmetric and thus
strictly contain information only for 0-90 degrees. Using sequences Kikuchi could identify
0-180 degrees (because we "see" the rotation direction). Finally, if the RHEED screen is
not perfectly centered (which is probably always the case), it should be even possible to
distinguish between a full 0-360 degree rotation angle range. Kikuchi comes from the bulk,
which is good because then it does not depend only on the currently growing atomic layer
and angle determination could be possible in a quite robust way. But also the surface signal
(diffraction spots and lines) contains of course information about the crystal angle. A neural
network will probably use all of this information. In addition to the angle, it is necessary to
know the specular spot position for the construction of the AHREED. It can be detected by
semantic segmentation. Therefore, we propose in the following subsections Deep Learning
models to detect specular spot and predict azimuthal angle from only raw RHEED images.

2.5.2 Specular spot tracking across RHEED patterns

In order to crop thin slices from RHEED images through the specular point, its position
must be tracked across the RHEED patterns. Generally, the tracking process involves two
algorithms for object detection and tracking. Object detection algorithms firstly identify
and localize objects in images followed by object tracking algorithms that link the detected
objects across video frames to maintain their identity and trajectory. In case of object dis-
appearance, the process of object detection is relaunched.

In the context of the specular spot, it is lost from view at least four times per round as a
consequence of the sample holder hooks, with occasional further losses due to fluctuations in
light conditions and noise. This would require the detection algorithm to be restarted each
time a loss occurred. To simplify the process, we instead implement a lightweight seman-
tic segmentation model. Semantic segmentation enables to perform pixel-wise classification
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partitioning the image into meaningful regions based on object categories. Unlike object de-
tection, which identifies and localizes objects using bounding boxes, semantic segmentation
provides a detailed pixel-level identification. In our case, the specular spot pixels are referred
to as "class one" whereas the remaining is referred to as "class zero" leading to a binary mask
from each RHEED image independently. The dataset preprocessing, the model architecture
as well as the results are explained in the following.

Dataset preprocessing

RHEED image

Segment Anything Model (SAM)

Figure 2.27: Generation of the specular spot mask. Segment Anything Model (SAM) [101] generates
a separate mask for any object in the input image. The goal is to manually save a couple of an
image and the corresponding specular spot mask (framed in green) in order to build a database for
the training of a model that will generate only the specular spot mask.

A dataset of image-mask couples is set up to train a custom segmentation model. To this end,
binary masks are generated for each spot and line on the RHEED images using the Segment
Anything Model (SAM) [101] of Meta. SAM operates as a general-purpose segmentation
framework, capable of identifying and segmenting objects in images. Its functioning revolves
around three main components: a prompt encoder, an image encoder and a mask generator.
The input prompt guides the segmentation process. It can be sparse (specific points on the
image, bounding boxes around the target object to specify its approximate location or text
descriptions) or dense (mask prompt). The image encoder is a pre-trained model that extracts
high-level and multi-scale features from the input image. Based on the input prompt and the
image features, the mask generator produces segmentation masks. SAM is designed to output
multiple plausible masks when there is ambiguity, allowing to select the most appropriate one.

As the specular point is moving, we let the SAM generate masks from RHEED images without
prompts leading to the generation of multiple masks for each image as shown on Figure 2.27.
The mask corresponding to the specular spot, framed in green on Figure 2.27, is manually
selected to build a database of 1026 couples (image-mask). Then data augmentation is
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performed by shifting the images and masks to four sides increasing the data up to 5130
samples. 80 % of the data is used for training and 20 % for validation. The test is carried
out with 1200 images which are not among those used for training and test.

Neural network architecture
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Figure 2.28: Semantic segmentation model architecture for the specular spot mask. The model
reduces the spatial dimensions of the RHEED image through an encoder network while expanding
the channel dimension. The decoder, mirror network of the encoder, constructs a matrix with the
same spatial dimensions than the input and two channels, each representing the probability of a
class (specular or not). The mask is determined by tacking the index (1 or 0) of the class with the
highest probability value. This leads to a binary mask with ones at the specular point and zeros
elsewhere.

The model is trained to generate a binary mask for the specular point from the RHEED
image. The model architecture, depicted in Figure 2.28, comprises an encoder and a decoder
and is fully convolutional. The encoder takes an image as input, extracts features through
convolution layers with increasing number of kernels. As spatial information are important
in the segmentation task, the downsamlping is performed with the convolution strides which
enable to preserve the spatial features in the images unlike the MaxPooling layer that picks
the maximum value from a window of usually four elements regardless of its position. A
convolution layer with strides learns the downsampling, as it is part of the convolution.
The output of the encoder is fed to a decoder, a mirror network of the encoder in which the
convolution layers are replaced by transpose convolutions. The upsampling is also done using
convolution strides. The decoder produces a matrix of two channels, each containing pixel-
wise probability for the two classes (specular or not). The binary mask is determined taking
the indices of the biggest values along the channel dimension. The specular spot coordinates
correspond to the center of gravity of the area where the pixels are equal to one. The model
is trained with SparseCategoricalCrossentropy loss function in keras with Adam optimizer.
The obtained results are presented in the following.

Results

Once the segmentation model has demonstrated satisfactory performance on the validation
data, it is tested on new data to examine its accuracy under real-world conditions. A total
of 1 200 images are reserved for this purpose. Three illustrative examples are presented in
Figure 2.29. These examples show three RHEED images, each accompanied by its mask
generated by the segmentation model. A red cross denotes the position of the specular spot
on each image, corresponding to the center of gravity of the specular point in the binary
mask. The movement of the specular point in all 1 200 images is recorded in order to
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image mask

specular point center: (79,185)

image mask

specular point center: (42,180)

image mask

specular point center: (50,180)

Figure 2.29: Examples of the segmentation model results. Three examples of RHEED images and
their generated specular spot masks by segmentation model. Each red cross on an image indicates the
center of gravity of the specular spot (bright zone) on the corresponding mask and the coordinates
(in units of pixels) are on the top of each couple of image and mask.

plot the Azimuthal RHEED. Figure 2.30 shows the vertical and horizontal displacements.
The elliptical movement of the specular point can be seen in these curves, with the vertical
displacement having a greater amplitude than the horizontal one. The few overshoots of the
curves are due to prediction errors. When the point is lost from view in the black images,
its last known position is retained as showed by red dashes on Figure 2.30, although this will
not allow any useful information to be extracted. Given that the position of the specular
spot is now tracked, enabling the cutting of thin slices through it, the following subsection is
about the determination of the azimuthal angle, which will allow the plotting of these slices
as a function of the rotation and thus obtain the ARHEED.

2.5.3 Azimuthal angle determination

The azimuthal angle required to construct the Azimuthal RHEED is the angle between the
rotating sample and the incident electron beam. The quality of the Azimuthal RHEED de-
pends on the accuracy with which this angle is determined as well as the previously extracted
positions. This subsection aims to retrieve that angle from raw RHEED images using Deep
Learning techniques. The data preprocessing, neural network architecture and the results
are presented in the following.

Dataset preprocessing

The sample holder has some weight, the faster we spin, the less perturbation of the rotation
by clearance and friction will occur thanks to the inertia of the sample holder. Therefore,
angle accuracy is higher, but the ARHEED resolution reduces for high rotation speed. Good
angle resolution requires rotation speeds in the order of 3-4 rpm, where clearance has very
noticeable impact on the rotation. For this reason, we trained a ResNet model for the
azimuthal angle regression using a dataset of 21 600 images captured when the sample is
rotating at 12 rpm for training. The dataset is split in such a way that 77 % is used for the
model training, 15 % for validation and 8 % for test. The purpose of this split and the dataset
collection equipment are detailed in 2.4.2. The test for ARHEED plotting is performed using
images captured at 4 rpm. The raw images have (512 × 688) dimension in 16-bit (65536
grayscale). In preprocessing, we reduced the image dimensions to (137 × 229) and at the
same time normalized pixel values between 0 and 1. After tests of different size scale factors,
we chose the smallest dimensions without noticeable impact on the results. Sequences of 6
images bring better accuracy for the regression task thus the model input dimensions are
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Figure 2.30: Specular spot movement tracking. The movement of the specular spot in a) vertical
and b) horizontal in the test images is determined by the segmentation model via binary masks. The
important amplitude of the vertical move than the horizontal one indicates the elliptical movement
of the spot. The constant ranges of the vertical move curve indicated by the red dashes correspond
to a blocked electron beam where the last known position is kept and the overshoots on both curves
are due to prediction errors.

(137 × 229 × 6) by stacking the images in the channel dimension. We define the prediction
angle to be the angle of the first image of each sequence. As shown in the examples in Figure
2.31, the Kikuchipy [102] open-source software allows the Kikuchi lines to be highlighted,
thereby enabling the model to focus on their movement and thus improving the prediction of
the azimuthal angle. These lines depend not only on the surface of the sample but also on the
bulk, which leads us to believe that this is a robust method for deducing the rotation angle
from RHEED images. Two techniques are applied on the images using Kikuchipy: removing
of dynamic background and adaptive histogram equalization. As illustrated on Figure 2.31
by red lines, the Kikuchi lines are significantly more prominent after pre-processing. The
model architecture to conduct the regression task is detailed in the following.

Neural network architecture

We use again the Identity Mappings Residual Network reported by He Kaiming et al. in [90]
for characteristics extraction. The details on our choice, the mathematics behind ResNet
and the implementation of our ResNet block are reported in section 2.4.3. Figure 2.32 shows
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original image removing dynamic background adaptive histogram equalizationa) b) c)

Figure 2.31: Image preprocessing using Kikuchipy [102]. Two techniques are applied on the a)
original image: first b) removing of dynamic background and then c) adaptive histogram equalization
to highlight the Kikuchi lines. The result is shown at each step and the red lines denote the visible
Kikuchi lines.

the architecture of the specific RHEED-angle regression model, the numbers on the left of
the blocks indicate how many times the residual units are stacked before the single Conv2D
layer with strides equal to 2 for dimensionality reduction. Our residual neural network archi-
tecture consists of residual units involving three convolution layers each preceded by batch
normalization and LeakyReLU activation function respecting the two identity conditions
demonstrated in [90]. A convolution shortcut is used only for dimensionality matching, the
consequence is minimal as explained in [90]. After ResNet blocks, a flatten layer combines
the extracted features and passes them to a multilayer perceptron consisting of two dense
layers each followed by a Batch Normalization and a LeakyReLU activation function ending
with a single neuron with linear activation function for angle value output. The following
reports the results of the ResNet model on 12 rpm and 4 rpm images.

Results

First we test the model on data from 12 rpm rotating sample. The histogram of the absolute
error is shown in Figure 2.33a, the error is roughly distributed around zero with 2.25◦ stan-
dard deviation. In addition, Figure 2.34a shows the ResNet prediction plot versus the target
values, where we can see superimposed curves demonstrating a good prediction accuracy. At
this speed, the inertia of the sample holder is large enough to ensure a smooth rotation and
we thus have angular values with high confidence.

In a second step, we test our model with data captured during 4 rpm rotating substrate. To
simulate the 12 rpm speed on which the model is trained, the sequences of images are done
taking every third image. The statistics of the absolute error of the 4 rpm test is shown
in Figure 2.33b, showing a distribution around zero with 9.31◦ standard deviation. Figure
2.34b depicts the ResNet prediction and the target values plots. At this speed, the rotation
is significantly less smooth due to the clearance and friction at the magnetic coupler. Despite
these disruptions, the model predicts well the azimuthal angle. Now that we can detect the
position of the specular point and determine the azimuthal angle from the RHEED images,
the next section focuses on combining these results to construct the Azimuthal RHEED.
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Figure 2.32: Residual neural network architecture for azimuthal angle. The block of identity
mappings ResNet on the top right is called "residual unit" in [90] and contains three sub-blocks
each consisting of a batch normalization, LeakyReLU activation function and 2D convolution. The
result of the last convolution is added to a shortcut of the block input. The architecture of the
whole neural network on the left is made of stacked identity mappings ResNet blocks each followed
by a single 2D convolution layer for dimensionality reduction to extract informations from the input
images. Afterwards, the features go through a flatten layer and are fed to an MLP to process the
extracted features and output the final azimuthal angle value.

2.5.4 Azimuthal RHEED Plotting

The Azimuthal RHEED provides access to a wider spectrum of information than a single
RHEED image. The ARHEED constructed in Figure 2.35 combines the essential features
contained in 373 RHEED patters into a single image, making crystal growth monitoring
more straightforward and rich in information. The ARHEED interpretation is illustrated in
Figure 2.36, where the obtained ARHEED seems to indicate a c(4×4) surface reconstruction
according to the brightness of the diffraction points in [010] and [100] directions. The large
gray cross corresponds to the electron beam being blocked by the hooks on the sample holder.

Nevertheless, this Azimuthal RHEED can be further improved by perfecting the specular
point detection and the number of rounds chosen in order to capture more details and conduct
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Figure 2.33: Histograms and density functions of the model test absolute error. Histogram and
density of the absolute error between the prediction and target values for a) the test data from 12
rpm patterns, where the error is roughly distributed around zero with a standard deviation of 2.25◦

and b) the test data from 4 rpm patterns, where the error is also roughly distributed around zero
with a standard deviation of 9.31◦.

more advanced interpretations.

2.5.5 Conclusion

We proposed a semantic segmentation model to generate binary masks for the specular spot
and thus detect its positions from RHEED images as well as a Residual Network for azimuthal
angle prediction in order to construct the Azimuthal RHEED that requires a precise position
detection and crystal rotation angle determination. Both models work well on the test data.
The model for angle regression is trained on data from samples rotating at 12 rpm and the
test is done on patterns from samples at 12 rpm and 4 rpm. The results are presented
as histograms for absolute error distribution and plots comparing the model predictions
and target values ending with the plotting of the Azimuthal RHEED. The following section
concludes the chapter on the crystal growth characterization using Deep-Learning techniques
on RHEED patterns.

2.6 Conclusion
We have reviewed the state-of-the-art where beyond Deep-Learning, the classical machine
learning is used on RHEED images. Some Machine Learning algorithms can outperform
Deep-Learning in some tasks and Deep Neural Network is not the solution to everything.
According to the work done on DL and RHEED, the use of Convolutional Neural Network
proved good potential [68,69]. Hence, we proposed CNN models for RHEED characterization
automatization.

Firstly, we proposed a model for substrate deoxidation detection which typically is a te-
dious task done by the human MBE operator. The model is composed of two parts, an
autoencoder to reduce image dimensionality and create compressed representations of entire
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Figure 2.34: Azimuthal angle prediction. Azimuthal angle prediction (orange line) versus target
values (blue line) for RHEED images captured during a) 12 rpm rotating substrate and b) 4 rpm
rotating substrate for a random window of 749 images in each test dataset (12 rpm and 4 rpm).

RHEED video sequences, followed by a CNN classifier to distinguish data from oxidized and
deoxidized patterns. We studied the neural network architecture by varying the length of the
input image sequence and the size of the autoencoder latent space (hence the level of com-
pression). We found that the use of image sequences instead of single images has significantly
better accuracy. In addition, the model showed robustness over time periods as long as at
least half a year, by working on data recorded six months after the training data without
retraining despite the changes occurred on the MBE set up and the visible deterioration of
the RHEED screen.

Secondly, we performed a classification task on surface reconstructions using Residual Net-
work. We tested our model based on identity mappings ResNet on data captured during
temperature increase and cooling down. In heating, the surface passes from c(4 × 4) to
(2× 4) and vice versa during temperature decrease.

Our final task in this chapter is the construction of the Azimuthal RHEED. This task needs
the specular spot position to be detected and the azimuthal angle to be determined. The
position is tracked using semantic segmentation model and the dataset is preprocessed using
SAM, the segmentation model released by META. The determination of the azimuthal angle
is done by regression using a ResNet model based on identity mappings like in the previous
section. The training dataset is recorded while the sample is rotating at 12 rpm then we
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Figure 2.35: Azimuthal RHEED plotting. The images of one complete round captured during
rotation of the sample at 4 rpm is taken to plot the Azimuthal RHEED, i.e. 373 images. This figure
shows a) the thin slices through the specular point as cropped from the images stacked on top of
each other, b) the azimuthal angle predicted for these images and c) the plotting of those slices in
polar as a function of the angle providing the Azimuthal RHEED.

tested the model with data captured during 12 rpm rotation but also with 4 rpm data, when
the rotation is less smooth. The ARHEED is plotted for a ser of 373 test images. A further
challenge will be to generalize these Deep Learning models for materials other than GaAs for
larger use on MBE-RHEED set up.

With this, we conclude the RHEED image analysis and move towards a different application
of Deep Learning in nano-technology. In the following chapter we discuss the use of deep
learning for inverse design and accelerated predictions in nanophotonics.
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Figure 2.36: Azimuthal RHEED interpretation. The azimuthal RHEED contains information from
all 373 images. The large gray cross corresponds to the electron beam being blocked by the hooks on
the sample holder. The brightness of the diffraction points in the [010] and [100] directions increases
and decreases successively, indicating that this is a c(4× 4) reconstruction surface.



Chapter 3

Deep Learning-based inverse design for
nano-photonic devices

3.1 Introduction
The majority of this introduction and the following two sections are derived from our pre-
viously published tutorial article [13] on nanophotonics inverse design with Deep Learning.
The broad field of (nano-)photonics deals with the interaction of light with matter and with
applications that arise from structuring materials at sub-wavelength scales in order to guide
or concentrate light in a pre-defined manner [103–105]. Astonishing effects can be obtained
in this way, such as unidirectional scattering, negative refraction, enhanced nonlinear optical
effects, amplified quantum emitter yields or magnetic optical effects at visible frequencies.
Tailoring of such effects via the rational design of nanodevices is typically termed “inverse
design”. Unfortunately, like most inverse problems, nanophotonics inverse design is in gen-
eral an ill-posed problem and cannot be solved directly [106]. Usually, iterative approaches
like global optimization algorithms or high-dimensional gradient based adjoint methods are
used, which however are computationally expensive and slow, especially if applied to repet-
itive design tasks [107]. In the recent past it has been shown that deep learning models
can be efficiently trained on predicting (nano-)optical phenomena [108–110]. This rapidly
growing research interest stems from remarkable achievements that deep learning accom-
plished in computer science since around 2010, especially in the fields of computer vision
and natural language processing. The main underlying assumption is that neural networks
are universal function approximators [111]. It has been shown that deep learning is capa-
ble of solving various inverse design problems in nanophotonics. A non-exhaustive list of
examples includes single nano-scatterers [112], gratings [113], Bragg mirrors [114], photonic
crystals [115], waveguides [116], or sophisticated light routers [117].
As mentioned above, this work is from our previous article [13] in which we give a gen-
eral Deep Learning introduction, address the question of when to use Deep Learning and
when better not, explain the choice of model architectures for nanophotonics inverse design,
all accompanied by a set of extensively commented Python notebook tutorials [118]. We
demonstrated the full workflow from data generation and data-processing, over network ar-
chitecture design and hyperparameter tuning, to an implementation of the different inverse
design approaches. In the tutorial, we deal with two toy problems to implement the different
inverse design methods. The first one is the reflectivity of a layer stack using PyMoosh [119]
for the physics calculations and the second one is the scattering of dielectric nanostructures
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Figure 3.1: The crux of the ill posed problem. (a) A naive, not working implementation of a
simple feed-forward inverse network would take as input the design target (e.g. an optical property)
and returns the design that is required to obtain it. (b) Only well posed physical problems can be
solved this way. Such problem obeys the three Hadamard conditions. However, neither of these
conditions is in general fulfilled in photonics inverse design, as illustrated by a selected example
under each condition. (c) In case of multiple solutions, the training process would iterate of these
several times, every time adapting the network parameters to return a different design. Training is
unstable and eventually the network will learn some nonphysical mix of the multiple solutions. If a
non-continuous parameterization is used (here: two distinct materials), the naive network may also
return non-allowed mixtures of those.

with pyGDM2 [120, 121] for simulation. Brief descriptions of PyMoosh and pyGDM2 are
given in the appendix on page 112.

In the following section, we firstly introduce the inverse problem before focusing on inverse
design methods of predicting the layer stack from the reflectivity with “one-shot” solvers
consisting of end-to-end networks that can be implemented in different ways, we specifically
discuss the Tandem network, as well as the conditional Variational Autoencoders. Secondly,
we explain the Neural Adjoint method, a gradient-based iterative optimization to inverse
design dielectric nanostructures from the target scattering, using deep learning models as
ultra-fast and differentiable surrogates for slow numerical simulations. In this thesis an in-
troduction to Deep Learning can be found in chapter 1, here we introduce possible approaches
to tackle inverse problems with deep learning more conceptually, without going into detail
about technical aspects of specific neural networks. This chapter will conclude with the pro-
posal of a graph convolutional network (GCN) surrogate model of which one key advantage
is handling structures with arbitrary size and form.

3.2 Inverse design: an ill-posed problem
Unlike the forward problem, where the optical response of a given structure is calculated, the
inverse problem seeks to identify the structural parameters that yield a specific optical be-
havior. The primary goal is to design nanophotonic structures, such as photonic crystals and
metamaterials that perform specific functions. These functions could range from achieving
high-efficiency light trapping and guiding to tailoring the emission and absorption spectra.
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(a) Tandem network (c) handling of multiple solutions

(b) conditional Variational Autoencoder

Figure 3.2: Tandem and cVAE architectures. (a) Tandem model. The training is divided in two
steps. At first a forward predictor is trained on the direct problem. Subsequently, the forward
network is fixed and used to train the generator, (b) The conditional Variational Autoencoder
(cVAE) is trained end-to-end in a single run. A latent space z is used to provide additional degrees
of freedom to handle ambiguities in the design problem. (c) inverse problems typically can be solved
by multiple solutions. A Tandem model will learn only one of possibly multiple solutions, the other
remain inaccessible. The cVAE on the other hand typically learns the set of possible solutions which
can be retrieved via the latent vector z.

The main challenge in nanophotonics inverse design is that the problem is in general ill posed,
in consequence it is impossible to solve the problem directly. J. Hadamard described a so-
called “well posed problem” as one for which a solution does exist, this solution is unique and
continuously dependent on the parameterization [106]. As depicted in Figure 3.1, the typical
inverse design problem however has in general non-unique solutions (multiple geometries
yield the same or very similar property). Often design targets exist that cannot be optimally
implemented, hence no exact solution exists (e.g. a mirror with unitary reflectivity). And
finally, in many cases the physical property of a device is not continuously dependent on the
geometry, but the parameter space is at least partially discrete (e.g. if a choice from a finite
number of materials has to be made). Training of a naive network on a problem with multiple
possible solutions will oscillate between the different possible outputs and finally learn some
non-physical average between those different solutions [122]. Fortunately, methods exist to
solve ill posed inverse problems with deep learning. We discuss in the following two popular
groups of approaches, namely the “one-shot” inverse design methods and the iterative methods
that use optimization algorithms to discover the best possible solution(s).

3.3 Inverse design methods
The naive approach to solve inverse design with deep learning would be to use a feed-forward
neural network that takes the optical property as input and returns the geometry parameters
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as output. This would be trained on a large dataset. Unfortunately such approach does not
work. In the following, we discuss Tandem network, cVAE and Neural Adjoint method.

3.3.1 Tandem network
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Figure 3.3: Tandem network inverse design. Target reflectivity spectrums (orange curve) are fed
to the inverse model which predicts the structures (five layers characterized by refractive indices
and thicknesses for each structure); and then reflectivity spectrums of the predicted designs are
recalculated with PyMoosh (blue curve).

One of the most simple configurations for a one-shot inverse design network is the so-called
“tandem network” [123]. The tandem network is a variation of an autoencoder acting on
the physical domain. It takes as input the desired physical property and returns a recon-
struction of the physics (for instance a target reflectivity spectrum and its reconstruction).
The difference to a conventional autoencoder is that the decoder is trained in a first step
on predicting the physical properties using the design parameters as input. This means, the
decoder is simply a “forward” physics predictor, solving the direct problem (“fwd” in Figure
3.2a). Subsequently, a second training step is performed, in which the forward model weights
are fixed and the encoder, which is actually trained on generating the designs, is added to
the model (generator “G” in Figure 3.2a). In this second step, the full model is trained,
but now only the physical responses from the training set are used. The physical property
(e.g. reflectivity spectrum, etc...) is fed into the encoder, which predicts a design. However,
instead of comparing this design to the known one from the dataset, the generated design
is fed into the forward model, that predicts the physical property of the suggestion. This
predicted response is finally compared with the input response, the error between both being
minimized as training loss. This means, that even if multiple possible design solutions exist,
the training remains unambiguous since only the physical response of the design is evaluated,
regardless of how it is achieved. The full model is then essentially an autoencoder of which
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the latent space is being forced to correspond to the design parameters by using the fixed,
pre-trained forward network as decoder.

A practical advantage of the Tandem is that the inverse problem is split in two sub-problems,
that are individually easier to fit, compared to end-to-end training of the full inverse problem.
In a first step the forward problem is learned, which is usually a relatively straightforward
task. This physics knowledge is then used in the second step to guide training of the generator
network. In this example, we trained the neural network to predict multilayer architectures
of five layers with refractive index n in the range [1.3, 2.5] and material thickness d in the
range [20, 180] nm. To visually test the model accuracy, as shown in Figure 3.3, we feed
target reflectivity spectrums (orange curve in Figure 3.3) from the test dataset to the inverse
model to predict geometry designs; and then we compute the reflectivity spectrums (blue
curve in Figure 3.3) of the predicted structures using PyMoosh and finally compare them
with the target ones. As ill-posed problems don’t necessarily have solutions for all inputs,
target spectrums are pre-calculated, so we know that layer-stacks exist as solution. The
inverse model demonstrates good accuracy on such inverse problem.

3.3.2 Conditional variational autoencoder - cVAE

eps=1
eps=4.36 d=78nm
eps=4.43 d=176nm

eps=5.31 d=152nm

eps=3.21 d=108nm
eps=5.61 d=96nm

eps=1

500 1000 1500
wavelength (nm)

0.0

0.2

0.4

0.6

re
fle

ct
iv

ity

latent z = 1.2

eps=1
eps=4.42 d=83nm
eps=3.68 d=174nm

eps=5.35 d=171nm
eps=3.8 d=67nm
eps=5.58 d=114nm

eps=1

500 1000 1500
wavelength (nm)

latent z = 0.8

eps=1
eps=4.65 d=84nm
eps=2.52 d=173nm

eps=5.23 d=140nm
eps=5.86 d=90nm
eps=5.25 d=151nm

eps=1

500 1000 1500
wavelength (nm)

latent z = 0.4

eps=1
eps=4.86 d=80nm
eps=2.56 d=165nm
eps=5.31 d=82nm
eps=5.55 d=159nm

eps=5.28 d=113nm
eps=1

500 1000 1500
wavelength (nm)

latent z = 0.0

eps=1
eps=5.08 d=75nm
eps=2.96 d=163nm

eps=5.26 d=145nm

eps=5.19 d=168nm
eps=4.91 d=58nm

eps=1

500 1000 1500
wavelength (nm)

latent z = 0.4

eps=1
eps=4.62 d=71nm
eps=5.7 d=144nm

eps=5.12 d=151nm

eps=2.62 d=157nm
eps=4.65 d=85nm

eps=1

500 1000 1500
wavelength (nm)

latent z = 0.8

eps=1
eps=4.84 d=73nm
eps=5.45 d=150nm

eps=4.92 d=166nm

eps=2.55 d=107nm
eps=4.46 d=110nm

eps=1

500 1000 1500
wavelength (nm)

latent z = 1.2
simulation
design target

Figure 3.4: cVAE inverse design. Dielectric layer stacks implementing an arbitrary reflectivity
design spectrum. Inverse designed by a cVAE. By sweeping through the latent space of the cVAE
generator with fixed target spectrum, multiple possible design solutions can be identified. Note that
the cVAE discovered that mirrored structures yield the same reflectivity spectra (c.f. for example
latents z = 0 and z = 0.8). A systematic latent inspection can also be done for further optimizing
the solution, for example by a search for the best possible spectral match, or by identification of the
most robust design, etc..

A drawback of the Tandem network is that only a single solution is learned, even if multi-
ple designs are possible to reach the design target. Several network architectures have been
developed to learn mappings to the set of multiple solutions in ambiguous inverse problems.
We discuss in the following a very efficient and robust model, the conditional Variational
Autoencoder (cVAE).

The reason why a “vanilla” variational autoencoder (VAE) can not be directly trained on
an inverse design task is the correlation between geometry and physics domain. The latent
space of the autoencoder forms during training and represents the most efficient and compact,
reduced representation of the inputs. This is of course generally not the design parametriza-
tion. In consequence, it is necessary to force the latent space to correspond to the design
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space, which is achieved in the “Tandem” architecture via a two-step training procedure. The
tandem is hence an autoencoder with design-regularized latent space.
By conditioning the designs on their physical properties, a modified variant of a VAE, a
so-called conditional variational autoencoder (cVAE), can however be trained as an inverse
design network. To this end, the classical VAE, that reproduces a design through an encoder-
decoder architecture, is extended by an additional input, the design condition. Here this is
a physical property (e.g. a reflectivity spectrum), the design target. As depicted in Figure
3.2b, this additional condition is added as input to both, the encoder (blue) as well as the
decoder (green). During training, multiple possible solutions are associated with different
values of the latent vector z, i.e. can be treated without training ambiguities, as illustrated
in Figure 3.2c.

As mentioned before, cVAEs require a latent regularization scheme in their training. The
goal is for the latent space to become continuous and smooth (to allow meaningful interpo-
lation). This is achieved using perturbative random latent sampling in the forward path, so
the network learns that similar latent values correspond to similar solutions. In order to ad-
ditionally achieve compactness (no blank regions in latent space), a weighted (“β”-coefficient)
KL-loss is added to the training, which pushes the latent variables to a normal distribution
around zero with unitary variance. If the KL loss weight is too large, the latent space will
be normally distributed around zero, but reconstruction will fail. If the KL loss weight is
too small, it has no effect. Then reconstruction will be good, but blank spaces in latent
space may occur that do not carry useful information and impede to perform meaningful
interpolation between solutions. In consequence, the weight of the KL loss with respect to
the reconstruction loss needs to be carefully chosen (“β-VAE” [124]).

Unfortunately this value needs to be adapted for each problem / network model, so some trial
and error is required to find the adequate value. Good starting values are typically β = 0.01
or β = 0.001. Blank latent spaces may be difficult to spot in training, so the easier approach
to find a good weight is to increase the β value until the reconstruction loss starts suffering
notably. The condition is the design target and may be a high-dimensional construct such
as a reflectivity spectrum. It is possible to process the condition with a sub-network (e.g. a
1D-CNN), that can be a common, shared network, before the two input branches (encoder
and decoder).

After successful network training, only the decoder is used for the inverse design. The design
target is fed to the decoder (the actual inverse model) accompanied by a random normal
latent z. The reflectivity spectrum of the predicted design is calculated with PyMoosh for
comparison with the target design. Figure 3.4 illustrates the possibility to identify multiple
possible solutions and how to go through those solutions in a smooth way by the example
of multi-layer designs for a fixed reflectivity target, this also demonstrates the strength of
the regularized latent space in cVAE. An advantage of the cVAE is its generally robust
training. It often also works well with low-dimensional latent spaces, so that the latent
space can be explored systematically, to identify different possible solutions [114]. A recent
comparison indicates, that cVAEs are among the most effective methods for direct inverse
design tasks [125].
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Figure 3.5: Inverse design via gradient-based iterative optimization using a forward model as fast
physics solver surrogate. Neural adjoint method reduces the risk of local minima by operating on
a large set of random initial designs. The optimization tries to minimize the error between the
predicted optical property (solid red line) and the design target (dashed black line).

3.3.3 Neural Adjoint method

While global optimization, numerical analysis that attempt to find the global solution for
inverse problems, is robust and generally converges well towards the overall optimum, such
methods are also inherently slow since they do not take advantage of gradients. This is
unfortunate because gradients are available “for free” in deep learning surrogate models. On
the other hand, gradient based approaches tend to get stuck in local minima. This can be
accounted for to a certain extent, but it usually depends strongly on the individual design
problem if a gradient based method will work. The idea of gradient based optimization is
the same as in the Newton-Raphson method. A fitness function is defined such that it is a
measure of the error of a solution compared to the design target. Then, the derivatives of
the fitness function with respect to the design parameters of a test solution are calculated
and used to modify the test-design towards the negative gradient. By minimizing the fitness
function in this way, the solution iteratively gets closer and closer to the ideal design target
until a minimum is reached.

Typical numerical simulation methods are not differentiable and hence gradient based meth-
ods cannot be applied directly. While gradients can be calculated using adjont methods [126],
these still require multiple calls of the, generally, slow simulation and hence are usually com-
putationally expensive. Both problems can be solved to some extent by forward neural
network models. A key advantage is, besides the evaluation speed, that gradients can be
calculated “for free”, because the network is an analytical mathematical function. For the
same reason, the gradients of the surrogate model are also continuous, since this is a key
requirement for the network training alogrithms. As stated in the beginning, the training
procedure of a neural network is in fact a gradient based optimization by itself, therefore the
main functionality of all deep learning toolkits is automatic differentiation. A forward neural
network model can thus always be used for gradient based inverse design, which consists of
two steps that are illustrated in Figure 3.5. In a first step, a set of test-designs (typically
random initial values) is evaluated with the forward model. Their predicted physical behav-
ior is compared to the design target, for which a fitness function evaluates the error between
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Figure 3.6: Schematic fitness landscapes of (a) a friendly problem with relatively few local extrema.
(b) a complicated problem with many local fitness minima. Using gradient based methods with a
large number of initial test-sets, problem (a) will likely converge to the global optimum. In problem
(b) on the contrary, the chance is high that none of the initial designs is close enough to the global
optimum and optimization will converge to a local solution. The paths taken by a gradient-based
method path are indicated by white arrows.

target and prediction. Now the deep learning toolkit is used to calculate the gradients of this
fitness with respect to the input design parameters via backpropagation and the chain rule.
Finally, the designs are modified by a small step towards the negative gradients. Repeating
this procedure minimizes the fitness [127–129].

As mentioned before and depicted in Figure 3.6, the main difficulty in this approach is to
avoid getting stuck in local minima of the fitness function. To a certain extent this can
be accounted for by optimizing a large number of random initial guesses for the designs in
parallel. While such strategy would be prohibitively expensive using numerical simulations,
with a machine learning surrogate model it is typically possible to optimize several hundreds
or even thousands of designs in parallel. However, depending on the problem, the number
of local extrema may be too large for successful convergence. This can be tested by running
the optimization several times. If multiple runs do not converge to a similar solution, the
parameter landscape of the problem is probably too “bumpy” for gradient based inverse de-
sign, Figure 3.6 shows such a landscape with many local minima.

As explained above, it is crucial also in gradient based optimization to remain in the forward
model’s interpolation regime since extrapolation bears a high risk of converging towards non-
physical minima of the deep learning model [127]. Also, if the dimensionality of a problem
is high, the risk of strongly varying gradients further increases and optimization may always
converge to unsatisfying local minima. As discussed above, in such cases it is helpful to
train a separate generator network that maps the design parameters onto a regularized la-
tent space (e.g. VAEs or GANs see Figure 3.7a,b). Instead of optimizing the physical design
parameters, the optimizer then acts on this design latent space. Because the latent space
is regularized, it is possible to constrain the designs to the neural network’s interpolation
regime e.g. by using a KL loss term in the fitness function.

To practically show the effect of constraining design parameters in the interpolation regime
of the surrogate model, we trained a ResNet model on the direct problem to predict the
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Figure 3.7: Constraint of the forward model into the interpolation regime via generator. (a) Sketch
of a variational autoencoder (VAE) trained to reconstruct the design. In a VAE, the encoder is
trained to return the mean value (µz) and standard deviation (σz) of the latent variable z. A
randomized, normal distributed latent vector is passed to the decoder for the reconstruction task
(via random number generator “RNG”). By further constraining σz with a KL loss, one obtains a
compact and smooth latent space that is normally distributed. (b) Sketch of a generative adversarial
network (GAN). As in the VAE, by using a normal distributed random number generator during
training for the latent space input, the generator develops a smooth and compact latent space,
essentially representing the interpolation regime of the dataset. (c) Re-parameterized the forward
model using a learned latent representation as design input: The trained geometry generator (e.g.
from VAE or GAN) is simply plugged before the input of the forward network. It converts a latent
vector z to a physical design x̂. If the latent space was properly regularized, sampling from within
the range of a normal distribution with unitary variance will generate geometries in the interpolation
regime of the training data, where the forward network works accurately. Instead of optimizing the
physical design parameters, we can now run the optimization on the latent variable of the geometry
generator. Constraining the numerical range of the optimization parameters accordingly, renders
iterative optimization robust.
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scattering of dielectric nano-structures which are represented by the geometry top view. The
dataset is generated using PyGDM [120, 121]. The full model architecture is illustrated
in Figure 3.7c where the latent space variable of the geometry generator is constrained to
2σ of normal distribtution. To test the inverse design accuracy, we take a geometry and
the corresponding scattering from the test dataset, we optimize a design via neural adjoint
method using only the physical property; and then, we calculate the physical property of the
obtained geometry via both PyGDM simulation and forward model prediction; and finally
we compare the results from the inverse designed geometry, forward model prediction and the
test set (the reference). In such case, the neural adjoint-optimized geometry is successfully
verified with PyGDM as shown in Figure 3.8a. In a second step we apply the neural adjoint
method without latent space constraint and then without any generator (running the NA on
image pixels), the results of both cases are reported in Figure 3.8b,c respectively and show
that the method fails when pushed into extrapolation regime.

NA using WGAN-GP latent constrainta)

NA using WGAN-GP without latent constraintb) NA running on image pixels (WGAN-GP )c)
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Figure 3.8: NA and WGAN-GP results. At the left of the top row a) the physical properties of
the used reference, neural adjoint-optimized design (simulated with PyGDM ) and the prediction
of the forward model matched. At the right, the geometry generated via NA method optimization
and the used reference from the test dataset. Neural adjoint method failing cases: The NA method
is launched b) without geometry generator latent space constraint and c) without any geometry
generator where the process is directly optimizing the image pixels. The method fails in both cases.
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3.3.4 Conclusion

The ill-posed inverse design problem can be solved with some Deep Learning architectures
like Tandem network and cVAE which are known as "one-shot" methods; but also with the
iterative Neural Adjoint method. The advantage of generator-based networks (e.g. cVAE)
is the access of the multiple possible solutions by varying the latent space variable where
a Tandem network can enable only getting one of those possible solutions. In the case
of NA method, it is required to constrain the surrogate model in the interpolation regime
because otherwise a high risk exists the gradient-based optimization diverges to the failing
extrapolation regime.
In case of nano-structures inverse design, we used the geometry top view images as design
parameters but the nanophotonics devices are not always representable via images especially
in case of complex forms that are not suitable for 2D representation. It is important to find
ways to handle arbitrary forms and sizes. To this end, we propose in the following a Graph
Neural Network surrogate model.

3.4 Graph Neural Network surrogate model
Graph Neural Networks (GNNs) are a class of deep learning methods designed to perform
inference on data described by graphs. Due to the different possibilities offered by graph
machine learning and the large number of applications where graphs are naturally found,
GNNs have been successfully applied to a diverse spectrum of fields to solve a variety of
tasks. In physics, GNNs have been used to learn physical models of complex systems of
interacting particles [130–132] and in chemistry, for the prediction of quantum molecular
properties as well as the generation of novel compounds and drugs [133]. GNNs have also
been largely applied to the biological sciences, with applications like the recommendation of
medications [134].

3.4.1 Geometric Deep Learning

The deep learning technologies, for instance, the convolutional neural networks that we used
in our models, have achieved remarkable outcomes in certain machine learning applications,
including object detection, image classification, speech recognition and machine translation.
Despite the considerable success of deep learning in processing traditional signals, such as
images, sounds, videos, or text, the current research on deep learning is primarily focused
on these data, which are defined in the Euclidean domain, namely grid-like data. With the
advent of larger data sets and more powerful GPU computing capabilities, there is a growing
interest in processing data in non-Euclidean domains, such as graphs. This type of data is
pervasive in real-world scenarios, making it crucial to investigate deep learning techniques in
non-Euclidean domains. This is referred to as geometric deep learning.

As mentioned in the introduction chapter, a graph is composed of nodes and edges of the
network structure data. For instance, in social networks, each node represents a person’s
information and the edge represents the relationship between people. The edges can be
directed or undirected depending on the relationship of the connecting vertices (nodes).
These geometric data are irregularly arranged (i.e. there is no the relative positions such as
left, right, up and bottom like between image pixels), which makes it difficult to find out
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the underlying pattern using convolution operations like those on images [135]. On the other
hand, data like images in the Euclidean domain can be regarded as a special graph data, with
nodes arranged in a regular way, for instance in an image-graph, each pixel can be represented
by a node connected to its neighbor pixels and each node contains the information about
brightness and color of a pixel. Non-Euclidean data can have extraordinarily large scale.
For example, molecular graphs can have hundreds of millions of nodes, for this case, it is
unlikely to use the traditional deep learning technology to carry out analysis and prediction
tasks [135]. In general, geometric deep learning can be mainly divided into two major research
directions, one is for processing graph data (i.e. graph networks or grid-like data); the other
is for processing manifold data (i.e. generally for processing 3D point cloud data). Among
them, graph data processing is more popular. The adaptation of the convolution operation to
graphs is achieved through two distinct techniques, namely the spatial and spectral methods.

3.4.2 Spatial Graph Convolutional Networks

Spatial Graph Convolutional Networks (GCNs) are a class of neural networks designed to
handle graph-structured data by leveraging the inherent spatial relationships among nodes,
this approach implements the message passing method. The primary principle behind spatial-
based GCN is the iterative updating of node representations by aggregating and combining
information from a node’s local neighborhood (connected nodes) [136]. This approach di-
rectly exploits the graph topology, ensuring that the node embeddings reflect both the node
features and the structural context provided by neighboring nodes. In a multi-layer GCN,
each graph convolutional layer updates graph node informations simultaneously (one layer
corresponds to one graph update). The iterative nature of the updates allows the network to
capture increasingly complex patterns as information propagates through the GNN layers.
Spatial-based GCNs operate in two main phases: aggregation and combination.

During the aggregation phase, a node gathers information from its immediate neighbors.
This local aggregation is crucial as it allows each node to integrate information from its sur-
roundings, forming a context-aware representation. Various aggregation functions, such as
sum, mean and max are used to pool the neighborhood information. Each function has its
unique benefits; for instance, sum aggregation captures the total contribution from neighbors,
while mean aggregation normalizes the aggregated information, providing a balanced view
regardless of the number of neighbors.

The combination phase then fuses the aggregated neighborhood information with the node’s
own features, typically through a learnable transformation followed by a non-linear activa-
tion function, enhancing the network’s ability to capture complex relationships and patterns
within the graph. Spatial-based GNNs are often constructed with multiple layers, each per-
forming a round of aggregation and combination. Stacking layers enables the network to
capture information from increasingly larger neighborhoods. However, care must be taken
to avoid over-smoothing, where too many layers lead to indistinguishable node features.
Some spatial-based GNNs, such as Graph Attention Networks (GATs), incorporate attention
mechanisms to assign different importance weights to the neighbors of a node. This approach
allows the network to focus on more relevant neighbors, enhancing the quality of the aggre-
gated information and improving the overall performance.
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The main advantages of such a method are the intuitive design by directly operating on
the graph structure as well as the flexibility, since these models are highly flexible and can
be tailored to various types of graphs and domains by selecting appropriate aggregation
and combination strategies. However, while spatial-based GNNs excel at capturing local
neighborhood information, they might struggle with capturing global graph properties, which
can be essential for some tasks.

3.4.3 Spectral Graph Convolutional Networks

Spectral GCNs utilize the mathematical foundations of spectral graph theory to perform con-
volution operations on graphs. Unlike spatial-based GCNs, which directly aggregate node
features from neighbors in the graph domain, spectral-based GNNs apply graph convolutions
in the frequency domain [136] by transforming the graph signals using the eigenvalues and
eigenvectors of the graph Laplacian matrix. This involves representing the graph in terms of
its Laplacian matrix L which captures the connectivity and structure of the graph. It is com-
puted from the adjacency matrix A (which represents connections between nodes) and the
degree matrix D (which represents the number of edges incident to each node) by L = D−A.
Spectral convolutions capture graph characteristics by transforming the node features into
the spectral domain, applying a filter and then transforming back to the spatial domain.

This spectral-based method presents advantages like effectively capturing the global infor-
mation of the graph making them suitable for tasks that require an understanding of the
entire graph. However, they may not be as effective in capturing local structures compared
to spatial-based GCNs. One of the main drawbacks of spectral GCNs is the computational
complexity as calculating the eigenvalues and eigenvectors of the graph Laplacian is compu-
tationally intensive, especially for large graphs. This limits the scalability of spectral-based
methods.

Graph convolutional networks are applied to a variety of domains such as analyzing molec-
ular structures, where nodes represent atoms and edges represent bond as well as on social
networks for user behavior understanding, community detection and influence propagation
by analyzing the social interactions among users. They are also used in recommendation
systems in order to enhance the recommendations by capturing user-item interactions and
their underlying graph structure. In the following, we discuss the graph convolutional layer
used for our applications.

3.4.4 Employed graph convolutional layer

In order to combine the advantages offered by both methods (spatial and spectral), some
methods have been proposed recently to reduce the computational burden of graph Fourier
and inverse graph Fourier transforms, while still utilising their foundations in the spectral
domain. Such methods are different from both pure spatial and pure spectral convolutions.
These methods are not designed using eigenvalues, but are instead implicitly designed as a
function of structural information (adjacency, degree, Laplacian matrices) and perform con-
volution in the spatial domain like all spatial convolutions [137].
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We use such a method for our problems in this section by building a graph convolutional
network using Spektral [138], a Python library based on Keras and Tensorflow that provides
tools to create and manipulate graphs, build graph neural networks and perform automatic
differentiation to train geometric Deep Learning models. We created the GCN on the base
of GCSConv, a convolutional graph layer that computes

Xk+1 = D−1/2AD−1/2XkW1 +XkW2 + b (3.1)

where D is the degree matrix, A is the adjacency matrix symmetrically normalized with
D−1/2 = 1√

D
so that the nodes with high number of connections do not be in very different

range and shade the nodes with fewer connections as the network goes deeper, Xk represents
the node features at the k-th layer, W1 and W2 are weight trainable matrices and b is a biases
trainable vector. As mentioned before, this layer is function of graph structural informations
(D and A) like the spectral method which uses the Laplacian matrix L = D − A while the
computation is performed in the graph spatial domain, which makes it a bridge between
these two methods. To avoid over-smoothing of the node features, we only stack four or five
graph convolutional layers in the architectures.

Graph neural network tasks can be broadly categorized into two types: graph-level tasks
and node-level tasks. Graph-level tasks focus on predicting properties or labels for entire
graphs rather than individual nodes. These tasks are crucial in scenarios where the holistic
structure and features of the graph are important. Graph classification involves assigning a
label to an entire graph. Graph regression involves predicting continuous values for entire
graphs. Graph generation involves creating new graphs that possess certain desired prop-
erties. Node-level tasks focus on predicting properties or labels of individual nodes within
a graph. These tasks leverage the local and sometimes global structure of the graph to en-
hance node-specific predictions. Common node-level tasks include node classification, node
regression and node clustering. Node classification involves assigning a label to each node in
a graph. Node regression involves predicting continuous values for nodes. Node clustering
aims to group nodes into clusters based on their structural and feature similarities.

In the following, we apply GCNs on nano-cylinders multiscattering and multilayer stacks re-
flectivity which consist of node-level regression and graph-level regression tasks, respectively.
For the first task, we aim to predict characteristics to individual nodes. Graph convolutional
layers update the node representations in five rounds (five consecutive layers) and the final
layer node features represent the model prediction, an illustration is depicted in Figure 3.9. In
the second task, we predict the reflectivity spectrum of the hole graph (stack of multilayers),
four graph convolutional layers are followed by a pooling layer in order to coarse the graph
into a 1D vector and a final Dense layer of 64 neurons outputs the reflectivity spectrum.

3.4.5 Electric polarization of nano-cylinders

As mentioned before, we apply GCN on the problem of light multiscattering from nano-
cylinders. The simulations to generate data are performed using pyGDM2 [120, 121]. The
cylinders have 15 nm radius with a refractive index n = 3 and are distributed in a grid of
positions with 50 nm spacing, they are assumed to be infinitely high which leads to a 2D prob-
lem. Figure 3.10 shows an illustration of a structure containing eight nano-cylinders, Figure
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Figure 3.9: Graph neural network architecture. The model takes a graph of four nodes as input,
transforming it with four hidden layers. The updating nodes are represented in red, showing that
every layer updates all the nodes in the graph simultaneously. Graph convolutional layers are
followed by LeakyReLU activation functions. An output layer with linear activation produces the
model prediction. The characteristics of the nodes in the output graph represent the predicted
polarizations.
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Figure 3.10: Nano-cylinders, horizontal section image and corresponding graph illustration. Il-
lustration of (a) infinitely high nano-cylinders to which the light is directed from the side and the
electric field
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E parallel to the cylinders on the y axis; their (b) horizontal section top view image

showing the relative positions through white pixels and (c) the graph representation of the nanos-
tructure where each nano-cylinder is encoded as a node.
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Figure 3.12: Histograms of the model test relative error in % on the number of cylinders change
with a constant window size of 11×11 pixels, the window dimensions (in pixels) represent the space
in which the cylinders are randomly distributed. Three examples of the relative errors between
the GCN predictions and targets for (a) 4 cylinders, (b) 9 cylinders and (c) 18 cylinders, where 9
cylinders are interpolation whereas 4 and 18 cylinders are extrapolation cases. For each example,
the top histogram represents the real part error and the bottom one is the imaginary part error.
The interquartile range (IQR) is set as title on top of each histogram.
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Figure 3.13: Randomly selected examples in the model predictions on the number of particles change
problem. These examples are from (a) 4, (b) 9, (c) 15 and (d) 18 cylinders. For each example, real
and imaginary parts are plotted for the prediction (blue curve) and simulation (orange dashed curve)
as well as the scattering electric field maps using the predictions and simulations for re-propagation.

95



3.10a, the top view image of their representations, Figure 3.10b, where each nano-cylinder is
modeled by a pixel (suitable for a regular CNN) and the corresponding graph, Figure 3.10c
(suitable for a GNN). We describe the optical response in frequency domain, where the time
dependence is harmonic and fields can be described with complex numbers as E = Ê · e−iωt.
The polarization is generally a vector p = αE0, where E0 is the illumination’s electric field
vector and α is the polarizability tensor. We assume electric field along the direction of the
infinite cylinder axis. This makes the problem scalar and p, α and E0 are then just com-
plex numbers. The goal is to predict the electric polarization of a random and complicated
arrangement of nano-cylinders illuminated from the side. Between the cylinders, coupling
effects as well as optical multi-scattering will occur, rendering the electric polarization very
complex. Such problems are often used using coupled dipole methods [139], which become
time consuming for large problems as their numerical complexity scales with N3 (N is the
number of particles). We want to predict the fields instead with a neural network. Since the
number of scatterers and their positions are typically highly variable, a model that can work
on flexible problem sizes with continuous input values is required, which matches perfectly
with GCNs. The model takes as input the nano-cylinders’ positions and the incident electric
field evaluated at those positions to predict the electric polarization. Each node in the graph
stands for a nano-cylinder and contains the values of the incident electric field in addition to
the particle position (in the 2D top view image). It is important to note that the positions
of the cylinders are processed like features by the Graph model and the GNN has initially
no knowledge about the concept of an Euclidean coordinate space, therefore it needs to "un-
derstand" the meaning of these values implicitly from the correlations in the dataset. Every
node is labeled by its electric polarization, which makes this task a node-level regression.
We carry out two applications, in a first step we vary the number of cylinders distributed
in a fixed 2D space of 11 × 11 pixels; in a second step, we vary the window size for a fixed
number of cylinders (10). For each application we test the capacity of the model to predict
in the field of its training but also its capacity to extrapolate. In the extrapolation tests, we
predict the optical responses for structures with less/more cylinders than the training data
structures for the first application and for smaller/larger windows in the second application
of window size varying.

For the application of number of cylinders varying, the training and validation datasets con-
tain graphs of 8, 9, 10, 14, 15 and 16 nodes, the number of graph nodes correspond to the
number of cylinders. The test dataset includes graphs with different size compared to those
used for training and validation (test with sizes from 4 to 20 cylinders). The objective of this
experiment is to verify the capacity of the model to extrapolate on graphs with "unseen"
sizes. As depicted in Figure 3.11a by the interquartile range (IQR) of the relative error be-
tween the predicted polarizations and the target ones, the model performs better, as might
be expected, in the interpolation cases. However, we notice that the extrapolation close to
interpolation zones is better handled by the model compared to the extrapolation at the
outer border of the dataset range like the optical response predictions for 4 or 20 cylinders.
The relative errors are normalized with the modulus of the target optical response for each
particle. The statistics of 3 numbers of cylinders are shown in Figure 3.12 as examples, two
extrapolation cases (4 and 18 cylinders) and one interpolation case (9 cylinders) showing,
as anticipated, less error compared to extrapolation cases. The optical responses predicted
by GCN on some interpolation (9 and 15 cylinders) and extrapolation (4 and 18 cylinders)
cases are reported in Figure 3.13 for visual comparison with the target ones. Each example

96



co
u
n
t

co
u
n
t

9x5 window (extrapolation) 9x23 window (extrapolation)9x15 window (interpolation)(a) (c)(b)

relative error (%)relative error (%)relative error (%)

100 50 0 50 100
0

100

200

300

400

500
real part | IQR: 23.43%

100 50 0 50 100
0

100

200

300

400

imaginary part | IQR: 25.99%

100 50 0 50 100
0

200

400

600

real part | IQR: 17.80%

100 50 0 50 100
0

200

400

600

imaginary part | IQR: 18.12%

100 50 0 50 100
0

100

200

300

400
real part | IQR: 30.69%

100 50 0 50 100
0

100

200

300

400
imaginary part | IQR: 31.51%

Figure 3.14: Histograms of the model test relative error in % on window size change with a constant
cylinders number of 10. The window dimensions (in pixels) represent the space in which the cylinders
are randomly distributed. Three examples of the relative errors between the GCN predictions and
targets for (a) 9 × 5, (b) 9 × 15 and (c) 9 × 23, where 9 × 15 are interpolation whereas 9 × 5 and
9 × 23 are extrapolation cases. For each example, the top histogram represents the real part error
and the bottom one is the imaginary part error. The interquartile range (IQR) is set as title on top
of each histogram.

shows also the scattering electric field maps when using the predictions and simulations for
re-propagation, the derived optical fields are quite accurate which shows that the quite large
relative errors in the order of 10s of % are actually not so bad after all. We attribute this
to the largest relative errors resulting from very small values of the polarizations (where the
predictions are divided by small values). However, these particles with small polarization
values do not contribute much to the overall scattering.

We repeated the same procedure by changing the window size, the training and validation
datasets contain window sizes of 9× 13, 9× 15, 9× 17 and 9× 19 for a fixed number of 10
cylinders. The test dataset includes window sizes different from those used in training and
validation going from 9 × 5 to 9 × 27 (changing the window size on the direction of light
propagation). As depicted in Figure 3.11b by the interquartile range (IQR) of the relative
error, the model shows better performance, without surprise, in the interpolation cases. The
statistics of 3 window sizes are shown in Figure 3.14 as examples, two extrapolation cases
(9 × 5 and 9 × 23) and one interpolation case (9 × 15) showing, as we would expect, less
error compared to extrapolation cases. Randomly selected optical response predictions by
the GCN on some interpolation (9 × 13 and 9 × 15) and extrapolation (9 × 5 and 9 × 27)
zones are reported in Figure 3.15 for visual comparison with the target ones. Each example
shows also the scattering electric field maps when using the predictions and simulations for
re-propagation, the derived optical fields are again very accurate.

In these two applications, the model performs quite well in interpolation but less in extrap-
olation. We attribute this again to the fact that neural networks are typically strong in
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Figure 3.15: Randomly selected examples in the model predictions on the window sizes change
problem. These examples are from (a) 9 × 5, (b) 9 × 13, (c) 9 × 15 and (d) 9 × 27. The window
dimensions (in pixel) represent the space in which the cylinders are randomly distributed. For each
example, real and imaginary parts are plotted for the prediction (blue curve) and simulation (orange
dashed curve) as well as the scattering electric field maps using the predictions and simulations for
re-propagation.
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Figure 3.16: Multi-layer thin film stack, matrix array and the corresponding graph. (a) Illustration
of the geometry showing a randomly selected layer stack. The light is directed towards a multi-
layer stack constituted of layers of different thicknesses and refractive indices, the transmitted light
is indicated by T whereas the reflected light is indicated by R. (b) Array representation of the
structure with three rows and two columns, each row represents a layer from the stack in (a) and
contains its thickness d and refractive index n. The whole matrix is labeled by the reflectivity R.
(c) The representative graph of the matrix in (b). Each node stands for a row (layer) and holds a
vector containing the thickness d as well as the refractive index n. The entire graph is labeled by
its reflectivity R.

interpolation but weak in extrapolation. These tasks show the capacity of GNNs to work on
graph-structured data with arbitrary size and connectivity schemes and thus suggest GNNs
as a suitable tool for working on real-life data (like particles, social network, etc) without
breaking their forms by making assumptions to fit them into regular neural networks. In
the following, we switch the problem and test GNNs on a graph-level task by predicting the
reflectivity spectrum of multi-layer stacks.

3.4.6 Reflectivity of multi-layer thin film stacks

We conduct an experiment using the same type of graph neural network with essentially
identical configuration on a second problem, namely light reflection from dielectric thin-film
multi-layer stacks. The multilayer structures are composed of dielectric materials and are
illuminated at normal incidence. The first step is to set up the graph dataset, for the multi-
layer stacks and differently from the nano-cylinders in the section above, the graphs look like
chains. An illustration of a thin-film multilayer stack, as well as a representative matrix array
and the corresponding graph are shown in Figure 3.16; Each node of the graph represents a
layer and initially contains as features the values of the thickness d and the refractive index
n. In contrast to the node-level prediction that we performed in the preceding subsection,
here the whole layer stack (hence the full graph) is characterized by a reflectivity spectrum,
therefore we now perform the so-called "graph-level regression". After four graph convolu-
tional layers, the node representations are transformed into a 1D vector by GlobalAvgPool,
an average pooling layer that pools a graph by computing the average of its node charac-
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Figure 3.17: Relative error (%) interquartile range of the GCN. The graph convolutional model is
trained on the data in the interpolation regime (green background) and then tested with data of
multilayers from 4 to 20 layers. According to the IQR (blue curve) of the relative error, the model
performs better in the interpolation regime. In a second step, the model is fine-tuned on data from
interpolation and extrapolation regimes and the IQR of the relative error (green curve) shows that
the model performs now better on data with generally smaller sizes.
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Figure 3.18: GCN statistics: before and after fine-tuning. Before fine-tuning, the model is tested
on interpolation cases like multilayers with (b) 8 layers, where the results are better with IQR =
11.93,% and also tested with data from extrapolation, examples are (a) and (c) with 117.31% and
78.59%, respectively. In a second step, the model is fine-tuned on data from interpolation and
extrapolation regimes, selected statistics show that the model has now better accuracy on structures
with smaller number of layers as seen by comparing (d) 12.27%, (e) 19.4% and (f) 66.29%.
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teristics. The pooled node representations are processed by a fully connected Dense keras
layer of 64 neurons to output the reflectivity spectrum. The spektral module graph layers
are fully compatible with keras layers. For this experiment, the data simulation is realised
with pyMoosh [119].

The graph convolutional network is trained with stacks of 8 to 11 layers. That is presented
as the interpolation zone in the model test. On top of that, the model is tested with multi-
layers of sizes from 4 to 7 and from 12 to 15, in order to test the extrapolation capacity of the
graph network. Figure 3.17 shows the trend of the relative error represented by the interquar-
tile range in blue curve. The interpolation and extrapolation statistics are shown in Figure
3.18, expressed as histograms with the interquartile range at the top of each one to compare
the relative error distribution while ignoring the outliers. As expected, the model shows
better accuracy on interpolation regime. In order to visually examine the model accuracy,
randomly selected cases of interpolation and extrapolation zones are shown in Figure 3.19.
The GCN model demonstrates satisfying accuracy in interpolation regime even though the
graph sizes varies. Concerning the extrapolation regime, closer to the interpolation regime,
better is the accuracy. These results show the potential of graph neural networks to handle
graph-structured data of arbitrary sizes and forms. Furthermore, to expand the model’s field
and make it work on the extrapolation data with more favourable outcomes, the so-called
fine-tuning process is used by relaunching a training of few iterations using relatively small
resources including parameter ranges not covered by the original dataset.

In general, fine-tuning involves taking a pre-trained neural network and making slight ad-
justments to its weights to adapt it to a specific task. Fine-tuning leverages the general
features learned by a pre-trained network on a large dataset and refines them for more spe-
cialized applications, enhancing performance and reducing training time [140]. Mainly two
approaches, namely the full fine-tuning and the partial fine-tuning, enable to fine-tune a
pre-trained model on new data with the same physics than the initially used data. Full fine-
tuning consists of adjusting all layers while partial fine-tuning involves freezing some of the
early layers and only retraining the later layers [140]. Freezing layers means their weights
remain unchanged during the fine-tuning training process. In large neural network models,
retraining all layers is more flexible and can adapt to the nuances of the target task but
requires more computational resources and a larger amount of labeled data; hence retraining
only the last few layers is computationally efficient and requires little data when the initial
and target tasks are quite similar.

In order to fit the GCN model on the extrapolation data, we have opted for the full fine-tuning
approach because we are dealing with a lightweight model comprising only five trainable
layers. The initial training has been performed on 25 000 samples per structure size whereas
for the fine-tuning we used 2400 samples per structure size which is more than ten times
less. In the same way than the initial training, the relative error trend is plotted in Figure
3.17 (green curve), the fine-tuning reduced the errors of all the extrapolation cases; however,
the interpolation zones get slightly more error. Furthermore, we notice that the fine-tuning
process benefited the most to the structure of smaller size (i.e. 4 to 7 layers), as also shown
on the statistics in Figure 3.18d-f, but also on the randomly selectd predictions in Figure
3.20. It is the same looking at the interpolation regime of the initial training in Figure 3.17
(blue curve), the IQR has increasing trend. It is evident that the model performs well on
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Figure 3.20: Randomly selected GCN predictions on multilayer reflectivity after fine-tuning in order
to have an overview of the model accuracy. The predictions trend shows that the model has now
higher performance on data with smaller sizes.
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structures with relatively fewer layers in the field of training as their physics are simpler and
responses less complex. This fine-tuning process demonstrates that it is possible to readapt
a graph model (like every Deep Learning model in general) on new data with same physics
than the training data without beginning the model training from scratch.

3.4.7 Conclusion

We proposed a graph convolutional network (GCN) as surrogate model for physics problems
(and potentially other problems), that can then be used for further applications, e.g. inverse
design. The performed proof of concept concerns the forward problem on the multiscattering
of nanocylinders and the reflectivity of multilayer stacks. The models show good qualitative
performance in both experiments. The extrapolation tests revealed that graph models can
still work on graphs with sizes close to those in the training data. Nevertheless, it’s possible to
finetune the model on "unseen" data to extend its working field. The aim of these experiments
is to show the potential of the graph neural networks to deal with structures of arbitrary sizes
and complex forms. Finally, we fine-tuned the GCN model and shown that it reduces the
errors, particularly in the extrapolation zones. The fact that it generally requires less data
and computational power makes it a practical approach for applications with limited labeled
data or computational resources. Further work is to improve the overall model accuracy and
test more sophisticated applications.

3.5 Conclusion
In conclusion, we explained why ill-posed inverse design problem in nanophotonics cannot be
solved with naive deep learning models that take the physical property as input and output
the design parameters. Fortunately, some deep learning architectures are able to deal with
inverse design. We presented Tandem networks and conditional variational autoencoder to
solve the inverse design problem by the example of light reflectivity multilayer stacks. The
Tandem network reaches one of the possible solutions while the conditional variational au-
toencoder learns to identify and address possible multiple solutions thanks to its latent space.
These two architectures are both so called "one-shot". We also demonstrated an experiment
on gradient-based iterative method, namely the Neural Adjoint method using a CNN as sur-
rogate model. Because the NA iteratively uses gradients to optimize a solution, there is a
elevated risk of diverging outside the interpolation regime to a failed extrapolated solution.
Hence it is crucial to constrain the designs to the interpolation regime of the forward model.
To this end, we demonstrated how a generative model like a WGAN can be used by learn-
ing a regularized re-parametrization of the designs, optimizing this new latent description
instead and constraining this to the center region of the latent space, which corresponds to
the interpolation regime.

However, it is possible that one has to deal with nanophotonic devices of arbitrary sizes
and forms, for such scenario we proposed a graph convolutional surrogate model in order
to handle such non-Euclidean data. We applied GCN on optical multiscattering in complex
ensembles of nano-particles and optical reflection of multilayer thin film stacks. Finally, we
demonstrated the extrapolation ability of such models as well as the possibility to fine-tune
GCNs to improve their performance on regions outside of the parameter range of the original

104



training data, using only little data. Further work is to improve the model accuracy and
extend the study into more sophisticated applications to benefit from the full potential of
graph convolutional network.
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General conclusion

In conclusion, in this thesis we demonstrated how neural networks can be used to characterize
MBE crystal growth by processing images of RHEED patterns. Furthermore, we treated the
inverse design problem of nanophotonics with generative models and proposed a surrogate
graph neural network by representing nanophotonic structures as graphs.

In Chapter 1, we introduced the concept of deep learning, starting with the main building
block, the artificial neuron. The latter takes inputs, then calculates the weighted sum, adds
a bias and passes the result to an activation function that adds non-linearity to the neuron.
An artificial neural network is a set of artificial neurons organized in layers. In the case
of a multilayer perceptron, each neuron in a given layer is connected to the set of neurons
preceding it. This type of network is designed to manage high-level features. There are also
convolution neural networks, which have been particularly successful in image processing
and generally in computer vision. Recurrent neural networks specialize in sequential data,
while graph neural networks can handle graph-structure data. These models are trained with
a stochastic gradient descent algorithm that improves the model step by step by updating
the network parameters (weights and biases). Automatic differentiation tools provided by
modern Deep Learning libraries such as keras and PyTorch facilitate this process. These
neural networks are used to create complex architectures for specific tasks, for instance the
autoencoder, which involves two networks: an encoder that compresses the data into a latent
space and a decoder that attempts to reconstruct the original data from the latent space. For
instance, after training, the encoder can be used as a data compressor. The variational au-
toencoder works with an encoder and a decoder like the regular autoencoder except that the
latent space is a probability distribution characterized by a mean and a standard deviation
provided by the encoder, the decoder now reconstructs from this probability distribution,
enabling well-organized latent space and thus more sophisticated sample generation. Gener-
ative Adversarial Network (GAN) is known for its high quality image generation. This model
is designed by training a generator and a discriminator in a competitive process where the
generator attempts to produce images similar to those in the database while the discrimi-
nator’s role is to distinguish the true images from the synthetic generated images. Finally,
U-Net, an image segmentation network also involves an encoder-decoder architecture but
with connections between these paths at corresponding level (same spatial dimensions).

In Chapter 2, we characterize RHEED patterns using deep learning models. Given that this
application is not very widespread to date, we have carried out a state of the art review of
a few studies that use machine learning methods such as PCA and deep learning. This is
followed by the section taken from our published paper [35] on substrate deoxidation detec-
tion with an architecture involving two networks: an autoencoder that compresses images
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and a CNN that classifies sequences of these compressed images. We studied the impact of
sequence length by keeping the size of the latent space of the autoencoder constant (N =50)
and vice versa with a constant sequence length (L =15). Classification is accurate from L =5
and N =10. We then classified the surface reconstructions (2 × 4) and c(4 × 4). Surface
reconstruction consists of the rearrangement of surface atoms due to growth conditions such
as temperature. This classification task is performed using a residual neural network. The
last section of this chapter reports our work on Azimuthal RHEED construction using Deep
Learning. Azimuthal RHEED consists of slices through the specular spot plotted as a func-
tion of the azimuthal angle and allows more advanced characterization with good resolution
at low crystal rotation speeds (around 3-4 rpm). This task involves two steps, the detec-
tion of the specular spot and the regression of the crystal rotation angle. The specular spot
detection is performed using a semantic segmentation model that takes a RHEED image as
input and produces a binary mask with the same dimensions as the input image containing
ones in the specular spot area and zeros elsewhere. The specular spot center of gravity co-
ordinates are chosen as its position. The regression task of the azimuthal angle is performed
using a residual neural network in order to determine the orientation of the crystal with
respect to the incident electron beam. The challenge is that at these low speeds, the angle
measurement is not precise. The sample holder is magnetically linked to the motor located
outside the ultra-high vacuum growth chamber. This link is subject to clearance and friction
at low speeds but is effective at high speeds (e.g. 12 rpm) thanks to the inertia. Our idea
is therefore to train a model on data at 12 rpm and use it on data captured at 4 rpm. In
tests, the model performs well on both 4 and 12 rpm data. The Azimuthal RHEED is then
plotted using 4 rpm data.

In chapter 3, we focus on nanophotonics and in particular on the inverse design problem,
which consists of determining a nanostructure from a target optical response. This is an
ill-posed problem according to Hadamard’s three conditions [106]: a problem is well-posed
when a solution exists, that solution is unique and continuous. In order to circumvent this
issue, numerical global optimization methods are used, which are generally expensive and
slow. Deep learning techniques have been proposed, in particular generative models and
these methods stand out mainly because of their execution speed. We have presented three
methods, taken from our published article [13]. The first is the so-called Tandem architec-
ture, which involves two networks. The first network takes the optical response as input
to build a nanostructure and the second, a pre-trained forward model, predicts the optical
response from this nanostructure, the training loss function compares then the input and the
predicted optical responses, thus avoiding the problem of multisolutions. The second method
is the conditional variational autoencoder, which generates nanostructures conditioned on the
desired optical response. The final presented technique is the neural adjoint method, which
optimizes a set of initial candidates and then selects the candidate that is closest to the
desired optical response. This method uses a forward propagation neural network model to
calculate the candidate responses and optimizes candidate architectures in a gradient-based
optimization. It is important to avoid the extrapolation zone from the forward model, to this
end, we trained a WGAN-GP with regularized latent space. At the end of the chapter, we
propose a graph neural network surrogate model to structure design parameters in the form
of graphs, which allows the processing of nanostructures with arbitrary sizes and forms. Two
tasks are studied, light multiscattering from nanocylinders and the reflectivity of multilayer
stacks. For each application, we test the interpolation and extrapolation capabilities of the
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graph convolutional network. Finally, we finish with a fine-tuning for the application of the
multilayer stack reflectivity in order to include extrapolation data in the graph neural net-
work training field.

Essentially, we developed Deep Learning techniques for monitoring MBE crystal growth using
only raw RHEED images, in particular for detecting the deoxidation moment of the substrate,
the classification of the surface reconstructions and the azimuthal RHEED plotting involving
the tracking of the specular spot position and the determination of the crystal rotation angle
with respect to the electron beam in the case of GaAs. These techniques pave the way for
the use of AI and in particular deep learning in the characterization of crystal growth. They
could also be used for other tasks such as determining the proportions of different materials
on the surface of a crystal. Deep Learning-based crystal growth monitoring could be pushed
further by mixing RHEED patterns with data from ex-situ characterization techniques such
as X-Ray Diffraction (XRD) and thus make it possible the extraction of information that
are not yet accessible in-situ. In a second application, we have demonstrated the capacity of
these models to address the inverse problem in nanophotonics using generative models such
as Tandem, cVAE and neural adjoint method. Furthermore, we proposed a graph neural
network that handles the direct problem, allowing nanostructures to be represented in the
form of graphs in non-Euclidean space. This approach paves the way for the development of
neural network models for very large nano-optical devices such as metasurfaces.

In addition, this work demonstrates the significant potential of deep learning in addressing
scientific challenges such as crystal growth monitoring and nanophotonics inverse design.
However, it also highlights the complexity involved in adapting this approach to different
problems. For each new problem, a tailored deep learning strategy is required.
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Appendix

PyMoosh [141]
PyMoosh (Python-based Multilayer optics optimization and simulation hub) is a simulation
library designed to provide a comprehensive set of numerical tools allowing the computation of
essentially all optical characteristics of multilayer structures such as reflectivity and transmit-
tance. It is the python version of Moosh, which was implemented in Octave/MATLAB [142].
More details on the theoretical basis at the core of PyMoosh can be found in [141].
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Figure 3.21: Multilayer structure and definition of important variables. The light is considered
coming from the top of the image. ϵi and µi are, respectively, the permittivity and the permeability
of layer i. Ai (resp. Bi) are defined as the amplitude of the upward propagating (resp. downward
propagating) field in layer i and the + (resp. -) superscript indicates that the field value is taken at
the top (resp. bottom) of layer i. Reprinted from [141].

The optical response of the multilayer structures considered in this thesis is the reflectivity
R. In PyMoosh, each layer is characterized by its relative permittivity ϵr and permeability µr

as illustrated in Figure 3.21. There are different ways to eliminate all the unknowns to obtain
the reflection or the transmission coefficients. To this end, the library implements five dif-
ferent approaches: transfer and scattering matrices, as well as Abelès, Dirichlet-to-Neumann
(DtN) and Admittance Formalisms. The scattering matrix formalism is the most accurate,
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but also the computationally most expensive one. For this reason, the computation of the
reflectivity for the multilayer structures in this thesis is performed based on the scattering
matrices method.

The S-matrices method links the incoming fields to the outgoing fields for each interface and
layer through a matrix. Iteratively applying this on the layer stack leads to the scattering
matrix S of the whole structure:(

A−
0

B+
N+1

)
= S

(
B−

0

A+
N+1

)
where S is a (2× 2) matrix typically noted as S =

[
S00 S01

S10 S11

]
The complex reflection and transmission coefficient can be read directly, knowing B−

0 = 1,
A+

N+1 = 0: r = S00, t = S10. The reflectivity R and the transmittance T are finally given by
the absolute squares: R = |r|2 and T = |t|2.

PyGDM [120,121]
PyGDM is a Python-based computational toolkit designed for conducting electro-dynamical
simulations in nano-optics. It leverages the Green Dyadic Method (GDM), a numerical vol-
ume integral approach for solving Maxwell’s equations in systems with arbitrary shapes and
material properties making PyGDM suitable for analyzing the interaction of light with indi-
vidual nanostructures. A key feature of PyGDM is its ability to compute light scattering by
nanostructures with a wide range of geometries. The toolkit enables to model nanostructures
placed in a homogeneous environment and to calculate their scattering cross-sections under
different illumination conditions.

To simulate nanostructures, PyGDM discretizes arbitrary three-dimensional geometries into
smaller subunits, small enough such that a dipolar approximation for the optical response
of each subunit is justified. It computes the scattered electromagnetic fields by solving a
system of linear equations that describe the dipolar interactions between all subunits within
the structure. This discretization approach ensures flexibility in handling diverse shapes and
material configurations.

PyGDM is designed for computational efficiency, enabling the rapid simulation of complex
structures and geometries. Moreover, the toolkit integrates well with Python scientific li-
braries, allowing for customized data analysis, post-processing and visualization. More de-
tails on the theoretical basis as well as a list of the functionalities available in PyGDM can
be found in [121].

112



Bibliography

[1] Oswald Campesato. Artificial intelligence, machine learning, and deep learning. Mercury Learning and
Information, 2020.

[2] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018(1):7068349, 2018.

[3] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages of deep learning for
natural language processing. IEEE transactions on neural networks and learning systems, 32(2):604–
624, 2020.

[4] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for speech
recognition and related applications: An overview. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 8599–8603. IEEE, 2013.

[5] Meghavi Rana and Megha Bhushan. Machine learning and deep learning approach for medical image
analysis: diagnosis to detection. Multimedia Tools and Applications, 82(17):26731–26769, 2023.

[6] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. A survey of deep learning
applications to autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems,
22(2):712–733, 2020.

[7] Erfan Khoram, Zhicheng Wu, Yurui Qu, Ming Zhou, and Zongfu Yu. Graph neural networks for
metasurface modeling. ACS Photonics, 10(4):892–899, 2022.

[8] Tharindu Kaluarachchi, Andrew Reis, and Suranga Nanayakkara. A review of recent deep learning
approaches in human-centered machine learning. Sensors, 21(7):2514, 2021.

[9] Leonardo Noriega. Multilayer perceptron tutorial. School of Computing. Staffordshire University,
4(5):444, 2005.

[10] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6):183–
197, 1991.

[11] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. A survey on modern
trainable activation functions. Neural Networks, 138:14–32, 2021.

[12] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. Towards
Data Sci, 6(12):310–316, 2017.

[13] Abdourahman Khaireh-Walieh, Denis Langevin, Pauline Bennet, Olivier Teytaud, Antoine Moreau,
and Peter R Wiecha. A newcomer’s guide to deep learning for inverse design in nano-photonics. arXiv
preprint arXiv:2307.08618, 2023.

[14] Hong Hui Tan and King Hann Lim. Vanishing gradient mitigation with deep learning neural network
optimization. In 2019 7th international conference on smart computing & communications (ICSCC),
pages 1–4. IEEE, 2019.

[15] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák. A review of activation func-
tion for artificial neural network. In 2020 IEEE 18th World Symposium on Applied Machine Intelligence
and Informatics (SAMI), pages 281–286. IEEE, 2020.

[16] Stamatis Mastromichalakis. Alrelu: A different approach on leaky relu activation function to improve
neural networks performance. arXiv preprint arXiv:2012.07564, 2020.

113



[17] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627–2636, 1998.

[18] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu,
Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional neural networks.
Pattern recognition, 77:354–377, 2018.

[19] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning
systems, 2021.

[20] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee. Recent advances
in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

[21] Larry R Medsker and LC Jain. Recurrent neural networks. Design and Applications, 5(64-67):2, 2001.

[22] Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current opinion
in neurobiology, 55:82–89, 2019.

[23] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI
open, 1:57–81, 2020.

[24] Alice Moallemy-Oureh, Silvia Beddar-Wiesing, Rüdiger Nather, and Josephine M Thomas. Fdgnn:
Fully dynamic graph neural network. arXiv preprint arXiv:2206.03469, 2022.

[25] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. Heterogeneous graph
structure learning for graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 4697–4705, 2021.

[26] Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered gnn: Ordering message
passing to deal with heterophily and over-smoothing. arXiv preprint arXiv:2302.01524, 2023.

[27] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th interna-
tional symposium on quality of service (IWQoS), pages 1–2. Ieee, 2018.

[28] Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review on weight initialization
strategies for neural networks. Artificial intelligence review, 55(1):291–322, 2022.

[29] François Chollet et al. keras, 2015.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[31] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[33] Johnson Kolluri, Vinay Kumar Kotte, MSB Phridviraj, and Shaik Razia. Reducing overfitting problem
in machine learning using novel l1/4 regularization method. In 2020 4th International Conference on
Trends in Electronics and Informatics (ICOEI)(48184), pages 934–938. IEEE, 2020.

[34] Chathurdara Sri Nadith Pathirage, Jun Li, Ling Li, Hong Hao, Wanquan Liu, and Pinghe Ni. Structural
damage identification based on autoencoder neural networks and deep learning. Engineering structures,
172:13–28, 2018.

[35] Abdourahman Khaireh-Walieh, Alexandre Arnoult, Sébastien Plissard, and Peter R Wiecha. Monitor-
ing mbe substrate deoxidation via rheed image-sequence analysis by deep learning. Crystal Growth &
Design, 23(2):892–898, 2023.

[36] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[37] Huajie Shao, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong Liu, Dongxin Liu, Jun Wang, and
Tarek Abdelzaher. Controlvae: Controllable variational autoencoder. In International conference on
machine learning, pages 8655–8664. PMLR, 2020.

114



[38] Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients. Advances
in neural information processing systems, 31, 2018.

[39] Chen Zhang, Riccardo Barbano, and Bangti Jin. Conditional variational autoencoder for learned image
reconstruction. Computation, 9(11):114, 2021.

[40] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A
Bharath. Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–
65, 2018.

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM,
63(11):139–144, 2020.

[42] Nahian Siddique, Sidike Paheding, Colin P Elkin, and Vijay Devabhaktuni. U-net and its variants for
medical image segmentation: A review of theory and applications. Ieee Access, 9:82031–82057, 2021.

[43] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
Redesigning skip connections to exploit multiscale features in image segmentation. IEEE transactions
on medical imaging, 39(6):1856–1867, 2019.

[44] Matthew Brahlek, Jason Lapano, and Joon Sue Lee. Topological materials by molecular beam epitaxy.
Journal of Applied Physics, 128(21), 2020.

[45] BA Joyce. Molecular beam epitaxy. Reports on Progress in Physics, 48(12):1637, 1985.

[46] William Nunn, Tristan K Truttmann, and Bharat Jalan. A review of molecular-beam epitaxy of wide
bandgap complex oxide semiconductors. Journal of materials research, pages 1–19, 2021.

[47] Alfred Y Cho. How molecular beam epitaxy (mbe) began and its projection into the future. Journal
of Crystal Growth, 201:1–7, 1999.

[48] Shozo Ino. Some new techniques in reflection high energy electron diffraction (rheed) application to
surface structure studies. Japanese Journal of Applied Physics, 16(6):891, 1977.

[49] Yoshimi Horio, Yasuyuki Hashimoto, and Ayahiko Ichimiya. A new type of rheed apparatus equipped
with an energy filter. Applied surface science, 100:292–296, 1996.

[50] Wolfgang Braun. Applied RHEED: reflection high-energy electron diffraction during crystal growth,
volume 154. Springer Science & Business Media, 1999.

[51] Ayahiko Ichimiya and Philip I Cohen. Reflection high-energy electron diffraction. Cambridge University
Press, 2004.

[52] Ugo Valdrè. Surface and Interface Characterization by Electron Optical Methods, volume 16. Springer
Science & Business Media, 2013.

[53] Janghyun Jo, Youngbin Tchoe, Gyu-Chul Yi, and Miyoung Kim. Real-time characterization using
in situ rheed transmission mode and tem for investigation of the growth behaviour of nanomaterials.
Scientific reports, 8(1):1694, 2018.

[54] Claes Thelander, Philippe Caroff, Sébastien Plissard, and Kimberly A Dick. Electrical properties of
inas1- xsbx and insb nanowires grown by molecular beam epitaxy. Applied Physics Letters, 100(23),
2012.

[55] B Daudin, G Feuillet, J Hübner, Y Samson, F Widmann, A Philippe, C Bru-Chevallier, G Guillot,
E Bustarret, G Bentoumi, et al. How to grow cubic gan with low hexagonal phase content on (001) sic
by molecular beam epitaxy. Journal of Applied Physics, 84(4):2295–2300, 1998.

[56] Akihiro Ohtake, Takaaki Mano, and Yoshiki Sakuma. Strain relaxation in inas heteroepitaxy on lattice-
mismatched substrates. Scientific Reports, 10(1):4606, 2020.

[57] Markus Ringnér. What is principal component analysis? Nature biotechnology, 26(3):303–304, 2008.

[58] Sidharth Prasad Mishra, Uttam Sarkar, Subhash Taraphder, Sanjay Datta, D Swain, Reshma Saikhom,
Sasmita Panda, and Menalsh Laishram. Multivariate statistical data analysis-principal component
analysis (pca). International Journal of Livestock Research, 7(5):60–78, 2017.

115



[59] Lindsay I Smith. A tutorial on principal components analysis. 2002.

[60] Hervé Abdi. Singular value decomposition (svd) and generalized singular value decomposition. Ency-
clopedia of measurement and statistics, 907:912, 2007.

[61] Kenneth Lange and Kenneth Lange. Singular value decomposition. Numerical analysis for statisticians,
pages 129–142, 2010.

[62] Carlos Oscar Sánchez Sorzano, Javier Vargas, and A Pascual Montano. A survey of dimensionality
reduction techniques. arXiv preprint arXiv:1403.2877, 2014.

[63] Jinkwan Kwoen and Yasuhiko Arakawa. Classification of in situ reflection high energy electron diffrac-
tion images by principal component analysis. Japanese Journal of Applied Physics, 60(SB):SBBK03,
2021.

[64] Rama K Vasudevan, Alexander Tselev, Arthur P Baddorf, and Sergei V Kalinin. Big-data reflection
high energy electron diffraction analysis for understanding epitaxial film growth processes. ACS nano,
8(10):10899–10908, 2014.

[65] Hyuk Jin Kim, Minsu Chong, Tae Gyu Rhee, Yeong Gwang Khim, Min-Hyoung Jung, Young-Min
Kim, Hu Young Jeong, Byoung Ki Choi, and Young Jun Chang. Machine-learning-assisted analysis of
transition metal dichalcogenide thin-film growth. Nano Convergence, 10(1):10, 2023.

[66] JB Phipps. Dendrogram topology. Systematic zoology, 20(3):306–308, 1971.

[67] Masaki Nakano, Yue Wang, Yuta Kashiwabara, Hideki Matsuoka, and Yoshihiro Iwasa. Layer-by-layer
epitaxial growth of scalable wse2 on sapphire by molecular beam epitaxy. Nano letters, 17(9):5595–5599,
2017.

[68] Jinkwan Kwoen and Yasuhiko Arakawa. Classification of reflection high-energy electron diffraction
pattern using machine learning. Crystal Growth & Design, 20(8):5289–5293, 2020.

[69] Jinkwan Kwoen and Yasuhiko Arakawa. Multiclass classification of reflection high-energy electron
diffraction patterns using deep learning. Journal of Crystal Growth, 593:126780, 2022.

[70] Haotong Liang, Valentin Stanev, Aaron Gilad Kusne, Yuto Tsukahara, Kaito Ito, Ryota Takahashi,
Mikk Lippmaa, and Ichiro Takeuchi. Application of machine learning to reflection high-energy electron
diffraction images for automated structural phase mapping. Physical Review Materials, 6(6):063805,
2022.

[71] Hayat Khan, Aditya S Yerramilli, Adrien D’Oliveira, Terry L Alford, Daria C Boffito, and Gregory S
Patience. Experimental methods in chemical engineering: X-ray diffraction spectroscopy—xrd. The
Canadian journal of chemical engineering, 98(6):1255–1266, 2020.

[72] F Bastiman and AG Cullis. Gaas (0 0 1) planarization after conventional oxide removal utilising
self-governed inas qd site selection. Applied surface science, 256(13):4269–4271, 2010.

[73] AJ SpringThorpe, SJ Ingrey, B Emmerstorfer, P Mandeville, and WT Moore. Measurement of gaas
surface oxide desorption temperatures. Applied physics letters, 50(2):77–79, 1987.

[74] M Abadi, A Agarwal, P Barham, et al. Tensorflow: Large-scale machine learning on heterogeneous
systems, v1. 14, 2015.

[75] Quentin Fournier and Daniel Aloise. Empirical comparison between autoencoders and traditional
dimensionality reduction methods. In 2019 IEEE Second International Conference on Artificial Intel-
ligence and Knowledge Engineering (AIKE), pages 211–214. IEEE, 2019.

[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[77] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

[78] Evgeni Penev, Peter Kratzer, and Matthias Scheffler. Atomic structure of the g a a s (001)-c (4×
4) surface: First-principles evidence<? format?> for diversity of heterodimer motifs. Physical review
letters, 93(14):146102, 2004.

116



[79] Akihiro Ohtake. Surface reconstructions on gaas (001). Surface Science Reports, 63(7):295–327, 2008.

[80] PK Larsen, PJ Dobson, JH Neave, BA Joyce, B Bölger, and J Zhang. Dynamic effects in rheed from
mbe grown gaas (001) surfaces. Surface science, 169(1):176–196, 1986.

[81] F Jona. Observations of “clean” surfaces of si, ge, and gaas by low-energy electron diffraction. IBM
Journal of research and development, 9(5):375–387, 1965.

[82] BA Joyce, JH Neave, Pl J Dobson, and PK Larsen. Analysis of reflection high-energy electron-
diffraction data from reconstructed semiconductor surfaces. Physical Review B, 29(2):814, 1984.

[83] AY Cho. Gaas epitaxy by a molecular beam method: observations of surface structure on the (001)
face. Journal of Applied Physics, 42(5):2074–2081, 1971.

[84] LL Chang, L Esaki, WE Howard, and R Ludeke. The growth of a gaas–gaalas superlattice. Journal of
Vacuum science and Technology, 10(1):11–16, 1973.

[85] LL Chang, L Esaki, WE Howard, R Ludeke, and G Schul. Structures grown by molecular beam epitaxy.
Journal of Vacuum Science and Technology, 10(5):655–662, 1973.

[86] WK Liu, SM Mokler, N Ohtani, C Roberts, and BA Joyce. A rheed study of the surface reconstructions
of si (001) during gas source mbe using disilane. Surface science, 264(3):301–311, 1992.

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

[88] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[89] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[90] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.

[91] Wessam M Salama and Moustafa H Aly. Deep learning in mammography images segmentation and
classification: Automated cnn approach. Alexandria Engineering Journal, 60(5):4701–4709, 2021.

[92] Wenmei Li, Ziteng Wang, Yu Wang, Jiaqi Wu, Juan Wang, Yan Jia, and Guan Gui. Classification of
high-spatial-resolution remote sensing scenes method using transfer learning and deep convolutional
neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
13:1986–1995, 2020.

[93] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[94] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

[95] Sheldon Mascarenhas and Mukul Agarwal. A comparison between vgg16, vgg19 and resnet50 architec-
ture frameworks for image classification. In 2021 International conference on disruptive technologies
for multi-disciplinary research and applications (CENTCON), volume 1, pages 96–99. IEEE, 2021.

[96] Yang Liu, Zelin Zhang, Xiang Liu, Lei Wang, and Xuhui Xia. Deep learning-based image classification
for online multi-coal and multi-class sorting. Computers & Geosciences, 157:104922, 2021.

[97] NJC Ingle, A Yuskauskas, R Wicks, M Paul, and S Leung. The structural analysis possibilities of
reflection high energy electron diffraction. Journal of Physics D: Applied Physics, 43(13):133001, 2010.

[98] Dillip K Satapathy, Bernd Jenichen, Klaus H Ploog, and Wolfgang Braun. Azimuthal reflection high-
energy electron diffraction study of mnas growth on gaas (001) by molecular beam epitaxy. Journal of
applied physics, 110(2), 2011.

117



[99] W Braun, H Möller, and Y-H Zhang. Reflection high-energy electron diffraction during substrate
rotation: A new dimension for in situ characterization. Journal of Vacuum Science & Technology B:
Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 16(3):1507–
1510, 1998.

[100] Y Xiang, FW Guo, TM Lu, and GC Wang. Reflection high-energy electron diffraction measurements
of reciprocal space structure of 2d materials. Nanotechnology, 27(48):485703, 2016.

[101] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4015–4026, 2023.

[102] Håkon Wiik Ånes, Jarle Hjelen, Bjørn Eske Sørensen, ATJ van Helvoort, and Knut Marthinsen. Pro-
cessing and indexing of electron backscatter patterns using open-source software. In IOP Conference
Series: Materials Science and Engineering, volume 891, page 012002. IOP Publishing, 2020.

[103] Peter Muhlschlegel, H-J Eisler, Olivier JF Martin, Bert Hecht, and DW Pohl. Resonant optical anten-
nas. science, 308(5728):1607–1609, 2005.

[104] Christian Girard. Near fields in nanostructures. Reports on progress in physics, 68(8):1883, 2005.

[105] Arseniy I Kuznetsov, Andrey E Miroshnichenko, Mark L Brongersma, Yuri S Kivshar, and Boris
Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 354(6314):aag2472, 2016.

[106] J Hadamard. Princeton university bulletin. 1902, 13:49–52, 1902.

[107] Mahmoud MR Elsawy, Stéphane Lanteri, Régis Duvigneau, Jonathan A Fan, and Patrice Genevet.
Numerical optimization methods for metasurfaces. Laser & Photonics Reviews, 14(10):1900445, 2020.

[108] Itzik Malkiel, Michael Mrejen, Achiya Nagler, Uri Arieli, Lior Wolf, and Haim Suchowski. Plasmonic
nanostructure design and characterization via deep learning. Light: Science & Applications, 7(1):60,
2018.

[109] Peter R Wiecha and Otto L Muskens. Deep learning meets nanophotonics: a generalized accurate
predictor for near fields and far fields of arbitrary 3d nanostructures. Nano letters, 20(1):329–338,
2019.

[110] Taigao Ma, Haozhu Wang, and L Jay Guo. Optogpt: a foundation model for inverse design in optical
multilayer thin film structures. arXiv preprint arXiv:2304.10294, 2023.

[111] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[112] Ana Estrada-Real, Abdourahman Khaireh-Walieh, Bernhard Urbaszek, and Peter R Wiecha. Inverse
design with flexible design targets via deep learning: Tailoring of electric and magnetic multipole scat-
tering from nano-spheres. Photonics and Nanostructures-Fundamentals and Applications, 52:101066,
2022.

[113] Jiaqi Jiang and Jonathan A Fan. Global optimization of dielectric metasurfaces using a physics-driven
neural network. Nano letters, 19(8):5366–5372, 2019.

[114] Peng Dai, Kai Sun, Xingzhao Yan, Otto L Muskens, CH de Groot, Xupeng Zhu, Yueqiang Hu, Huigao
Duan, and Ruomeng Huang. Inverse design of structural color: finding multiple solutions via conditional
generative adversarial networks. Nanophotonics, 11(13):3057–3069, 2022.

[115] Takashi Asano and Susumu Noda. Iterative optimization of photonic crystal nanocavity designs by
using deep neural networks. Nanophotonics, 8(12):2243–2256, 2019.

[116] Tian Zhang, Jia Wang, Qi Liu, Jinzan Zhou, Jian Dai, Xu Han, Yue Zhou, and Kun Xu. Efficient
spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural
networks. Photonics Research, 7(3):368–380, 2019.

[117] Nicholas J Dinsdale, Peter R Wiecha, Matthew Delaney, Jamie Reynolds, Martin Ebert, Ioannis Zeim-
pekis, David J Thomson, Graham T Reed, Philippe Lalanne, Kevin Vynck, et al. Deep learning
enabled design of complex transmission matrices for universal optical components. ACS photonics,
8(1):283–295, 2021.

118



[118] Peter R. Wiecha. A newcomer’s guide to deep learning for inverse design in nano-photonics.
https://gitlab.com/wiechapeter/newcomer_guide_dl_inversedesign, July 2023.

[119] Antoine Moreau. PyMoosh. https://github.com/AnMoreau/PyMoosh, July 2023.

[120] Peter R Wiecha. pygdm—a python toolkit for full-field electro-dynamical simulations and evolutionary
optimization of nanostructures. Computer Physics Communications, 233:167–192, 2018.

[121] Peter R Wiecha, Clément Majorel, Arnaud Arbouet, Adelin Patoux, Yoann Brûlé, Gérard Colas
Des Francs, and Christian Girard. “pygdm”-new functionalities and major improvements to the python
toolkit for nano-optics full-field simulations. Computer Physics Communications, 270:108142, 2022.

[122] Peter R Wiecha, Arnaud Arbouet, Christian Girard, and Otto L Muskens. Deep learning in nano-
photonics: inverse design and beyond. Photonics Research, 9(5):B182–B200, 2021.

[123] Dianjing Liu, Yixuan Tan, Erfan Khoram, and Zongfu Yu. Training deep neural networks for the
inverse design of nanophotonic structures. Acs Photonics, 5(4):1365–1369, 2018.

[124] Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. ICLR (Poster), 3, 2017.

[125] Yuxin Wu and Justin Johnson. Rethinking" batch" in batchnorm. arXiv preprint arXiv:2105.07576,
2021.

[126] Jakob Søndergaard Jensen and Ole Sigmund. Topology optimization for nano-photonics. Laser &
Photonics Reviews, 5(2):308–321, 2011.

[127] Yang Deng, Simiao Ren, Kebin Fan, Jordan M Malof, and Willie J Padilla. Neural-adjoint method for
the inverse design of all-dielectric metasurfaces. Optics Express, 29(5):7526–7534, 2021.

[128] Yongxin Jing, Hongchen Chu, Bo Huang, Jie Luo, Wei Wang, and Yun Lai. A deep neural network for
general scattering matrix. Nanophotonics, 12(13):2583–2591, 2023.

[129] Yannick Augenstein, Taavi Repan, and Carsten Rockstuhl. Neural operator-based surrogate solver for
free-form electromagnetic inverse design. ACS Photonics, 10(5):1547–1557, 2023.

[130] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing systems,
29, 2016.

[131] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[132] Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Dustin Anderson, Jean-Roch Vlimant, Stephan
Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe Cerati, Lindsey Gray, et al. Novel deep learning
methods for track reconstruction. arXiv preprint arXiv:1810.06111, 2018.

[133] Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 750–760, 2019.

[134] Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph augmented
memory networks for recommending medication combination. In proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 1126–1133, 2019.

[135] Wenming Cao, Zhiyue Yan, Zhiquan He, and Zhihai He. A comprehensive survey on geometric deep
learning. IEEE Access, 8:35929–35949, 2020.

[136] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a com-
prehensive review. Computational Social Networks, 6(1):1–23, 2019.

[137] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gauzere, Sebastien Adam, and Paul
Honeine. Bridging the gap between spectral and spatial domains in graph neural networks. arXiv
preprint arXiv:2003.11702, 2020.

119



[138] Daniele Grattarola and Cesare Alippi. Graph neural networks in tensorflow and keras with spektral
[application notes]. IEEE Computational Intelligence Magazine, 16(1):99–106, 2021.

[139] O Leseur, R Pierrat, JJ Sáenz, and R Carminati. Probing two-dimensional anderson localization
without statistics. Physical Review A, 90(5):053827, 2014.

[140] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B
Gotway, and Jianming Liang. Convolutional neural networks for medical image analysis: Full training
or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312, 2016.

[141] Denis Langevin, Pauline Bennet, Abdourahman Khaireh-Walieh, Peter Wiecha, Olivier Teytaud, and
Antoine Moreau. Pymoosh: a comprehensive numerical toolkit for computing the optical properties of
multilayered structures. JOSA B, 41(2):A67–A78, 2024.

[142] Josselin Defrance, Caroline Lemaître, Rabih Ajib, Jessica Benedicto, Emilien Mallet, Rémi Pollès, Jean-
Pierre Plumey, Martine Mihailovic, Emmanuel Centeno, Cristian Ciracì, et al. Moosh: A numerical
swiss army knife for the optics of multilayers in octave/matlab. Journal of Open Research Software,
4(1):e13–e13, 2016.

120


	Apprentissage profond pour les nanotechnologies : caractérisation de la croissance des cristaux et conception inverse en nanophotonique
	Abdourahman KHAIREH WALIEH
	École doctorale
	Spécialité
	Unité de recherche
	Thèse dirigée par
	Membres invités

	Contents
	Abstract
	Résumé
	List of Figures
	List of Tables
	General introduction
	Introduction to Deep Learning
	Introduction
	Artificial neuron
	Principle
	Activation functions

	Multilayer perceptron
	Convolutional neural network
	Recurrent neural network
	Graph neural network
	Neural network training
	Gradient
	Chain rule
	Automatic differentiation
	Minibatch stochastic gradient descent
	Overfitting and underfitting

	A selection of commonly used architectures
	Autoencoder
	Variational autoencoder
	Generative adversarial network
	U-Net

	Conclusion

	Deep Learning for automatization of RHEED patterns monitoring
	Introduction
	State-of-the-art
	Principal component analysis
	Deep Learning
	Conclusion

	Substrate deoxydation detection for GaAs growth
	Context and motivation
	Dataset preparation
	Neural network architecture
	Results
	Conclusion

	Surface reconstruction monitoring
	Context and motivation
	Dataset preparation
	Neural network architecture
	Results
	Conclusion

	Azimuthal RHEED construction
	Context and motivation
	Specular spot tracking across RHEED patterns
	Azimuthal angle determination
	Azimuthal RHEED Plotting
	Conclusion

	Conclusion

	Deep Learning-based inverse design for nano-photonic devices
	Introduction
	Inverse design: an ill-posed problem
	Inverse design methods
	Tandem network
	Conditional variational autoencoder - cVAE
	Neural Adjoint method
	Conclusion

	Graph Neural Network surrogate model
	Geometric Deep Learning
	Spatial Graph Convolutional Networks
	Spectral Graph Convolutional Networks
	Employed graph convolutional layer
	Electric polarization of nano-cylinders
	Reflectivity of multi-layer thin film stacks
	Conclusion

	Conclusion

	General Conclusion
	Appendix
	Bibliography

