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OVERVIEW

My research activities revolve around resource allocation in stochastic networks

and in particular in those that can be modelled using Markovian dynamics. In a

typical open stochastic-network model, objects enter the network in some node,

move along a possibly random path and then leave the network at their destina-

tion node. These models find applications in a wide-range of domains such as com-

munication networks, road-traffic networks, manufacturing facilities, and chemical-

reaction networks. As an illustration, in communication networks, the objects can

be packets that arrive at the source node, are sent over a series of one or more com-

munication channels until they reach the destination where they exit the network.

In road-traffic networks, the objects can be vehicles, while in manufacturing facili-

ties, products can take on this role. Several interesting problems arise in this context

including dimensioning which is about provisioning capacity of the nodes and the

edges subject to budget constraints; scheduling which focuses on allocating capacity

at a node or at an edge when multiple objects are competing for the same resource;

and routing where one determines the paths that objects take within the network

to reach the destination. All three problems (either individually or in some combi-

nation) can be viewed as optimization or control problems with an objective that

depends usually in some non-obvious way upon the control variables.

Ideally, these three problems would be treated together. However, in many practi-

cal applications, even a separate treatment of each problem is not trivial. One reason

for this is the size of the problem. Imagine the routing problem of allocating tasks to

processors with the objective of minimizing the average weighted completion time

of tasks. Here, the weight can be thought of as a penalty per unit time that has to

be paid to the task to make it wait. The number of possible allocations grows expo-

nentially in the number of objects which, in networks with thousands of objects and

nodes, makes it computationally prohibitive to solve the optimization problem. An-

other reason for the difficulty is due to the lack of knowledge the parameters of the

tasks. In practice, tasks arrive over time and have sizes that are unknown in advance

and sometimes even at the allocation instants.
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Overview

Several approaches have been employed to overcome these obstacles. One of

them is to restrict attention to algorithms, which are recipes to obtain a solution,

that are lower in complexity but suboptimal. If a guarantee (e.g.. worst-case ratio)

on the quality of the solution can be exhibited, then the algorithms are known as

approximation algorithms otherwise they are commonly referred to as heuristics.

Approximation algorithms, which is a vibrant field in theoretical computer science

with a rich history [1, 2], can be conceived for both the offline scenario in which

there is complete knowledge of all the parameters as well as for the online scenario

with only partial (current and past) knowledge. They are robust in the sense that

their guarantees hold for the worst-case parameters. On the other hand, they have

certain shortcomings. First, these guarantees are for finite-sized instances (number

of tasks, e.g.) which makes it difficult to study notions such as stability which en-

sures that the number of objects in the network does not grow over time. As an ex-

ample, consider a manufacturing facility with several machines. An approximation

algorithm for scheduling the orders will only guarantee the mean delivery times with

respect to the optimal schedule. If the facility is not well-dimensioned (not enough

machines), then orders may build up over time leading to a growing delivery time

even for the optimal schedule. The relative guarantee is still respected for all finite

time instants but the delivery times will be so large that they will no longer be use-

ful for the clients. If it were known how the capacity of the machines influences the

delivery time, the facility could be appropriately dimensioned and estimated deliv-

ery times could be provided to the clients. Approximation algorithms do not usually

concern themselves with quantifying the relationship between the objective and the

input parameters. A second drawback is that worst-case analysis may be too pes-

simistic especially when the system designer may possess some statistics on the pa-

rameters that can be used to obtain finer and perhaps improved bounds. An algo-

rithm with a very bad worst-case guarantee may nevertheless work well on average

for this particular scenario as the worst-case instance may be highly unlikely. Such

an algorithm may be preferred to one with a better worst-case guarantee but which

has a worse average-case performance.

This bring us to the second approach based on stochastic models that exploits

the knowledge of the statistics. The usual recipe is to model the number of objects
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at each node as a dynamic process and investigate how the probability distribution

of configurations (or states) evolves over time. A subclass of these models are gov-

erned by Markovian dynamics, that is, one in which the probability distribution in

the future can be determined knowing only the current state. The past can there-

fore be forgotten allowing for a compact state-description. Markovian models can

be used for analysis (i.e., to compute formulas for the objective function) [3] as well

as for optimal control using Markov decision process (MDPs) [4] over both finite and

infinite horizons. Going back to the example of the manufacturing facility, with this

approach one can figure out the values of the capacities for which the number of or-

ders remain finite. Further, depending upon the model, it may be possible to deter-

mine the mean delivery time of the orders and how it depends upon the capacities.

The manufacturer can the decide how much capacity to install in order not to keep

the customers waiting for too long. This Markovian approach has its own drawbacks

though. For one, this type of analysis usually requires assumptions on the statistics

of the parameters that need not be verified in practice. In our example, the arrival of

orders need to follow a Poisson process. Further, even with these assumptions, ex-

plicit formulas are not always forthcoming and numerical solutions methods have

to be called upon which limits the applicability of the approach. Another drawback

is that the computational complexity grows with the size of the networks, and ex-

act analysis become computationally prohibitive. This curse of dimensionality also

occurs in solving MDPs.

A part of my research is devoted to obtaining analytical insights from stochastic

models that are otherwise difficult to solve exactly. This line of research falls within

the widely studied field of what can be called asymptotic analysis. The main idea

here is to investigate the model for a set of parameters in a regime that is amenable

to analysis but still has some relationship to the parameters of interest. To illustrate

this, in our manufacturing facility, if too much capacity is installed compared to the

demand, then machines will remain idle most of the time and the investment will

not be profitable. On the other hand, if the capacity is too low then there will be a

backlog. There is usually a sweet-spot that balances these two objectives. To deter-

mine this spot, one takes the size of the network to infinity. It so happens that, in this

asymptotic regime, the analysis simplifies since the dynamics of the system become
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more and more regular. One then computes the capacity to be installed using this

simplification and provides guidelines to be used in practice when the system-size

is finite. Asymptotic analysis thus can be applied to obtain easy-to-compute approx-

imations and bounds that can then be used in lieu of the original objective function

in the optimization problems stated above. Such techniques are as old as probabil-

ity theory itself with Gaussian approximation and Brownian motion being two cel-

ebrated examples. Of course, as new applications emerge, these techniques have to

refined, improved and adapted to these new environments.

Asymptotic techniques in stochastic networks are quite often inherited and in-

spired from those developed in other fields such as physics in which stochastic mod-

els are also widely used. These include fluid or hydrodynamic limits [5], diffusion

limits [6], large deviations [7] and mean-field approximations [8]. Intuitively, fluid

limits are useful when the number of objects present in the network is so big that,

at a macroscopic level, the stochastic dynamics becomes less preponderant. At this

scale, the movement of the objects through the network starts to resemble that of

a fluid. The dynamics can then be described by differential equations driven by the

average drift. Diffusion models are a refinement of the fluid model in which the de-

viations from the fluid trajectories are studied on a scale at which stochasticity is

not completely washed out. It is similar to the Gaussian refinement for the law of

large numbers but for stochastic processes that evolve over time. Large deviations

looks at the probability of trajectories moving even further away from those pre-

scribed by that of the fluid limit. In the mean-field approximation, the size of the

network itself grows and one looks at the fraction of nodes that find themselves in a

certain state. Again, in the limit, the stochastic component is washed out and the in-

teraction between the nodes can be summarized by averages. Differential equations

can again used to described how these fractions evolve. These techniques (as well

as some others) have been widely used to obtain approximations which can then be

plugged into the optimization and control subroutines [9, 10, 11]. In the first part of

the manuscript, three applications of some of these techniques will be presented.

The second part of the manuscript is on the distributed analog of the above set-

ting. Some of the networks considered are typically shared by different entities with

conflicting objectives. For example, the communication network in a country may
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be shared by the several operators providing Internet services. Each operator will

want to maximize the data rate of its customers in a selfish way and will not be con-

cerned with the influence of its decision on the performance of the other operators.

Since the capacity of the network is limited, the improvements seen by one operator

is usually at the expense of the others. Such conflictual situations are modelled by

non-cooperative game theory [12]. It predicts what strategy entities or players will

employ in such situations. Since there is no single objective function that suits all

the entities, the notion of optimal solution is replaced in game theory by that of a

Nash equilibrium. It is an equilibrium in the sense that no entity has an incentive to

unilaterally deviate as long as the others follow the equilibrium strategy. There is a

vast literature on different and interesting applications of game theory in communi-

cation networks as well as in other domains [13, 14, 15].

One of the consequences of distributed or selfish decision-making is that the

equilibrium reached may be inefficient from an social point of view. As an illustra-

tion, consider a road-traffic network where each vehicle wants to take the shortest

route to its destination. Since each vehicle is selfishly optimizing its travel time, the

routing choices are determined by an equilibrium. The average travel-time over all

the vehicles at the equilibrium will surely be no better that if the routes were de-

cided by a single entity with that objective in mind. Starting from this observation,

one line of study seeks to know how bad can the consequences of selfish choices be.

This is usually measured by Price of Anarchy (PoA) which is ratio of the worst-case

performance at the equilibrium to the optimal social cost [15]. One of the goals here

is to see how much performance is being lost due to a distributed (or decentralized)

architecture which may be either inherent or willfully chosen. There are situations

in which it is not practically feasible to have a centralized control (road-traffic, In-

ternet, etc.). In some other contexts, distributed architectures are preferred due to

their robustness to failures as well as scalability. Here each controller takes decisions

based on its local information which may be different from that of the others. Even

though they may not have selfish motives, the asymmetry in information can also

sometimes lead to an equilibrium that is different from the desired optimum. In

both contexts, if the PoA is high, some measures may be needed to reduce it. This

can be done by, for instance, tolls or taxes in the first case and by more exchange of
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information in the second. A low PoA on the other had means that the system can

be operated in a distributed fashion without much loss in performance. Of course,

this is a worst-case analysis and suffers from similar drawbacks that were seen in the

approach of approximation algorithms, i.e., the worst-case scenario may be too pes-

simistic and may not occur in practice. Nevertheless, it does give a metric to compare

the two architectures. For the purposes of this manuscript, the term asymptotic anal-

ysis is used in a broader sense to include worst-case analysis (computation of PoA)

in games. Two applications of PoA in communication networks will be presented in

this part.

Organization of the manuscript

The manuscript is divided into three parts with the first two devoted to previous

research and the third one to possible new directions. The first part consists of three

chapters and the second one has two. Each chapter summarizes the contributions

and the results from one paper.

Part I focuses on centralized systems and asymptotic analysis in the spirit of the

second approach of stochastic models. Chapter 1 considers load-balancing with fi-

nite buffers. From the asymptotic analysis, a dimensioning rule is obtained to deter-

mine the number of servers as a function of the target blocking probability and the

arrival rate of the demand. In Chapter 2, the problem of traffic surges in bandwidth-

sharing networks is studied. In order to protect other non-surging flows, the surging

ones are penalized by reducing appropriately the weights that determine their share

of the node capacities. Chapter 3 investigates a scenario in which the control policy

cannot be applied at arbitrary instants. It looks at what can happen if the control

instants do not happen sufficiently often enough compared to the evolution of the

underlying system.

The asymptotic analysis in Part II is in the spirit of the first approach of worst-

case analysis for two routing problems in distributed systems. For the single-path

routing problem, Chapter 4 presents an approximation algorithm based on the best-

response algorithm in game theory. It is an example of a distributed algorithm for

solving a centralized optimization problem. In the last chapter (Chapter 5), worst-
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case analysis is carried out for a purely distributed and non-cooperative load-balancing

problem but this time for splittable flows.
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PART I

Centralized systems

13



CHAPTER 1

LOAD-BALANCING IN BLOCKING

SYSTEMS

Consider a single dispatcher which receives tasks that have to be routed immedi-

ately to one of several servers. Each server has speed of 1 and maximum buffer length

of θ. Tasks with independent and identically distributed (i.i.d.) durations with mean

1 arrive at the dispatcher according to a Poisson process of rate λ. The well-known

Erlang-B or the M/M/n/n queue is a particular case of this model obtained when θ

is set to 1 and the service-times are exponentially distributed.

Given the current number of tasks at each server, the dispatcher must allocate

the incoming task to one of the servers with the objective of minimizing the overall

blocking probability. The optimal policy depends upon several parameters among

which the most studied ones are the arrival process, the service-time distribution,

and the service discipline at each server.

The intuitive policy of sending to the shortest queue, join-the-shortest-queue

(JSQ), is optimal under certain conditions. Using dynamic programming, [16] proved

the optimality of JSQ for general interarrival processes and exponential service times,

while [17] used stochastic ordering techniques to extend this result to state-dependent

service-times. In fact, JSQ is also optimal for other objective functions, notably for

mean sojourn time when θ =∞. In this case, the sufficient conditions for optimality

are less restrictive [18]. On the other hand, counterexamples are known that show

that JSQ is not optimal for certain types of service-time distributions [19].

These optimality results were derived assuming the first-come-first-serve (FCFS)

service discipline at the servers. For other disciplines such as processor-sharing (PS),

which is employed in computer systems, or for service-time distributions that do not

fall within the stipulated class, optimality results are not simple to obtain. Further-

more, even for the easy case of FCFS and exponentially distributed service-times,
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there is no simple expression for the stationary distribution of the state-vector and,

by consequence, for the blocking probability as a function of the θ or n. Approxima-

tions [20] or asymptotic analysis [21] have been called upon to determine how the

blocking probability depends on these parameters.

Contrast this with the Erlang-B queue for which the stationary distribution has a

simple product-form as long as the arrivals follow a Poisson process and task-sizes

are independent. Moreover, this formula depends on the service-time distribution

only through its mean. That is, the knowledge of the mean service-time is sufficient

to compute the steady-state performance measures irrespective of the other statis-

tics of the service-time distribution. Thanks to the existence of a formula, the fol-

lowing simple dimensioning rule for systems with high arrival rates was proposed in

[22]:

n =λ+β
p
λ, (1.1)

for some β ∈R, for efficient use of the servers. Here, efficiency means that the servers

are utilized at close to their maximum capacity while at the same time the probabil-

ity of blocking is close to 0. This is a thin line on either side of which one or the other

of these two quantities will be unsatisfactory. For example, if n is larger than the pre-

scribed scaling, then a fraction of servers will always be free meaning that capacity

is wasted. On the other hand, if n is smaller, then the probability of blocking will be

strictly positive leading to unsatisfied customers. A similar scaling law was later de-

rived for the M/M/n queue (i.e., queue without blocking) by [23] and is known as

the Quality and Efficiency Driven (QED) regime. Such conclusions are not straight-

forward to derive when the stationary distribution is not available as is the case with

JSQ.

A natural question is then to ask whether there exist scenarios in which simi-

lar formulas can be obtained for values of θ > 1. The product-form formula of the

Erlang-B queue is a consequence of the reversibility of the Markov chain describing

the number of tasks in the system. Another consequence of reversibility is insensi-

tivity to the service-time distribution. That is, both these desirable properties can be

deduced by checking for reversibility of the underlying Markov chain.

It turns out that reversibility can be shown for more general stochastic networks

under certain conditions [24, 25]. Main among those are that the load-balancing pol-
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Chapter 1 – Load-balancing in blocking systems

icy has to have a balance property, and the service discipline has to be a symmetric

one. Unfortunately, JSQ does not satisfy the balance property and FCFS is not sym-

metric. Nevertheless, there are other disciplines including PS, that are symmetric,

and which happen to be used in computer systems. In such cases, reversibility could

be aimed for with appropriately choosing the routing policies. Within the class of

reversible policies, it was shown in [26] that the optimal one routes to server i with

probability:
θ−xi∑n

j=1(θ−x j )
1x+ei∈X , (1.2)

where x j is the number of tasks in server j , x is the vector of the state and X is the

set of feasible states. Further, there is a product-form formula for this policy that

generalizes the one for M/M/n/n queue.

In summary, although the insensitive policy in (1.2) is not globally optimal, it has

the following properties: (i) it has a closed-form formula for the stationary distri-

bution; (ii) formula is insensitive to the service-time distribution and only requires

Poisson arrivals; (iii) it is optimal in the class of insensitive policies and permits anal-

ysis of disciplines such as PS.

Contributions

In [JP18], we subject the optimal insensitive policy to different types of asymp-

totic analysis when the number of processors n gets large. We first obtain the sta-

tionary measure of the number of occupied servers and give its transient mean-

field limit. Considering the symmetric version of the model, we show that the func-

tional law of large numbers also holds for the stationary version of the system (lim-

its in n and t commute). The existence and uniqueness of the limiting stationary

probabilities are proved through a monotonicity argument involving the Erlang for-

mula, while the stationary point is characterized through the Erlang formula. This

implies simple conclusions on the asymptotic behavior of the blocking probability:

the blocking probability is asymptotically vanishing for the sub-critical (ρ < 1) case

and is equal to 1−ρ−1 for the super-critical case ρ > 1. In both cases, this blocking

probability corresponds to the optimal blocking probability achievable by any non

anticipating policy. Of course this is far from being sufficiently informative and we
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1.1. Mean-field limit and deviations

are led to focus on a more detailed study of the stationary distribution for large n,

establishing both large deviations principles for sub- and super-critical cases and

moderate deviations results. We show that, when ρ < 1 is fixed, the blocking proba-

bility is exponentially small, and we characterize the most probable deviations from

the mean-field limit. The large deviation cost is shown to be a sum of two terms: the

“distance” to the stationary point from distributions with a given mean plus the cost

of having a different mean from the true stationary mean. We also show that a cen-

tral limit theorem is valid for the occupation numbers around the stationary point of

the mean-field in the sub-critical regime. For the critical case ρ = 1, the right scaling

is not any more of order
p

n. Using local limit theorems and exploiting the charac-

terization of deviations from the mean-field limits, we show that the number of free

servers scales like n
θ
θ+1 , the limiting distribution depending on θ and coinciding with

the normal distribution only for θ = 1. In a third step, we study the critical case at a

finer scale and show that a qualitative phase transitions occurs at the critical load

ρc (n) = 1− an− θ
θ+1 where θ is the buffer depth. The blocking probability is exponen-

tially small until ρc (n) and of order n− θ
θ+1 at this critical load. This generalizes the

Halfin-Whitt regime established for the M/M/n/n system, and shows that the pop-

ular staffing rule established for the M/M/n/n system does actually change with the

value of θ when load-balancing is employed. The super-critical regime is simpler to

characterize, the deviations being of order 1. We illustrate these findings on simple

numerical experiments.

1.1 Mean-field limit and deviations

In the analysis of queueing systems, the state is typically taken to be the number

of tasks in each server. When n →∞, it is more informative to work with the number

of servers containing a certain number of customers. Let {S(n)(t ) ∈S }t≥0 be a stochas-

tic process denoting, at time t , the number of servers with i tasks, i = 0, . . . ,θ. Under

Poisson arrivals and exponentially distributed job sizes, S(n)(t ) is a continuous-time
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Chapter 1 – Load-balancing in blocking systems

jump Markov process on the state space S with the following transition rates

S(n)(t ) →
S(n)(t )+ei −ei−1 at rate λi−1(s), i ≥ 1;

S(n)(t )+ei −ei+1 at rate si+1,
(1.3)

assuming that the transitions take the process to a state within S .

Theorem 1. If the job-size distribution is exponential, the process S(n)(t ) is a reversible Markov

process and its stationary distribution is given by

π(n)(s) =π(n)
0

(nθ− s̄)!

(nθ)!

(
n

s

)
θ∏

k=0

(
θ!

(θ−k)!
(nρ)k

)sk

, (1.4)

where s̄ is the total number of jobs in the system, and ρ = λ/n is the load per server, and

π(n)
0 corresponds to the probability of the state with all servers empty, that is, s̄ = 0 and s =

(n,0, . . . ,0).

Corollary 1. Using the PASTA property, the blocking probability is given by

B (n)
θ

=π(n)
0

(nρ)nθ(θ!)n

(nθ)!
. (1.5)

The mean-field limit of (1.3) is obtained for a fixed ρ when n →∞. It describes the

evolution of the server configurations over time starting from a given initial configu-

ration. For technical ease, it will be assumed that the service-time distribution is ex-

ponential though we expect similar limits to hold for arbitrary distributions. Without

the exponential assumption, the proof becomes much more technical as one has to

work with measure-valued processes. Such results have been proved though for poli-

cies such as join-the-shortest-of-d queues with generic service-time distribution in

[27], which makes us hopeful.

Theorem 2. Fix a ρ < 1 and a θ ≥ 1. For exponentially distributed job-sizes, for all fixed time,

S(n)(t )/n → y(t ), in probability, with y which is the solution of the following set of differential
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1.1. Mean-field limit and deviations

equations:

d y j (t )

d t
= ρ θ− ( j −1)

θ−∑
k k yk (t )

y j−1(t )+ y j+1(t ) (1.6)

−ρ θ− j

θ−∑
k k yk (t )

y j (t )− y j (t ), 0 < j < θ, (1.7)

d yθ(t )

d t
= ρ 1

θ−∑
k k yk (t )

yθ−1(t )− yθ(t ), (1.8)

d y0(t )

d t
= y1(t )−ρ θ

θ−∑
k k yk (t )

y0(t ). (1.9)

with y(0) = limn→∞ S(n)(0)
n .

Theorem 3. For 0 < ρ < 1, the unique steady-state solution of the system of equations (1.6)–

(1.9) is given by

p̂ j =
(
θ− ĉ

ρ

)θ− j 1

(θ− j )!
p̂θ, (1.10)

with p̂θ =
1∑θ

k=0

(
θ−ĉ
ρ

)k
1
k !

. (1.11)

where

ĉ = θ−ρζ−1
θ (1−ρ), (1.12)

with ζ−1
θ

as the inverse function of the Erlang blocking viewed as a function of the traffic

intensity for a fixed buffer depth θ.

If ρ > 1, the unique solution is ĉ = θ, p̂ j = 0, for j ≤ θ−1 and p̂θ = 1 .

Theorem 3 gives the fraction of servers that will be have a certain number of tasks

in the mean-field limit. Since in practice, the limit is never attained, one can study

how far we deviate from it for different values of ρ as n →∞. Of particular interest is

the critical case ρ = 1. For a, z ∈R and θ ≥ 1, define

Φ̂θ(z; a) =
∫ ∞

z
exp

(
au − u(θ+1)

(θ+1)!

)
du. (1.13)

For θ = 1 and a = 0, (2π)−1/2Φ̂θ reduces to the complementary cumulative distribution
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function of the standard normal distribution.

Theorem 4. For ρ = 1 and z ∈R+,

lim
n→∞P

(
S(n)
θ−1(∞)

nθ/(θ+1)
> z

)
= Φ̂θ(z;0)

Φ̂θ(0;0)
, (1.14)

Corollary 2. For ρ = 1, θ = 1, and z > 0,

lim
n→∞P

(
S(n)(∞)p

n
> z

)
= 2(1−Φ(z)), (1.15)

whereΦ is the distribution function of the standard normal distribution.

That is, for ρ = 1, conditioned on being accepted, a customer has a high probabil-

ity of being routed to a server θ−1 jobs. This property has a direct consequence on

the state information the dispatcher needs to take routing decisions. We shall elabo-

rate upon later on.

1.2 Blocking probability in the Halfin-Whitt regime

In the mean-field limit, it can be shown that the insensitive load-balancing policy

achieves the lowest possible blocking probability within the class of non-anticipative

policies independently of θ.

Proposition 1. The limiting blocking probability of the insensitive load balancing policy is

given by

Bθ =
0 if ρ < 1;

1−ρ−1 otherwise.
(1.16)

Since the blocking probability is independent of θ, even a buffer of size 1 is suffi-

cient to get the optimal stationary behavior. This optimality is valid only in the limit

n → ∞. In order to compute the blocking probability (or other performance mea-

sures) for values of n that are large but finite, one has to look at finer scales.

For ρ < 1, it can be shown that the blocking probability goes to 0 exponentially

quickly in n while for ρ > 1 it goes to 1 − ρ−1, a strictly positive quantity. We next
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1.2. Blocking probability in the Halfin-Whitt regime

look at the interesting case when ρ → 1 together with n → ∞. It will be shown that

the blocking probability vanishes at a polynomially rate in this regime and that this

polynomial depends on the buffer size θ.

For the Erlang C model, that is, a system without blocking, this is the QED regime

and it has the following interpretation: if the cost of servers is high, Halfin and Whitt

[23] observed that it could be beneficial to reduce the number of servers in such a

way such that the probability of waiting is strictly positive and less than 1 instead

of going to 0 with the number of servers. This increase in the waiting probability

has the benefit of requiring λ+O(λ1/2) instead of bλ, b > 1, servers. Thus, one gains

in the cost and the utilization of servers at the expense of the waiting probability.

The name QED evokes the trade-off between these two quantities. We note that this

asymptotic regime was already studied for the Erlang B system in Jagerman [22] (see

Theorem 14) but the interpretation in terms of a trade-off is due to Halfin and Whitt

[23] for systems without blocking and Whitt [28] for systems with blocking. These

works were followed by more precise asymptotics in both the Erlang B as well as the

Erlang C systems [29, 30].

In addition to the classical asymptotic regimes, such as mean-field and QED, one

can define an intermediate regime known as the Non-Degenerate Slowdown (NDS)

regime (see [31]). The feature of the NDS regime is that the mean waiting time is

of the same (non-degenerate) order as the mean service time. For the insensitive

load-balancing policy that we are investigating, this relationship between the mean

waiting time and the mean service time is verified irrespective of the load because

the buffer length is finite and there is a non-zero probability of routing an arrival to

a non-empty queue. Thus, the NDS regime is rather trivial for this policy, and is not

investigated here.

The following theorem gives the QED scaling for the balanced load-balancing

policy, and can be viewed as a generalization of the QED result for the Erlang loss

model.

Theorem 5. For a ∈ (−∞,∞), let

nρ = n +an1/(θ+1). (1.17)
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Then,

lim
n→∞B (n)

θ
nθ/(θ+1)

∫ ∞

0
exp

(
au − u(θ+1)

(θ+1)!

)
du = 1. (1.18)

Note that a can be positive or negative, which means that even with a total load

larger than the number of servers, the blocking probability can decay to 0 provided

that (1.17) is satisfied asymptotically. For a = 0, using simple computations, Theorem

5 leads to the following corollary:

Corollary 3. If ρ = 1:

B (n)
θ

∼ (θ+1)!
1

θ+1

θ+1
Γ
( 1

θ+1

)
n−θ/(θ+1), (1.19)

where Γ is the Gamma function.

Note that for θ = 1, we retrieve that:

B (n)
1 ∼ (0.5πn)−1/2. (1.20)

Remark 1. It turns out that the scaling of 1.17 is the same as that in [32] (see display (4.9)),

and differs only in the context in which it is obtained. The one in [32], which they call the

QED-c regime, appears in the context of an Erlang C system with abandonments in which the

arrival rate has an additive uncertainity. The parameter c, which in our model translates to

1/(θ+1), is the exponent of the additive uncertainity in [32].

1.3 Performance planning and practical schemes

The asymptotic analysis of insensitive load-balancing gives a conservative plan-

ning tool for managing the performance relationship between the load ρ and the

delay guarantees depending on θ, and the blocking guarantees depending both on

n and θ. Indeed, in many applications, a given level of quality of service in terms of

delay has to be reached and this can be done by fixing θ. For a given buffer depth

θ the mean delay of a job entering the system will be less than θ (the server speed

and the mean job-size are fixed to 1). On the other hand, for a given θ and n, we

have precisely characterized the asymptotics of the blocking probability, unveiling
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1.3. Performance planning and practical schemes

the critical load ρc (n) as the frontier of the acceptable blocking probability for most

applications. Hence, one can adapt the number of servers n to cope with a target

blocking probability given the load or adapt the load given the number of servers.

Note that this planning is not straightforward for specific sensitive policies.

Another second interpretation is by considering the staffing rule which is the

number of servers necessary to obtain a vanishing blocking probability in the limit

when the total charge is large. In [22] and [28], the staffing rule for θ = 1 was shown

to be λ+O(λ1/2), that is, at least these many servers are required to get a vanishing

blocking probability when λ is large.

Theorem 5 generalizes the known results for θ = 1 to larger values of θ leading to

the following staffing rule:

Proposition 2. For a fixed target blocking probability, the number of servers should scale as

λ+ aλ1/(θ+1), where a is determined by the target blocking probability and can computed

using (1.18).

One of the major criticisms of state-dependent policies such as JSQ or the opti-

mal insensitive policy is that the dispatcher needs to know the state of every server in

order to route an incoming job. The process of collecting state information can add

significant delays and lead to lost revenue [33]. Practical policies such as the JSQ(d)

[34] or the JIQ [33] play on the trade-off between information and optimality, and

aim to perform much better than state-independent policies while at the same time

needing much less information than the whole set of servers. For example, JSQ(d),

with the knowledge of the state of only d (which can be fixed number independent

of n) servers, has a considerable gain at least in the case of exponentially distributed

job-sizes and in the absence of blocking when d = 2 compared to d = 1.

While at first glance the insensitive load-balancing policy seems to require full

state information, in heavy-traffic, Theorem 4 can be of help. It has the following im-

plication: for ρ = 1 and n large, most of the servers will have either θ or θ−1 jobs. One

possible scheme to exploit this property is based on the idea first proposed for JIQ,

which was motivated by the observation that collecting state information at arrival

instants should be avoided in order to reduce delays for jobs. In JIQ, the servers in-

form the dispatcher (or leave information on a bulletin board) when they become
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Chapter 1 – Load-balancing in blocking systems

idle. The dispatcher then knows which servers are idle, and it routes an incoming

packet to one of these servers, if there is one, otherwise it routes based on no infor-

mation. Thus, upon arrival a job can be routed immediately based on state informa-

tion collected previously.

For the insensitive policy, one can conceive a scheme in which servers inform the

dispatcher whether they have θ−1 or fewer than θ−1 jobs (this scheme automatically

implies that the dispatcher also knows which servers have θ jobs). When a job arrives,

the dispatcher will need to determine the state of only those servers with less than

θ−1 jobs. Since this number is expected to be on a smaller scale than nθ/(θ+1) (thanks

to Theorem 4), one can expect to reduce the information flow between the servers

and dispatchers at arrival instants. A back of the envelope calculation based upon

the proof of Theorem 4 leads one to believe that there will O(n(k+1)/(θ+1)) servers with

k jobs and hence O(n(θ−1)/(θ+1)) servers with less than θ−1 jobs but this remains to be

rigorously investigated.
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CHAPTER 2

TRAFFIC SURGES IN

BANDWIDTH-SHARING NETWORKS

We now turn to the more general model of flows traversing a network and sharing

the bandwidth of the links that they have in common. The load-balancing problem

treated in the previous chapter can be seen as a special case of a network with par-

allel links between the source and the destination. The stochastic dynamics of these

flows, which depends upon on how the bandwidth of the links are allocated to the

flows, can be modelled by bandwidth-sharing networks [35, 36, 37] which have become

a standard modelling tool in communication networks. In particular, they have been

used extensively to represent the flow level dynamics of data traffic in wired or wire-

less networks [38], as well as for the integration of voice and data traffic [39], hence

generalizing more traditional voice traffic models, e.g. [24]. A more recent overview

of these network is presented in [40].

As in the previous chapter, the analysis of the usual performance measures such

as the average delay of the flows in the network is a complex task and asymptotic

analysis (fluid-limits, heavy-traffic) is typically done to get insights [41, 37]. The scal-

ing limits in these works is obtained by scaling all the flows simultaneously. Although

this type of joint-scaling is useful in a variety of situations, there are others in which

only a subset of classes undergoes an abnormal traffic surge while the other classes

remain on the usual scale. One example of this phenomenon is slash-dot-crowds or

flash-crowds on web servers and content distribution networks [42]. They can oc-

cur due to either some unexpected event (catastrophies, e.g.) or due to a highly an-

ticipated event (sporting finals, e.g.) for which the network has not been properly

dimensioned. Another reason for these surges can be malicious denial-of-service-

attacks [43].

To protect content providers from such surges, several mechanisms have been
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Chapter 2 – Traffic surges in bandwidth-sharing networks

propsoed [44, 45, 42]. However, in addition to overloading the content providers, a

traffic surge can also negatively impact the performance of other concurrent flows in

the network. The temporarily unstable class can potentially starve the other classes

from network capacity thereby subjecting them to unreasonable delays and packet

losses. In such circumstances, in addition to protection mechanisms in web servers,

it is also important to implement bandwidth-sharing mechanisms inside the net-

work that would protect the stable classes from the adversarial effects of the surge. It

then seems natural that such mechanisms should penalize the temporarily unstable

class more when the level of congestion it creates is larger, without actually throttling

it. Thus, the more significant the surge due to a certain class is, the smaller the band-

width each flow in this class gets. To the best of our knowledge, the consequences

of traffic surges on the performance of the different classes in the presence of such

bandwidth-sharing mechanisms have not been explored.

In this chapter, we present an analytic treatment of the interactions that takes

place between the temporarily unstable classes (or classes that undergo a surge) and

the stable classes during a traffic surge when the temporarily unstable class is penal-

ized proportionally to its level of congestion.

Integration of streaming and elastic traffic

As an example, to illustrate this interaction and how asymptotic analysis can be

helpful, we shall consider a network where two intrinsically different types of traffic

– “streaming” and “elastic” – share a link of capacity 1. Such models have been con-

sidered by [46, 39]. The streaming traffic is assumed to require a fixed rate, say, c per

flow. On the other hand, the elastic traffic, as the name suggests, doen not have a

strict requirement and is satisfied with a time-varying rate.

When there are x1 (resp. x2) flows of elastic (resp. streaming) traffic, the rates are

allocated as follows:

φ1(x) = min

(
r1x1

r1x1 + cx2
,1− cx2

)
,

φ2(x) = cx2,
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where the parameter r1 quantifies the level of priority. The allocated capacity to class

1 cannot exceed its fair share, which is assumed to be r1x1/(r1x1 + cx2). Since each

streaming session is guaranteed a rate c, the total allocation to class 1 cannot exceed

1− cx2 either. The allocated capacity cannot exceed the total capacity, and the state-

space must be restricted to states x2 such that φ1(x)+φ2(x) ≤ 1. Then, if the number

of current streaming flows x2 is such that φ1(x +e2)+φ2(x +e2) > 1, arriving streaming

flows must be blocked from the network. The capacity that remains is a provision for

future incoming streaming calls.

In [47], fluid and diffusion approximations are derived for a similar model when

both streaming and elastic flows are evolving at a fast time-scale. In contrast, in this

chapter we will be interested in the blocking probability of streaming flows when

the elastic flows undergo a traffic surge which means that only the elastic flows will

be scaled to a deterministic limit whereas the streaming flows retain their stochastic

nature. When streaming and elastic traffic do not interact, the probability of blocking

can be computed using an Erlang Fixed-Point approximation [48]. However, in the

context of the present example, the interaction of these two types of traffic makes

it more difficult to apply these fixed-point approximations, mainly due to the fact

that the state space of the elastic flows is unbounded. In the regime when r1 is small,

we propose a rule-of-thumb, based on our result in Theorem 6, that can guarantee a

blocking probability smaller than a desired value.

Contributions

In [FJP14], we introduce a scaling where the initial conditions of a possibly only

a subset of classes (the surging classes) converges to infinity. To handle the surge,

the network will penalize this class by reducing its priority accordingly. In the ex-

ample above, the parameter r1 will be scaled inversely to the size of the surge. Such

a scheme ensures that the stable classes are protected from the surge, while at the

same time the surging classes are not completely shut out.

In order to obtain a classical fluid limit for Jackson networks [49] or for more com-

plex bandwidth-sharing networks [37], all the classes are jointly scaled in time and

in space. This yields a set of differential equations that govern the dynamics of all

the classes. Under additional assumptions on the drift δ of the considered Markov
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process, the differential equation is simply of the form ẋ(t ) = δ(x(t )) (see the consid-

erable amount of work on fluid limits and ODE methods both for Markov processes

and for communications networks [49, 50, 51, 37, 52]).

In our case, the situation differs as the transitions of surging classes are also

scaled to model that the priority weight of surging classes is inversely proportional

to the level of surge. This has some impact on the the structure of the limiting pro-

cess. Under this scaling, we will show that the dynamics of the temporarily unsta-

ble classes can be described by a deterministic differential equation, while the sta-

ble classes retain their stochastic nature. Hence, a time-scale separation occurs: the

temporarily unstable classes evolve on a much slower time-scale compared to the

stable classes. However even with this separation of time-scales, a strong coupling

in the dynamics of the temporarily unstable and the stable classes remains. The dy-

namics of the temporarily unstable class is influenced by the stable classes through

their conditional stationary distribution (conditional on the level of congestion of

surging classes flows being fixed to its present macroscopic value), which in turn de-

pends on the temporarily unstable classes. Hence, for surging classes the differential

equation obtained is of the form ẋ(t ) = δ̄t (x(t )), where δ̄t is an average of the first co-

ordinate drift according to the conditional distribution of the other classes, given the

state of the surging classes.

Our first contribution is in establishing the convergence in L1 uniformly on com-

pact sets in bandwidth-sharing networks with a mix of surging classes and stable

classes. Second, we introduce the notion of robust stability, which describes a situa-

tion when the network can absorb a surge of traffic by:

— keeping the non-surging classes stable,

— reducing the macroscopic state of surging classes to 0.

We call the set of traffic parameters that lead to these two conditions, the robust

stability region. We characterize the robust stability region for work conserving allo-

cations and for monotone allocations. We first show that for work conserving alloca-

tions, the unstable classes, at their macroscopic time scale, see the other classes as

having full priority, while the effect of the surging classes on the other classes gradu-

ally vanishes (again at a macroscopic time scale). Hence surging classes tend macro-

scopically to 0 under the (usual) stability condition of the system
∑N

j=1ρ j < 1. The
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situation is more complex for non work-conserving networks, where the behavior of

the surging classes depends in an intricate manner upon that of the other classes. In

particular, under the usual stability conditions of the network, the macroscopic state

of surging classes might converge to 0 or to a strictly positive number, depending on

the conditional distribution of the other classes. We prove for monotone networks

that only when the allocation giving full priority to the stable classes, that is the allo-

cation in a network where surging classes have 0 arrival rate, is stable, then surging

classes converge to 0 on the macroscopic time scale. This hence demonstrates that

the robust stability region might be strictly included in the (usual) stability region.

2.1 Asymptotic analysis of surges

Consider a bandwidth-sharing network with N traffic classes. Within each of the

N traffic classes, resources are shared according to a processor-sharing service dis-

cipline. Class-i customers arrive according to a Poisson process of intensity λi and

require exponentially distributed service times of mean µ−1
i for class-i so that the

load of class i is ρi =λ1µ
−1
i . The arrival processes of all classes are mutually indepen-

dent. Our main results allow for time-varying arrival rates for the class exhibiting a

traffic surge. When applicable, we reflect this dependence in the notation by adding

the time parameter to the arrival rates and then λ1(t ) is the arrival rate of class 1 at

time t .

Let Xi (t ) be the number of flows in the network at t and let S ≤ N denote the

number of classes that undergo a surge. The weights ri of the surging classes are

chosen inversely proportional to the size of the total initial surge, x0, i.e.,

ri = ri (|x0|) = ωi

|x0|
,

for some ωi ≥ 0.

Set K = |x0| and let Y K denote the (scaled) process:

Y K (t ) =
((

Xi (K t )

K

)
i=1...S

, (Xi (K t ))i=S+1...N

)
. (2.1)
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Here, the surging class are scaled in both time and space where as the stable classes

are only scaled in time.

Our main result formalizes the intuition mentioned in the previous section that

as the surge grows to infinity (i.e. K → ∞), the scaled stochastic process Y K con-

verges to one whose first S coordinates are deterministic and which are a solution

of a differential equation that can be described in terms of an averaged rate φ̄. For

the other N − S coordinates, corresponding to the stable classes, the dynamics re-

mains stochastic. However, the transient dynamics of these classes is washed out on

this macroscopic time-scale and only the stationary behaviour is observed. In the

limit, the result implies a time-scale separation between the surging classes and the

other ones.

Define U z to be a N −S dimensional Markov birth-and-death process with arrival

rates λi and death rates φi (z, ·), i = S +1, . . . , N , where z ∈RS+. This the dynamics of the

stable classes for a fixed value z of the number of flows of the surging classes. Denote

by πz (·) its stationary probability (when it exists). When we do not use a time index,

we implicitly suppose that we consider stationary versions of the processes.

To establish our main result, the following assumptions are needed:

(A1): φi (·, xS+1, . . . , xN ) can be extended to a Lipschitz continuous functions from

RS+ \ {0} to R+.

(A2): for all fixed z, the process U z is ergodic. We can thus define EU z the mean

under the stationary distribution of the process U z .

(A3): 1
K

∫ K t
0 λi (s)ds → ai (t ), i = 1. . .S. It shall be assumed that ai (t ) is differentiable

for all t and i .

Although the model was formulated for a constant arrival rate for ease of exposition,

the results are proved for time-dependent arrival rates that satisfy assumption (A3).

Let u(t ) ∈RS be the solution (assuming it exists and it is unique) of the differential

equation:

∀i = 1. . .S, u̇i (t ) =
ȧi (t )− φ̄i (u(t )), if ui (t ) > 0,

0, if u1(t ) = 0,
(2.2)

with φ̄i (z) =∑
y∈Z+N−S φi (z, y)πz (y).
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Theorem 6. Under the assumptions (A1), (A2) and (A3), the process Y K
i (t )

i=1...S
converges in

L1, uniformly on compact intervals, to the deterministic trajectory u(t ), i.e.

E

[
sup

0≤s≤t

∣∣Y K
i (s)−ui (s)

∣∣]→ 0, K →∞, ∀i = 1. . .S. (2.3)

Moreover, for all times t , and for all bounded continuous functions f :

lim
K→∞

E

(
sup

0≤s≤t

∣∣∣∣∫ s

0
f
(
Y K (θ)

) − EU Z (θ)
(

f
(

Z (θ),U Z (θ)(θ)
) ∣∣∣ Z (θ) = u(θ)

)
dθ

∣∣∣∣) = 0. (2.4)

2.2 Qualitative behavior of the limiting processes

The surging classes can exhibit different long-term behaviors depending upon

the drift

δi (x) =λi −µi φ̄i (x).

As t →∞, it can happen that:

1. the network continues to see the surging classes saturated (at a macroscopic

time and space scales), even after any large (macroscopic) amount of time.

A sufficient condition is that there exists x such that δi (x) = 0 and Dδ̄(x) < 0

and x > 0, with initial conditions sufficiently close to x. Then the differential

equation is asymptotically stable with stable point x > 0.

2. the differential equation (2.2) governing the dynamics of u is unstable, which

means that the traffic surge cannot be absorbed and keeps building up. It

might lead to the instability of other classes in the network.

3. the traffic surge will be absorbed at macroscopic time, i.e. the differential equa-

tion is asymptotically stable with stable point 0.

A few natural questions arise due to the fact that penalizing the surges can, in

some situations, lead to a finite but non-zero amount of fluid remaining in the net-

work. We can ask: under which traffic conditions is the surge completely absorbed?

How do commonly analysed allocations such as α-fair [53] or balanced-fair alloca-

tion [38] respond to surges?
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It is known that all α-fair as well as balanced-fair allocations are stable [54, 36]) if

ρ ∈S = {η, Aη≤C }.

We shall refer to the interior of the set S as the "usual conditions of stability". This

means that any fluid would drain out eventually if no penalty is imposed on the

surges as long as the usual traffic conditions are satisfied. However, when a penalty

is imposed, it is interesting to ask how does the penalty influence the dynamics and

the stability of these allocations.

To answer these questions, we refine the concept of stability by saying that the

network is robust stable if classes undergoing a surge (penalized adequately) even-

tually drain while the other classes stay stochastically stable. More formally, let I ⊂
[1, N ] be the set of indexes of surging classes and P([1, N ]) the power set of [1, N ].

Definition 7. The network is robust stable if for all i = 1, . . . , N :

limsup
t→∞

sup
I∈P([1,N ])

limsup
|x j |→∞, j∈I

E x [X |x|
i (|x|t )]

|x| = 0.

The robust stability region is the defined as the set of parameters such that the

network is robust stable, i.e.:

S r =
{
ρ ∈RN

+ : ∀i = 1, . . . , N , limsup
t→∞

sup
I∈P([1,N ])

limsup
|x j |→∞, j∈I

E x [X |x|
i (|x|t )]

|x| = 0

}
. (2.5)

Remark that when all classes are undergoing a surge of traffic, we retrieve the usual

notion of fluid limit, for which the convergence to 0 implies the network (usual no-

tion of) stability. Hence it holds in general that:

S r ⊂S =
{
ρ ∈RN

+ : ∀i = 1, . . . , N , limsup
t→∞

limsup
xi→∞,∀i=1,...,N

E x [X |x|
i (|x|t )]

|x| = 0

}
.

We can prove that:

— for work-conserving allocations, the robust stability set coincides with the

usual stability set (except possibly on its frontier),
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Figure 2.1 – A tree network

— for monotonic networks, the robust stability set coincides with the set of pa-

rameters under which a ’priority allocation’ is stable and can hence be strictly

included in S ;

The situation is much more complex for non-monotone allocations and a full char-

acterization of the robust stability set is an open problem. The complexity of the

dynamics can be explained through the fact that a surging fluid class can "bounce"

at 0.

Numerical examples

Example: a tree network Let us consider the tree network shown in Figure 2.1 with

c1 = 0.4 and c2 = 0.8. We shall assume the following bandwidth allocation: Define S1 =
{(x1, x2) : (r1x1 + r2x2)c1 < r1x1}. For x1 > 0 and x2 > 0,

φ1(x1, x2) =
c1, if (x1, x2) ∈S1,

max
(

r1x1
r1x1+r2x2

,1− c2

)
, if (x1, x2) ∈S c

1 ,
(2.6)

and φ2 = 1−φ1.

For this network, the allocation becomes a strict priority allocation for class 2

when r1 = 0, in which case class 1 gets capacity c1 if there are no class 2 flows, and

1−c2 otherwise. Thus, for a fixed value of ρ2, class 1 is stable if ρ1 <
(
1− ρ2

c2

)
c1+ρ2

c2
(1−c2).

The stability regions for r1 = 0 and r1 > 0 are shown in Figure 2.2. This is an example

where S r is strictly included in S .

The dynamics of u1(t ) for two different values of ρ1 – one in each region – is plot-

ted in Figure 2.3, for which ρ2 = 0.5. For class 2, when the priority allocation is stable

the dynamics of the average number of customers converges to the one of the prior-

ity allocation, that is ρ2/(c2 −ρ2), as is illustrated in Figure 2.3.
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Chapter 2 – Traffic surges in bandwidth-sharing networks

Figure 2.2 – The different stability regions for the tree network
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Figure 2.3 – Tree network: scaling of class 1 (left) and of class 2 (right)
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Streaming and Elastic traffic We now apply Theorem 6 to the example in which stream-

ing and elastic traffic share the network capacity as explained in beginning of this

chapter.

Let pm denote the desired maximal blocking probability of class-2 flows. We shall

set the priority level of class 1 (by varying r1) such that the probability of blocking of

class-2 flows is always less than pm during the surge. Performing the scaling previ-

ously defined, remark that the state-space of class 2 depends, for a fixed macroscopic

state z of class 1, on both z and c. Denote

Sz =
{

x2 :
z

z + cx2
+ cx2 ≤ 1

}
,

the state-space of class 2 given that u1(t ) = z. It can be seen that an arrival of class 2 is

blocked if and only if there are already ⌊1−z
c ⌋ calls of class 2 present. Define ρ2 = λ2

µ2c .
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2.2. Qualitative behavior of the limiting processes

The process U z
2 is a birth-death process with birth rate λ2 and death rate µ2cx2, and

whose stationary distribution conditioned on z is given by

πz
2(x2) = 1∑

j∈Sz
ρ

j
2/ j !

ρ
x2
2

x2!
.

For u1(t ) = z, the blocking probability of class 2 is then

πz
2(x2)|x2=⌊ 1−z

c ⌋=: g (z).

Let z̄ := sup{z : g (z) ≤ pm ,0 < z < 1}. Since g (z) is a non-decreasing function of z, in

order to guarantee a maximal blocking of pm , u1(t ) has to be smaller than z̄ for all t .

This leads us to the following necessary and sufficient condition which guarantees

the desired quality of service:

ū1 := sup
0≤t<∞

u1(t ) < z̄. (2.7)

We can compute ū1 as follows. From Theorem 6, the dynamics of u1(t ) depends on

the average capacity allocated to class 1, which an be computed as:

φ̄1(z) = ∑
x2∈Sz

min

(
z

z + cx2
,1− cx2

)
ρx2

x2!
C (z),

where C (z) = (
∑

x2∈Sz

ρx2

x2! )−1. In the case that c is very small (c ≪ 1), we might consider

as a reasonable approximation a Poisson distribution for class 2, whatever the state

of class 1. In that case, φ̄1 takes a slightly simpler form. After simple calculations:

φ̄1(cz) = H(z) = z
∫ ρ2

0 uz−1 exp(u)du

ρz
2 exp(ρ2)

.

Using the monotonicity of φ1 in its first variable, we can conclude that u1(t ) con-

verges monotonically to its limit point, and that

ū1 =
u1(0), if λ1 < φ̄1(u1(0));

φ̄−1
1 (λ1), otherwise,
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Chapter 2 – Traffic surges in bandwidth-sharing networks

The inequality (2.7) can be ensured by scaling the process u1(t ) by a factor z̄/ū1,

which, in turn, can be achieved by scaling the priority level (or, equivalently, r1) by

this very same factor. This additional scaling results in a larger share of the band-

width for class-1 flows in case z̄ > ū1. Conversely, if z̄ < ū1, the priority level of class-1

flows is appropriately decreased so that the blocking probability constraint of class-2

flows is not violated.
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CHAPTER 3

QUEUE WITH POISSON CONTROLLER

In the previous two chapters, we looked at models in which either all or a subset

of classes were scaled. In the latter case, the subset which was scaled did change over

time. In this chapter, we shall study a two-dimensional Markov chain in which one

of the two dimensions needs to be scaled. However, this time the dimension that is

scaled changes over time.

This type of models arise in the context of real-time control or optimization of

communication network. In several of these problems, the policy depends upon the

state of the network (see [9] for a variety of control problems of this kind). For ex-

ample, the bandwidth-allocation policies in the previous chapter were based on the

number of ongoing flows of each class in the network. In practice, this information

may be costly to obtain in real-time, especially in big networks with a large num-

ber of concurrent flows and where the state can change at very short time-scales. In

such situations, it may nevertheless be possible for the decision-maker to observe

the state of the network every once in a while and change the policy appropriately.

The dynamics of the network is now modelled by the current state and the state ob-

served at the previous control instant. If the control instants are not planned suffi-

ciently often enough, then the current state and the last observed state may become

completely out of phase. In the terminology of the previous chapter, when the cur-

rent state experiences a surge, the last observed state can remain on the normal scale

and vice versa.

In this chapter, we shall study one such model which exhibits time-varying change

in scales. It a simple model of a single-server queue in which speed of the server is

adjusted at Poisson instants that are independent of the state of the system. We call

this model with Poisson control instants as Poisson controller. It has been shown

that [55, 56], when the objective is to minimize a linear combination of mean energy

consumption and mean sojourn time, the optimal server-speed is proportional to
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Chapter 3 – Queue with Poisson controller

the number of customers to the power of a constant. This achieves the right-tradeoff

between the mean sojourn time and mean energy consumption which are opposites

in the sense that reducing the sojourn time requires increasing the speed which in-

crease the energy consumption and vice versa. Inspired from this policy, it will be

assumed that the speed is set to min(q, s̄) when q is the observed queue length and

s̄ the maximum server speed. Although the actual optimal policy requires the expo-

nent to larger than 1, we take it to be 1 for ease of analysis although similar behaviour

will be also observed for other values of the exponent.

From the practical point of view, our results can be used to compute the differ-

ence in the performance metrics due to control instants being different from the

ones prescribed by the optimal policy. Of course, one could actually compute the

optimal policy for the model with a Poisson controller and implement it. However,

since there is quite a vast literature and results assuming state is known instantly,

we first consider the case when a policy computed for the setting of instantaneous

information in implemented with a Poisson controller,

Contributions and related work

In [NQPR23], we analyse the Poisson controller model described by a two-dimensional

Markov process with state given by (Q(t ),S(t )) where Q(t ) denotes the number of cus-

tomers in the system at time t and S(t ) denotes the speed of the server at t . The two

cases s̄ < ∞ and s̄ = ∞ are treated separately since their analysis is based on differ-

ent techniques. Moreover, as will be seen later, they give rise to different asymptotic

results.

For the infinite maximum speed case, that is s̄ =∞, we determine the functional

equation whose solution leads to the joint generating function of the steady-state

process. The steady-state distribution of the queue-length conditional on the speed

is shown to be equivalent to the transient distribution of a queue whose state is re-

set to the given speed at the control instants. The latter queue was analysed in [57]

in which the generating function for the steady-state queue-length was given. From

this conditional generating function as well as the observation that the marginal dis-

tribution of Q is the same as that of S, we obtain a system of linear equations to

compute this marginal distribution. Finally, we investigate the limiting behaviour of
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3.1. Poisson controller with infinite maximum speed

the steady-state distribution when the rate of the control process, ν, goes to 0 and

to ∞. For ν→ 0, it is possible that the queue is unstable for some of the speeds. The

queue-length can thus live on two different scales: (i) the fluid scale when the sam-

pled speed is less than the arrival rate; (ii) the normal scale when the sampled speed

is greater than the arrival rate.

For finite maximum speed s̄, we resort to the matrix geometric method [58] to

analyze the system. Using a probabilistic interpretation, we obtain an explicit ex-

pression for the R matrix. We show how to obtain the joint generating function when

ν→ 0 and ν→∞.

Our model is related to queueing systems or Markov chains in random environ-

ments [59, 60]. In the cited models, the arrival rate or the service rate of the queue de-

pends upon the state of the environment which is a random process. As opposed to

this, in our model, the environment (which is the speed observed by the controller)

itself depends upon the queue length since it is set to the value measured at the con-

trol instants. The two variables – the queue-length and the state – thus influence the

dynamics of each other in our model whereas in the classical random environment

model it is only the environment that influences the dynamics of queue-length. We

also mention [61] in which a random environment model with both unstable and

stable speeds was analysed. They obtained the conditional generating function for

the queue-length for the process on both the fluid as well as the normal scale. We

obtain this type of results for the Poisson controller model.

3.1 Poisson controller with infinite maximum speed

Consider a single-server queue to which arrivals occur according to a Poisson

process of rate λ. Each arrival brings with it an exponentially distributed service re-

quirement with mean 1/µ. The speed of the server can be dynamically assigned val-

ues in the set {0,1,2, . . . , }. Adjustments to the speed can be made only at control in-

stants which are assumed to occur according to a Poisson process of rate ν indepen-

dently of the arrivals and the departures. At a control instant, the speed of the server

is set equal to the number of customers observed at that instant. Between any two

consecutive control instants, the speed of the server remains constant at the value
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chosen at the earlier control instant.

Let Q(t ) denote the number of customers in the system at time t and S(t ) =Q(τt ),

with τt the last control instant at or before time t . Thus, the speed at time t is main-

tained at Q(τt ) until the next control instant. As our focus is on the number of cus-

tomers in the system and service times are exponential, the service discipline can be

any discipline in which the service order is independent of the actual service times

of the customers (e.g., FCFS, LCFS or ROS).

The process (Q(t ),S(t ))t≥0 is a Markov process with transition rates

(Q(t ),S(t )) →


(Q(t )+1,S(t )) with rate λ;

(Q(t )−1,S(t )) with rate µS(t );

(Q(t ),Q(t )) with rate ν.

(3.1)

The process (Q(t ),S(t ))t≥0 is ergodic for all possible combinations λ> 0, µ> 0 and

ν > 0 and we are interested in the steady-state behaviour of this two-dimensional

Markov process. Denote with πi , j = limt→∞ P (Q(t ) = i ,S(t ) = j ) the steady-state prob-

abilities and let

P (x, y) = ∑
i≥0, j≥0

πi , j xi y j (3.2)

be the corresponding joint probability generating function. By (Q,S) we denote a pair

of random variables with this joint probability generating function.

Theorem 8. P (x, y) is the solution of the functional equation

(ν+λ(1−x))P (x, y)+µy

(
1− 1

x

)
∂

∂y

[
P (x, y)−P (0, y)

]= νP (x y,1). (3.3)

Substituting x = 1 in the above theorem, we get:

Corollary 4. The marginal distribution of the speed is the same as the marginal distribution

of the number of customers in the system. That is,

P (1, y) = P (y,1).
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3.1. Poisson controller with infinite maximum speed

An explanation for Cor. 4 is that the controller sees the marginal distribution of

Q due to the PASTA property. Since S is set to Q at the control instants, the marginal

distribution of S just after these instants is the same as the marginal distribution of

Q. Because the time until the next control instant is independent of S at a control

instant (this time is exponentially distributed with parameter ν), the marginal distri-

bution of S at an arbitrary instant is the same as the marginal distribution of S just

after a control instant and hence also the same as the marginal distribution of Q at

an arbitrary instant.

We can also conclude that the expected queue-length is larger than in an M/M/∞
queue, i.e., in a queue when the control is based on instantaneous information.

Corollary 5.

E[Q] > ρ, with ρ =λ/µ.

An explicit solution to the functional equation (3.3) was not within our reach. So,

we provide an alternative way to compute some of the performance measures such

as the mean queue-length. This method is not completely explicit but maybe more

amenable to numerical computations. For this we shall obtain expressions for both

the queue-length distribution conditioned on the server-speed being jµ as well as

for the marginal distribution of the server-speed. Combining these quantities, the

marginal performance measures of the queue-length can be computed. The small

footprint in this method is that the marginal distribution of the server-speed is in

terms of an infinite system of linear equations.

The conditional queue-length distribution

Define σ j =∑
i πi , j to be the marginal distribution of the stationary server speed.

Let

p j (i ) = πi , j

σ j
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be the stationary conditional probability of having i customers in the system when

the service rate is jµ. Further, define

β j (ν) = λ+ jµ+ν−
√

(λ+ jµ+ν)2 −4λ( jµ)

2λ
, (3.4)

and β̃ j (ν) =λβ j (ν)( jµ)−1.

Theorem 9. The conditional queue-length distribution is given by

p0(l ) = ν

ν+λ
(

λ

ν+λ
)l

, (3.5)

and, for j > 0,

p j (l ) = ν

λ

l∑
k=0

ck, j β̃ j (ν)l−k+1. (3.6)

where

ck, j =


(1−β j (ν))−1β j (ν) j k = 0;

β j (ν) j−k k = 1, . . . , j ;

0 k > j .

(3.7)

Remark 2. The stationary distribution of Q j is the same as the transient distribution after an

exponentially distributed time period with parameter ν in an M/M/1 queue with arrival rate

λ, service rate jµ and starting at time 0 in state j . Hence, the above result can be alternatively

derived using results on the transient distribution in the M/M/1 queue (see Section I.4.4 and

in particular formula (4.27) in [57]).

The unconditional measures can then be obtained from the marginal distribu-

tion of the server-speed given in the following result.

Proposition 3.

σl =
∑

j
σ j
νβ̃ j (ν)

λ

(
l∑

k=0
ck, j β̃ j (ν)l−k

)
, ∀l ≥ 0. (3.8)

Equation (3.8) can be interpreted as the balance equation of the embedded Markov

chain of the server speed at control instants.
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3.1. Poisson controller with infinite maximum speed

Asymptotics for ν→∞.

When the rate of control ν→∞, intuitively one expects the speed to be the same

as the queue length since measurements are being made at a much faster rate com-

pared to rates of variations in the queue-length. The two-dimensional process will

live mainly on the diagonal states. The following result formalizes this intuition.

Proposition 4. If ν→∞, then P (x, y) → eρ(x y−1).

Asymptotics for ν→ 0

On the other extreme, when the measurements are performed at a much slower

rate, time-scale separation between the queue-length and the server-speed occurs.

Since the server-speed does not change between two control instants, the queue-

length evolves on a faster time-scale compared to the server-speed. In the spatial

dimension, both the queue-length and the server-speed can evolve on two scales:

fluid scale on which they are O(ν−1) and the normal scale on which they are O(1). The

trajectories on these processes rescaled by νwill be cyclic as shown in Fig. 3.1. We see

the out-of-phase trajectories of the queue-length and the server-speed. When one is

on the fluid scale the other one is on the normal scale and vice versa.

The intuitive reasoning for this behavior is as follows. Assume time has been

rescaled by a factor ν so that control instants form a Poisson process of rate 1. A

cycle begins when the measured queue-length is 0. For this speed, the queue-length

process being unstable, it grows linearly on the fluid scale at rate λ until the next

measurement instant. That is, during this period, the limiting process limν→0νQ(t )

will grow linearly. The queue-length being on the fluid scale, the next measurement

will set the speed to a value O(ν−1). This will bring the queue-length to 0 instanta-

neously in time O(ν). The speed is now O(ν−1) whereas the arrival rate is λ. So, the

queue-length will remain at 0 (on the normal scale and not just on the fluid scale)

until the next measurement instant at which point the speed will be set to 0. At this

point, a new cycle will begin. We were unable to formalize this intuition and leave it

a conjecture.

Define P̂ (x, y) := limν→0 P (xν, yν) to be the generating function of the scaled pair of

random variables (νQ,νS) in the limit ν→ 0.
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Figure 3.1 – Trajectories of the rescaled queue-length and the rescaled server-speed in the
limit ν→ 0. The vertical dashed lines are control instants.

Conjecture 1.

P̂ (x, y) = 1

2

1

1−λ log(x)
+ 1

2

1

1−λ log(y)
. (3.9)

As ν→ 0, the probability mass of the joint process concentrates around the two

axes Q = 0 and S = 0. When Q is on the fluid scale, S = 0 while when Q = 0, S is on the

fluid scale. On each of these two axes the scaled stationary process behaves like an

exponentially distributed random variable of rate λ−1. The coefficient 1/2 for each

of the two terms in the above generating function corresponds to the proportion of

time spent by the process on each of the two axes.

3.2 Poisson controller with finite maximum speed

Two observations can be made from the trajectories in Figure 3.1: one is the out-

of-phase dynamics of the two dimensions, and the second one is that the duration

of each phase is itself random since it lasts for an exponentially distributed time of

rate 1 (on the macroscopic scale). In this section, we look at the model with finite
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3.2. Poisson controller with finite maximum speed

maximum speed s̄ in which the second observation becomes more pronounced. We

shall see that in additional to the cycle duration, even the slope of the fluid trajecto-

ries becomes random. Of course, since the maximum speed is finite, the speed itself

remains always on the normal scale. So, we will not see the out-of-phase dynamics

of the previous section.

The process (Q(t ),S(t ))t≥0 is now a Quasi-Birth-Death (QBD) process (see [62],

e.g.) with level-dependent transition rates. Furthermore, for Q(t ) ≥ s̄ the transition

rates become level-independent. It can be argued that the ergodicity condition of

this process is given by the natural condition λ< s̄µ, for every ν> 0.

From the theory of QBD process, the stationary probability vectorπn = [πn,0,πn,1, . . . ,πn,s̄]

for the different states with n customers in the system, are, for n ≥ s̄ −1, of the form

πn =πs̄−1Rn−s̄+1, (3.10)

where R is the minimal non-negative solution of a matrix equation which depends

on the transition rates.

While in general the R matrix does not have a nice formula, for our model, this

matrix can be explicitly calculated. It is a diagonal matrix with additional non-zero

values in the last column.

Proposition 5. The matrix R is given by

R =



λ
λ+ν

λ
s̄µ

λβ1(ν)
µ

λ(1−β1(ν))
s̄µ

. . .
...

λβi (ν)
iµ

λ(1−βi (ν))
s̄µ

. . .
...
λ
s̄µ


. (3.11)

Since R is of the above form, Rn too has a simple formula which can be used for

computing πn in (3.10). The probability vectors πn , n ≤ s̄ −1, can now be computed

using a system of linear equations and the normalization equation (see, e.g., [58]).
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Further, the joint generating function can be expressed as

Proposition 6.

P (x, y) = ∑
n<s̄−1, j

πn, j xn y j +πs̄−1(I −Rx)−1x s̄−1 ·yT , (3.12)

with y = [1, y, y2, . . . , y s̄]

We now look at the asymptotics when ν→∞ and ν→ 0. The former regime is less

interesting as was the case in Sec. 3.1. So, we only present the case ν→ 0.

Asymptotics for ν→ 0

In the following, we shall assume that time has been rescaled by a factor ν so that

the control instants happen according to a Poisson process of rate 1. Define

S + = { j : j > ρ}, S − = { j : j ≤ ρ}. (3.13)

The set S + contains the speeds for which the queue is positive recurrent while S −

is its complement set.

As ν→ 0, the trajectories of the queue-length will converge to one described in

the following (the intuitive argument is based on time-scale separation but we do

not have a formal proof). Let a cycle denote the time between two consecutive ob-

servations in S −. An illustration of trajectories of the queue-length on the fluid scale

and the speed is shown in Fig. 3.2. Until the first control instant after the start of a

cycle, the queue-length grows linearly on the fluid scale with rate λ− jµwhere j is the

queue-length sampled at the start of the cycle. Hence, at the first control instant the

speed will necessarily be set to s̄, which is in S +. Since the queue-length process is

now stable, it will decrease with rate s̄µ−λ for one or more control instants until the

fluid hits 0. (Notice that control instants do not affect the server working at constant

speed s̄ while the queue is at the fluid level, ensuring that level 0 will be reached.)

The queue-length process will now evolve on the normal scale for one or more con-

trol instants until a speed from S − is sampled. At this point, a new cycle will begin.

A cycle can thus be decomposed into three phases: the fluid unstable phase during

which the fluid grows; the fluid stable phase during which the fluid drains; and the

no phase during which the queue length lives on the normal scale.
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3.2. Poisson controller with finite maximum speed

Figure 3.2 – Trajectories of the queue-length on the fluid scale and the server speed in the
limit ν → 0. The vertical dashed lines are control instants. Trajectories that occur on the
normal scale all collapse to 0.

As in previous section, in the spatial dimension, the queue-length process can be

either on the fluid scale or on the normal scale depending on whether the sampled

server-speed was smaller or larger than λ. However, unlike in the infinite maximum

speed case, here the speed always remains on the normal scale. Another difference

with the previous section is that the slopes of the trajectories in random chosen in

each cycle.

The above arguments allow us to obtain the to compute the generating function

P (x, y) on the different scales. Define P̂ (x, y) = limν→0 P (xν, y) for the generating func-

tion that captures the queue-length on the fluid scale and P̃ (x, y) = limν→0 P (x, y) to

be the one that captures the normal scale queue-length.

P̂ (x, y) = ∑
j∈S −

σ j

1− (λ− jµ) log(x)

(
y j + λ− jµ

s̄µ−λ y s̄
)
+ ∑

j∈S +
y jσ j , (3.14)

P̃ (x, y) = ∑
j∈S +

1−ρ j

1−ρ j x
y jσ j . (3.15)

The marginal distribution σ j can be computed from the stationary distribution of
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the Markov chain embedded at the control instants and the renewal reward theo-

rem. Again in this asymptotic the expressions for the generating function simplifies

(assuming we are able to formalize the time-scale separation argument.)

Remark 3. The above asymptotic analysis cannot be used to obtain the results in Sec. 3.1 for

the infinite speed case by taking s̄ →∞. The difficulty comes from the fact that when s̄ =∞,

the speed sampled after the fluid (unstable) phase is an exponential random variable. On the

other hand, in the finite s̄ case, this speed is always a fixed value. The limit of this sequence of

deterministic values is unable to capture the exponential random variable at s̄ =∞. One will

have to scale s̄ as ν−1 to get back the results of Sec. 3.1.

3.3 Example application

An application of our analysis can be to quantify the trade-off between the moni-

toring costs and the suboptimality due to reduced monitoring. As mentioned earlier,

control policies are sometimes obtained assuming changes can be made at arbitrary

time instants (or equivalently assuming infinite monitoring frequency). Monitoring

the state at high frequencies can however be costly in terms of resources (monitor-

ing packets consume bandwidth, etc.). Reducing the monitoring frequency lowers

the measurement cost but also makes the policy more suboptimal. With the analysis

in this chapter, one can compute the performance obtained for a given monitoring

frequency, ν, and then determine the appropriate value of ν that optimizes the ob-

jective that accounts for both the performance as well as the monitoring costs.

As an illustration, consider the problem of optimizing a linear combination of

sojourn time and energy consumption that is mentioned in the introduction of the

paper. In Fig. 3.3, the expected queue length as well as the expected speed as a func-

tion of ν, the monitoring frequency, is plotted for s̄ = 2. It can be seen that both these

quantities decrease with ν which points to a trade-off since a higher ν will entail a

higher monitoring cost but lower energy and delay costs.

We remark that for the finite-speed case Prop. 6 can be generalized to arbitrary

increasing function speed profiles si , where si is the prescribed speed when state i is

observed. Similar analysis can thus be performed on other specific speed profiles.
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Figure 3.3 – Expected queue length and expected speed as functions of the monitoring fre-
quency (ν). s̄ = 2, µ= 1.
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Distributed systems
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CHAPTER 4

SINGLE-PATH ROUTING

In this part, we turn our attention to distributed systems with multiple entities

simultaneously optimizing their own objectives while sharing a common network

and influencing the performance of each other. This chapter concerns itself with

solving a centralized problem using a distributed architecture. Such an approach

could be followed for reasons of scalability and robustness.

The single-path routing problem, also known as the unsplittable or non-bifurcated

multicommodity flow problem, naturally arises in a variety of contexts. It amounts

to routing a given set of fixed traffic demands in a network, allocating each demand

to a single path to minimize the total network cost, which is usually expressed as the

sum of link costs (see Chapter 8 of [63] for the related joint routing and congestion

control problem). Our motivation for studing this problem comes from the Multi-

Protocol Label Switching (MPLS) technology [64] that changed the usual hop-by-hop

paradigm by enabling network flows to be routed along predetermined paths. In an

MPLS network, each flow is routed along a single path, but two different flows with

the same source/destination pair can use two different paths. Traffic engineering in

MPLS networks mainly amounts to optimizing the quality of service of network flows

by tailoring the paths assigned to flows to the prevailing traffic conditions.

The network model is similar to the bandwidth-sharing networks of Chapter 2.

Here, the bandwidth-sharing policy is assumed to be given and we are interested

in computing the best route for the flows. The link cost function (latency, e.g.) is as-

sumed to be obtained from performance analysis done previously on the bandwidth-

sharing policy in place.

Contributions and related work

The single-path routing problem belongs to the class of non-linear mathematical

programs involving integer variables (actually, binary variables). These mathemati-

51



Chapter 4 – Single-path routing

cal programs are known to be extremely hard to solve, both from a theoretical and

from a practical point of view (see Chapter 15 of [65] for a survey as well as [66] and

references therein for a thorough literature review). Even in the simplest case with

binary variables, quadratic function and equality constraints, they are known to be

NP-hard [67]. Several general approaches have been proposed to solve non-linear

integer programming problems. Some transform the discrete problem into a con-

tinuous one (see for example [68]). Despite their qualities, those techniques do not

scale very well with the size of the problems. A recent alternative is the so-called

Global Smoothing Algorithm [69], which seems to scale better while providing fairly

good approximations. Heuristics and meta-heuristics have also been used to find an

approximate solution to non-linear integer programming problems. Among others,

ant-inspired optimization techniques are known to be efficient for solving various

routing problems [70, 71].

In [BPV17], we propose an approximation algorithm, inspired from game theory

[72], for solving non-linear single-path routing problems with additive link costs. In-

stead of the network choosing a path for the flows, we let the individual flows to

independently select their path to minimize their own cost function. However, the

cost functions of the flow are designed so that the resulting Nash equilibrium of the

game provides an efficient approximation of the optimal solution. We note that a

similar algorithm was proposed in [73] for scheduling of strictly periodic tasks. We

establish the convergence of the algorithm and show that every optimal solution

is a Nash equilibrium of the game. We also prove that if the link latency functions

ℓe are polynomial of degree d ≥ 0, then the approximation ratio of the algorithm is(
21/(d+1) −1

)−(d+1)
. As will be shown numerically, the main merit of this algorithm is

that it is several orders of magnitude quicker than the method discussed above while

providing good optimization results.

Problem Statement

Consider a network represented by a directed graph G = (V ,E). To each edge e ∈ E

is associated a non-decreasing latency function ℓe :R+ →R+ which can interpreted as

the delay per packet. A typical example is the M/M/1 delay function ℓe (x) = 1/(ce −x),

where ce represents the capacity of link e.
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For any set π ⊂ E , we define the constant δe
π as 1 if e ∈ π, and 0 otherwise. We are

given a set K = {1,2, . . . ,K } of Origin-Destination (OD) pairs with λk ∈R being its traf-

fic demand. Each traffic demand has to be routed in the network over a single path.

Let Πk be the set of all paths for the OD pair k. This set can contain all simple paths

from sk to tk , or only a subset of those paths satisfying some constraints. A single-

path routing strategy is a vectorπ= (πk )k∈K ∈Π, where πk is the path assigned to traf-

fic demand k andΠ=Π1×Π2×·· ·×ΠK . The goal is to find a routing strategy that min-

imizes the cost of the network F (π) = ∑
e∈E ye (π)ℓe (ye (π)), where ye (π) = ∑

k∈K δe
πk
λk

is the total traffic flowing on link e in routing strategy π.

Formally, the problem can be written as a 0-1 mathematical program as follows:

minimize
∑
e∈E

yeℓe (ye ) (4.1)

subject to

ye =
∑

k∈K

∑
π∈Πk

λkδ
e
πxk,π e ∈ E , (4.2)

∑
π∈Πk

xk,π = 1 k ∈K , (4.3)

xk,π ∈ {0,1} π ∈Πk ,k ∈K . (4.4)

4.1 Penalized best-response algorithm

The best-response algorithm is used in game theory as the reaction of a rational

player to the actions of the other players. The best-response of a player is defined as

action that minimizes its objective function conditioned on the actions of the other

players. It is, as the name suggests, the best that the player can do for a given ac-

tion profile of the others. The best-response algorithm then consists of players tak-

ing turns in some order to adapt their actions based on the most recent known ac-

tions of the others until an equilibrium point, known as the Nash equilibrium (NE),

is reached.

A naive algorithm would be to assign each OD pair the role of player with the
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objective of minimizing its own delay

fi (π,π−i ) = ∑
e∈π

λiℓe (ye (π,π−i )), ∀π ∈Πi . (4.5)

This approach has two drawbacks due to the fact that Prob. 4.1 is not a game with

different and conflicting objectives for each flow. Rather the flows have a common

objective function. The first drawback of the naive approach is that a Nash equilib-

rium of this game need not be the optimum of the (4.1) (see Example 1).

Example 1. Consider a network with two parallel links as shown in Figure 4.1. There are two

flows, each of size 1, which wish to go from O to D. There are two possible routes: (i) the top-

route with a latency function of l (x) = x; and (ii) the bottom-route with a latency function of

l (x) = 0.4x.

1

1 O

x

0.4 · x

D

Figure 4.1 – Example to show that the Nash equilibrium of a weighted congestion game need
not be a global optimum.

It can be verified that at the global optimum one of the flows will be routed through the

top-route and the other will be routed through the bottom-route. The cost for the flow on the

top-route at the optimal routing is 1 while for the one on the bottom-route it is 0.4. In order

to check that the optimum is not a Nash equilibrium for cost defined in (4.5), we look at the

best-response of the flow on the top-route. If this flow moves to the bottom-route its cost will

be 0.4(1+1) = 0.8 which is less than its current cost of 1. Thus, at the global optimum the flow

on the top-route has an incentive to move to the bottom-route.

And, secondly, the convergence of best-response algorithm is known only in spe-

cific cases which does not include the cost function (4.5) derived from the single-path

routing problem. Since our aim is to design a fast approximation algorithm for solv-

ing (4.1), convergence guarantee is desirable. Further, if the set of Nash equilibria
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of an algorithm contains the global optimum, it would mean that once in while the

algorithm will find the optimum solution which could be desirable as well.

An intuitive reason NE is not necessary a global optimum for the total cost func-

tion is that players minimize their individual objective without accounting for the

impact of their actions on the others. While the best-responding player reduces its

cost, the others can potentially see an increase in their costs. Due to the non-zero

sum nature of the game, the total cost can be larger after a best-response even though

the cost of the best-responding player is reduced. Example 1 also illustrates this

point. At the global optimum, when the flow on the top-route moves to the bottom

one, its cost reduces by 0.2 units while that of other player increases by 0.4.

To overcome these two difficulties, we follow the approach proposed in [74]. The

key idea is to modify the cost function of each player in such a way that the two

properties are satisfied. This can be done by adding a penalty corresponding to the

impact of a player’s action on the cost of the other players. When player i routes its

traffic on path π, the increase in the cost of each player j ̸= i using link e ∈π is

λ j

[
ℓe

(
y−i

e +λi

)
−ℓe

(
y−i

e

)]
, (4.6)

where y−i
e =∑

k ̸=i δ
e
πk
λk represents the total traffic flowing on link e due to all players

other than i . As a consequence, we define the penalty term as follows:

pi (π,π−i ) = ∑
e∈π

∑
j ̸=i

λ jδ
e
π j

[
ℓe

(
y−i

e +λi

)
−ℓe

(
y−i

e

)]
,

= ∑
e∈π

y−i
e

[
ℓe

(
y−i

e +λi

)
−ℓe

(
y−i

e

)]
. (4.7)

In the penalized best-response (PBR) algorithm, player i computes its path to mini-

mize its penalized cost:

minimizeπ∈Πi ci (π,π−i ) = fi (π,π−i )+pi (π,π−i ). (OPT-i )

As shown in [74], the convergence of PBR in finite-time follows from the fact the

objective in (4.1), F , is a potential function for this game, i.e., a decrease in the indi-

vidual utility leads to a corresponding decreasing in the global objective function, F .
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Further from the same argument it can also be shown the global minimum of (4.1) is

a Nash equilibrium of the penalized game.

Remark 4. The worst-case computational complexity of finding a pure Nash equilibrium

in a potenial game can be exponential in the number of players (the number of flows in our

problem)[75]. However, in [76] it is shown that on average the complexity is linear in the num-

ber of players. Thus, on random instances, the best-response algorithm can be expected to

converge much faster than exact algorithms.

Approximation ratio of PBR

An instance I of our problem is defined by the graph G = (V ,E), by the set of traffic

demands K (including the demand value λk and the set of candidate paths Πk for

routing each demand k) and by the link latency functions ℓe : R+ → R+. Our goal in

this section is to establish bounds on the approximation ratio of PBR that hold uni-

formly over all instances of the problem. More precisely, given an instance I of the

problem, let π be any Nash equilibrium and let π∗ be an optimal routing strategy

for that instance. We look for an upper bound on the ratio F (π)/F (π∗) that holds for

all instances I of the problem. In the following, we establish such a bound when the

link latency functions are polynomial functions of the form ℓe (x) =∑d
j=0 ae, j x j , where

d ≥ 0 and the ae are non-negative coefficients. Our main result is stated in Theorem

10.

Theorem 10. If ℓe (x) = ∑d
j=0 ae, j x j , then the approximation ratio of the penalized best-

response algorithm is
(
21/(d+1) −1

)−(d+1)
.

Interestingly, in the case d = 0, that is, when the latency function ℓe (x) of each link

e is a constant ae ≥ 0, the penalized best-response algorithm is guaranteed to provide

an optimal solution.

The proof has two parts – one which shows that the ratio is an upper bound,

and the other which proves that this is a lower bound. For the upper bound, Hölder

inequality is used to bound the difference between the Nash equilibrium and devia-

tions from it, as was done by [77] to compute an upper bound for the PoA of the stan-

dard best-response (SBR) algorithm (the one when the objective is (4.5)) for affine

and polynomial cost functions with non-negative coefficients.
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4.1. Penalized best-response algorithm

In order to show prove the lower bound, we provide an instance which attains

this upper bound. It is adaptation of the instance given in [78] (see Lower Bound 2

and Lemma 4.5 in that paper). Consider a problem with cost function ℓe (x) = ae xd ,

and N origin-destination pairs Oi -Di . In addition to these nodes, there are two other

nodes R0 and R1 which act as routers. Each origin has two choices: either send the

traffic to the left or to the right.

Let the edge connecting Oi and Oi+1 be numbered i , and set the coefficient of this

link, ai =φ(d+1)i . The coefficient of the link R0 −O1 is set to 1 and that of O4 −R1 is set

to aN = φ(d+1)(N−1), where φ = 21/(d+1) −1. All the other edges have a cost of 0. Figure

4.2 shows an instance with N = 4 pairs.

R0

φ(d+1)0

O1

D1

φ(d+1)1

O2

D2

φ(d+1)2

O3

D3

φ(d+1)3

O4

D4

φ(d+1)3

R1

Figure 4.2 – Problem instance with N = 4 origin-destination pairs for the lower bound on
the approximation ratio.

For this instance, the routing to the left corresponds to a Nash equilibrium whereas

routing to the right corresponds to the global optimum. As a consequence, the ap-

proximation ratio is

gN (φ) = N

(N −1)φd+1 +1
. (4.8)

By taking N →∞, we obtain an approximation ratio of φ−(d+1) = (21/(d+1) −1)−(d+1) as

claimed.

An immediate consequence of Theorem 10 is that:

Corollary 6. As d →∞, the approximation ratio is asymptotically
(

d+1
log(2)

)d+1
.

In Table 4.1, we compare the approximation ratio of PBR to that of SBR. For the

latter, the game is a weighted congestion game (see [78] and references therein) for
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which several authors, including [78] and [79], have investigated the PoA. For poly-

nomial cost functions of degree d , it was shown in [79] that the PoA for mixed equi-

librium is Φd+1
d , where Φd is the solution of (Φd +1)d =Φd+1

d . When d ≥ 1, the approx-

imation ratio of the PBR is worse than that of SBR with asymptotically, the standard

version being a factor (log(d))d+1 better than the penalized version. On the downside,

SBR does not have guaranteed convergence whereas PBR is guaranteed to converge.

It is however important to keep in mind that the above performance guarantees

are obtained for worst-case scenarios that are not necessarily representative of in-

stances met in practice as shall see next.

Table 4.1 – Comparison of the approximation ratios of PBR and SBR for different values of
d .

degree (d) Penalized BR Standard BR [79, 78]

0 1 1
1 5.83 2.62
2 56.95 9.91
3 780.28 47.82

asymptotic Θ

((
d+1

log(2)

)d+1
)

Θ

((
d

log(d)

)d+1
)

4.2 Numerical results

We give a sample of results with the link costs taken to be the M/M/1 delay func-

tion. PBR will be compared against other algorithms on two metrics: the cost and

the computation time. The benchmark algorithm is the lower bound given by the

multi-path problem obtained by relaxing the single-path constraint. The other three

algorithms are:

— Global Smoothing Algorithm (GSA): introduced in [69] for solving non-linear

optimization problems with binary variablesto a good approximation of the

solution.

58



4.2. Numerical results

— Ant Colony Optimization (ACO): heuristic algorithm proposed in [70]. It belongs

to the family of ant colony algorithms, which are known to be efficient for

searching an optimal path in a graph [80, 81, 71].

— Bonmin NLP-based branch-and-bound algorithm: Bonmin is an open-source

software for solving general MINLP (Mixed-Integer Non-Linear Programming)

problems [82].

In the experiments, we have used 800 randomly generated instances obtained

using 8 standard network topologies collected from the IEEE literature and from the

Rocketfuel project [83]. For each network topology, we consider 100 random traffic

matrices generated with uniform distributions in such a way that there is positive

traffic demand associated to each origin/destination pair. The relative gap (in per-

centage) to the multi-path lower bound are presented in Table 4.2. PBR and ACO

algorithms perform better than GSA, for which relative errors up to 87.54% are ob-

tained on some instances. PBR achieves a lower average relative error with only 1%,

whereas ACO has a lower maximum relative error with 14.99%. However, as can be

noted from Table 4.3, PBR provides the best tradeoff between quality of the solution

and computing times. Over the 800 instances, its worst execution time is only 4.7

seconds, whereas the computing times of GSA and ACO can be as high as 400 and 50

seconds, respectively.

Table 4.2 – Relative gap (%) to the optimal multi-path solution for the M/M/1 cost function.

Topology
PBR GSA ACO

min max avg min max avg min max avg

ABOVENET ≃ 0 1.52 0.72 ≃ 0 87.54 5.95 1.94 6.23 3.59
ARPANET ≃ 0 0.50 0.13 ≃ 0 77.01 3.44 2.58 7.64 4.82
BHVAC ≃ 0 1.45 0.35 ≃ 0 64.58 8.57 3.30 8.54 5.17
EON ≃ 0 1.87 0.82 ≃ 0 58.09 3.15 1.71 8.92 3.63
METRO ≃ 0 24.45 2.38 ≃ 0 30.89 3.62 0.20 14.99 2.77
NSF ≃ 0 21.06 2.77 0.01 60.14 3.75 0.01 8.77 1.47
PACBELL ≃ 0 1.19 0.20 ≃ 0 45.13 5.30 1.44 7.14 4.00
VNSL ≃ 0 4.40 0.64 ≃ 0 24.07 3.51 0.34 6.82 2.46

Global ≃ 0 24.45 1.00 ≃ 0 87.54 4.53 0.01 14.99 3.26
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Table 4.3 – Computing times (seconds) for the 800 problem instances.

PBR GSA ACO Bonmin

Min 0.03 0.75 4.98 0.6
Max 4.68 400.82 50.95 2638
Average 0.72 27.45 22.40 725

Remark 5. The results obtained with the standard best-response algorithm are comparable

to those presented above for the penalized best-response algorithm. In practice, the results of

SBR are sometimes better, and sometimes worse, but the difference is always in the order of a

few percents. On the other hand, the computing times of SBR are clearly better since its worst

execution time over the 800 instances is 1.1 seconds for the M/M/1 cost. This is something

expected since the penalty term implies an extra computation with respect to SBR. It is also

interesting to note that both versions of the BR algorithm require roughly the same number of

iterations.

Table 4.4 – Relative gap (%) to the optimal multi-path solution for the M/M/1 cost function.

Topology
penalized BR standard BR

min max avg min max avg

ABOVENET ≃ 0 1.52 0.72 ≃ 0 1.10 0.46
ARPANET ≃ 0 0.50 0.13 ≃ 0 2.99 0.31
BHVAC ≃ 0 1.45 0.35 ≃ 0 1.54 0.38
EON ≃ 0 1.87 0.82 ≃ 0 4.03 0.52
METRO ≃ 0 24.45 2.38 ≃ 0 12.90 1.46
NSF ≃ 0 21.06 2.77 ≃ 0 20.85 1.03
PACBELL ≃ 0 1.19 0.20 ≃ 0 2.07 0.45
VNSL ≃ 0 4.40 0.64 ≃ 0 2.05 0.66

Global ≃ 0 24.45 1.00 ≃ 0 20.85 0.67
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NON-COOPERATIVE

LOAD-BALANCING

A second type of distributed systems is one where the agents are non-cooperative.

Each agent minimizes its own and a potentially different cost function unlike in the

previous chapter where the costs were designed to arrive at a common goal.

In this chapter, we go back to the load-balancing problem of Chapter 1 except

that there are multiple dispatchers and there is no limit on the buffer-size at the

servers. Each dispatcher receives requests from its pool of clients and routes each

request to a potentially different server. These routing decisions by the dispatchers

are taken with the objective of minimizing the cost (for example, the mean sojourn

time) incurred by the requests it routes. The dispatchers are thus involved in a non-

cooperative game. The present model has two main differences with that of the pre-

vious chapter. First, the flows will be allowed to split their traffic over multiple paths.

As will be seen, splittability leads to a different (lower) PoA. Second, instead of an

arbitrary network topology, here we will limit ourselves to the parallel links topology.

There are numerous applications in communication networks that allow flows

to be split. The typical one is that of overlay networks which were in part proposed

to offer more flexible routing options than standard one in the Internet. A source

encapsulates the original packets into larger packets. Some of these encapsulated

packets are sent to intermediate nodes in the overlay with the instruction to forward

them to the destination. In standard Internet routing like in the previous chapter,

all the packets would follow the same path to the destination. Another example of

splittable flows is that of Multi-path TCP which is able to split the data over multiple

interfaces.
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Contributions and related work

In [BP16], we determine the worst-case scenario for the distributed load-balancing

architecture with a finite-number of dispatchers, and to characterize how worse this

performance can be. We first show that, for a fixed total incoming traffic to the sys-

tem, the worst-case performance at the NE occurs when all the dispatchers have the

same amount of traffic to be routed, that is, they are involved in a symmetric game.

It is known that a symmetric game is a potential game, that is, its equilibrium can

be obtained as the solution of a common objective function which is usually much

easier to analyse than the NE of game. From this observation, we give a lower bound

on the PoA for cost functions of type: (i ) 1+xm ; and (i i ) 1/(1−x)m .

The distributed load balancing game has been analysed previously by several au-

thors. In [84], similar results were obtained for the M/M/1 type delay functions, and

the present work is a generalization of that to a larger class of cost functions. In terms

of methodology, our work is closely related to that of Orda et al [85, 86] and the ar-

guments we use are inspired from their work. However, there are a couple of differ-

ences with their work. First, in [85], the authors restrict themselves to the M/M/1

delay function, whereas we consider a larger class of cost functions. In particular,

we allow for the association of a heterogeneous cost per unit time (holding cost)

with each server. The introduction of heterogeneous holding costs can significantly

change the PoA for certain cost functions. For example, for the M/M/1 delay func-

tion and equal holding costs, it was shown in [87] that the PoA is upper bounded

by the number of servers whereas for the same model and unequal holding costs,

it was shown in [84] that the PoA is of the order of the square root of the number

of dispatchers. Second, in [85], it is shown that, for a fixed incoming traffic vector,

transferring capacity from a server to another one that has a higher service rate im-

proves the performance at the NE. We look at the complementary problem in which

we fix the service capacities, and look at what happens when we transfer traffic from

one dispatcher to another.

The computation of PoA for disciplines other than Processor Sharing (or the M/M/1

delay function) has also been previously investigated. In [88], the authors compute

the PoA of routing policies with memory in server farms with First-Come-First-Served

or Processor Sharing service discipline using a lower bound on the cost of the cen-
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tralized architecture. The computation of PoA for server farms with SRPT discipline

but without memory was given in [89]. The authors compute the PoA on assuming

that the system is in heavy-traffic and that all servers are used by all the flows. These

results were obtained assuming each request routes itself (i.e., infinite number of

dispatchers, one for each request) whereas our results are for a finite number of dis-

patchers.

5.1 A load-balancing game

The problem formulation is similar to that in the previous chapter except for two

main differences: the topology is restricted to that of parallel links, and the flows are

splittable. Unlike in the previous chapter, here a node is either a source (dispatcher)

or a destination (server). Since there is a clear distinction between the role of nodes,

we define some quantities specific to this model.

Denote C = {1, . . . ,K } to be the set of dispatchers and S = {1, . . . ,S} to be the set

of servers. Let λi be the traffic intensity of jobs received by dispatcher i . These jobs

will called jobs of class i . It is assumed that the dispatchers are numbered in order of

their traffic intensities, i.e., λi ≤λ j for i ≤ j . Moreover, it will also be assumed that the

vector λ of traffic intensities belongs to the following set:

Λ=
{
λ ∈RK :

∑
i∈C

λi =λ
}

,

where λ̄ denotes the total incoming traffic intensity

Server j ∈ S has capacity r j and a holding cost c j per unit time is incurred for

each job sent to this server. Let u j = c j

r j
denote the ratio of the holding cost to the

capacity for server j . By convention, uS+1 = ∞. Instead of implicitly defining these

quantities within the link delay function, they are explicitly defined since we will

show some properties of the Nash equilibrium based on u j . It is assumed that servers

are numbered in the order of increasing cost per unit capacity, i.e., if m ≤ n, then

um ≤ un , so that the first servers are more attractive than the last ones. Let r = (r j ) j∈S

and c = (c j ) j∈S , and let r =∑
n∈S rn denote the total capacity of the system.

Let xi = (xi , j ) j∈S denote the routing strategy of dispatcher i , with xi , j being the
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amount of traffic it sends towards server j . Let

Xi =
{

xi ∈RS : 0 ≤ xi , j ≤ r j ,∀ j ∈S ;
∑

j∈S

xi , j =λi

}

denote the set of feasible routing strategies for dispatcher i . The vector x = (xi )i∈C will

be called a multi-strategy. The multi-strategies belong to the product strategy space

X =⊗
i∈C Xi . The model is illustrated in Figure 5.1.

1

j

S
K

i

1

Dispatchers Servers

λ1

λi

λK

r1, c1

rj , cj

rS , cS

xi,j

Figure 5.1 – Distributed load balancing.

Dispatcher i seeks to minimize its cost function which is denoted by fi (x). This

optimization problem can be formulated as follows:

minimize
x∈Xi

fi (x) = ∑
j∈S

u j xi , jℓ j (ρ j )

where ρ j =∑
i∈C xi , j /r j is the load on server j .

The congestion function ℓ has to have certain properties for the existence and

uniqueness of the NE. For some β> 0, it will be assumed that the congestion function

ℓ : [0,β) → [1,∞) is a continuous, strictly increasing and convex function. Further ℓ is

continuously differentiable and its second derivative exists. We also need ℓ(0) = 1 and

limρ→β− ℓ(ρ) =+∞.

Examples of functions with β=∞ include polynomials as well as functions of the

type exp(ρ). When β < ∞, it will be assumed that λ̄ < r , which is the necessary and

sufficient condition to guarantee the stability of the system. Examples of such func-
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tions are those from queueing theory, e.g. the M/G/1/PS delay function φ(ρ) = 1
1−ρ

or the M/G/1/FCFS delay function φ(ρ) = 1+ρ 1+c2
b

2(1−ρ) , where c2
b denotes the squared

coefficient of variation of the job sizes. This class of functions also contains the delay

function of the M/Par eto/1/SRPT in heavy-traffic, which is given by 1
(1−ρ)m , where m

depends on the shape parameter of the Pareto distribution [89].

For functions satisfying these assumptions, the existence and uniqueness of NE

was shown in [86]. The PoA is then defined as

Po A(K ) = sup
λ,r,c

DK (λ,r,c)

D1(λ̄,r,c)
,

where DK (λ,r,c) is the total cost of the NE of the game with K dispatchers and is given

by DK (λ,r,c) = ∑
j∈S

c j ρ j φ(ρ j ).

Since the centralized model can be thought of as a game with just one dispatcher

routing all the traffic, its optimum cost can be defined in terms of the function D as

D1(λ̄,r,c).

5.2 Impact of the traffic heterogeneity

Our main result states that that the global cost DK (λ,r,c) achieves its maximum

when λ is the symmetric vector λ= =
(
λ̄
K , . . . , λ̄K

)
.

Theorem 11.

sup
λ,r,c

DK (λ,r,c) = sup
r,c

DK (λ=,r,c).

The proof of this theorem is similar to the proof of the corresponding theorem for

the M/M/1 delay functions in [84]. It amounts to proving that, starting from an arbi-

trary traffic vector λ, the symmetric traffic vector λ= can be reached by a sequence{
λn}

n≥0 such that λ0 = λ and DK (λn+1) ≥ DK (λn). Such a sequence is obtained by

considering a certain transformation that transfers traffic from the most loaded dis-

patchers to the least loaded ones, thus reducing the heterogeneity of the traffic vec-

tor. It then remains to be proven that the social cost, DK increases under this trans-
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formation as well as that this sequence of transformation converges in finite num-

ber of steps. The convergence follows from Proposition 7 of [84] since their proof is

not specific to M/M/1 delay function. For the monontonicity, again the approach

is similar to that in [84] but this time it needs to be generalized to the considered

set of cost functions. It is basically enough to prove that the social cost DK is non-

decreasing under the transformation when the set of servers used under the original

and the transformed traffic vectors coincide provided the Nash mapping associating

to a vector λ the strategy profile N (λ) ∈ X is continuous. This can be proven by a

straightforward generalization of Theorem 3 in [84] to general cost function φ (see

[90] for details).

Properties of the NE

Certain properties of NE help in establishing the proof. They are also interesting

in themselves, e.g., they show which classes use which servers.

Let Si be the set of servers used by class i and let C j be the set of classes that use

server j . Let µi be the marginal cost of class i on servers to which it sends jobs to at

the NE. It can be shown that there is a monotonicity among classes in their use of

servers: a class with a higher demand uses more of each and every server.

Proposition 7. The following statements are equivalent:

1. Si ⊆Sk .

2. xi , j < xk, j , ∀ j ∈Sk .

3. λi <λk .

A class with less total traffic uses a subset of servers used by a class with more

total traffic. Further, the traffic sent to each server is also smaller. As a consequence,

the set of classes using server j has the following structure: C j = {K − N j + 1, . . . ,K },

where N j is the number of classes sending a positive flow to server j . The following

proposition gives analogous properties for the servers.

Proposition 8. The following statements are equivalent:

1. Cm ⊆Cn .
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2. um xi ,m

rm
φ′(ρm) < un xi ,n

rn
φ′(ρn), ∀i ∈Cn ..

3. un < um .

It follows that the set Si has the following structure: Si = {1, . . . ,Si }, where Si = |Si |
is the number of servers used by class i .

One last property pertains to the marginal private costs of the servers It measures

the change in social cost DK that arises when the offered traffic of this server changes

by an infinitesimal amount, and is given by

∂DK

∂y j
(x) = u j

[
φ(ρ j )+ y j

r j
φ′(ρ j )

]
. (5.1)

The lower the cost per unit capacity of a server, greater is its marginal social cost at

the NE.

Lemma 1.
∂DK

∂y j
(x) ≥ ∂DK

∂y j+1
(x),∀ j ,

with strict inequality if C j \C j+1 ̸= ;.

Due to the convexity of the social cost, Lemma 1 implies that the social cost at the

NE can only be decreased by reducing the load of the servers with the lowest cost per

unit capacity. The transformation we shall now define has the opposite effect, i.e., it

will increase the load on the servers with lower u j .

The transformation and its impact on server loads

The transformation increases the traffic of classes with the smallest amount of

traffic and decreases correspondingly the traffic of classes with the largest amount

of traffic such that the total traffic remains the same. The transformation is stopped

just before the set of servers used at the transformation can change from that at the

initial traffic vector.

In order to determine the impact of the transformation λ→ λ̂ on the global cost,

we need to compare the server loads under the equilibria x and x̂ associated toλ and
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λ̂, respectively. To this end, let us define the sets S + and S − as follows:

S + = {
j ∈S : ŷ j > y j

}
and S − =S \S +,

i.e., S + is the set of servers whose load increases under the transformation while S −

is the set of servers whose load is non-increasing under the transformation.

This transformation impacts the server loads in the following way. First, if there

exists at least one server whose load increases under the transformation, then the

load of each and every server used by class 1 increases.

Proposition 9. If S + ̸= ; then S1 ⊂S +.

Second, the load of all servers is non-increasing under the transformation if and

only if all traffic classes use the same set of servers. Further, if at equilibria x and x̂

all classes use the same set of servers, then the server loads are constant under the

transformation.

Proposition 10. The following statements are equivalent :

1. S + =;.

2. S1 =SK .

3. y j = ŷ j ,∀ j ∈S .

Finally, the transformation induces a monotonic partition of servers: there exists

a threshold J < S such that for all servers j > J the load is non-increasing under the

transformation.

Proposition 11. For all j ∈S , if j ∈S − then j +1 ∈S −.

Impact on the social cost of reduction in traffic heterogeneity

The above results can be used to compare the costs D(λ) and D(λ̂) before and

after the transformation. We first consider the case where not all classes use the same

set of servers at the equilibrium x. Here, the transformation will strictly increase the

cost.
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Theorem 12. D(λ) < D(λ̂) ⇐⇒ S1 ⊊SK .

The next results proves that the cost is constant under the transformation if all

classes use the same set of servers.

Theorem 13. D(λ) = D(λ̂) ⇐⇒ S1 =SK .

Theorem 11 now follows from Theorems 12 and 13. Further, it can can also be

shown that the PoA is a non-decreasing function of the number of dispatchers.

Corollary 7.

Po A(K ) ≤ Po A(K +1), ∀K ≥ 1. (5.2)

Analysis of the Symmetric Game

Theorem 11 implies that the PoA can be obtained from the worst-case analysis

of the symmetric game. It is well known that the symmetric non-cooperative rout-

ing game is a potential game, i.e., the equilibrium flows are the global minima of a

standard convex optimization problem (see e.g., Theorem 4.1 in [91]). Formally,

Proposition 12. If the vector ρ is global optimum of the following convex optimization prob-

lem

minimize
ρ

∑
j∈S

c jρ jφ(ρ j )+ (K −1)
∫ ρ j

0
c j φ(z)d z

s.t. ∑
j∈S r jρ j = λ̄,

0 ≤ ρ j < 1, ∀ j ∈S ,

then the multi-strategy x such that xi , j = r j
ρ j

K , ∀i ∈ C , ∀ j ∈ S , is the NE of the symmetric

game.

Note that when K = 1, the above problem reduces to the global optimization

problem solved by the centralized scheme. When K → ∞, the equivalent problem

states the common function that is optimized jointly by an infinite number of play-

ers and is characteristic of the Wardrop equilibrium.
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5.3 Lower bound on Price of Anarchy

We now give lower bounds on the PoA for the functions of type (i ) φ(x) = 1
(1−x)m ,

and (i i ) φ(x) = 1+ xm . For this, we construct an example with two servers and sym-

metric dispatchers. From the analysis of this symmetric game, it can be shown that

the ratio DK /D1 attains the claimed lower bound.

Proposition 13. For φ(x) = 1
(1−x)m ,

Po A(K ) ≥ K(
K 1/(m+1) +mK 1/(m+1) −m

) . (5.3)

For functions of type φ(x) = 1+ xm , the result is in the form of a conjecture al-

though we provide strong numerical evidence to support it.

Conjecture 2. For φ(x) = 1+xm and m ≥ 1,

Po A(K ) ≥ (1+m/K )−1

(1+m/K )−1
(1+m/K

1+m

) m+1
m +m−1 log

( 1+m
1+m/K

) . (5.4)

For this example, it can be shown that

DK

D1
= (1+m/K )−1

(1+m/K )−1(1−ρ2)m+1 +ρ2(1+ρm
2 )

, (5.5)

where ρ2 is the solution of

(
1+m/K

1+m

)1/m

(1+ (1+m)ρm
2 )1/m +ρ2 = 1.

We now claim that the denominator of DK /D1 is upper bounded by (1+m/K )−1
(1+m/K

1+m

) m+1
m +

m−1 log
( 1+m

1+m/K

)
, which leads to the conjecture. The numerical evidence for this is

shown in Figures 5.2a and 5.2b where the exact value of DK /D1 is compared with

the lower bound for various values of m and K .

Remark 6. 1. The lower bounds obtained above are independent of r and c.
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Figure 5.2 – Comparison of DK /D1 and its lower bound for m = 1,2, ...,100.

2. As K →∞, the lower bound of (5.4) tends to a constant, unlike the lower bound (5.3)

which tends to infinity. Thus, for delay function of the type of M/Par eto/1/SRPT

queues, the PoA can be unbounded when each job minimizes its own mean delay.

3. Moreover, for K =∞, the lower bound (5.4) is of the order of m/log(m), which matches

the PoA obtained by Roughgarden [92] for polynomial functions for the Wardrop equi-

librium.

4. For m = 1 the delay function of M/Par eto/1/SRPT is the same as that of the M/G/1/PS.

From the lower bound formula given above, we retrieve the lower bound in [84].

Although we do not have the upper bounds for PoA as in [84], we conjecture

that the lower bounds constructed using the above method give the right order of

the PoA, just as was proved in [84] for the case of M/M/1 delay functions. One of

the main difficulties in proving this conjecture is that, except for the M/M/1 case, a

closed-form solution of the optimization problem stated in Proposition 12 cannot be

obtained. This turns out to be a major obstacle for the derivation of upper bounds

on the PoA.
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The availability of large amounts of data and cheap computing resources is driv-

ing research in the direction of finding solutions that require fewer hypothesis and

that are more appropriate for the target application. Recall that in the stochastic ap-

proach it not always easy to determine the optimal policy (for routing, e.g.) unless

some assumptions are imposed which are not always practical. To obtain policies

in more general settings, learning-based methods have been investigated widely in

recent years. Take the load-balancing application of Chapters 1 and 5. Data collec-

tion has become the norm in digital environments and data-centers can obtain large

amounts of data on the demand profile as well as on the profile of the service re-

quirements of requests. This data need not fit the assumptions for the policies that

are easily analyzable with stochastic models. In machine learning, the operator does

not need to worry about meeting assumptions. It runs learning algorithms (say re-

inforcement learning) on the dataset and explores various policies with the goal of

finding the best one suitable for the given dataset. One can thereby obtain solutions

that are tailored for individual data-centers and the profiles of requests that is treats.

This approach works well when there is large amount of data and computing

power available. Even then the convergence can be slow for large networks since

a correspondingly large state-space has to be explored. A research direction that I

intend to pursue involves methods to improve the convergence of these algorithms.

Usually these algorithms start with a random initialization, that is with a policy that

is arbitrary. This initialization may be far away from the optimal policy and may force

the learning algorithm to explore much more before converging. A possible way to

improve upon this is to warm-start the network with a policy that is known to good

in some sense. In the load-balancing, example, this could be JSQ or the optimal re-

versible policy. This way, the leaning algorithm starts from a decent policy and will

only improve it. In order to save energy, one need not wait for the optimum to be

reached and can stop earlier knowing it has at least found something better than an

already decent policy. In case of warm-start, the stopping decision can hopefully be

made much earlier than for random initialization. A second possible method for im-
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proving convergence is to restrict the learning algorithm to policies that are in a cer-

tain class. For example, the reversible policies, or of weighted JSQ type for which one

has to learn the optimal weights. Here, by restricting the class of policies, a smaller

and more compact network may be sufficient and less exploration may be required.

In both these methods, we are relying upon policies with certain desirable prop-

erties which are obtained by theoretical analysis (either stochastic or worst-case).

This research direction can be seen as a combination of the analytical approach

and the data-based learning approach in order to obtain faster and improved al-

gorithms tailored for applications. It can be investigated for both centralized as well

as in the distributed architectures. For example, for the single-path routing in Chap-

ter 4, the learning could be performed by agents that are distributed across the net-

work. In addition to the question of convergence, one could also investigate whether

the tweaked objective function works well in practical or other specific penalties will

have to be designed in to obtain good approximations of the global optimum.

A second research direction is also based on availability of data and is motivated

by the observation they can be used to provide predictions which can improve some

of the decision-making. In previous works, others [93] and us [94] have explored this

possibility for scheduling in vehicular networks where the decisions are which ve-

hicles to send data to and the associated power levels. With the availability of SNR

maps that give the channel conditions according to the spatial position, one can pre-

dict the conditions a vehicle can expect to be in the short-term. If they are expected

to be unfavorable, then it may help to give additional data rate to the vehicle while

the conditions are better. By superposing the predicted trajectories of vehicles and

the SNR maps, one can improve upon the widely-used proportional-fair allocation

policy which only relies upon current and past conditions for making decisions. In

this context, we intend to investigate the improvement that can be expected from

incorporating information on the future into current decision making. This informa-

tion could be channel conditions as in wireless networks or could be the profile of

tasks in the load-balancing example. However, future information need not be exact

and may contain errors. The algorithms will have account for these and be robust

inaccurate predictions. Also, gathering future information may incur a cost which

may induce a tradeoff between the amount of improvement and the acquisition cost.
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Again the algorithms (or the class of algorithms) identified from this approach can

potentially serve for improved convergence in the first research direction. We note

that this avenue of integrating future information has also been explored in the con-

text of online approximation algorithms [95]. My focus will be more on the stochastic

models based approach.

Finally, I mention two problems related to the game-theoretic analysis of Chap-

ter 5. The first is a generalization of the worst-case scenario to a network with a given

traffic matrix, the goal being to arrive at the PoA in a network setting. The second

problem is the convergence of the best-response algorithm which is still an open

problem for this game. We proposed an approach based on joint-spectral radius

(JSR) of the set of Jacobian matrices of the best-response operator [96]. We showed

that the Jacobian matrices for the load-balancing game have a certain structure. Un-

fortunately, JSR is typically not an easy quantity to compute even with the special

structure of our set of operators. This is being currently explored for some simplified

cost functions and scenarios in order to obtain some insights before going to the

general case.
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