
HAL Id: tel-04878830
https://laas.hal.science/tel-04878830v1

Submitted on 10 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Lifecycle Management in the Cloud Continuum
Sami Yangui

To cite this version:
Sami Yangui. Service Lifecycle Management in the Cloud Continuum. Networking and Internet
Architecture [cs.NI]. INPT Toulouse, 2024. �tel-04878830�

https://laas.hal.science/tel-04878830v1
https://hal.archives-ouvertes.fr

Université de Toulouse

Institut National Polytechnique de Toulouse

Laboratoire d’Analyse et d’Architecture des Systèmes

Professorial Dissertation
for the degree of

HDR in Computer Science

prepared by
Dr. Sami Yangui

Service Lifecycle Management in
the Cloud Continuum

Presented on 19-02-2024, at LAAS-CNRS, in front of the exam jury:

Reviewer: Prof. Boualem Benatallah Dublin City University, Ireland
Reviewer: Prof. Schahram Dustdar Technischen Universität Wien, Austria
Reviewer: Prof. Massimo Tornatore Politecnico di Milano, Italy

Examiner: Prof. Alberto Leon-Garcia University of Toronto, Canada
Examiner: Prof. Brahim Medjahed University of Michigan-Dearborn, USA
Examiner: Prof. Lionel Seinturier Université de Lille, France
Examiner: Prof. Mickael Sheng Macquarie University, Australia

Advisor: Dr. Khalil Drira LAAS-CNRS, Toulouse, France

i

“Citius, Altius, Fortius”
Olympics Motto...

Acknowledgement
G

La reconnaissance est la mémoire du coeur.
Hans Christian Andersen, écrivain danois (1805-1875)

To Everyone Who Made This Possible . . .

iii

iv

Abstract
Service computing (alternatively termed service-oriented computing) refers to the
cross-discipline that covers the science and technology binding IT services to business
services. Service computing helps in the modeling and the support of complex pro-
cesses while combining business goals and technical concerns. Specifically, it focuses
on the co-creation of value between service consumers and service providers in the con-
text of the several steps (e.g., design, implementation, execution) that make up the
lifecycle of the service. The underlying key enabling technologies of service comput-
ing involve Service-Oriented Architecture (SOA), cloud computing, social computing,
business process management and Web services. Emerging service-based applications
in such environments are distributed, modular, reusable through composition tech-
niques (e.g., service orchestration, service choreography) and might adopt novel design
patterns that are even more distributed (e.g., micro services, Function-as-a-Service).

From one side, the emerging applications’ services are getting more and more
heterogeneous, distributed and mobile. They impose strong requirements and strict
Quality of Service (QoS) management on the hosting service providers. Platoons of
connected automated vehicles, adaptive streaming and augmented/virtual reality are
among the examples of emerging applications. On the other side, with the rise of the
cloud continuum, the target runtime environments for these applications are getting
more and more distributed, heterogeneous, dynamic and mobile. The cloud continuum
encompasses a range of resources and capabilities from public to edge and everything
in between, all seamlessly integrated by the so-called next-generation networks (e.g.,
The fifth-generation/sixth-generation (5G/6G) wireless telco network, content delivery
networks (CDN) and information-centric networks).

This research work focus on re-considering the service lifecycle management process
to support the provisioning of novel and emerging applications in the cloud continuum
and its inherent next-generation networks and infrastructures. It proposes several re-
search contributions that cover and support every single step of the process. For
practical reasons and for the sake of efficiency, the target contributions mostly focus
on NFV domain and consider the Virtualized Network Functions (VNF) as the ser-
vice building block of the cloud continuum. The contributions range from design (i.e.,
architectures, specification, prototypes) to models (i.e., semantic-based models, op-
timization models) and procedures (i.e., description, automation, (re)configuration).
The research results were reported in several highly-ranked forums in the networking
and service computing research fields.

Keywords: Cloud Continuum - Everything as-a-Service (XaaS) - Network Func-
tion Virtualization - Quality of Service (QoS) - Service Computing - Service Lifecycle
Management - Service-oriented Architecture.

v

vi

Table of contents
1 Introduction 1

1.1 Context . 1
1.2 Motivations . 3
1.3 Research issues, challenges and objectives 7
1.4 Research contributions and substantial results 9
1.5 Manuscript structure . 11

2 Contributions on Service Design, Publication and Discovery 13
2.1 The state-of-the-art in NFV description and discovery 14

2.1.1 Standardization bodies and research projects 15
2.1.2 Academic research works . 16
2.1.3 Synthesis . 16

2.2 Challenges and design considerations 17
2.3 A semantic approach for VNF description 19

2.3.1 VIKING-F ontology . 20
2.3.2 VIKING-NF ontology . 23

2.4 A semantic-based model for VNF discovery 24
2.5 Proof of concept . 26

2.5.1 VIKING in content delivery networks 27
2.5.2 The Mastermyr chest tool . 29

2.6 Benchmark and evaluation . 31
2.6.1 Test collection . 31
2.6.2 Comparative study . 35
2.6.3 Robustness evaluation . 38

3 Contributions on Service Instantiation and Deployment 41
3.1 Connectivity management in ETSI NFV architecture 42
3.2 Motivating use case: Platooning of vehicles 44
3.3 The state-of-the-art in dynamic management of networks’ connectivity 46

3.3.1 Literature review . 46
3.3.2 Synthesis . 47

3.4 Dynamic network wiring and execution 47
3.4.1 Requirements and foundations 48
3.4.2 High-level architecture . 50

3.5 Proof of concept . 51
3.5.1 Software architecture . 52
3.5.2 Running prototype . 53

3.6 Validation and evaluation . 55
3.6.1 Testbed settings . 55

vii

viii Table of contents

3.6.2 Validation scenarios . 55
3.6.3 Evaluation . 57
3.6.4 Observations . 60

4 Contributions on Service Management 63
4.1 Consistency models in distributed multi-domain orchestration 67
4.2 Consistent VNF forwarding graph reconfiguration in multi-domain en-

vironments . 68
4.2.1 VNF forwarding graph reconfiguration 68
4.2.2 Consistent VNF forwarding graph reconfiguration 70
4.2.3 Consistent VNF Forwarding Graph reconfiguration with non-

functional dependencies . 71
4.3 The state-of-the-art in VNF-FG reconfiguration 73

4.3.1 VNF-Forwarding Graph reconfiguration in single domain envi-
ronment . 73

4.3.2 VNF-Forwarding Graph reconfiguration in multi-domain envi-
ronments . 74

4.3.3 synthesis . 75
4.4 Coordination-free orchestration algorithm for multi-domain environments 75

4.4.1 Preventive variant . 76
4.4.2 Corrective variant . 79

4.5 Implementation and evaluation . 81
4.5.1 Proof of Concept . 82
4.5.2 Evaluation scenarios and considered metrics 83
4.5.3 Obtained results . 84
4.5.4 Observations . 88

5 Open Issues and Research Directions 89
5.1 Motivating use case: towards the next-generation autonomous cars . . 90
5.2 Proactive QoS management . 92

5.2.1 ARIMA model design and features configuration 95
5.2.2 Early validation and model evaluation 97

5.3 Haptic communications and tactile Internet 99

6 Conclusion 101

List of Tables
2.1 VNF description and discovery in the relevant literature 17
2.2 Comparison between Web services and VNFs operating 19
2.3 Relations in VIKING-F with the concept VNF 22
2.4 Relations in VIKING-NF with the concept VNF 24
2.5 Notations to formalize user requirements and preferences 25
2.6 Excerpt of VIKING’s refinement . 28
2.7 Excerpt of VIKING-CDN’s population 28
2.8 Association rules mapping VIKING tree structure to VIKING hypergraph 33
2.9 Sample of test queries for VIKING-CDN validation 34
2.10 Mapping from VIKING to OWL-S . 36

4.1 The variables notations for the VNF-FG consistent reconfiguration model 69
4.2 The parameters for the VNF-FG reconfiguration prototype 83

5.1 List of defined configurations for outliers detection and processing . . . 97
5.2 The obtained prediction results with ARIMA 97

ix

x List of Tables

List of Figures
1.1 Examples of next-generation networks. 4
1.2 The service computing lifecycle management process. 5
1.3 Overview of the contributions in relation to the service lifecycle steps. 9

2.1 A high-level view of VIKING design 20
2.2 The core concepts of VIKING . 21
2.3 The security concept refinement in VIKING 24
2.4 The Mastermyr chest tool box architecture 29
2.5 Snapshots of the description tool interfaces 30
2.6 A partial syntactic representation of VIKING 32
2.7 Probability distribution in D over Q 35
2.8 Recall/Precision ratio (VIKING matchmaker versus OWLS-MX) . . . 37
2.9 Response time measurement (VIKING matchmaker versus OWLS-MX) 38
2.10 The total ranked list of the discovered VNFs 39
2.11 Excerpt of a list of relevant VNFs following a requirement change . . . 39

3.1 Connectivity modelling in ETSI NFV 43
3.2 Network services and connectivity for vehicles platooning in 5G 44
3.3 Network traffic representation per routing logic 49
3.4 The novel introduced VNF types . 50
3.5 An overview of the proposed system architecture for NS provisioning . 50
3.6 The DYVINE tool architecture . 52
3.7 A snapshot of DYVINE depicting the security NS design 53
3.8 Option 1 - The security NS design with intrusive swing VNFs 54
3.9 Option 2 - The security NS design with non-intrusive proxy VNFs . . . 54
3.10 Option 3 - The security NS design with SFC (fully-SDN) 54
3.11 Throughput variation during pre- and post-attack (Option 1 - P1) . . 56
3.12 Throughput variation during pre- and post-attack (Option 1 - P2) . . 56
3.13 Throughput variation during pre- and post-attack (Option 1 - P3) . . 57
3.14 Variation of (one-way) latency while increasing the rate of attacks . . . 58
3.15 Mean Time-To-Operation comparison for the 3 deployment options . . 59
3.16 Cumulative moving average comparison for the 3 deployment options . 60

4.1 Example of a shared NS in a CDN provider 65
4.2 Distributed multi-domain orchestration system model 66
4.3 Two different scenarios of VNF-FG reconfiguration 70
4.4 Example of an inconsistent VNF-FG reconfiguration scenario 72
4.5 Classification of the related work on VNF-FG reconfiguration 73
4.6 Example of the coordination-free VNF-FG reconfiguration - preventive

variant . 78

xi

xii List of Figures

4.7 Example of the coordination-free VNF-FG reconfiguration - corrective
variant . 81

4.8 Number of inconsistencies per number of performed VNF-FG reconfig-
urations . 84

4.9 The latency variation per VNF-FG reconfiguration operations 85
4.10 Number of generated messages to resolve conflicts 86
4.11 Overhead per messages during a VNF-FG reconfigurations 87
4.12 The number of extra VNF-FG reconfigurations. 87
4.13 Reconfiguration time for the VNF Forwarding Graph. 88

5.1 The communication flow for autonomous cars - fully-cloud architecture 91
5.2 The communication flow for autonomous cars - hybrid cloud-edge ar-

chitecture . 92
5.3 Classifiation of the literature for service placement 93
5.4 High-level architecture of the next-generation autonomous car case study 94
5.5 The obtained latency predictions - computed element size: Cumulative

(C3) vs. Sliding window (C2) . 98
5.6 The obtained latency predictions - operation selection: Replacement

(C3) vs. Removal (C4) . 98
5.7 High-level architecture of the tactile Internet 100

Chapter 1

Introduction
G

1.1 Context

The term “service” has already existed for several centuries along human history.
According to Cambridge dictionary, a service is “a process that creates benefits by
facilitating a change in customers, a change in their physical possessions, or a change
in their intangible assets” [1]. Services are intangible and non-physical, as opposed
to goods. Basically, one can call service any performed work that is aimed to benefit
another (e.g., transportation service, kitchen service, religious ceremony service). As
for service computing, the concept refers to the cross-discipline that covers the science
and technology that bind IT services to business services [2]. Service computing helps
in the modeling and the support of complex processes while combining business goals
and technical concerns [3]. Specifically, it focuses on the co-creation of value between
service consumers and service providers in the context of the several steps (e.g., design,
implementation, execution) that make up the lifecycle of the service.

The underlying key enabling technologies of service computing involve Service-
Oriented Architecture (SOA), cloud computing, social computing, business process
management and Web services. These technologies can be combined together to sup-
port and provision even more complex and “sophisticated” services [4]. For instance,
the adoption of the SOA principles and cloud computing in the Web 2.0 led to the
rise of the so-called Everything-as-a-Service (XaaS for short) concept. XaaS encom-
passes any kind of IT services (e.g., monitoring service, storage service) that could
be remotely offered by cloud providers to prospective cloud end-users according to
the so-called pay-as-you-go business model [5]. With the wider embracement of SOA
and cloud computing principles in business, the XaaS concept evolved to refer, not
only to IT services, but also to any kind of business services that fall under the defin-
tion introduced in the previous paragraph. For instance, Airbnb1 is considered as
one of the biggest hotelier in the world. Basically, it is one of the very few, to not
say the unique, hotelier that could propose accommodation in almost every single
city on Earth. However, Airbnb owns neither hotels nor any accommodation facilities

1www.airbnb.com

1

2 Introduction

in these locations. Similarly, Netflix2 is currently considered as one of the biggest
entertainement content delivery platform, while the company does not own neither
produce any (or very little) of that content. Google3 provides genuine services (e.g.,
Google scholar, Google flights, Google weather) to end-users that completely rely on
third-party owners.

Specifically, these service providers rely on XaaS concept with features and added-
value products managed and offered as services to consumers. They do operate massive
infrastructures and content according to well-designed business processes and proce-
dures to provide the prospective service consumers with the requested services while
ensuring the required Quality of Service (QoS) all along. For instance, Netflix in-
troduced the DevOps perspective to bring agility and automation prior to content
delivery [6] while Google pioneered the Site Reliability Engineering (SRE) concept to
enhance service availability and to automate part of the management procedures in its
datacenters [7]. The ultimate goal for these providers is to bring agility, achieve scal-
ability and optimize the cost-effectiveness while delivering the services to consumers
in the context of XaaS. During the last years, telecommunications and networking
providers followed the trend as well. Several telco compagnies henceforth rely on Mo-
bile Virtual Network Operators (MVNO) and ally with cloud providers to reduce the
high Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) of their
investments and deliver their services according to the XaaS concept. Achieving the
XaaS vision for telco and network providers is more challenging than for any other
kind of providers. This is due to the proprietary environments they rely on, as well as,
the strong coupling between the hardware and the software resources in their runtime.
Virtualization technology and cloud computing allow to tackle these challenges. For
instance, Vodafone collaborate with Amazon Web Services to achieve the so-called
Telco-as-a-Service (TaaS). TaaS is a cloud-native framework that changed the way
the telco services are composed and delivered to end-users. For Vodafone, TaaS al-
lows the telco provider to dynamically auto-provision complex environments following
a variable workload while optimizing the cost and the performance through DevOps
techniques [8]. Generally speaking, TaaS helps telco providers to operate scalable
and cost-efficient services for MVNOs. Furthermore, it brings agility to the network.
The underlying infrastructures become multi-tenanted and the providers can seam-
lessly run any operator type (e.g., mobile, fixed-line) and support any kind of mobile
services (e.g., 4G LTE, 5G) over the allocated network resources.

There has always been a close relationship between the emergence of new com-
puting models/technologies and new applications. XaaS concept, with its underlying
cloud and SOA-based computing models, enabled a myriad of novel service-based ap-
plications that range from agriculture to smart home/city, transportation and healt-
care. The evolution of the specifications of the hosting providers to the so-called next-
generation networks is motivated by the novel, strong and changing requirements that

2www.netflix.com
3www.google.com

Motivations 3

emerging online applications impose on the hosting infrastructures. These applica-
tions are usually compute-intensive and latency-sensitive at the same time [9] [10].
Indeed, they often handle huge amounts of data, implement complex analytics and
processing models and stand in need of reliable networking and communications infras-
tructures. Furthermore, most of these applications require mobility support during
runtime. Unmanned systems (e.g., autonomous cars [11] [12], car platooning [13]),
augmented/virtual reality [14] and adaptive streaming [14] are among the examples
of emerging online applications. The fifth-generation/sixth-generation (5G/6G) wire-
less telco network, Content Delivery Networks (CDN) and Information-Centric Net-
works (ICN) are considered as next-generation networks and among the prospective
hosting environments for these emerging applications.

1.2 Motivations

Existing cloud providers, whatever they are, rely on the pretty same core architecture.
The limitations that prevent the proper provisioning of the emerging applications in
fully cloud environments are intrinsically related to their inner architecture. Broadly
speaking, they are mainly related to the strong requirements imposed by these appli-
cations on: (i) the data plane (i.e., data support and processing), (ii) communication
and signaling plane (i.e., intra/inter service communications through the network) and
(iii) the control plane (communication protocols and networking rules).

The first limitation is a direct consequence of the cloud ecosystems topology.
Cloud providers use regional centralized datacenters to host and execute services.
They all copy and/or sync up the data to a centralized clusters. This is suitable for
human-centric and regular Web applications but has major deficiencies when it comes
to the support of the emerging applications provisioning. Indeed, such applications
are designed for machine-centric models with services implementing complex machine
learning models and exchanging (i.e., producing and/or consuming) huge amount of
data during runtime. For example, unmanned systems use computer-vision models to
implement image classification/segmentation services and CDN use ensemble-based
machine learning to enable the reliabilty of the caching services [15]. Provisioning
these services on centralized cloud infrastructures suffer from numerous limitations
such as storage complexity incurred while storing the extra data chunks required for
machine learning models, processing complexity due the distribution of the data (e.g.,
collecting and routing raw data from data sources, ingesting offline data from data
lakes, indexing and storing processed data in a search engine) and excess processing
time.

As for the second limitation, the fact that cloud servers sit at the backhaul of the
network, distant from end-users, data sources and/or from any other potential inter-
acting services, makes the SLA management for the emerging applications difficult to
achieve, taking into consideration that most of these applications are very demanding
on the network appliances [16]. In particular, this applies on the networking metrics

4 Introduction

as the cloud providers are entirely dependant on third-party network infrastructures
to communicate with distant services and end-users. It should be noted that it is not
just matter of optimizing the common network metrics (e.g., decreasing the latency,
increasing the bandwith, decreasing the jitter, minimising the packets loss) but it is
more about maintaining these metrics stable and within the required range during the
whole runtime. Obviously, this cannot be guaranteed by the cloud providers as they
neither own nor control the communication network in between the remote services
and the cloud facilities.

Last but not least, the third limitation might impair the proper functioning of the
emerging applications as their associated services, or part of their associated services,
might move during runtime (e.g., augmented reality app installed on a smartphone,
autonomous car riding in the city and connecting to live traffic service, CDN provider
delivering live streaming on a mobile device). This means that some data sources,
end-users and/or services might change location at runtime (e.g., see [12] for the case
of autonomous cars). Consequently, cloud providers need to dynamically adapt and
adjust the end-to-end communications, the routing rules and even the considered com-
munication protocols/technologies in some cases (e.g., end device switching from WiFi
to 4G LTE network during live streaming). This assumes that cloud providers sup-
port every single communication protocol, are able to reach any network domain and
have total control on the configuration of the network in between the cloud facilities,
from one side, and the remote services communicating through the network from the
other side, which is not true considerating the discussion elaborated in the previous
paragraph. In fact, this limitation was the major impediment to achieve the so-called
Mobile Cloud Computing (MCC) in the past.

Figure 1.1: Examples of next-generation networks.

Next-generation networks represent the impending answer to address these three
limitations [11] [17]. Figure 1.1 shows a non-comprehensive list of next-generation
networks. Basically, most of them are part of the cloud continuum. Fog and Edge
networks extend the cloud providers’ capabilities and provide additional resources close
to the data sources and/or end-users [16]. The Internet of Things (IoT) is a ubiquitous
network of various objects connected over the Internet and uses henceforth the cloud
for storage and computing purposes [18]. A dynamic overlay network implements the

Motivations 5

necessary gateway operations (e.g., communication protocols conversion, data format-
ting) in between the IoT devices and the cloud resources. The telco networks (e.g., 4G
LTE, 5G, 6G) rely on cloud for data storage and to host and to execute telecommu-
nication services [19] [20]. In addition to the cloud, next-generation networks adopt
novel and emerging computing paradigms and networking approaches. For instance,
5G relies on key concepts such as Network Function Virtualization (NFV), Software-
defined Network (SDN), Multi-access Edge Computing (MEC) and Next-generation
Protocols (NGP). Specifically, 5G specifications recommend slicing the network into
several logic and functional entities that could be virtualized to enable agile and cost-
effective operation [21]. The control plane is handled by SDN that supports dynamic
reshape of the traffic while MEC provides computing capabilities at the edge of the
5G network [21]. MEC environment is characterized by ultra-low latency and high
bandwidth, as well as, real-time access [16]. MEC resources are accessible through
NGP and/or Radio Area Network (RAN).

Figure 1.2: The service computing lifecycle management process.

Generally speaking, in contrast to fully-cloud environments, next-generation net-
works rely on highly distributed architectures and hybrid domain topologies. This
inevitably impacts the lifecycle of service-based applications when they are being pro-
visioned over these environments. Figure 1.2 depicts the several steps that make up
the lifecycle of services. Provisioning service-based applications refers to the support
of every single step in this lifecycle [22] [23]. During the Design phase, service de-
velopers identify and model the business processes describing the IT procedures that
should be supported by the target service. This is followed by the implementation of
the service (e.g., writing the source code, compiling, testing) and, then, the publica-
tion of the resulting archives on dedicated repositories or marketplaces. During the

6 Introduction

Runtime phase, the requested services are first discovered from the repositories. Prior
to the service instantiation and deployment, an intermediate composition step might
be needed to build up complex and sophisticated service from the several elementary
dicovered services. This is necessary whenever none of the elementary services could
implement the requested business functionality [22]. After that, the service is con-
figurated so that it could be integrated to the target deployment environment (e.g.,
initializing parameters, settling endpoint address and/or listening port). This is fol-
lowed by the execution and the management steps. The management step implements
a set of procedures that aim to optimize the functionning and the usage of the service
during runtime. The intent of these procedures is to execute well-defined algorithms
and techniques to meet the service-level objectives at runtime (e.g., reduce response
time, reduce operation cost, increase availability). It should be noted that the ser-
vice lifecycle is modeled as an infinite loop. Once the service is executed and being
managed, one might decide to push it back to the Design phase and make one more
iteration through the provisioning process (e.g., perform new updates on the service,
integrate additional functionality to the service).

On one hand, the emerging applications’ services are getting more and more numer-
ous, finer and mobile. The adoption of novel design patterns, such as micro-services or
Function-as-a-Service (FaaS), led to a proliferation in the number of the services and
brought significant changes to their specifications. The services are henceforth finer
in terms of granularity (i.e., the implemented business functionality). Furthermore,
these services became completely standalone and entirely decoupled from their hosts
as their required execution environments (e.g., librairies, frameworks) are built and
encapsulated around the service prior to its deployment (e.g., microservices hosted and
executed on Docker, serveless FaaS). Therefore, the services could be mobile during
the Runtime phase and might migrate from one host to another within the network
or even switch from one network domain to another. The prospective mobility of
one or several services of the same application does not impact the end-to-end execu-
tion capability since the services are decoupled, have proper addressing schemes (e.g.,
Unified Address Identifier-URI) and implement distributed and common architectural
style (e.g., REpresentational State Transfer-REST).

On the other hand, the target environments to provision these services, i.e., the
next-generation networks, are getting more and more distributed, hetergenous, dynamic
and mobile. The distribution of the these networks is due to the adoption of the cloud
continuum. The latter consists of several domains (e.g., cloud, fog, edge, gateways)
while increasing the whidening of the target environments’ multi-tenancy. The strong
heterogeneity of the next-generation networks is related to the wide range of its ap-
pliances in terms of capabilities (e.g., computing clusters, storage volumes, sensors,
network controllers) and behavior (e.g., static servers, stationary sensors, flying drones,
rolling robots). Furthermore, the topology of these networks is highly dynamic and
mobile. This is due to the behavior of part of its constituents nodes. Next-generation
networks involve nomad components (e.g., smartphones, smart watches, drones, con-

Research issues, challenges and objectives 7

nected cars). While some of these components are part of the network domain, other
components might join/drop the network domain with an arbitrary pattern. In fact,
the next-generation networks can crowdsource the workload on these components in
an opportunistic way considering their availability and location, from one side, and
the service SLA from the other side. Consequently, contrary to regular networks, the
topology of the next-generation networks constantly changes and evolves during run-
time. This dynamicity is even further reinforced considering the potential mobility of
some of the network components.

Provisioning emerging applications in the next-generation networks addresses the
three previously discussed limitations related to the use of fully-cloud environment.
However, the specific characteristics of their constituents services, as well as, the
properties of their target environments drive fundamental changes in their associated
lifecycle management. This research trial aims to study these changes, together with
the necessary contributions to enable proper provisioning of these services in the next-
generation networks.

1.3 Research issues, challenges and objectives

The main research question that needs to be answered in this context could be formal-
ized as follows: “How to properly provision emerging applications’ services in
next-generation networks with respect to the service computing paradigm? ”.
With other terms, the research question would be: “What are the required adap-
tations and changes that are needed to revisit every single step in the whole
service lifecycle process to support such provisioning? ”. To answer this ques-
tion, one should first bring anwsers to these underlying questions: “What is the impact
of adopting novel paradigms and technologies (e.g., NFV, MEC) on the service life-
cycle process? ”, “How to integrate that in the service lifecycle management? ” and,
above all, “What are the requirements to support and to unlock the full potential that
next-generation networks could bring to the emerging applications? ”.

Provisioning emerging applications in next-generation networks inevitably affects
the lifecycle of their constituents services considering the distribution, the dynamic-
ity and the prospective mobility in the target networks. While the lifecycle phases
remain naturally the same, the procedures that defines and implements these phases
need to be adapted or even reinvented. To that end, several challenges need to be
tackled. The first one is related to the adoption of the novel paradigms and tech-
nologies. For instance, the integration of NFV enables “softwarising” the network
appliances and brings, henceforth, agility and cost-effectiveness to the network. The
integration of MEC introduces, among others, the support of the multi-cast broad-
casting and triggers dynamic netwotk topology evolutions at runtime. Obviously, the
service lifecycle management process should be flexible and agile enough to catch up
with these dynamic changes.

The second challenge is related to the automation of the lifecycle process man-

8 Introduction

agement. This includes the foreseen actions at every single step of the lifecycle but
also the moving from one step to the next. Similarly to the DevOps/SRE approach
in software engineering or the continuous configuration and automation approach in
networking, this is necessary to meet the strong requirements imposed by the services
(e.g., latency-sensitiveness, location-awareness) and keep up with the dynamic changes
of the hosting network (e.g., workload variation, mobility).

The third challenge is related to the switching from a “centralized ” single cloud
domain to a decentralized multi-domain provisioning environment. Indeed, managing
the service lifecycle over several interacting domains should take into consideration
the several information (e.g., capabilities, business model) for all involved domains.
Ideally, the service lifecycle process is able to normalize and homogenize the informa-
tion that come from seperate and hetergenous domains before integrating them to the
foreseen actions in the process. For instance, the management phase of the lifecycle
should support migrating a running service from a cloud host to an edge/fog host (and
vice versa) to meet the required SLO.

For practical reasons and for the sake of efficiency, the target contributions mostly
focus on NFV domain and consider the Virtualized Network Functions (VNF) as the
service building block of the cloud continuum. In this work, NFV refers to the Euro-
pean Telecommunications Standards Institute (ETSI) initiative4 to virtualize network
services that traditionally run on proprietary and dedicated network appliances (e.g.,
switches, routers, DNS servers)

In fact, any other kind of services, associated to any given resource that is part of a
different domain (e.g., IoT, Fog/Edge, CDN) can be considered as a network function.
For instance, in the case of IoT, the gateways act as network middleboxes between
the IoT devices and the IoT applications and are responsible of operations such as
communication protocols conversion (e.g., from COAP/MQTT to HTTP) or message
formatting (e.g., from raw data stream to well-structured CSV/JSON document).
Similarly, the IoT devices (e.g., sensors) own computing capabilities and are able to
some extent to host and execute VNF services (e.g., data transcoding). As for the
CDN case, CDN controllers implement regular network controllers in between the
primary servers, where the raw content is stored, and the surrogate servers, where
this content is duplicated. As for the Fog/Edge domains, it is not uncommon to use
IoT devices and/or CDN surrogate severs as Fog/Edge nodes to host and execute
services. For instance, the surrogate servers keep and then deliver the content as close
as possible to end-users. Besides, prior to the content delivery, CDN often provision
network middleboxes, that could be implemented as VNF services, in between the
surrogate servers and the end-users (e.g., location-based ads service aiming to enrich
the raw content to value-added content prior to delivery).

4https://www.etsi.org/technologies/nfv

Research contributions and substantial results 9

1.4 Research contributions and substantial results

The research work discussed in this manuscript introduces methodologies, models
and procedures to support provisioning of services in the next-generation networks.
The proposed contributions enable agile, fully automated and efficient provisioning of
the services in their target environments, in accordance with the service computing
paradigm. Figure 1.3 lists the main contributions and positions them in relation to
the service lifecycle steps. These contributions cover every single step of the lifecycle.
The two first contributions cover the Design phase of the service lifecycle. The third
contribution involves the early steps of the Runtime phase. The fourth and the fifth
contributions are intented to the management phase of the Runtime phase.

Figure 1.3: Overview of the contributions in relation to the service lifecycle steps.

As stated in Section 1.3, the contributions mainly focus on NFV. However, various
illustration examples, taking into consideration other paradigms of next-generation
networks (i.e., CDN, Edge and IoT), are discussed throughout the manuscript to
show the genericity of the introduced approaches and procedures, as well as, their
compliance with the cloud continuum ecosystem. The details of each one of these
contributions are discussed in what follows:

• The first contribution (CONTRIB1) aims for generic VNF description and
publication. It introduces a domain-independent VIrtualized networK functIoN
ontoloGy (VIKING for short) that enables a comprehensive and generic descrip-
tion of the VNF capabilities from functional and non-functional perspectives.

• The second contribution (CONTRIB2) enables accurate and automatic VNF
discovery. It proposes a semantic-based matchmaker that relies on VIKING to
ensure the best matching between requested VNFs and published ones.

10 Introduction

• The third contribution (CONTRIB3) set up agile VNF wiring (service com-
position) and instantiation (service deployment). It introduces a model, as well
as, an exhaustive procedure to: (i) draw the composition of a set of elementary
VNF, and (ii) instantiate and deploy the resulting Network Service (NS) in a
terget environment.

• The fourth contribution (CONTRIB4) ensures coordination-free orchestration
for consistent VNF reconfiguration at runtime. The proposed model supports
a prospective NS deployment under multi-domain federations while taking into
consideration the non-functional dependencies between the involved VNF in the
orchestration.

• The fifth contribution (CONTRIB5) is on-going work. It lays the foundations
of the research directions and future work discussed in Chapter 5. This work
contribution aims to enable proactive QoS management of the services. It relies
on machine learning models to predict any prospective degradation of the rele-
vant QoS metrics. The goal is to identify and to execute the necessary actions
(e.g., scale up the service, migrate the service) in order to maintain optimal QoS
before even the degradation happens.

The main outcomes of this research work (2015 - 2023) are summarized in what
follows:

• 6 co-supervised PhD students (graduated) and 1 supervised PhD student (on-
going)

• 16 (co-)supervised Master students

• 35 publications including 13 journal papers, 20 conference papers and 7 demon-
stration/short/workshop papers

• 4 running prototypes and software tools

• 7 research projects

It should be noted that part of this work was done within international collab-
orations with local and foreign laboratories and universities such as the University
of Geoscience at Beijing in China, University Lyon 1 and University Paris Saclay in
France, Concordia University and UQAM in Canada, IBM Almaden Research Center
in USA, University of Tunis ElManar and University of Carthage in Tunisia and the
University of Sydney in Australia, to cite a few.

The research results has been recognized by several prizes and awards:

• Doctoral and Research Supervision Award (Prime d’Encadrement Doctoral et
de Recherche), 2020-2024.

Manuscript structure 11

• Best Research Paper Award. IEEE International Conference on Collaboration
Technologies and Infrastructures, 2019.

• Best Demo Award. International Conference on Service Oriented Computing,
2018.

• Runner-up Demo Award. IEEE Consumer Communications and Networking
Conference, 2017.

• Runner-up Demo Award. IEEE International Symposium on Local and Metropoli-
tan Area Networks, 2016.

1.5 Manuscript structure

The rest of this manuscript is organized as follows: Chapter 2 discusses the two first
research contributions on service design, publication and discovery. Chapter 3 presents
the third contribution that addresses the NS service composition, instantiation and
deployment. Chapter 4 discusses the last contributions on dynamic service manage-
ment at runtime. Specifically, it proposes an approach to achieve coordination-free
NS migration across multi- and hetergenous domains. Chapter 5 introduces a set of
open issues and research directions that are relevant to this research study. It also
describes the early obtained results on the on-going work to achieve proactive QoS
management in this context. Finally, Chapter 6 concludes the manuscript.

The reader should note that this manuscript contains 2 appendixes. Appendix 1
details the list of publications while Appendix 2 details the teaching activities.

12 Introduction

Chapter 2

Contributions on Service Design,
Publication and Discovery

Contents
2.1 The state-of-the-art in NFV description and discovery 14

2.1.1 Standardization bodies and research projects 15

2.1.2 Academic research works . 16

2.1.3 Synthesis . 16

2.2 Challenges and design considerations 17

2.3 A semantic approach for VNF description 19

2.3.1 VIKING-F ontology . 20

2.3.2 VIKING-NF ontology . 23

2.4 A semantic-based model for VNF discovery 24

2.5 Proof of concept . 26

2.5.1 VIKING in content delivery networks 27

2.5.2 The Mastermyr chest tool . 29

2.6 Benchmark and evaluation . 31

2.6.1 Test collection . 31

2.6.1.1 Illustrative VNFDs for the CDN use case 32

2.6.1.2 Sample queries . 34

2.6.1.3 VNFD relevance . 34

2.6.2 Comparative study . 35

2.6.2.1 OWLS-MX in brief . 35

2.6.2.2 Performance metrics . 37

2.6.2.3 Measurement and results interpretation 37

2.6.3 Robustness evaluation . 38

13

14 Contributions on Service Design, Publication and Discovery

Service providers publish VNFs in dedicated marketplaces where network providers
search VNFs and instantiate them according to a pre-established SLA. On top of
being proprietary and specific to the service providers, the existing VNF description
models include details on VNF deployment but fail to include VNF functional and
non-functional specifictions. This alters an efficient selection of the most relevant
VNFs and prevents full automation of the VNFs provisioning.

This Chapter discusses CONTRIB1 and CONTRIB2. It introduces a novel
domain-independent VIrtualized Network FunctIoN ontoloGy (VIKING for short) for
VNF description and publication in federated repositories [24]. It also proposes a
semantic-based matchmaking algorithm to discover and select the most relevant VNFs
that satisfy prospective VNF consumers’ requests.

2.1 The state-of-the-art in NFV description and discovery

Several research efforts in service computing have been interested on service and user
queries description. Different concepts were used among these works. However, the
most important results were obtained when using semantics. Handling semantics
in service discovery was largely investigated from two main matching perspectives:
syntactic and semantic. The first relies on graph theory (e.g., Resource Descrip-
tion Framework [25] and DIANE Service Description [26]) while the second relies on
ontologies (e.g., OWL-S [27] and WSMO [28]). Many works compare the syntac-
tic ones (exemplified by information retrieval metrics) versus the semantic matching
ones (exemplified by logic inference). The latter turns out more efficient than the for-
mer in terms of precision and recall. CONTRIB1 advocates for semantic matching
for this work.

Generally speaking, in the networking domain, the use of semantics was widely
used since the late eighties (e.g., [29], [30]). Semantic networks were first developed
for artificial intelligence and machine translation. More broadly, the use of semantics in
networks is done through declarative graphic representation that aims at representing
knowledge and supports automated systems for reasoning about the knowledge. Some
approaches are highly informal, but others are formally defined systems of logic. In
particular, semantics was used to build and evolve network ontologies (e.g., [31]),
retrieve information in networks (e.g., [32] for peer-to-peer networks), and network
slicing and segmentation (e.g., [33]).

Considering the existing NFV Infrastructure (NFVI) such as OpenStack-Tacker1

or OPNFV2, the VNF Manager (VNFM) and the NFV Orchestrator (NFVO) require
VNF-Descriptor (VNFD) for VNF instantiation and lifecycle management, and or-
chestration, respectively. However, the existing discovery approaches that rely on
VNFD still in their early ages and much work has yet to be done for optimal VNFs

1https://wiki.openstack.org/wiki/Tacker
2https://www.opnfv.org/

The state-of-the-art in NFV description and discovery 15

provisioning. First, the existing discovery approaches remain specific to the owner
providers due to the fact that the VNFD on which they rely are neither generic nor
unified. Second, these VNF descriptions and publication models are not compre-
hensive. Indeed, they do include details on VNF deployment but fail to cover their
related functional and non-functional specifications. Last but not least, consumers
still need to manually select the required VNF rather than having an automated dis-
covery mechanism. These noticed limitations are due to several reasons. In the wide
landscape of VNF providers and technologies, a lack of a common understanding of
VNF descriptions can be undoubtedly observed due to technologies’ and providers’
heterogeneity along with implicit knowledge leading to possible different interpreta-
tions. Consequently, consumers are obliged to parse a priori known sources to look for
VNF candidates. This is time-consuming and often results in a very limited number
of VNF candidates, not necessarily relevant with regard to consumers’ initial needs.
In the relevant literature, there were already few approaches that propose the use of
semantics. This review mainly focus on the approaches that use semantic models at
different phase(s) of the VNFs lifecycle introduced in Section 1.2. These work are
classified into 2 categories: (i) the work done within the standardization bodies and
research projects, and (ii) the work done within academia.

2.1.1 Standardization bodies and research projects

Besides the previously discussed ETSI VNFD model, one of the most known and
used approaches is Topology and Orchestration Specification for Cloud Applications
TOSCA-based, namely TOSCA-NFV [34]. TOSCA is a data model standard managed
by the OASIS industry group that can be used to describe services’ operations and
requirements [35]. It also describes the way that services can be deployed and managed
at runtime through the so-called management plans (workflows). TOSCA-NFV is
the concrete implementation of the model applied to NFV for VNFs provisioning
and management. However, TOSCA-NFV model assumes that the VNFs are already
discovered. It proposes a model to describe topologies, dependencies, and relationships
between virtual applications and simplifies the complexities of these services rather
than describing the VNFs capabilities and requirements. Consequently, the main scope
of TOSCA-NFV is to deliver orchestration and interoperability of VNFs. The same
observation is valid for the IETF Service Function Chaining (SFC3) initiative. SCF
in NFV setting relies on VNFD for VNFs selection and mainly focuses on the VNFs
composition by matching the VNFs business (functional) operations [36].

T-NOVA is an EU-funded project [37]. It provides a VNF marketplace that: (1)
helps VNF developers to describe and to store network functions, and (2) assists the
consumers when browsing and selecting the network functions that match their needs.
T-NOVA extends the ETSI NFV description model by applying business aspects from
TMForum SID model [38]. It involves additional fields that enable business interac-

3https://tools.ietf.org/html/rfc7665

16 Contributions on Service Design, Publication and Discovery

tion among the actors communicating through the T-NOVA Marketplace (e.g., SLA
specification, pricing) besides the deployment information needed for the orchestrator
to deploy the network services. The VNF/NS discovery process is conducted through
the brokerage module [37] which permits consumers to search for VNFs/NSs while
specifying their specific requirement in terms of network SLA.

Cloud4NFV [39] is a virtualized platform for VNF provisioning that aims to deliver
NF-as-a-service to end customers. It is compliant with the ETSI NFV architectural
specification with major contributions on the modeling and orchestration aspects.
On one side, Cloud4NFV possesses frontend database that stores collections of VNFs
along with high-level description (e.g., ID, name, description, location). On the other
side, it handles a backend database that stores specific VNF information necessary
for the VNF deployment and configuration. The platform provides only deployment
and configuration information and the discovery process is manually done by the end
customers.

2.1.2 Academic research works

In the academic literature, Hoyos and Rothenberg propose an NFV Ontology called
NOn and a Semantic nFV Services (SnS) [40]. NOn enables the description of NFV as
a high-level framework with reusable element descriptors. SnS is the concrete semantic
application of NOn in the NFV domain. It uses NOn to create explicit service descrip-
tors. It relies on agents from different domains to parse and evaluate NFV services
capabilities. However, this approach imposes strong constraints on existing providers
and assumes that they could support these agents on their domains. Furthermore,
NOn only considers the functional capabilities of the resources.

In [41], the authors propose an ontology for NFV that enables describing the whole
network resources including VNFs in terms of properties and relationships (dependen-
cies). The resource description is considered then as reusable semantic concepts that
can be used to construct additional rules for reasoning over the network. For instance,
this could be useful to automate network topology design and deployment. This work
focuses on the network engineering and integration efforts and does not cover the
VNFs selection given a specific and precise user needs.

In [42], the authors propose a set of affinity and anti-affinity constraints useful for
virtualized networks management. The validation of these rules is semantic-based.
The addressed constraints are mainly related to service function chain requests. For
instance, defining a valid VNFs placement strategy taking into consideration the net-
work provider constraints and the chain request.

2.1.3 Synthesis

Table 2.1 sums up the capabilities of each considered work with regard to VNF de-
cription, publication and discovery. The literature study shows that several works

Challenges and design considerations 17

tried to extend the VNFD proposed by ETSI with additional information using dif-
ferent approaches. Except VIKING and T-NOVA, none of them succeeded to cover the
functional and non-functional properties of the VNFs, at the same time, in their pro-
posed description models. However, the reader should note that the description of the
non-functional properties in T-NOVA is limited. It only involves the business infor-
mation (e.g., cost, SLA) necessary for interaction with other T-NOVA actors. When
it comes to VNF publication, the conducted study highlights that most of the existing
models require VNF publication in dedicated and proprietary repositories. T-NOVA
and VIKING are the only approaches that do not impose any compatibility constraint on
the provider side and enables NFV repositories federation. Since both rely on generic
and unified semantic models, this eliminates dependencies related to technologies that
would be used when offering the VNFs to prospective consumers. Finally, for the
discovery phase, the study shows that all the existing works, except VIKING, either did
not address the discovery process or propose simplistic procedures. These procedures
are often characterized by the use of manual VNF selection or automated syntactic-
based matchmaking between the offered VNFs and the required ones. In both cases,
these discovery approaches require solid domain knowledge, are time-consuming and
are not always efficient. This considerably decreases agility and cost-effectiveness that
one may expect/require from a virtualized network ecosystem.

Table 2.1: VNF description and discovery in the relevant literature

Reference
Description Publication Discovery

Functional Non-Functional Interoperability Semantic matchmaking
properties properties

ETSI VNFD Yes No No No

OASIS TOSCA
NFV [34]

Yes No Yes No

IETF SFC [36] Yes No No No

T-NOVA [37] Yes Partially Yes No

Cloud4NFV [39] Yes No No No

Hoyos et al. [40] Yes No No No

Oliver et al. [41] Yes No No No

Bouten et al. [42] Yes No No No

VIKING Yes Yes No Yes

2.2 Challenges and design considerations

NFV is at the crossroad of networking and service-oriented computing research fields
for many reasons. It is advocated that VNF falls into the definition of IT services at
large [43]. NFV aims at provisioning the network facilities through the VNF concept.

18 Contributions on Service Design, Publication and Discovery

VNFs could be provisioned in the same way as any other kind of service such as telco
services and Web services. In fact, Service-Oriented Architecture (SOA) principles
(e.g., service abstraction, discoverability, and composability) [44] [45] could ensure
the viability of an ecosystem of network services that are dynamically and flexibly
provisioned, thereby coping with changeable network provider (i,e., the service con-
sumer) needs and dynamic Quality of Service (QoS) requirements along with context
conditions. Similarly, the VNF lifecycle phases are directly inspired from the service
provisioning lifecycle detailed in [23] and discussed in Section 1.2. VNFs are first de-
signed and developed before being published in appropriate repositories for prospective
consumers. Prior to their deployment, VNFs are instantiated into the target network
and are configured to be integrated as part of a specific topology. Once deployed,
VNFs are executed and, when necessary, are subject to management considerations
at runtime (e.g. scale up/down, migrate). The VNFs consumers rely on the infor-
mation provided in the decriptors of the published VNFs to discover and select the
most suitable ones that match the best to their needs and QoS requirements. This is
critical step where several discovery aspects need to be considered such as the VNF’s
business functionality, as well as, the perfect matching between the VNF’s technical
requirements for its deployment and the target (hosting) environment capabilities.

Designing unified and comprehensive VNF discovery mechanisms with a service
computing perspective is challenging. The fact is that, although their lifecycle re-
mains fundamentally the same, the implementation of each provisioning phase might
be specific. For illustration purposes, Table 2.2 shows the fundamental differences
between VNFs and Web services operation. Novel description and discovery mecha-
nisms should take these specificities and differences into consideration. For instance,
unlike Web services [46], VNFs are not remotely invoked but are downloaded and
executed locally, part of given network topology. In addition to inputs/outputs pa-
rameters, a VNF description should contain more elaborated technical details such
as supported technologies and VNF settings. Moreover, the interaction is not limited
to basic operations like it is the case with Web services [47], it should also include
additional sophisticated operation management dedicated to each VNF. The existing
service standards, studies, and frameworks do not address deployment-related issues.
Moreover, they are process-driven while VNFs are more data-driven [47]. This makes
existing WS-related solutions for description and discovery, including the ones that
are based on semantics, inadequate for operation in the NFV setting.

Yet another challenge is related to the strong heterogeneity of the VNFs. Indeed,
VNFs implement diverse and various network functions at either IP-level (e.g., fire-
wall, NAT) or at application-level (e.g., video mixer, virtual IoT gateway) [48] [43].
Furthermore, the functionalities supported by the VNFs could belong to very different
domains (e.g., Telco, IoT, cloud, big data, multimedia). This makes the design of a
common description model difficult to design.

Finally, a last challenge is related to the nature of the potential environment where
discovered VNF should be instantiated and deployed. In fact, the end hosting nodes

A semantic approach for VNF description 19

Table 2.2: Comparison between Web services and VNFs operating

Concept Web Services VNFs
Description Document-oriented (WSDL) Document-oriented (VNFD)
Specification Limited interaction opera-

tions (RESTful)
Dedicated and extensible op-
erations for management

Invocation Remote Procedure Call
(RPC)

Download and locally execute

Execution/
Management

Input/Output operations Input/Output operations
Additional technical or non-
functional information

range from powerful computing servers to virtual machines and smartphones [49] [48].
These nodes have different and various capabilities (e.g. CPU, RAM, graphics reso-
lution, bandwidth). This implies that an additional checking of the correct matching
between the non-functional requirements of the disovered VNFs and the characteristics
of their potential hostig nodes need to be integrated to the discovery procedure.

2.3 A semantic approach for VNF description

VIKING is an OWL-based (Ontology Web Language) ontology that allows describing
VNFs. To design VIKING, the considered domain VIKING covers (namely, network
function virtualization), for what VIKING will be used (namely, VNF description,
publication, and discovery), and for what types of queries VIKING should provide
answers (namely, similarity and correlation). The abstraction is then tackled by iden-
tifying the main common concepts shared by various application domains like CDNs,
IoT, telco and 5G networks. Concepts are organized as a class hierarchy where ab-
stract concepts are refined with more concrete ones specific to each domain applica-
tion. They are also described with properties and connected to other concepts with
semantic relations. To not reinvent the wheel, existing ontologies were reused, mainly
for VNF deployment (e.g., [50]) and billing (e.g., [51]). Since concept refinement and
instantiation are domain-dependent, they will be discussed in the illustrative use case
presented in Section 2.5.1.

To assist VNF providers when creating comprehensive and consistent VNF descrip-
tors, VIKING relies on OWL’s reasoning principles. Fig 2.1 depicts VIKING’s high-level
skeleton that consists of two interrelated ontologies, namely VIKING-F and VIKING-NF,
related to VNF’s functional and non-functional properties, respectively.

On one hand, VIKING-F refers to the formal specification of what exactly the VNF
can do. It revolves around 2 dimensions known as Business and Model. Business
denotes the VNF’s type, inputs (i.e., details about the content upon which the VNF
will take effect along with other necessary details), and outputs (i.e., details about the

20 Contributions on Service Design, Publication and Discovery

Figure 2.1: A high-level view of VIKING design

changes that will take place in the content). Model indicates the set of operations
that ensure these inputs’ conversion into outputs along with the related techniques
and/or standards.

On the other hand, VIKING-NF refers to the formal specification of what ex-
actly the VNF need/require for proper functioning. It revolves around 3 dimensions
known as: Context, QoS, and Deployment. Context refers to the required run-
time (e.g., operating system, specific libraries and/or system packages), as well as,
device types (e.g., smartphones, TVs, desktops) upon which the VNF’s outputs can
be readable. QoS specifies common quality features offered by the VNF (e.g., re-
sponse time, operation cost) and can be refined with specific-domain ones (e.g., sur-
rogate servers locations for CDN, the bandwidth for 5G applications). Finally, De-
ployment involves VNF’s artifacts and configuration parameters that are needed for
VNF’s execution.

Figure 2.2 shows a more detailed view of VIKING dimensions. Each dimension
encompasses abstract conceptual areas that are instantiated using concrete concepts,
which allows to produce a dedicated VIKING-F and VIKING-NF ontologies. These
concepts, as well as, the relations between them are discussed in-depth in the rest of
this Section.

2.3.1 VIKING-F ontology

As mentioned earlier, VNF’s functional properties are specialized into Business and
Model dimensions, described as follows.
Business. This dimension relies on existing classification standards (e.g., ISO/IEC4,

4https://www.iso.org/standard/68291.html

A semantic approach for VNF description 21

Figure 2.2: The core concepts of VIKING

ETSI NFV5) and leading service providers. Obviously, VNF design is always re-
lated to a target application domain. The VNF business description consists of three
main concepts namely, VNF, Content, and Content-Attribute along with their seman-
tic relations. VNF describes all necessary details on VNFs for advertisement and
query-building purposes. Basically, VNF will be refined into concrete virtualized net-
work functions for a given application domain. Since these functions share common
concepts and semantic relations but also have their own technical specificities, they
should be considered as concepts rather than as concept instances. Content refers to
different domain-related artifact types manipulated by the VNFs. Content-Attribute
indicates the type of content(s) supported by the VNF. More specifically, this concept
represents the content’s technical specification (e.g., required/supplied Resolution and
Quality). It is worth noticing that VNF, Content, and Content-Attribute are semanti-
cally connected with relations namely, delivers between VNF and Content, and re-
quires/supplies between VNF and Content-Attribute. The first relation states that
any VNF provides some content while the second relation captures the input/output
attributes upon which the VNF will act for specific content. In addition, for consis-
tency purposes, cardinality restrictions (e.g., at least one) and axioms (e.g., disjoint)
are specified, so that, concept instances are related to the right instance(s) and be-
long to the right concepts. To ensure a consistent instantiation of concepts, Semantic
Web Rule Language (SWRL) rules (including axioms) help enforce restrictions on at-
tribute values and semantic relations, as well. Hereafter, only SWRL rules referring to
concepts are exemplefied, while those referring to instances will be discussed in Sec-

5https://www.etsi.org/technologies-clusters/technologies/nfv

22 Contributions on Service Design, Publication and Discovery

Table 2.3: Relations in VIKING-F with the concept VNF

Dimension Relation (Target) Concept

Business
delivers Content

requires/supplies Content_attribute

Model
implements Operation

supports Standard

applies Techniques

tion 2.5.1. For instance, Equation 2.1 formally reflects the following statement: “Any
VNF (?x) that requires content-attribute (?y) should deliver specific content (?z)”.

VNF(?x) ∧
requires(?x, content_attribute(?x, ?y))

→ delivers(?x, content(?x, ?z))
(2.1)

Model. Technical aspects are relevant when making content exchangeable and adap-
tive in heterogeneous networks and devices (e.g., be able to read video in one digital
encoding format different from the video original format). These aspects are thus con-
sidered to identify three main concepts related to Model, namely, Operation, Stan-
dard, and Technique linked to VNF through implements, supports, and applies
relations, respectively. Specifically, Operation refers to how a VNF makes changes on
some content(s) described in Business. Standard contains different standard(s) in the
target application domain to foster content exchanges. Technique encompasses meth-
ods and procedures that a specialized VNF applies to make the necessary changes to
the content. Furthermore, as in Business, restrictions and axioms such as “Any VNF
can apply some techniques” might be defined. In addition, in some cases, mapping
Business onto Model, or vice versa, is required (e.g., matching VNF requests with
VNF advertisement). To this end, SWRL rules are defined to infer new semantic rela-
tions between instances during concept instantiation. For instance, Equation 2.2 for-
mally reflects the following statement: “Any VNF (?x) that implements operation (?y)
and covers some device (?z) should supply a specific resolution (?u)”.

VNF(?x) ∧
implements(?x, operation(?x, ?y)) ∧

covers(?x, device(?x, ?z))

→ supplies(?x, resolution(?z, ?u))

(2.2)

Table 2.3 sums up the defined relations between the VNF concept and the rest of
concepts in VIKING-F.

A semantic approach for VNF description 23

2.3.2 VIKING-NF ontology

VNF’s non-functional properties are specialized into QoS, Context, and Deploy-
ment description parts, described as follows.

QoS. This dimension consists of three concepts namely, Location, Billing, and Security-
policy linked to VNF through locates, costs, and enforces relations, respectively.
Location refers to VNF’s placement (e.g., network domain). Billing contains pricing
models similar to those defined in cloud environments (e.g., time-based, volume-based,
flat rate) [52]. Last but not least, Security-policy is related to VNF regardless of se-
curity mechanisms provided by the hosting platform. Indeed, the VNF should not
depend on its hosting platform that can be itself a source of threats (e.g., malicious
orchestrator or administrator) and thus should have its own security policies com-
pliant to ETSI NFV SEC recommendation [53] [54]. Security-policy is refined into
Functional and Non-functional, as depicted in Fig 2.3. The former is specialized into
Internal and External to refer to the type of defense that the VNF puts in place against
internal and external attacks. Internal and External both share Authorization that
refers to control access to the VNF and its data along with capabilities, respectively,
by an authorized entity in an authorized manner (e.g, Role- and Identity-based mech-
anisms). On top of this, External also covers CIA (stands for Confidentiality, In-
tegrity, and Availability), Authentication, and Trust. CIA refers to protection mech-
anisms (e.g., cryptography, signature, and redundancy) for the VNF’s capabilities
along with raw/processed data against intrusions. Authentication refers to verifica-
tion mechanisms (e.g., public key, certification, and password) for checking source’s
identity including traffic provenance. Trust refers to evaluation mechanisms (e.g., di-
rect and collaborative trust-based) to establish trust relationships between VNFs.
Finally, the latter is refined into Auditability and Accountability where Auditability
refers to VNF examination techniques (e.g., knowledge- and behavior-based) while
Accountability refers to internal tracking mechanisms (e.g., logging) to monitor the
VNF’s activities. It is worth noticing that this ontological model for capturing the
VNF’s security aspects can be easily enriched with more sophisticated ones based on
the application domain.
Context. This dimension encompasses two main concepts, namely Device and Fea-
ture. Device refers to additional details related to surrounding/target appliances (e.g.,
hosting device) and Feature refers to options provided by the VNF (e.g., resize mul-
timedia content in CDN, and switch communication protocol in IoT).
Deployment. This dimension integrates the already existing ETSI VNFD and enrich
it with additional/complementary details on the resources to be allocated for VNF
hosting and execution (e.g., number of required CPUs, amount of RAM). Specifically,
Placement involves a URI of a remote enriched ETSI VNFD. It is worth noticing that
Placement is a mandatory property during VNF discovery. Finally, it is well known
that SWRL rules related to non-functional properties are domain-specific. Conse-

24 Contributions on Service Design, Publication and Discovery

Figure 2.3: The security concept refinement in VIKING

Table 2.4: Relations in VIKING-NF with the concept VNF

Dimension Relation (Target) Concept

QoS
locates Location
costs Billing

enforces Security-policy

Context covers Device
offers Feature

Deployment refers_to Placement

quently, they will be defined in Section 2.5.1.
Table 2.4 sums up the defined relations between the VNF concept and the rest of

concepts in VIKING-NF.

2.4 A semantic-based model for VNF discovery

The proposed VNF discovery model is based on VIKING. It takes into consideration
the enduser’s preferences. Indeed, in accordance with the Web semantics principles,
users can specify preferences among a set of functional and/or non-functional require-
ments, so that, the most appropriate discovered VNFs are selected. Table 2.5 contains
the notation used to formalize user requirements and preferences. For the sake of
simplicity, user requirements will be classified into three preference clusters namely,
mandatory, high-requested, and optional.

VNF discovery process consists of two main steps both based on user preferences:
user request building and semantic matchmaking. First, this process starts with as-
sisting the user (i.e., a network provider) build his/her VNF requests in terms of
what VNF capabilities are required. Afterward, it calls for a semantic matchmaking
algorithm to seek for candidate VNFs offered by the providers in the appropriate repos-

A semantic-based model for VNF discovery 25

Table 2.5: Notations to formalize user requirements and preferences

Symbol Description

REQFi,j User i’s jth functional requirement

REQNFi,k User i’s kth non-functional requirement

Pref(F) Preference associated with functional requirements

Pref(NF) Preference associated with non-functional requirements

M-CL Mandatory-preference cluster

H-CL High requested-preference cluster

O-CL Optional-preference cluster

Pref(CL) Preference value associated with the preference cluster CL
{REQFi,j}CL Set of functional requirements labeled with the preference clus-

ter CL
{REQNFi,k }CL Set of non-functional requirements labeled with the preference

cluster CL

itories. Finally, the discovery process provides the user with the most relevant VNFs
based on their preferences. The algorithm and methodology that implement each one
of these steps are detailed as follows.

User request building. After specifying all REQFi,j and REQNFi,k and labeling
each requirement with either M- CL, H- CL, or O- CL, the user i will define all
preference values namely, Pref(F), Pref(NF), Pref(H- CL), and Pref(O- CL). Note
that all REQFi,j and REQNFi,k ∈ M- CL will serve to discard irrelevant VNFs. Note that
Pref(F)+Pref(NF)+Pref(H-CL)+Pref(O-CL) = 1. To sum up, the user request (URi)
is a 2-tuple defined as follows:

URi =< {REQFi,j ,Pref(REQFi,j)}j=1,n, {REQNFi,k ,Pref(REQNFi,k)}k=1,m > (2.3)

Semantic matchmaking. Algorithm 1 reflects the matchmaking logics used to
return the relevant set of candidate VNFs (Cand). It relies on VIKING when matching
VNFs provided in a given repository (Rep), with user requirements.
Algorithm 1 consists of two types of matching, namely, matchAll (Line 2) and matchSome
(Line 7). On one hand, since the set of all mandatory requirements (i.e., {REQFi,j}M-CL

and {REQNFi,k }M-CL) should be fulfilled, matchAll checks if the VNF exactly matches this
set (i.e., true or false). Indeed, any VNF should be either kept or discarded in/from
Cand depending on the result provided by matchAll. On the other hand, matchSome
is applied to the rest of user requirements. For each VNF in Cand, matchSome returns
a set of matched capabilities (M-Cap) that could be empty if there is no matching at
all. Finally, the Cand list will be ranked based on VNF scores.

26 Contributions on Service Design, Publication and Discovery

VNF matchmaking algorithm
1 VNF-Matchmaking(URi,Rep)
2 foreach V NFi ∈ Rep do
3 if matchAll(V NFi,{REQFi,j}M-CL, {REQNFi,k }M-CL) then
4 append(V NFi, Cand);

5 foreach V NFi ∈ Cand do
6 score(matchSome(V NFi,{REQFi,j}H-CL , {REQNFi,k }H-CL,

{REQFi,j}O-CL, {REQNFi,k }O-CL), M-Cap)

7 rank(Cand)

2.5 Proof of concept

For validation and evaluation purposes, VIKING have been implemented in the con-
text of Content Delivery Networks (CDN). CDN refers to a group of geographically
distributed servers interacting with each other to enable fast content delivery to end-
users over the Internet [55] [56]. Akamai6, Swarmify7 and Netflix Open Connect8 are
among the examples of CDN providers. In addition to the basic video services, CDN
providers provision value-added content. Additional services such as media manage-
ment (e.g., transcoding, ad insertion, and content protection), dynamic site accelera-
tion, and front-end optimization are injected to the raw content prior to its delivery to
end-users [57]. Enriching raw content with value-added services requires the provision-
ing of the so-called middleboxes in between the media server, that hosts the content,
and the end-user [58]. Middleboxes implement network functions that perform the
required transformations on the raw content depending on the needs (e.g., end-users
requests and preferences) and context (e.g., location and monitor capabilities). The
CDN carries raw content through these middleboxes to get the needed enrichment
(e.g., inject location-based ads, apply user-specified filters) before serving it to the
end-users.

In legacy environment, CDN middleboxes are provisioned as physical building
blocks, at fixed network locations and on a proprietary and dedicated hardware [59].
The shortcomings of this traditional mode of middleboxes provisioning are widely
known. It is subject to a lack of automation, dynamicity, and flexibility when deploy-
ing and managing the services. Actually, for planned events (e.g., worldwide sport
events such as the Olympic games or the soccer world cup), CDN can anticipate the
most common prospective user requests and, consequently, can adjust/predict and
provision in advance the required middleboxes that are needed when processing these
requests. However, in case of unplanned events, when, for instance, some videos go

6https://www.akamai.com/
7https://swarmify.com/
8https://openconnect.netflix.com/en/

Proof of concept 27

viral, CDNs might get short in time and not being able to provide the appropriate
middleboxes for a specific content/location.

CDN providers leverage NFV to re-architect their traditional system architecture
and to provision value-added services as VNFs in agile and cost-effective way. Accord-
ing to the business model introduced in [60], CDNs could interact with third-party
VNF providers to get the required middleboxes. Each VNF provider handles a set
of repositories where VNFs are published and stored by owners through proprietary
specifications and description model. Although most of the existing VNF descriptors
include the VNFD information about the VNF instantiation and deployment in the
target CDN, they barely describe the VNF’s business functionality (e.g., video mixing,
text translation). Furthermore, they completely fail in describing the end-user prefer-
ences and devices’ capabilities (e.g., available bandwidth, supported format, terminal
type, and screen size). This actually adds more complexity to the VNF selection pro-
cess and affects the relevance of the considered middleboxes with regard to the real
CDN needs. Specifically, identical VNFs offered by different providers could be de-
scribed with different terms and characteristics. Worse still, VNFs could be described
with identical terms but having totally different capabilities. For instance, the “media
mixer” description might refer to a middlebox with text mixing capability or with
sound/video mixing capability.

2.5.1 VIKING in content delivery networks

Table 2.6 depicts an excerpt of VIKING’s refinement that results into VIKING-CDN. For
Business and Model, VNF is refined into VNF4CDN that refers to a representative
set of VNF capabilities like VConverter and VMixer. For instance, VConverter will
be specialized into VTranscoder. VNFs implement operations acting upon content,
support standards, and apply techniques. For instance, VTranscoder can operate on
Audio’s and/or Video’s Format. For Context, Feature is refined into Feature4CDN
while Device into Device4CDN then SmartDevice that is specialized into Smartphone,
for instance.

Table 2.7 shows an excerpt of VIKING-CDN’s population. There are 2 instance
types. The first refers to CDN technologies (e.g., ffmpeg and rotate) while the
second refers to CDN applications (e.g., newsbroadcast and mooc).

As stated in Section 2.3.1, SWRL rules are defined to infer new semantic relations
between instances during VIKING-CDN’s population. For instance, Equation 2.4 states
that “Any transcoder (?x) that delivers a video in some video format (?y), implements
transmuxing operation”.

Vtranscoder(?x) ∧ delivers(?x, video) ∧ Format(Video, ?y)

∧ supplies(?x, ?y) → implements(?x, O-Transmuxing)
(2.4)

A set of SWRL rules are defined as part of VIKING-CDN to ensure consistent
instantiation of concepts. For instance, Equation 2.5, formally reflects the following

28 Contributions on Service Design, Publication and Discovery

Table 2.6: Excerpt of VIKING’s refinement

Dimension VIKING VIKING-CDN

Business
VNF VNF4CDN, VConverter, VTranscoder

Content Content4CDN, Audio, Video

Content-
Attribute

Content-Attribute4CDN, Format,
Resolution

Model Operation Operation4CDN, Conversion,
O-Transcoding

Context
Feature Feature4CDN

Device Device4CDN, SmartDevice, Smartphone

Table 2.7: Excerpt of VIKING-CDN’s population

Dimension Concept Instances

Business
VTranscoder ffmpeg, vlc

Audio newsbroadcast

Video mooc

Format mp3, mp4
Model O-Transcoding transcoding1

Context
Feature4CDN rotate, resize

Smartphone smartphone1

statement: “Any Transcoder (?x) that implements Transsizing operation and covers an
iPhone 14 device should supply a 2048p resolution”.

Vtranscoder(?x) ∧ implements(?x, O-Transsizing) ∧
covers(?x, iphone14) → Resolution(2048p) ∧ supplies(?x, 2048p)

(2.5)

To sum-up, any VNF that implements some CDN (injected) service (e.g. appli-
ance, middlebox) should be described according to VIKING-CDN. This way of doing en-
ables unifying the VNF’s description, publication, and discovery procedures. Indeed,
the procedures are common and homogenized regardless of any VNF provider. Con-
sequently, the discovery procedures are simplified and could even be automated. Fur-
thermore, cooperation and federation could then be envisaged between the providers.

Proof of concept 29

2.5.2 The Mastermyr chest tool

As part of the validation process, a prototype implementing the proof-of-concept was
developed. The name of the prototype is Mastermyr Chest. Its name refers to the tool
chest that was found in Mastermyr9 on the island of Gotland, Sweden in 1936. This
chest contained more than two hundred objects used by Viking carpenters. Similarly,
the Mastermyr Chest prototype contains several tools useful for VNFs description,
publication, discovery, and so on. Figure 2.4 depicts Mastermyr Chest’s tools, as well
as, the main interactions between them. The reader should note that the Mastermyr
Chest was designed and implemented with modular fashion so that it can be easily
extended with additional tools in the future. VIKING-CDN was implemented with
Protégé 2000 ontology editor10 while Mastermyr Chest’s tools were developed with
Java. Source codes are available on the GitHub repository11.

Figure 2.4: The Mastermyr chest tool box architecture

The description tool assists VNF developers (possibly, could be VNF owners) to
semantically describe the VNFs that are relevant to the CDN context (action 1). VNF
descriptors can be enriched with QoS details (e.g., price) by using the VNF descriptor
enhancer (action 1.1). In accordance with the model introduced in Section 2.3, some
information are mandatory and others are not. Then, the VNF descriptor builder gen-
erates the VIKING-CDN-compliant descriptors of the VNFs (action 1.2) and forwards
them to the VNF publisher (action 1.3). The VNF descriptors are implemented as

9https://en.wikipedia.org/wiki/M\%C3\%A4stermyr_chest
10https://protege.stanford.edu/
11https://github.com/NourelhoudaNouar/VNF-Description-Discovery

30 Contributions on Service Design, Publication and Discovery

OWL files. Snapshots of the description tool are shown in Figure 2.5.

Figure 2.5: Snapshots of the description tool interfaces

The publication tool enables publishing the VNF artifacts (deployable) in the VNF
artifacts repository to make them available to CDN providers (action 2). The VNF
publisher requests the VNF artifacts’ Unified Resource Identifier (URI) (action 2.1).
After that, it annotates the VNF descriptor file with this URI and saves it in the VNF
descriptors repository (action 2.2). For the current prototype, the concrete VNF
artifacts, that implement one of the following middleboxes, are considered:

• A multimedia mixer that enables mixing several multimedia contents and
returns a resulting content (e.g., adding voice to a video, adding ads banner to
an image/video),

• A multimedia compressor that enables compressing the size and quality
of multimedia content (e.g., degrading a high-definition video quality to save
storage space or to decrease delivery time),

• A multimedia transcoder that converts original multimedia content to other
formats using appropriate codecs (e.g., converting MP4 video to AVI).

The FFmpeg12 open-source solution was used to implement these three middleboxes
as VNFs. FFmpeg involves a suite of codecs, libraries and programs for handling
video, audio, and other multimedia files and streams. Several and various FFmpeg
instances with different configurations and packaging are implemented, in accordance
with the characteristics and capabilities mentioned in the VNF descriptors. In turn,
VNF providers store their instances into the VNF artifacts repository as Ubuntu-based
virtual machines appliances.

12https://www.ffmpeg.org/

Benchmark and evaluation 31

The discovery tool allows the VNF consumers (i.e., CDN providers in this spe-
cific case) to build their requests to calculate the matchmaking between required and
offered VNFs (action 3). First, the user request builder assists the VNF consumers
to define a proper and VIKING-CDN-compliant request based on their functional and
non-functional needs and preferences. The request is then forwarded as required VNF
descriptor to the semantic matchmaker (action 3.1). The semantic matchmaker en-
riches it through SWRL rules using VIKING’s reasoner (action 3.2). Then, it applies
Algorithm 1 to calculate the matching scores of the requested VNF with regard to
the offered VNFs descriptors published in the VNF descriptors repository (action 3.3).
Finally, the semantic matchmaker transmits the obtained ranked list to the VNF se-
lector (action 3.4) (e.g., see the snapshot in Figure 2.5). The semantic matchmaker
relies on OWL API13 and Jena14 plug-ins to parse OWL files and to perform the OWL
reasoning.

The deployment tool enables the provisioning of a published VNF in a target
network topology (action 4). First, the VNF selector downloads and parses its VNF
descriptor. Obviously, following a discovery procedure, it selects and processes the
VNFs descriptor with the highest matching score (action 4.1). Then, it forwards its
URI to the VNF instantiator (action 4.2). The latter is responsible for downloading
the VNFs, deploying it in the target CDN network, configuring it and integrating it
to the existing topology (action 4.3).

2.6 Benchmark and evaluation

As for validation, a test collection for the CDN context was generated and a com-
prehensive comparative study was performed. The considered evaluation metrics are
performance and robustness.

2.6.1 Test collection

To conduct experiments on VNF semantic discovery, the test collection creation are
first created. This collection includes 3 items:

1. An exhaustive set of valid VIKING-compliant VNFDs (D) that covers conversion,
mixing, and/or compression functions in the CDN domain,

2. A set of test queries (Q) that challenges the target semantic matchmakers in
terms of false positive/negative outcomes,

3. A set of relevant VNFs per query (VQ) that denotes all true positive outcomes.

These three items are detailed in the rest of this Section.
13http://owlapi.sourceforge.net/
14https://jena.apache.org/documentation/ontology/

32 Contributions on Service Design, Publication and Discovery

2.6.1.1 Illustrative VNFDs for the CDN use case

To achieve an exhaustive coverage for D (i.e., all possible valid VNFDs), the following
procedure is implemented. First, the association rules, listed in Table 2.8, are de-
fined. These rules map VIKING’s tree structure with a semantic parsing onto VIKING’s
hypergraph structure (see Figure 2.6) with syntactic parsing.

Figure 2.6: A partial syntactic representation of VIKING

Formally, this hypergraph G is defined as a 3-tuple < T, NT, H > where

- T denotes the multiset of terminal nodes that correspond to VIKING’s instances
where each set (T(c)) refers to specific concept c.

- NT denotes the set of non-terminal nodes that correspond to VIKING’s abstract
and concrete concepts for CDN domain (e.g., Operation and Transmuxing). non-
terminal are refined into OrNode and AndNode to represent inheritance (INH) and
object properties (OP) among concepts (cj), respectively. {Ri}i=1,3 reported in
Table 2.8 indicate when and how to create OrNode and AndNode.

- H represents the multiset of labeled hyperedges that refers to a set of OrNode
and AndNode. Formally, H is defined as a 2-tuple < NT, L, 2NT > where L refers
to a set of labels like OP and/or OR (Figure 2.6). {Ri}i=4,6 reported in Table 2.8
indicate when and how to create HyperEdge.

To generate D, the well-known Depth First Search (DFS) is adapted so that possi-
ble valid VNFDs are built incrementally during visiting nodes. Algorithm 2 reflects this

15For AndNode, same as OrNode2.

Benchmark and evaluation 33

Table 2.8: Association rules mapping VIKING tree structure to VIKING hypergraph

Rule Condition Action

R1 c ∈ NT & T(c) 6= ∅ createOrNode1(x, T(x))

R2 |{INH(x, yi)}| ≥ 2 createOrNode2(x,{yi})
R3 |{OP[x, yi]}| ≥ 2 createAndNode(x, {OP, yi})
R4 OP[x,OrNode1(yi, {yi,j})] createHyperEdge(x, {yi,j})
R5 OrNode(x,OrNode2(yi,OP, {yi,j})) createHyperEdge(x, {yi,j})
R6 AndNode(x, {OP,OrNode2(y)})15 createHyperEdge(x,

{OP,OrNode2(y)})

adaptation. This algorithm associates each visited node with some partial VNFD tem-
plate where field names refer to all the parent nodes’ names. In Lines 4-10, it splits
OrNode’s childs into a set of nodes, each corresponding to some combination of childs.
In Lines 11-16, it concatenates AndNode’s childs partial VNFD templates. As a result,
D contains 695 VIKING-complaint VNFDs for the CDN use case.

Algorithm for generation of D
1 Adapted-DFS(G, queue, currentt, template,D) ; // G is the hypergraph
; // queue is initialized to G.root
; // currentt refers to the current node in G
; // template refers to a certain VNFD template
; // D is the set of all VNFD produced

2 if queue 6= ∅ then
3 currentt = queue.pop()
4 template.add(currentt)
5 if leafNode(currentt) then
6 D.add(template)
7 else if OrNode(currentt) then
8 foreach subset_t ∈ currentt do
9 queue.push(subset_t)

10 Adapted-DFS(G, queue, currentt, template,D)

11 else if AndNode(currentt) then
12 foreach child_t ∈ currentt do
13 queue.push(child_t)
14 Adapted-DFS(G, queue, currentt, template,D)

34 Contributions on Service Design, Publication and Discovery

2.6.1.2 Sample queries

To challenge the target semantic matchmakers, Q is built by using 2 types of query am-
biguity introduced in [61]. These authors classify Web queries into broad but clear and
ambiguous where the former refers to queries that cover diverse subtopics but a narrow
topic and the latter refers to queries that have more than one meaning. For experi-
mentation purposes, broad-but-clear and ambiguous are refined as follows. In the first,
user requirements are specified with implicit (or hidden) terms that can be inferred
by VIKING’s reasoner, only. In the second, user requirements include same naming for
different instances but only the user can remove ambiguity. We, thus, expect that
semantic matchmakers with broad-but-clear/ambiguous user queries as inputs and
few knowledge about the user preferences, will provide VNFs candidates that would
correspond to probably inconsistent interpretations (i.e., false positive/negative out-
comes).

Table 2.9 depicts a sample of 2 test queries, each described by operation (Op),
input(s) (I), and outputs (O). For each query, the source of ambiguity is identified.
For instance, the knowledge of device permits to discard any incompatible resolution
while the knowledge of I does not permit to determine Codec. In preparation of
building VQ (i.e., the set of relevant VNFDs per query), the expected outcome for any
qi is expected as a VNF template referring to some required concepts (or instances)
to satisfy the query like resolution and Codec.

Table 2.9: Sample of test queries for VIKING-CDN validation

Query Type Query Source Expected Outcome
Op: Conversion Op: Transsizing

broad-but-
clear

I: Video O - Device C: Video

O: XBOX one CA: Resolution
Op: Conversion Op: Transcoding

ambiguous I: AAC, AC3,
MP3

I - Codec/Format C: Audio

O: DTS, EAC3 CA: Codec

2.6.1.3 VNFD relevance

To obtain VQ, D is automatically annotated with binary relevance values. A VNFi’s
relevance (R) to a certain query (qj) refers to at what extent this VNF’s VNFDi would

Benchmark and evaluation 35

fullfil the VNF template (tj) required to satisfy qj (i.e., user satisfaction degree).
Formally, Equation 2.6 computes R as follows.

Rqj (V NFi) =

{
1 if |{tj .(ck|instp) ∈ VNFDi}| ≥ σck , ∀ck ∈ tj
0 otherwise

(2.6)

where

- tj .(ck|instp) refers to pth instance of the concept ck in the template tj .

- σck denotes the minimum number of ck’s instances that should be included in
any satisfactory VNFi.

Figure 2.7: Probability distribution in D over Q

This annotation was performed on every VNFD inD for all test queries ({qj}j=1,10).
Figure 2.7 shows how VNFs annotated with 1 (see Equation 2.6) are distributed overQ.
A non-uniform distribution can be observed over D. For instance, the set of generated
VNFs that satisfy queries related to conversion ({Qj}j=1,5) is more represented than
the other sets. This is due to a significant number of possible conversion-related
capabilities compared to other operations like mixing.

2.6.2 Comparative study

To demonstrate the proposed approach’s added-value, VIKING-based matchmaker (Mastermyr chest)
is compared with a well-known OWL-S-based matchmaker like OWLS-MX [62]. To this
end, both matchmakers are challenged using the same test collection and performance
metrics.

2.6.2.1 OWLS-MX in brief

OWLS-MX relies on logic-based reasoning and information retrieval techniques (i.e., non-
logic-based) for OWL-S service profile matching [62]. OWLS-MX puts emphasis on

36 Contributions on Service Design, Publication and Discovery

service I/O matching and ignores service’s preconditions and effects. OWLS-MX’s rea-
soner can infer 5 semantic matching degrees between a given pair of query-service
descriptions, listed as follows:

- exact: both I/O descriptions perfectly match with respect to logic-based equiv-
alence of their formal semantics

- plug-in: all service I concepts are matched by more specific ones in the query

- subsumes: all service O concepts are more specific than those requested

- subsumed-by: all service O concepts are more general than those requested

- nearest-neighbor: all service I/O concepts have (to some degree) text similarity
with those in the query

Compared to OWLS-MX, Mastermyr chest relies on VIKING’s SRWL rules to logically
verify/infer given/new semantic relations between concepts/instances used to describe
VNF semantics. Thus, some mapping from VIKING to OWL-S with respect to the test
collection is required. Table 2.10 depicts mapping rules where the rationale behind
them is to translate VNF capability into OWL-S service business/profile (i.e., what
VNF does) and model (i.e., how VNF works). Since a VNF can implement one or
many operations, the corresponding service will be described in term of either atomic
or composite process. Note that content and content attribute are both mapped onto
I/O parameters. To put OWLS-MX and Mastermyr chest on the same equal footing,
SWRL rules related to VIKING-F concepts are translated into OWL-S rules, exemplified
with Equation 2.7.

Table 2.10: Mapping from VIKING to OWL-S

Dimension VIKING OWL-S

Business/Profile
VNF name Service name

Content I/O parameter

Content_attribute I/O parameter
Model Operation(s) Process (atomic or compos-

ite)

Service(?x) ∧ presents(?x, ?y) ∧ has_process(?y, ?z)

∧ hasInput(?z,mp4) → hasInput(?z, V ideo)
(2.7)

Benchmark and evaluation 37

2.6.2.2 Performance metrics

To compare the proposed matchmaker and OWLS-MX, 3 well-known performance
metrics in Semantic Web community are used namely, recall (R), precision (P), and
response time (RT). These metrics are defined as follows:

- P refers to the ratio between the number of true positive (TP) and the total num-
ber of retrieved VNFs including true positive and false positive (FP) (Equa-
tion 2.8).

P =
TP

TP + FP
(2.8)

- R refers to the ratio between the number of true positive and the number of
relevant VNFs including true positive and false negative (FN) (Equation 2.9).

R =
TP

TP + FN
(2.9)

- RT indicates the amount of time necessary to get a response from the system
following a discovery request sent by an end user.

2.6.2.3 Measurement and results interpretation

The experiments that challenge the proposed matchmaker and OWLS-MX with the
same test collection and measure their respective performance in terms of precision,
recall, and response time. The obtained results are discussed in what follows.

Figure 2.8: Recall/Precision ratio (VIKING matchmaker versus OWLS-MX)

38 Contributions on Service Design, Publication and Discovery

Figure 2.8 shows better R − P results for the proposed matchmaker than for
OWLS-MX. Both matchmakers may return irrelevant VNFs to ambiguous queries but
it turns out that the impact is more important for OWLS-MX. A possible explanation
is that OWLS-MX only focuses on I/O matching and overlooks semantics that brings
VNF’s technical aspects like supported techniques, standards, and devices.

Figure 2.9 shows slightly better RT results for the proposed matchmaker than for
OWLS-MX. The reader can also observe that RT varies depending on the VNF type.
For instance, conversion type takes longer time than compression and mixing types.
This is somehow expected due to the complexity (in terms of the number of concepts
and instances along with semantic relations) in conversion type’s semantics compared
to the 2 other types. This complexity, thus, induces additional time for matching
calculation. Overall, for this specific CDN use case, the proposed matchmaker remains
more competitive than OWLS-MX. The reader should also note that the proposed
matchmaker always responds within reasonable delays, even for the complex queries.

Figure 2.9: Response time measurement (VIKING matchmaker versus OWLS-MX)

2.6.3 Robustness evaluation

The robustness of the proposed matchmaker is also evaluated in terms of consistency.
For a given query, the obtained VNFs and their associated calculated matching scores
are examined and validated considering a specific predefined set of published VNFs.
For instance, the matching results for the VTranscoder are shown in Figure 2.10. The
reader should note that VNFs ranked from 8 to 10 have the same final score. This
would mean that these VNFs are either identical or equivalent in terms of satisfying
the query and its preferences. Let us parse the following capabilities:

• {CAPvt7588F}H={O-Transmuxing} & {CAPvt7588F}O={Std-MPEG_4}

Benchmark and evaluation 39

Figure 2.10: The total ranked list of the discovered VNFs

• {CAPvt9500F}H={O-Transcoding} & {CAPvt9500F}O={Std-MPEG_2}

• {CAPvt4341F}H={O-Transcoding} & {CAPvt4341F}O={Std-MPEG_4}

Figure 2.11: Excerpt of a list of relevant VNFs following a requirement change

The reader should note that O-Transmuxing and O-Transcoding are both func-
tional requirements and are associated with the same preferences. This explains
the equivalence between these VNFs. To evaluate robustness, the preference val-
ues for O-Transcoding are changed to O- CL. Based on the updated list of scores
shown in Figure 2.11, the reader should note that the final score changes. The
list is refined to better satisfy the H- CL’s requirements. Contrary to the previ-
ous list, the reader should note that Tr_Virtual_Transcoder7588 is ranked before
Tr_Virtual_Transcoder9500 in the updated list.

40 Contributions on Service Design, Publication and Discovery

Chapter 3

Contributions on Service
Instantiation and Deployment

Contents
3.1 Connectivity management in ETSI NFV architecture 42
3.2 Motivating use case: Platooning of vehicles 44
3.3 The state-of-the-art in dynamic management of networks’ con-

nectivity . 46
3.3.1 Literature review . 46
3.3.2 Synthesis . 47

3.4 Dynamic network wiring and execution 47
3.4.1 Requirements and foundations . 48
3.4.2 High-level architecture . 50

3.5 Proof of concept . 51
3.5.1 Software architecture . 52
3.5.2 Running prototype . 53

3.6 Validation and evaluation . 55
3.6.1 Testbed settings . 55
3.6.2 Validation scenarios . 55
3.6.3 Evaluation . 57
3.6.4 Observations . 60

The European Telecommunications Standards Institute (ETSI) established the key
reference architectural framework for Network Function Virtualization (NFV) [53].
The specification associated to this framework decribes the NFV instantiation, de-
ployment and execution procedures. VNFs are instantiated into the target network
and are configured to be integrated as part of given network topology. Once deployed,
VNFs are executed and, when necessary, are subject to management considerations at
runtime (e.g., scale-up/down and migrate). Furthermore, the ETSI specification in-
troduces the Network Service (NS) concept while its associated framework enables its
design, deployment and execution. According to ETSI [53], an NS is a composition of

41

42 Contributions on Service Instantiation and Deployment

VNFs. These VNFs are arranged as a set of functions according to a Network Connec-
tivity Topology (NCT) or without any connectivity specification between them. Similar
to Service Component Architecture (SCA) in service-oriented architecture specifica-
tions [44], the NS concept enables developers to provision complex and sophisticated
network functions, made up of elementary VNFs, at a higher-level of abstraction.
Furthermore, coupled with SDN, NFV provides higher flexibility in NS management.
SDN enables flexible data forwarding among the VNFs. It places forwarding rules
in network elements to transmit data through one of the possible paths prepared in
advance by developers at design time [63]. This capability ensures dynamic control
of VNF chains by facilitating data forwarding across VNFs. The forwarding elements
route the traffic to follow an overlay path so that several VNFs are visited.

However, unlike SCA, ETSI NFV does not provide a specific control technique
that dictates the execution order and the composition logic of VNFs in a given NS.
This reflects negatively on the NS provisioning methodology and procedures. Indeed,
at design time, developers must entirely rely on SDN, along with its inherent service
function chaining concept, to design and configure the routing rules between the in-
volved VNFs. Consequently, they have to foresee and plan all possible and practical
composition scenarios in the NS. Moreover, they should instantiate, deploy, config-
ure, and manage all these potential paths at runtime , including the ones that will
rarely be or never be used. On top of being costly, tedious, and time-consuming, this
way of proceeding contradicts NFV spirit, specifically virtualization, promoting agility
and cost-effectiveness in networking applications. Yet another limitation concerns the
routing path models supported by SDN. In fact, SDN allows only sequential service
function chains to be provisioned where VNFs are tied in a linear way. Therefore,
more complex and sophisticated chains are still not supported in the NS.

This Chapter discusses CONTRIB3. It proposes a novel approach that enables
agile and dynamic NS provisioning as an extension to the ETSI NFV architectural
framework [64]. Broadly speaking, this research initiative introduces a novel technical
type of VNFs, called routing VNFs, with efficient re-configurable wiring capabilities
for NS. This initiative distinguishes domain-specific aspects from the connectivity ones
in the NS definition. Domain-specific aspects are implemented with regular VNFs,
while connectivity aspects are supported by the newly introduced routing VNFs. By
doing so, developers will be able to change and update the NS’s composition logic at
runtime, given specific criteria (e.g., message type, data size, QoS metrics).

3.1 Connectivity management in ETSI NFV architecture

ETSI provides developers with the NFV architectural framework as an open envi-
ronment where VNFs can be interoperable [65]. This framework includes one funda-
mental building block, namely, NFV MANagement and Orchestration (MANO), that
interfaces with three others, namely, Element Management (EM), Operations and
Billing Support System (OSS/BSS), and Network Functions Virtualization Infras-

Connectivity management in ETSI NFV architecture 43

tructure (NFVI). MANO has three functional blocks namely, the Virtualized Infras-
tructure Manager (VIM), VNF Manager (VNFM), and NFV Orchestrator (NFVO),
described as follows:

• VIM manages the NFVI resources (i.e., compute, storage, and networking) to
provision VNF instances like provisioning hosting Virtual Machines (VM) based
on compute/storage needs and migrating VMs, to cite a few.

• VNFM manages the VNFs life-cycle with the assistance of EM, like instantiating
the VNFs and scaling up/down the VNFs, to cite a few.

• NFVO performs service and resources orchestration to satisfy OSS/BSS requests
like activating or updating NS according to the procedures specified in the NS
descriptor management.

ETSI NFV enables developers to model and compose VNFs as NS to deliver sophisti-
cated network functions for prospective consumers such as CDN or telco providers [66].
Figure 3.1 depicts the core concepts related to connectivity, including the NS, as part
of the ETSI NFV management system.

Figure 3.1: Connectivity modelling in ETSI NFV

The NS exposes service access points (i.e., specific connection endpoints) that de-
fine the NS interfaces. Similarly, the VNFs that composed the NS are bound to each
other by Virtual Links (VL) that connect their associated access points. Altogether,
it represents the Network Connectivity Topology (NCT). The NCT formalizes a high-
logical view of connectivity between VNFs in the NS. The reader should note that con-
stituent VNFs can be arranged in NS with unspecified connectivity between them [53].

44 Contributions on Service Instantiation and Deployment

Signaling and Control plane

V2I NSV2V NS

MAPSPAT

Data plane

RSU

Platooning

V2VV2VV2I

Leader Follower 1 Follower 2

V2I

CAMDENM

Security NS

IDAM

FW IDS

TM

IPS

ThC ThM

VPN

not permitted traffic

permitted traffic

Threats detected

No-threats detected

Figure 3.2: Network services and connectivity for vehicles platooning in 5G

NCT encompasses different VNF Forwarding Graphs (VNFFG). A VNFFG embraces one
or more sequential, alternative, and/or concurrent Network Forwarding Paths (NFP)
where a given NFP implements the concrete network path for the actual traffic flows
in a VL. The NS concept, as well as, the related management entities are illustrated
in the following motivating use case.

3.2 Motivating use case: Platooning of vehicles

Platooning technology made significant advances to mitigate traffic congestion and
reduces vehicle emissions. For a safe and green journey, a platoon consists of a leader
vehicle that controls the speed and direction and follower vehicles that fit with the
leader ’s movement in terms of acceleration and braking. The leader also communi-
cates with the networking infrastructure to retrieve details about signalization and
road conditions. Platooning relies on vehicle-to-infrastructure (V2I) and vehicle-to-
vehicle (V2V) communications [67] [68]. Notably, the fifth-generation (5G) of mobile
telco networks turns out an excellent candidate to achieve this kind of communica-
tion. Indeed, the 5G network is expected to deliver ultra-low latencies and ultra-high
reliability to enable efficient, safe, and reliable car platooning. To reinforce mobility
and allow V2X communications, ETSI-compliant 5G specifications recommend NFV,
SDN, Multi-access Edge Computing (MEC), and Next-Generation Protocols (NGP)
as key concepts [12].

Figure 3.2 depicts the data plane and the signaling & control plane for car platooning.

Motivating use case: Platooning of vehicles 45

The former refers to V2V and V2I communications. The latter involves three Network
Services (NS), namely, V2V, V2I, and security. The V2V NS ensures the communi-
cation services between the vehicles and encompasses VNFs such as Decentralized
Environmental Notification Messaging (DENM) and Cooperative Awareness Messag-
ing (CAM). The V2I NS ensures communications between vehicles and infrastructure,
and it encompasses VNFs such as Signal Phase and Timing Information (SPAT), road
sign information, and road topology information (MAP). Finally, the security NS se-
cures the whole system, including the V2V and V2I communications. While the V2I
and V2V NSs reflect sequential “execution flows”, the security NS provides several
prospective “execution flows” depending on the case study and the data/request types
to be secured. In practical terms, the traffic arrives first to the VNF named IDentity
and Access Management (IDAM) that is responsible for verifying the vehicle’s identity
and distinguishes if the source vehicle is trustful (e.g., already part of the platoon) or
not. The untrusted traffic must necessarily pass by the FireWall (FW) VNF before
traveling through the rest of the NS. The FW VNF filters the network packets based
on specific criteria (i.e., source, destination addresses, ports) and blocks the suspi-
cious traffic. Next, the traffic simultaneously goes through the Intrusion Detection
System (IDS) VNF and the Traffic Monitor (TM) VNF. The IDS VNF compares the
received packets to a knowledge database to identify potential threats. In parallel,
the TM VNF parses the network packets to detect any threats and/or malicious con-
tent. The execution results are then aggregated by the Intrusion Prevention System
(IPS) VNF. When no threats are detected, the traffic is forwarded to the Virtual
Private Network (VPN) VNF that makes safe tunneling with the network destina-
tion. Otherwise, the traffic should first travel through a specific network branch that
consists of Threats Classifier (ThC) VNF and Threats Mitigation (ThM) VNF be-
fore reaching the VPN VNF. The ThC VNF classifies the intrusion within pre-defined
classes/families of threats while the ThM VNF reduces the extent of the intrusion by
either isolating or containing it until the problem is fixed.

Following the ETSI specification, provisioning the security NS necessarily implies
deploying all the involved VNFs and configure the connectivity as depicted in the
associated execution workflow. Therefore, NS developers should anticipate and cover
all the execution alternatives. Specifically, this means that developers need to design,
deploy and configure all the possible NFP and end up with heavy, complex, and static
NCT handling during every single phase of the network entities’ life-cycle. Wiring con-
stituent VNFs could be easily done for simple NS but can turn out tedious and costly
tasks for complex NSs with a considerable number of VNFs and sophisticated work-
flows. Furthermore, depending on the traffic, some of the pre-deployed/pre-configured
wires will be rarely or never used. To address all these limitations, CONTRIB3 ad-
vocates for deploying a single execution alternative that could dynamically be recon-
figured and adjusted, depending on the need (e.g., request type, data type), during
runtime.

46 Contributions on Service Instantiation and Deployment

3.3 The state-of-the-art in dynamic management of net-
works’ connectivity

In the relevant literature, several surveys (e.g., [69], [70], [71]) investigated and dis-
cussed the current challenges in NFV. Most of them argue that there is still a need for
more appropriate and suitable VNF chains management. Moreover, they claim that
VNF chains should be efficiently modeled, draw on dynamic business policies, and
consider the network context to ensure its efficient operation and to better fit with
the evolving users’ requirements. With this regard, various approaches have been pro-
posed to tackle these challenges focusing on enabling VNF dynamic chaining. Some
of them rely on SDN to ensure the dynamicity of the control plane following a service
function chain update, while others propose a fully NFV-based solution.

3.3.1 Literature review

In [72], the authors introduce an SDN orchestrator for service chains to handle con-
gestion events and SLA violations. After collecting traffic statistics from switches, the
orchestrator detects overloaded ones and then changes impacted service chain paths
using other switches, if available.

In [73], the authors define chaining policies to build and manage dynamic service
function chains (SFC). They propose a high-level specification language for policies
and SFCs. Examples of policies are Service Level Agreement (SLA) requirements.
However, SFCs are considered as a sequence of network functions.

In [74], the authors ensure dynamic chaining and flexible traffic routing for net-
work functions in hybrid cloud/edge networks. This approach dynamically config-
ures forwarding rules in SDN switches (OpenFlow) based on network traffic condi-
tions (e.g., bandwidth) and the users’ SLA.

In [75], the authors propose an orchestrator to dynamically provision and read-
just VNF chains. This solution reuses existing VNFs to deal with the new users’
requests. For cost-effectiveness purposes, the orchestrator periodically readjusts the
chains by either migrating the VNFs over new datacenters or replacing them following
the user requests.

In [76], the authors define some heuristic bandwidth-aware algorithm to create
multiple dynamic service chains given a pre-defined set of allowed VNFs. This al-
gorithm seeks acceptable solutions for service chaining where the candidate network
links are less-heavily loaded than possible.

In [77], the authors enhance SDN orchestration to support dynamic VNF chaining
as a preventive solution to service degradation. This prevention relies on network con-
gestion prediction using traffic statistics. Afterward, alternative path redirections are
computed so that chain recovery can be avoided.

In [78], the authors propose an SOA approach to discover and orchestrate VNFs
using SDN-based traffic management automatically. When network service degrada-

Dynamic network wiring and execution 47

tion is raised, the proposed solution adapts active paths with pre-established ones
based on resource usage (e.g., switch load).

In [79], the authors propose the ESCAPE framework to build customized VNF chains
in an SDN environment using Mininet, POX, ClickOS, and NetCONF tools. In ad-
dition, this framework supports traffic steering across VNFs based on specific policies
and scrutinizes real-time information collected from running VNF instances.

3.3.2 Synthesis

The literature review highlights that most of the existing work rely on SDN to ensure
a dynamic control plane following the update of service function chaining. Further-
more, it is remarkable that all the reviewed research work have tried to bring agility
and dynamicity in VNF chains using various and different approaches (e.g., QoS mon-
itoring, statistics, heuristics) and at several phases of their life-cycle (e.g., deployment
and execution). None of the proposed solutions cover the entire life-cycle (i.e., from
design to on-the-fly management at runtime). Moreover, all of them consider very
simplistic VNF chains where VNFs are sequentially composed and do not tackle more
complex and more sophisticated composition scenarios, as this might be the case in
advanced NS.

Finally, the emerging Intent-Based Networks (IBN) research field could be relevant
in the future. Simply put, IBN can be defined as a novel concept that incorporates:
(i) SDN to manage the network control plane and (ii) machine learning and artifi-
cial intelligence to automate administration tasks across the network [80]. Recently
published IBN-based work aim at automating network routes management during
runtime (e.g., see [81], [82], [83]). However, there are still no studies currently that
evaluate and compare business and operational costs of integrating IBN to the ecosys-
tem of network providers. IBN is still at its early stages while NFV is becoming more
broadly adopted nowadays by network providers (e.g., CISCO Systems, Netflix, Ubic-
ity, VMware, Nokia, Intel Corporation, Huawei Technologies, IBM, Brocade, Vnomic,
NetCracker).

3.4 Dynamic network wiring and execution

The proposed approach overcomes the limitations highlighted at the end of Section 3.2.
It introduces an extended specification of the ETSI NFV reference architecture and
promotes a novel and specific kind of “technical” VNF called routing VNF. The resul-
tant architecture addresses the set of requirements that developers might face during
design time, deployment or even the management changes that could be necessary to
adjust the network’s infrastructure.

48 Contributions on Service Instantiation and Deployment

3.4.1 Requirements and foundations

The conducted study of the ETSI NFV reference architecture enabled identifying a set
of requirements that represent the necessary actions/characteristics for NS provisioning
(i.e., design, deploy, execute, and manage). These requirements could be classified and
associated to each phase of the NS life-cycle when considering MANO:

1. NS description phase: When designing the VNFFG (introduced in Section 3.1),
all the necessary NFPs among a given number of VNFs need to be prepared in
advance for a prospective operation, assuming that a complete/comprehensive
knowledge is unfortunately unrealistic.

2. NS deployment phase: All the necessary elements, such as the virtual links
that make up the previously mentioned NFPs, need to be established appropri-
ately. This includes the virtual links that eventually will never be used and,
thus, leads to excessive resources consumption.

3. NS execution and management phases: Not all the management operations
are possible when maintaining the service delivery (e.g., adding new VNFs to
the NS descriptor at runtime). Only the pre-defined paths that connect VNFs in
the NS’s descriptor can be subject to updates during these phases. This would
overlook newly added paths.

To address the aformentioned requirements/limitations, the proposed approach
advocates for flexible and dynamic wiring among VNFs in a given NS using the
separation-of-concerns design principle to separate domain-specific aspects from con-
nectivity aspects. Basically, the associated specification relies on three novel concepts,
namely, routing-AND, routing-OR, and routing-XOR. Each concept supports wiring
capabilities that enable the NS designer to define a given partial order among the
domain-specific VNFs (i.e., all, some, or single). These novel wiring capabilities allow
to obtain non-linear (i.e., tunable) NCTs. The prospective traffic when crossing VNFs
triggers a particular routing logic as represented in Figure 3.3:

• routing-AND triggers all the “execution branches” by forwarding the entry traffic
to all the outgoing VNFs.

• routing-OR triggers some of the “execution branches” based on traffic condi-
tions, either conveyed in the traffic itself or reported by NS consumer, by for-
warding the entry traffic to selected outgoing VNFs.

• routing-XOR triggers a single “execution branch” based on traffic conditions,
either conveyed in the traffic itself or reported by NS consumer, by forwarding
the entry traffic to the selected outgoing VNF.

Algorithm 3 implements the routing logic as follows. This algorithm first takes
routing VNF id, NS descriptor, triggering condition, and traffic as inputs. Then,

Dynamic network wiring and execution 49

Figure 3.3: Network traffic representation per routing logic

it parses the NS descriptor to retrieve all NFPs ({NFPk}k=1,r) associated with the
routing VNF id. Afterward, {NFPk} are split into 2 disjoint sets namely, {NFPi}i=1,r′

and {NFPj}j=r′+1,r corresponding to desired wiring capabilities to enable when the
triggering condition is true/false (lines 3-6 & lines 8-11, respectively). It is worth
noticing that r′ would be equal to r in case of routing-AND. Finally, the algorithm
duplicates traffic as many as either {NFPi} or {NFPj}. This results in multiple traffic
to forward through these NFPs.

Routing logic algorithm
Input: VNF id, NS descriptor, condition, traffic

22 {NFPk} = parse(VNF id, NS descriptor);
44 if check(condition) then

; // whether routing-AND or routing-OR
66 if {NFPi} ≡ {NFPk} ∨ {NFPi} ⊂ {NFPk} then
88 foreach NFPi do

1010 forward(duplicate(traffic), NFPi);

; // routing-XOR
1212 else if |{NFPi}| = 1 then
13 forward(traffic, NFPi);

1515 else
1717 if |{NFPj}| = 1 then
18 forward(traffic, NFPj);

2020 else
2222 foreach NFPj do
2424 forward(duplicate(traffic), NFPj);

In NFV setting, the proposed approach advocates for specific types of VNFs that
would implement the afore-mentioned routing concepts. Figure 3.4 depicts a concep-
tualized view of VNF types. VNFs are specialized into operative for domain-specific
and routing for connectivity. Routing VNFs could be implemented as either swing
or proxy VNFs, both discussed in Section 3.5. Provisioning NSs endowed with rout-
ing VNFs would make their associated NCT generic and customizable for modeling all

50 Contributions on Service Instantiation and Deployment

Figure 3.4: The novel introduced VNF types

Figure 3.5: An overview of the proposed system architecture for NS provisioning

the possible connections in a given VNFFG. Thus, the NCT can be modified at runtime
following user requirements, business policies, and/or network context. The following
section discusses the way this NCT is defined, deployed, and managed at runtime.

3.4.2 High-level architecture

Figure 3.5 depicts an overview of the system architecture. This architecture aims to
address the requirements discussed in Section 3.4.1. It ensures the proper end-to-end
provisioning of NS made up of operative and routing VNFs. The proposed design
consists of 3 main layers: NS design, NS deployment, and NS management. Each
layer implements a given phase of the NS life-cycle:

• NS design phase: The NS Modeler enables designing a given NS with a set of

Proof of concept 51

graphical elements to represent the NS’s execution workflow, including operative
VNFs, routing VNFs, as well as, the connections between them (Figure 3.5, 1.1).
The output is the NS Abstract Descriptor (NS-AD) that will be forwarded to the
NS Builder (1.2). The latter parses the files and selects, from the VNFs Repository,
the needed domain-specific VNFs that are bound to operative VNFs (1.3). Then,
it produces the NS Concrete Descriptor (NS-CD) that refers to the concrete
deployment details (e.g., VNF images), associated NFPs for a given VNFFG along
with the constituent VNFs, and policies related to traffic management such as
the classifiers. Finally, the NS Builder forwards the NS-CD to the NS Deployer (1.4)
while saving a copy of it in the VNF Descriptors Repository (1.5).

• NS deployment phase: The NS deployment relies on the ETSI MANO. It uses
its three components (i.e., NFVO, VNFM, and VIM) described in Section 3.1. Con-
sidering a given NS-CD, NFVO receives queries from the NS Deployer (2.1). Then,
NFVO requests the VIM for necessary resources to instantiate both operative and
routing VNFs (2.2). VIM communicates with NFVI to allocate and instantiate
the requested resources (2.3). Moreover, the NFVO also asks VIM for the required
networking resources to create and maintain virtual links (VLs) for all associated
NFPs. VNFM will proceed with the concrete deployment of the VNFs over the
NFVI resources (2.4). VNFM also interacts with NFVO to manage them.

• NS management phase: The architectural components for this phase ensure the
service delivery and support the necessary on-the-fly updates. Indeed, at run-
time, the NS designer or NS consumer may request functional changes such as
adding/removing VNFs to a running NS, or simply modifying the wiring within
a running NS (3.1). The NS Updater forwards the NS-AD associated with these
requested changes to the NS Builder (3.2). The latter retrieves the corresponding
NS-AD from the VNF Descriptors Repository (3.3) and revises it according to the
necessary modifications. The revised NS-AD is then forwarded to the NS Adapter
(3.4). The NS Adapter applies the new changes on the NS (e.g., add/delete
NFPs) before notifying the NS Deployer to communicate with the ETSI MANO
and reflect these changes on the running NS (3.5).

3.5 Proof of concept

To prove the feasibility of the proposed approach, a Proof-of-Concept (PoC) imple-
menting the proposed architecture was carried out and integrated to the Mastermyr
chest tool box introduced in Section 2.5.2. Moreover, a running prototype imple-
menting the platooning use case, discussed in Section 3.2, was develped for validation
purposes.

52 Contributions on Service Instantiation and Deployment

Figure 3.6: The DYVINE tool architecture

3.5.1 Software architecture

The designed PoC is called DYVINE (DYnamic forwarding graphs for VIrtual NEt-
work functions for short). DYVINE’s source code is available on a GitHub repository1.
Figure 3.6 depicts DYVINE’s software architecture that implements the system archi-
tecture discussed in Section 3.4.2. Basically, DYVINE tool enables NS provisioning
while supporting the three main phases (i.e., design, deploy, and manage) of their
life-cycle. DYVINE is coded with JAVA and incorporates two main modules, namely,
NS Maker and NS Manager.

On the one hand, the NS Maker implements both NS Modeler and NS Builder at
the NS Design layer. Thanks to the JAVA Swing framework, this module provides
the NS developers with graphical interfaces that enable setting up NCT by drawing a
given NS structure composed of operative VNFs and routing VNFs. Figure 3.7 shows a
snapshot of DYVINE with the security NS’s perspective representation of the platoon
car use case. The generated descriptors are implemented with YAML and stored in
MongoDB, a NoSQL database.

On the other hand, the NS Manager implements the architectural components at
the NS Management layer namely, the NS Updater and the NS Adapter. This module
displays the graphical representation of the NS to be updated from the NS descriptors
repository and applies changes requested by the NS developer, to the corresponding
NCT structure.

In addition to these modules, an integration of OSM2, an open-source MANO

1https://github.com/NourNouar/DYVINE
2https://osm.etsi.org/

Proof of concept 53

Figure 3.7: A snapshot of DYVINE depicting the security NS design

implementation, to DYVINE was performed to handle the concrete NS deployment,
orchestration, and management. Specifically, the VNF Configuration Adapter (VCA)
module of OSM was used to support Day-2 configurations and support the dynamic
(at runtime) reconfiguration of the routing VNFs. In line with the foundations and
the requirements discussed in Section 3.4.1, the VCA enables:

• Replacing the existing NFP identifier with a new one for routing-XOR VNFs,

• Updating a list of NFP identifiers for routing-AND VNFs, and

• Creating/deleting one or several NFP identifiers for routing-OR VNFs.

As for the infrastructure, both OpenStack3 platform, to implement the NFVI,
and OpenDaylight4, with Open vSwitch (OVS) [84], are used to support the dynamic
reshaping of the network control plane. OSM, OpenStack and, OpenDaylight are
deployed over the CNRS-LAAS laboratory resources. More specifically, the NS de-
sign and NS management layers along with OSM were executed over a single laptop
featured with Intel(R) Core(TM) i7-8650U CPU 1.90GHz under Ubuntu 18.04 LST.
Regarding Openstack and Opendaylight, both were hosted on the Lab’s private cloud.
Finally, OVS (version 2.13.1) was used to support the Network Service Header (NSH)
encapsulation with VXLAN tunnels.

Finally, the reader should note that DYVINE was integrated as part Mastermyr
chest tool box. It supports the deployment tool depicted in Figure 2.4.

3.5.2 Running prototype

The developed prototype emulates the use case reported in Section 3.2. Leader vehi-
cle and attackers were implemented as data streaming providers while the 4 follower

3https://www.openstack.org/
4https://www.opendaylight.org/

54 Contributions on Service Instantiation and Deployment

Figure 3.8: Option 1 - The security NS design with intrusive swing VNFs

Figure 3.9: Option 2 - The security NS design with non-intrusive proxy VNFs

Figure 3.10: Option 3 - The security NS design with SFC (fully-SDN)

vehicles play the role of consumers, all deployed over OpenStack VMs. To enable
V2V communications, 1 virtual network mapped onto the Lab’s cloud network is cre-
ated. Any network service including VNFs deployed over OpenStack VMs is connected
to this virtual network through connection points. The reader should note that each
VM has the following features: 1 CPU, 1 GB memory, and 10 GB storage.

When it comes to the security NS implementation, the three options were explored.
While Option 1 relies on routing VNFs implemented through the so-called swing VNFs,
Option 2 considers proxy VNFs. As a baseline, Option 3 consists of linear service
function chaining and refers to a fully SDN-based approach for VNF wiring within
the NS. The reader should note that Option 3 is referred to as the fully-SDN option.
The VNFs source code associated to the security NS implementation are available on
GitHub repository5. A live demo of the running prototype is available through the

5https://github.com/NourNouar/Routing-VNFs

Validation and evaluation 55

following link: https://youtu.be/7emJ6tnpvLE.
On one side, swing VNFs support a static and particular logic. Each swing VNF

implements a given routing gateway (i.e., routing-XOR, routing-AND, or routing-
OR). With swing VNFs, depending on the network traffic conditions, (a) particular
“execution branch(es)” will be triggered in the NS execution path. Specifically, opera-
tive VNFs, coupled with their respective intrusive swing VNF, are both encapsulated
in the same VM. These particular VNFs are represented with a double ring in Fig-
ure 3.8.

On the other side, proxy VNFs are dynamic and implement abstract wiring mech-
anisms that could be reconfigured at will during runtime. Specifically, proxy VNFs
encompass the 3 swing VNF types’ logic and need to be configured to select the
one to be used at deployment/running time (Figure 3.9). Packet exchanges be-
tween operative VNFs and proxy VNFs refer to Context Header 4 field’s NSH Meta-
data (Type 1) [85]. This offers higher flexibility to NS at runtime.

Finally, for the need of benchmarking, a security NS’s, wired with fully-SDN option
is implemented (Figure 3.10). This solution was developed using OpenDayLight.

3.6 Validation and evaluation

Several experiments were performed to: (i) validate the proposed approach while
demonstrating the agility and adaptive capabilities of the newly introduced VNFs
and (ii) to evaluate its overhead and performance with regard to the classical routing
approaches. To that end, the 3 implemented options presented in Section 3.5 were
tested in terms of cost and performance.

3.6.1 Testbed settings

The experimental scenarios rely on the communication platooning strategies discussed
in [86]. This work reports realistic communication rates between the leader and any
prospective follower, as well as, between successive followers (i.e., 10 packets per
second) with packet size varying over [200B, 1200B]. In addition, the experimental
scenarios also refer to Denial of Service (DoS) attacks against followers. Any attacker
floods the target follower with excessive data packets over time (i.e., 20 packets per
second). The number of attackers varies over [1, 10], depending on the conducted
experiment.

3.6.2 Validation scenarios

The first set of experiments aim at demonstrating the approach’s effectiveness to
support flexible NSs with dynamic wiring capabilities. To do so, the traffic throughput
is measured over the security NS in case of attacks issued by a single attacker. This set
of experiments exclusively focus on Option 1. To perform fine-grained analysis, the

56 Contributions on Service Instantiation and Deployment

throughput is probed over the NS’s 3 partitions (dashed lines in Figure 3.8) namely,
P1, P2, and P3, each delimited with intrusive swing VNFs. Since Pi contains a set
of VNFs, distinct throughput is measured over each VNF. 2 time-windows ([0, t1[&
[t1, t2]), referring to pre- and post-attack, are defined. The reader should note that
t1 refers to start-time of attacks while t2 indicates the end of both data streaming.

Figure 3.11: Throughput variation during pre- and post-attack (Option 1 - P1)

Figure 3.12: Throughput variation during pre- and post-attack (Option 1 - P2)

Figure 3.11 shows that, during [0, t1[, it is noticeable that P1’s VNFs have the
same throughput except for FW where the traffic is null. During [t1, t2], the through-
put over IDAM and FW increases while it remains constant over IDS and TM. This
demonstrates that IDAM enriched with swing-OR capability works properly by redi-
recting the attacker ’s traffic to FW, only. Figure 3.12 highlights a null throughput

Validation and evaluation 57

Figure 3.13: Throughput variation during pre- and post-attack (Option 1 - P3)

for P2’s VNFs during pre-attack is observed whereas the throughput increases signifi-
cantly during post-attack. This reveals that FW enriched with swing-AND capability
works properly by passing on attacker ’s traffic to both IDS and TM. Finally, Fig-
ure 3.13 depicts throughput over P3’s VNFs where it is similar for both IPS and VPN
and null for ThC during [0, t1[. During post-attack, the throughput over IPS and
ThC increases significantly while it remains constant for VPN. This denotes that IPS,
enriched with swing-XOR capability, fulfills its duty by sending attacker ’s traffic to
ThC. Finally, the 3 experiments highlight that the necessary switching time for the
traffic route between pre- and post-attacks is instantaneous, confirming the agility and
the dynamicity of the proposed approach.

3.6.3 Evaluation

The first evaluation experiment aims to estimate the average time related to one-way
latency L (i.e., from the first bit sent to the last bit received) through a given NS. To
measure L, the network traffic is firstly emulated as a fixed number of packets (i.e., 100)
with different sizes varying between 200B and 1200B including a certain rate of attacks
varying from 10% to 100%. This traffic passes through the 3 options implementing the
security NS. To avoid biases, the experiment are repeated 10 times before calculation
of L. Figure 3.14 represents the curves associated with L(Option 1), L(Option 2)
and L(fully-SDN) when increasing the rate of malicious packets. Overall, it is par-
ticularly noticeable that L(Option 1) and L(Option 2) achieve better performance
than L(fully-SDN) by ≈ 78% and ≈ 27%, respectively. When there are no attacks,
L(Option 1), L(Option 2) and L(fully-SDN) have ≈ 6.8ms, 8.2ms, 14ms, respectively.
The difference is due to the fact that the packets need to go through various VNFs
from one option to another. In fact, with regard to Option 1, the additional proxy
VNFs in Option 2 increases latency. However, the reader should note that the latency

58 Contributions on Service Instantiation and Deployment

Figure 3.14: Variation of (one-way) latency while increasing the rate of attacks

is still less substantial for these 2 options with regard to fully-SDN option. Indeed,
in Option 1 and Option 2, the packets go through the specific and selected path (i.e.,
limited number of VNFs), while in fully-SDN option, packets necessarily need to go
through all VNFs in the NS, one after the other. When increasing the rate of attacks,
L(Option 1) increases slightly to reach ≈ 9ms whereas L(Option 2) rises significantly
to reach ≈ 13ms. This is due to additional processing for attack packets by intrusive
swing VNFs and swing proxies, where, the latter dedicates more time to process wiring
information communicated by operative VNF in packet meta-data. Also, the reader
should note that L(fully-SDN) remains constant because fully-SDN option deals with
both normal and attack packets in the same way.

The second evaluation experiment aims at demonstrating the proposed approach’s
efficiency in terms of effective service continuity during when updating the network
service during runtime. For instance, due to some changes in user requirements at run-
time, existing/new VNFs can be removed/added from/to the network service. Say,
any vehicle that requires additional defenses against tampering attack (i.e., false safety
messages), malware (i.e., unreadable data format), and cipher attack (i.e., known
plaintext) [87]. As counter-measures, the security NS should be updated with 3 new
VNFs namely, Coordination Control (CC), Content Filter (CF), and Encryption (Enc),
each against one of the afore-mentioned attacks (see Figure 3.8, Figure 3.9 and Fig-
ure 3.10). To enable this update, the security NS’s options 1 & 2 proceed as described
in Section 3.5. Regarding the security NS’s fully-SDN option, any NS update re-
quires OSM to redeploy this NS and SDN to reconnect all the VNFs. To quantify
the Mean Time-To-Operation (MTTO), deployment time, for each new VNF, is mea-
sured in case of Option 1 and Option 2 and redeployment time for all VNFs in case of
fully-SDN option. During this measurement, the number of new VNFs to be added to
the security NS is varied. Figure 3.15 shows that the deployment/redeployment time

Validation and evaluation 59

Figure 3.15: Mean Time-To-Operation comparison for the 3 deployment options

over the 3 Options rises in a linear way. It also should be noted that MTTO1 and
MTTO2 are relatively equal. The ratio between MTTOi=1,2 and MTTO3 approxi-
mates 72% (i.e., 6.5 times more). This can be explained by the fact that only the
newly added VNFs are deployed while wiring VNFs operate to establish connectivity
with these VNFs.

The last experiment aims to estimate the necessary time when some updates are re-
quired for a given NS. The update scenario consists of adding new number VNFs (VNF
number varies from 1 to n) to the NS for each iteration. In this experiment, n was fixed
to 3. For each Option, the NS was updated with 3 VNFs (see Figure 3.8, Figure 3.9
and Figure 3.10) namely,:

• Coordination Control (CC). This VNF checks coordination information in the
car platooning after IDAM’s operation.

• Content Filter (CF). This VNF analyzes the packets after content filtering from
FW.

• Encryption (ENC). This VNF ensures a secure communication to reinforce IPS.

Figure 3.15 represents the histograms when increasing the number of newly added
VNFs for the 3 implemented options. Generally speaking, this experiment shows a
significant decrease using the proposed approach (Option 1 and Option 2) compared to
fully-SDN option that requires from OSM to redo all necessary actions as a new NS.
The time difference stands as high as ≈ 72%. Indeed, OSM takes from [80s-100s]
to re-deploy the NS including amount of time to deploy all VNFs and establish the
corresponding NCT to form the newly updated NS. For Option 1 and Option 2, the
time required to update the NS falls into [18s - 22s]. This can be explained by the fact
that only the newly added VNFs are deployed while wiring VNFs operate to establish
connectivity with these VNFs.

60 Contributions on Service Instantiation and Deployment

Figure 3.16: Cumulative moving average comparison for the 3 deployment options

The last experiment aims to assess the time required to create a new NFP for the
different options. To this end, the cumulative moving average (CMA) is computed
over 30 iterations per update when the new aforementioned VNFs are incrementally
added to the NS. Figure 3.16 shows that CMA weakly increases. CMA(Option 1) and
CMA(Option 2) with CMA(fully-SDN) are compared using ratio. The first approxi-
mates 7% while the second is close to 16%. Therefore, Option 1 gives acceptable CMA
contrarily to Option 2.

3.6.4 Observations

The first lesson learned is that routing VNFs bring added value to the NS provision-
ing procedures. Compared to the service function chaining in SDN, the use of routing
VNFs considerably reduces complexity in NFV connectivity management. Unlike
SDN procedures, where developers need to handle all the network routes, they will be
henceforth able to focus on particular branches of the same network. This induces a
decrease in the network’s operating cost. Generally speaking, the routing VNF con-
cept fits well with virtualization principles. Actually, it brings cost-effectiveness and
agility to the network. Also, it enables the dynamic update of the NS’s composition
logic given specific criteria (e.g., message type, data size, QoS metrics). This capabil-
ity seems to be appropriate to tackle the emerging needs of the next-generation service
providers (e.g., mobile communication systems) with challenging constraints on the
network business model ecosystem. Examples of constraints are the mobility sup-
port (e.g., autonomous vehicles [12]), dynamic QoS management (e.g., adaptive and
multicast streaming [88]), and the tactile Internet (e.g., haptic communications [89]),
to cite just a few.

The second lesson learned refers to the way the routing VNFs can be implemented
and the subsequent trade-off between flexibility and performance. At runtime, swing

Validation and evaluation 61

VNFs (Option 1) show better performance in terms of end-to-end latency and the
necessary update time with regard to proxy VNFs (Option 2). Nevertheless, proxy
VNFs are easier to adopt and integrate during design time. The advantage of Op-
tion 2 is to take over the routing logic management and to not require any adaptation
efforts on the network provider side. Regarding swing VNFs, their use would impose
to integrate the routing logic (i.e., routing-XOR, routing-OR, routing-OR) within the
operative VNFs. This adds more complexity to NS developers that will be in charge
of injecting the routing logic within operative VNFs. Furthermore, this practice is not
always possible because NS developers do not necessarily own all the VNFs that com-
pose the NS. By contrast, proxy VNFs are compliant with the separation of concerns
principle since domain-specific and connectivity aspects are decoupled in the NS. Also,
this alleviates the NS design burden by delegating the proxy VNFs operation to the
network provider. Although in line with the virtualized ecosystems’ business model,
this implementation option imposes upstream integration of this specific kind of VNFs
as part of the technical provider’s capabilities. To conclude with this, one can say that
both alternatives are useful and it would be up to the NS developers to decide about
the most suitable option for their specific needs (e.g., considered use case, supported
data format, and SLA).

62 Contributions on Service Instantiation and Deployment

Chapter 4

Contributions on Service
Management

Contents
4.1 Consistency models in distributed multi-domain orchestration 67
4.2 Consistent VNF forwarding graph reconfiguration in multi-

domain environments . 68
4.2.1 VNF forwarding graph reconfiguration 68
4.2.2 Consistent VNF forwarding graph reconfiguration 70
4.2.3 Consistent VNF Forwarding Graph reconfiguration with non-functional

dependencies . 71
4.3 The state-of-the-art in VNF-FG reconfiguration 73

4.3.1 VNF-Forwarding Graph reconfiguration in single domain environ-
ment . 73

4.3.2 VNF-Forwarding Graph reconfiguration in multi-domain environ-
ments . 74

4.3.3 synthesis . 75
4.4 Coordination-free orchestration algorithm for multi-domain en-

vironments . 75
4.4.1 Preventive variant . 76
4.4.2 Corrective variant . 79

4.5 Implementation and evaluation 81
4.5.1 Proof of Concept . 82
4.5.2 Evaluation scenarios and considered metrics 83
4.5.3 Obtained results . 84
4.5.4 Observations . 88

Managing applications and services at runtime in dynamic and mobile environ-
ments is challenging. The management operations to be executed on the services
aim at optimizing their use and performance given a predefined set of criteria/re-
quirements. Basically, these requirements are expressed as SLA and it is the role of
the service provider to manage these SLA and keep the inherent metrics within the

63

64 Contributions on Service Management

required operating range (e.g., resize a storage disk to increase the data storage ca-
pacity following a dataset enrichment, scale up an application instance to decrease the
response time following a workload increase). The challenge lies in, not only on identi-
fying the most appropriate management actions to be executed, but also maintaining
the service availability and the service consistency when these actions are being exe-
cuted. As for the service availability, the performed management actions should not
interfere with the proper execution of the services, and consequently, the applications
that rely on them. There are several techniques in the literature to maintain the ser-
vice availability such as checkpointing, load balancing, and redundancy [90]. When it
comes to the service consistency, the performed management actions should be able
to determine the required cascading actions and ensure their proper execution while
making sure to keep the system consistent all along. The reader should note that, as
highlighted in Chapter 1, the target hosting environment, as well as, the considered
services are highly distribued which significantly increase the risk of inconsistencies
when operating management actions (e.g., reconfiguring a shared service, migrating a
concurrent resource).

Specifically, for the case of ETSI NFV, the distributed NS are described through
Forwarding Graphs (VNF-FG). As discussed in Section 3.1, VNF-FG embraces one or
more sequential, alternative, and/or concurrent Network Forwarding Paths (NFP)
where a given NFP implements the concrete network path for the actual traffic flows.
In the cloud continuum, a multi-domain provisioning is common [91] [92]. This can be
motivated by several reasons such as optimizing the performance, cost or security/pri-
vacy (e.g., provisioning the data-oriented services in one service provider domain and
the compute-intensive services in another service provider domain, migrating data-
oriented services to local domain prior to the processing of sensitive and confidential
data). Similarly, in NFV, the VNFs that make up the NS are often distributed over
multi-domain NFV infrastructures for the very same reasons [93]. Moreover, these
VNFs are often shared between several and distinct NS at the same time. Each do-
main has specific and dedicated orchestrator that is responsible of: (i) composing the
VNF with each other to support the end-to-end execution of the NS and (ii) sup-
porting the required management operation on the VNFs during runtime (e.g., resize,
migrate, restart).

Figure. 4.1 depicts an example of composite services with shared NS implementing
basic funtionalities of a CDN provider, necessary to manage multimedia content (e.g.
video mixer, video transcoder). The shared NS consists of 4 administrative domains.
These domains has connections and dependencies between them to enable the end-to-
end services (e.g., video streaming, video transcoding). The reader should note that
CDN providers are highly dynamic with changing conditions during runtime (e.g., the
number of end-users vary during runtime, random failures might happen in primary/-
surrogate servers, some content might become viral and then popular). Consequently,
the management actions are recurrent and are often inter-domains. From one side,
each domain is managed by a local orchestrator and rely on shared VNFs and their

65

Domain A Domain B

ENCST

Domain C

ManagerManager

DEC TRA
1 32

NFVO-04

WAN OP

AUD

ENC

MIX1

2

3

4

Domain D

NFVO-03

NFVO-02

NFVO-01

Legend

NFVO-C
NFVO-x Orchestrators

Translator

Mixer

Decoder

Streamer

1
ENC

3

AUD4Service 2

WAN Optimizer

Encoder

Shared VNFs

Auditer

Figure 4.1: Example of a shared NS in a CDN provider

replicas. This generates dependencies in the associated VNF-FG. On the other side, as
highlighted in Figure. 4.1, the VNF orchestrators are domain-specific. Their awareness
remains local and it does not exceed their related domain limits. Indeed, the orches-
trators have limited information, as they do not know the resources and the topologies
operated by the other providers [53] [94]. Therefore, the several orchestrators that are
involved in a multi-domain provisioning environment and sharing the same NS interact
and collaborate with each other to coordinate the cascading management actions and
to avoid any prospective inconsistencies in the associated VNF-FG. Generally speaking,
when an orchestrator reconfigures a shared services’ VNF-FG in a multi-domain envi-
ronment, the orchestrator has to ensure that all orchestrators, that also use the shared
service, have the same information (i.e., the replicas of the VNF-FG are consistent).
With other terms, the reconfiguration of the VNF-FG implies the update of the data
structure for classification rules and rendered service paths [95]. If one VNF-FG replica
has different values than others, there is then a risk of inconsistencies created by con-
flicting operations made by different orchestrators. Specifically, Figure. 4.2 lists the
several relevant concepts for the reconfiguration and shows the relatioships between
them. Federations are composed of many domains that share services managed by
different orchestrators. Services can be of type deicated and composite. The former
have internal dependencies (e.g., VNFs) while the latter have internal dependencies
but also external dependencies such as remote services. Dependencies can be both
functional and non-functional. Moreover, each of these dependencies is connected
with other VNFs or services, as specified in the VNF-FG associated with the service.
The VNF-FG contains a list of matching attributes and connection points that detail
how the dependencies are connected and how network traffic needs to be processed.
Since services are shared, orchestrators need to handle the service’s replicas, and by ex-
tension, the service’s VNF-FG. Thus, reconfiguring a VNF-FG for shared services means
that the replicas (and their dependencies) need to agree on the new value for both the
matching attributes and connection points.

The problem of consistent VNF-FG reconfiguration involves updating or extending

66 Contributions on Service Management

Figure 4.2: Distributed multi-domain orchestration system model

a VNF-FG responding to new demands [96] [97]. Since the VNF-FG defines a logical
order of execution for each dependency of a service [98], the orchestrator can change
the order of execution by updating connection points or classifier rules [65]. To en-
sure the other orchestrators apply the same updates, the orchestrator that changed
the VNF-FG notifies the other orchestrators of the changes. In an ideal scenario, the
orchestrators’ VNF-FG replicas always achieve a consistent state. However, since there
is no shared global reference between the orchestrator replicas, it is possible to con-
currently update a shared VNF-FG with two conflicting updates. Moreover, since the
orchestrators share services, the external dependencies involves non-functional depen-
dencies to prevent unwanted effects of reconfiguration. For example, updating the
connection point of a VNF-FG can optimize the latency in a given administrative do-
main but it may not be the case for replicas as these replicas can be used by other
services. In other words, orchestrators can reject new changes from incoming replicas
and decide only to reconfigure if their non-functional dependencies are satisfied af-
ter the reconfiguration. Thus, the combination of concurrent reconfiguration, limited
knowledge, and non-functional dependencies introduces conflicts that must be fixed
to achieve a consistent state at the end of reconfiguration.

This Chapter discusses CONTRIB4. it focuses on the consistent VNF-FG re-
configuration in multi-domain environments while considering VNF-FG non-functional
dependencies [99]. The proposed approach consistently reconfigures the VNF-FG of
a shared network service without a coordination phase between the orchestrators.
Skipping the coordination phase paves the way for dynamic federations where or-
chestrators could dynamically join and leave the system. In addition, the proposed
approach supports non-functional dependencies that have not been addressed so far in
the literature for VNF-FG reconfiguration [100]. The orchestrators can negate ongoing
reconfigurations for their VNF-FG replica unlike current orchestration approaches. Two

Consistency models in distributed multi-domain orchestration 67

variants of the associated algorithm were designed, implemented and evaluated: (i) a
preventive variant that ensures no transient inconsistent states could happen and (ii)
a corrective variant that tolerates contingent inconsistent states, as reconfigurations
are executed as soon as they arrive

4.1 Consistency models in distributed multi-domain or-
chestration

Consistency is a critical in distributed multi-domain orchestration. Generally speak-
ing, distributed systems need to ensure consistency to manage concurrent operations
on shared data [101]. Based on the literature study, the consistency could be ei-
ther sequential or eventual. This Section discusses both types of consistency as well
as the so-called strong eventual consistency, which reconcilite the trade-off between
consistency guarantees and performance.

Sequential consistency was proposed to make the illusion of having one logic single-
system image. Under sequential consistency, there is a single execution that follows
a specific order. However, like in any other distributed systems, the execution in
multi-domain federations run on top of multiple and independent nodes that do not
have global knowledge. Since these nodes communicate over a faulty network, non-
deterministic conditions bring conflicts when these nodes try to interact with each
other and concurrently modify the state of a specific node. To prevent inconsistencies
in sequential consistency process, the concept of solving consensus was introduced.
Consensus is the convergence to a common value among all nodes [102]. It achieves
sequential consistency for distributed systems. However, the high complexity of im-
plementing consensus [103] and its low performance [104] make it a bottleneck for
distributed systems. To improve performance on non-critical services, eventual con-
sistency was proposed [105]. Eventual consistency is stated in Definition 1 introduced
in [106]. Basically, eventual consistency guarantees that if no additional updates are
made to a given data, all reads to that item will eventually return the last updated
value [107].

Definition 1 (Eventual Consistency)
Eventual delivery: An update delivered at some replica i is eventually delivered to
all replicas: ∀i, j : f ∈ ci =⇒ ♦f ∈ cj, where f is an update, ♦ is a random and
finite amount of time, and ci, cj are replicas of the same node c.
Convergence: Replicas that have delivered the same updates eventually reach an
equivalent state: ∀i, j : ci = cj =⇒ ♦si ≡ sj, where ♦ is a random and finite amount
of time, si is the state of the ith replica.
Termination: All method executions terminate.

Under eventual consistency, all nodes eventually converge, even though the model
does not specify which value is eventually chosen neither the necessary time to achieve

68 Contributions on Service Management

the convergence [105]. The replicas can execute an operation without synchronizing
a priori with other replicas, making data available at any given moment. Despite the
consensus being moved off critical paths of services, reconciliation is still complex to
achieve [108]. This led to the introduction of yet another concept, i.e., Strong Eventual
Consistency. This concept is presented in Definition 2 introduced in [106].

Definition 2 (Strong Eventual Consistency (SEC))
An object is strongly eventually consistent if it is Eventually Consistent and:
Strong Convergence: Replicas that have delivered the same updates have equivalent
state: ∀i, j : ci = cj =⇒ si ≡ sj .

To achieve SEC, Conflict-Free Replicated Data Types (CRDTs) can ensure that
there are no conflicts, hence, no need for consensus-based concurrency control [106].
CRDTs refers to the data types in which operations commute. In the literature, there
is a portfolio of CRDTs for counters, registers, sets, and graphs that act as a building
stone for more complex algorithms [108].

4.2 Consistent VNF forwarding graph reconfiguration in
multi-domain environments

The design of an efficient and reliable consistent VNF-FG reconfiguration in federated
environment is tedious. This has been done progressively. The early version only
describes the consistent reconfiguration where many orchestrators manage shared ser-
vices and their related VNF-FGs. Then, the final version supports the negation of
the ongoing reconfigurations by the non-functional dependencies. Table 4.1 shows the
relevant notation for the proposed cosnsitent reconfiguration model.

4.2.1 VNF forwarding graph reconfiguration

The reconfiguration of a VNF-FG involves changing the list of connection points and
matching attributes [65]. This change can be done by updating the values either
via changing a connection point or matching attribute and adding/removing more
elements to the lists.

Let g be a VNF-FG that belongs to the set of the federation’s VNF-FGs G. Each
g has a pair of classifier rules cg and rendered service path xg. The classifier rule cg
has a list of matching attributes [ma1,ma2, . . . ,mau]. And the rendered service path
xg has a list of connection points [p1, p2, . . . , pv]. The function φ computes the state
of the VNF-FG g as defined in Equation 4.1.

φ(g) = (cg, xg) = ([ma1, . . . ,mau], [p1, . . . , pv]) (4.1)

Each matching attribute ma ∈ cg has the protocol, IP, and ports to be visited by
incoming traffic. The connection points p ∈ xg have both input and egress points. A

Consistent VNF forwarding graph reconfiguration in multi-domain environments 69

Table 4.1: The variables notations for the VNF-FG consistent reconfiguration model

Variable Meaning
O = {o1, o2, . . .} The set of orchestrators
G = {g1, g2, . . .} The set of VNF-FGs each numbered
cg Classifier rule of VNF-FG g

xg Rendered service path of VNF-FG g

ma Matching attribute, that belongs to a classifier rule
p Connection point of a rendered service path
δ The dependency relation
∆ A VNF-FG Reconfiguration operation
Lθ Pending operations for the the orchestrator θ
hθg The heap of accepted values for VNF-FG g from θ

♦ A random and finite amount of time
si State of the ith replica
.id The identifier of a given entity, such as a VNF-FG
lθg The list of negated values for VNF-FG g from θ

ε The initial value for a data structure.
φ(xi) The state of the i-th VNF-FG x replica
ro Reply to update coming from orchestrator o
ko Orchestrator identifier
k∗o Highest identifier in the federation
xi the i-th replica of a VNF-FG x

C(xi) Causal history of the i-th replica of a VNF-FG x

<d The delivery order for reconfigurations
τ The top operation

reconfiguration of the VNF-FG changes multiple values by either a matching attribute
or connection points. The reconfiguration operation ∆ between a pair of VNF-FGs
g, g′ in defined in Equation 4.2.

∆ : g → g′ = ∃p ∈ xg, p′ ∈ xg′ , p.id = p′.id | φ(p) 6= φ(p′)

∃ma ∈ cg,ma′ ∈ cg′ ,ma.id = ma′.id

| φ(ma) 6= φ(ma′).

(4.2)

The reconfiguration for a VNF-FG problem is named as VNF-FGR. For a dedicated
service, the reconfiguration is trivial as the service’s orchestrator manages all the
resources and easily resolves conflicts. However, for shared services, the chief interest
is that all affected orchestrator replicas have the same view after a reconfiguration.
This is the goal of the consistent VNF Forwarding reconfiguration problem discussed
in Section 4.2.2.

70 Contributions on Service Management

4.2.2 Consistent VNF forwarding graph reconfiguration

Following the orchestrator changes to a given copy of a shared VNF-FG g ∈ G by
updating the order of a connection point in the rendering service path, The other
orchestrators will apply to all their related copies of the VNF-FG the very same changes
(e.g., ∀g′ ∈ G|g.id = g′.id). The consistent VNF-FG reconfiguration is formalized using
Equation 4.3.

∆(g) : ∀g′ ∈ G|g.id = g′.id =⇒ φ(g) = �φ(g). (4.3)

where φ(g) is the state of the VNF-FG g and � is a random and finite amount of
time. An inconsistency occurs if, after a VNF-FG reconfiguration ∆ on a shared service
g, the state of a replica of g′ do does not match. The consistent VNF-FG reconfiguration
problem is named as CVNF-FGR.

Back to the CDN provider use case depicted in Figure. 4.1, due to a sudden surge
in a shared service containing a decoder VNF, areconfiguration action is necessary
to maintain the service response time within the required SLA. However, this service
has been replicated in a multi-domain federation with three different providers that
have three different orchestrators o1, o2, o3. Consequently, the 3 involved orchestrators
must reconfigure it along with its VNF-FG. The performed management operation is
illustrated through scenario (A) in Figure. 4.3. The target management operation
consists on changing the connection point of the shared decoder VNF represented by
value a (e.g., changing the input point). First, all the VNF-FG replicas start in the same
state o (Figure. 4.3, A-step 1). Then, the second orchestrator o2 updates its VNF-FG
replica with value a and sends a notification to other orchestrators (A-step 2). Finally,
the other orchestrators receive the notification and also update their VNF-FG replicas
(A-steps 3-4). At the end of the reconfiguration, all the replicas have the same value
a.

Figure 4.3: Two different scenarios of VNF-FG reconfiguration

In ideal conditions, consistency can be achieved by sending the notification to all af-
fected replicas as depicted in scenario (A). But, non-deterministic network conditions,
such as a random latency and packets loss can lead to an inconsistent reconfiguration.
Scenario (B) in Figure. 4.3 highlight a possible inconsistent VNF-FG reconfiguration.

Consistent VNF forwarding graph reconfiguration in multi-domain environments 71

In this scenario, concurrent updates can be done. Such reconfigurations brings partial
or total failures and are costly to fix. First, all orchestrators start with an initial value
o (B-step1). Then, the second orchestrator o2 updates its VNF-FG replica with value
a and sends a notification to the other orchestrators (B-step2). This is followed by
the third orchestrator receiving the notification and updating its replica (B-step3).
After that, the third orchestrator o3 updates again the replica, based on the previous
update, to a new value p (e.g., updating a different input point) and sends a notifi-
cation to all the others (B, step4). Two concurrent tasks are executed (B-step5). On
one hand, the first orchestrator o1 receives the second update from o3 with value p
and updates its VNF-FG replica. On the other hand, the second orchestrator o2 also
updates the replica with value p. Finally, the o1 receives the second update from o2
with value a (B-step6). Since the orchestrators have local knowledge of their adminis-
trative domain only, it updates its replica. In the end, VNF-FG replicas have different
values which leads to inconsistent VNF-FG reconfiguration. The problem can be even
more challenging when considering the non-functional dependencies. This is discussed
in Section 4.2.3.

4.2.3 Consistent VNF Forwarding Graph reconfiguration with non-
functional dependencies

In some cases, the orchestrators might reject update requests on the replicas related
to their VNF-FG. This happen when the orchestrators consider that the execution of
the changes will inevitably affect the non-functional requirements of their managed
services (e.g., latency, data privacy) and then might lead to SLA violation. In fact,
to stay consistent, all orchestrators need to consider the negation by non-functional
dependencies. This problem is named as CVNF-FGR-NF. CVNF-FGR problem, discussed
in Section 4.2.2, remains particular case of the CVNF-FGR-NF where orchestrators al-
ways accept the reconfiguration proposed by replicas coming from other orchestrators.
The reader should note that the CVNF-FGR-NF problem is divided into two classes ac-
cording to the wanted behavior in terms of consistency. If the reconfiguration to be
applied is always validated by all orchestrators, then the problem does not support
fault-tolerance (i.e., the case for critical applications). This is the preventive approach.
If the reconfiguration operations can be undone, then the problem is considered ad
supporting fault-tolerance. This this the corrective approach.

Figure. 4.4 resumes the scenario A introduced in Figure. 4.3 and extends it with
the capability of the orchestrators can refuse a reconfiguration. In this scenario, four
orchestrators (o1, o2, o3, o4) from different administrative domains manage two shared
VNF encoders g1, g2 and two shared VNF decoders g3, g4. The first orchestrator o1
manages the encoder g1, the second orchestrator o2 manages the encoder g2, and so on.
At the beginning, all shared encoders and decoders start with initial values represented
by o, and ∗ as shown in the bottom of Figure. 4.4 (box A- Replicas). In addition, the
encoders and decoders are related since decoder configuration depends of the encoder

72 Contributions on Service Management

Figure 4.4: Example of an inconsistent VNF-FG reconfiguration scenario

configuration, as shown in the bottom of Figure. 4.4 (box B - Dependencies). This
means, that in order to reconfigure a decoder, both orchestrators managing g1, and g2,
respectively, have to accept the changes. The reconfiguration scenario is as follows:
o3 and o4 change the value of their respective shared decoders g3, g4 with different
values a, p, respectively (step1). Therefore, o1 and o2 update their shared encoders.
o1 verifies the proposed reconfiguration, accepts and proceeds with the change of the
value of the encoder g1 to a new value y (step2). As for o2, it also accepts the changes
and updates the encoder value to y (step2). After that happens three concurrent
tasks (step3). Firstly, o1 gets the notification from o4 to reconfigure the VNF-FG. o1
does not accept the reconfiguration, keeps the value y, and sends a negative reply to
o4. Secondly, o2 gets the same notification from o4. Since it accepts this most recent
update, the orchestrator updates the value of the dependency to x; then, it replies
positively to o4. Thirdly, the concurrent task is the positive reply from o1 to o3, which
updates the first of the two required answers (step3). Then, both o3 and o4 get a
positive reply from one of their dependencies (step4). o3 receives a positive reply from
o2, and updates the first of two required answers; while, o4 from o2, also updating the
second answer. Since o3 received both positive replies from its dependencies, it will
notify o4 to change the value of the VNF-FG replica. Two concurrent events happen
as messages arrive to o4 (step5). Firstly, the instruction to update the value of the
VNF-FG replica arrives from o3. Secondly, the negative reply from o1 arrives. Thus,
o4 can choose between doing the reconfiguration or remaining in the initial state. In
this scenario, a non-deterministic output creates an inconsistency. The first alternative
is that o4 updates the value of the VNF-FG replica to a; however, the dependencies
have different values (box C - End state). The other alternative is to remain in the
initial state; but the replicas have different values (box C End state). Moreover,
because orchestrators can share the decoder among other orchestrators with limited
knowledge, conflicts will arise as the replicas diverge further and further in every single
concurrent reconfiguration.

The state-of-the-art in VNF-FG reconfiguration 73

4.3 The state-of-the-art in VNF-FG reconfiguration

There are several work in the relevant literature that studied the managementof
the VNF-FG. The most common operations for VNF-FG management are embedding,
reconfiguring and composing the forwarding graph [109], the major focus being on the
embedding operation [110]. The embedding operation aims to support the selection of
the virtual network instances and their connection links by the orchestrator [110]. The
reconfiguration operation aims to determine the most appropriate action to update
the VNF-FG (e.g. changing the order of the VNFs, extending the forwarding graph)
while ensuring the properties of the service, such as availability [111].

Figure 4.5: Classification of the related work on VNF-FG reconfiguration

The conducted literature review focus on the reconfiguration problem, since com-
posing and embedding only consider static deployment of the VNF-FG. Moreover, if the
orchestrator extends the VNF-FG, the reconfiguration can also include the embedding
and the composing operations. Figure. 4.5 depicts the classification of the reviewed
related work. The VNF-FG reconfiguration could be either in single network provider
domain or over a multi-domain federation. CONTRIB4 implements the highlighted
(lower) branch of the classification tree.

4.3.1 VNF-Forwarding Graph reconfiguration in single domain en-
vironment

The reviewed work for single domain environment supports either static VNF-FG re-
configuration or dynamic VNF-FG reconfiguration. The former considers a unique
orchestrator where the managed VNF-FGs stay static. The primary goal of these work
is to optimize metrics (e.g. latency [112], revenue [113], and energy [114]) while pro-
visioning the VNF-FG. Since optimizing the placement is NP-hard, the authors often
propose heuristics to solve the problem in larger instances while relying on restric-
tive assumptions such as: (i) federation is known in advance, static and fixed during

74 Contributions on Service Management

runtime and (ii) the single global orchestrator hav full knowledge of the underlying
domain, such as topology or network policies. These assumptions are too simplistic
and do not represent a true reflection of reality.

The dynamic VNF-FG reconfiguration in single domain environment tries to remedy
the limitations of the static reconfiguration by allowing online changes in the VNF-FG
embedding algorithms. For instance, the authors in [96] and [115] focus on the VNF
placement. In these work, the orchestrator extends the VNF-FG by adding VNFs and
links to respond to new demands. The optimal extended embedding problem is then
solved through a decomposition algorithm in [96] and a Steiner Tree-based algorithm
in [115]. Other work use bi-directional chaining [116]. This allows adding optional
VNFs instances for deployed services [116]. While these works aim to reconfigure the
VNF-FG, they do not consider the problem of inconsistency when multiple orches-
trators concurrently try to update the VNF-FG. In case of a change in service usage,
the global (central) orchestrator computes the new place to instantiate a VNF or it
can update the VNF-FG by changing the VNFs’ execution order. In this context, the
consistency in the VNF-FG management here is not problematic, as the global orches-
trator has all the required knowledge. Thus, the orchestrators synchronize the updates
according to the global orchestrator. Despite this ease of consistency, these works do
not scale well for multi-domain federations, as the fundamental assumption of com-
plete knowledge is costly to implement. Additionally, the service providers prefer to
keep their key information private and are generally refractory to sharing operating
information with other service providers [94].

4.3.2 VNF-Forwarding Graph reconfiguration in multi-domain en-
vironments

VNF-FG management in multi-domain environments uses a a decentralized approach
where multiple orchestrators jointly manage network services. There are only 2 work
that contributed to VNF-FG management in multi-domain environments. The first
one is part of the ETSI NFV standard [65]. It proposes a reconfiguration algorithm
where the orchestrators coordinate with each other through grants to maintain the
network service consistency. This work supports and manages concurrent reconfigu-
rations. In the second work, the authors supports coordination enforced with causal
consistency. This is achieved by making the orchestrators wait until they receive the
appropriate reconfiguration instruction, while tracking the causal information using
vector clocks [117]. This work only support non-concurrent reconfigurations.

In addition to these work, there are additional work that focused on the em-
bedding problem. In these work, several techniques were used in the literature to
avoid the repetetive calculation of the new VNFs placement following a reconfigura-
tion operation. For instance, the authors in [118] propose a deep reinforcement learn-
ing technique to learn the dynamic behavior of the federation and predict the VNFs
placement. Another work supports the migration of existing VNFs using an adaptive

Coordination-free orchestration algorithm for multi-domain environments 75

centralized/decentralized orchestration algorithm to reallocate VNF-FG [111]. The last
reviewed work considered a close and competitive environment where orchestrators
hide their infrastructure from the other orchestrators [119].

4.3.3 synthesis

The conducted literature study highlights that there are only 2 work that contributed
to VNF-FG management in multi-domain environments [65] [117]. In these work, when
concurrent updates generate conflicts, the orchestrators must resolve conflicts/incon-
sistencies by solving consensus; thus, sacrificing performance over consistency. Solving
consensus forces the orchestrators to have recourse to executing a coordination phase
to prevent inconsistencies. Moreover, these work do not consider non-functional de-
pendencies that might negate ongoing reconfigurations.

CONTRIB4 introduces the very first coordination-free orchestration algorithm
to achieve consistent reconfiguration of the VNF-FG in a multi-domain federation. The
proposed orchestration algorithm considers the consistency reconfiguration of a VNF-
FG by updating either the connection points or classification rules. Futhermore, the
algorithm supports the non-functional dependencies inherent in sharing network ser-
vices in distributed multi-domains.

4.4 Coordination-free orchestration algorithm for multi-
domain environments

As stated in Section 4.2.3, the goal in the CVNF-FGR-NF problem is to ensure that all
the replicas of the VNF-FG, as well as, their dependencies have the same values. How-
ever, non-deterministic network conditions (e.g., out-of-order delivery of messages,
latency fluctuation, loss of packets) from one side and concurrent updates, requested
by other orchestrators, from the other side can lead to inconsistencies while reconfig-
uring the VNF-FG. Adding to that, prospective dependencies might negate part of the
requested updates, amplifying the negative effects of the previous conditions.

A dependency relation δ is described as binary when it cannot have a dependency
with itself. This means that δ takes as input two different VNF-FG (g ∈ G, g′ ∈ G′).
As the VNF-FGs have replicas, they must have the same values and state all the
time. Thus, if the relation δ(g, g′) holds, this implies that every element in G has
a dependency with every other element in G′. This could be formalized as follows:
∃δ(g, g′), g ∈ G, g′ ∈ G′ =⇒ δ(G,G′). If δ is a bi-directional relationship, then it
also implies that all elements in G′ have a dependency relation (i.e. δ(G′, G)). This
means whenever a reconfiguration takes place, the orchestrator that does the update
has to notify the other orchestrators that manage a VNF-FG in the super-set G ∪G′.

When reconfiguring VNF-FG with a dependency relation, orchestrators can have
different values for the VNF-FG. To prevent inconsistencies, a conflict resolution mech-
anism is required. Traditionally, in distributed systems, conflict resolution is done by

76 Contributions on Service Management

consensus among all orchestrators to achieve sequential consistency (see Section 4.1).
The problem is that managing consensuses will generate an overhead that hinders the
applicability of such solutions, especially considering the recurrent low latency require-
ment in the ETSI NFV specification. An intuitive solution to this drawback would
be relaxing the consistency model as it is the case with the Strong Eventual Con-
sistency model (see Section 4.1). Such model achieves the optimal trade-off between
consistency, availability, and partitioning.

Consistent-free Replicated Data Types (CRDTs), introduced in Section 4.1, can
offer an even better consistency model. In fact, CRDTs implement an automatic con-
flict resolution mechanism. The idea is to design an orchestration procedure using
data structures that support strong eventual consistency to avoid the coordination
phase. For the proposed approach, whenever an orchestrator executes a reconfigu-
ration, it will change either the matching attribute and/or the connection points, as
specified by the ETSI NFV standard information model [95]. This means changing
the data structure that holds all the required information for them. For example, to
change the matching attribute, the orchestrator will set a new value for the protocol
recognized, the source and destination addresses, and ports.

The proposed approach proposes 2 variants, i.e., preventive variant and correc-
tive variant. The preventive variant aims to prevent any inconsistencies by applying
updates only when all replicas and dependencies have asserted an updated proposal.
This means that an orchestrator managing a given VNF-FG g ∈ G with a dependency
g′ ∈ G′ sends a reply to all other orchestrators in the set G ∪ G′. Whenever an or-
chestrator managing a dependency of the VNF-FG g receives the proposal, it will reply
either positively or negatively. The change is delayed and will not be applied until all
answers are received. If any is negative, the reply will be discarded. The corrective
variant is more permissive, as it allows updates to take place at the moment the no-
tification arrives. Similar to the first variant, the orchestrator managing the VNF-FG
g ∈ G must send to all orchestrators managing a VNF-FG in the set G ∪G′. However,
the receiving orchestrator will only notify a negative answer to the others. Indeed,
when an orchestrator receives a negative answer, it must make the required changes
to be in the most promising consistent state.

4.4.1 Preventive variant

The preventive variant of the proposed approach is designated as CF-P. It consists of
a set of designed algorithms. When an orchestrator tries to update a given VNF-FG,
it first executes Algorithm 4. This algorithm was introduced in 5 and 6.

First, the orchestrator applies the reconfiguration to a copy of the VNF-FG g (Al-
gorithm 4, line 3). Then, it increases the counter for the reconfiguration to assign
a unique identifier to it (line 4). After that, it computes the set of orchestrators
managing replicas of theAlgorithm 4 (line 5). Next, the orchestrator creates a list to
store the replicas’ replies (lines 6, 7). Finally, it appends the reconfiguration to a list

Coordination-free orchestration algorithm for multi-domain environments 77

Update the VNF-FG algorithm - the preventive variant
1 VNFFGUpdate()
33 update_vnfforwarding_graph_copy()
4 create_unique_identifier_for_reconfiguration()
5 get_list_of_orchestrators_to_send_message()
6 create_empty_list_to_store_answers()
7 initialize_list_with_positive_value()
8 add_new_list_to_pending_operations()
9 create_message_to_notify_update()

10 send_message_to_all_affected_orchestrators()

of pending operations and sends the instruction to reconfigure to other orchestrators
(lines 8-10).

When an orchestrator receives a notification, it will execute Algorithm 5. First,
the orchestrator will compute the set of orchestrators that have replicas of the VNF-
FG (line 3). Then, it creates a temporary answer that will change depending if the
change will be accepted or not (line 5). If the orchestrator has not previously received
a reply to this reconfiguration, it will create a new empty list and add it to its pending
operations (line 7). After, the orchestrator checks the feasibility of the reconfiguration
(i.e., the replica and its dependencies satisfy non-functional properties); if valid, the
orchestrator will mark the reconfiguration as accepted (line 13); otherwise, as false
(lines 23, 25). If the orchestrator accepted the reconfiguration and the counter of the
new operation is greater than the current one, the orchestrator applies the changes
and it updates the counter of the VNF-FG (lines 17, 19).

Receive a notification to update the VNF-FG algorithm - the preventive variant
1 VNFFGReceive(∆)
33 get_list_of_orchestrators_to_send_reply()
55 create_answer_and_set_as_false()
77 if_first_create_list_and_append_to_pending_operations()
99 if check_feasibility(∆) then

1111 mark_entry_as_positive()
1313 update_answer_to_positive_reply()
1515 if all_entries_are_positive_and_greater_counter then
1717 reconfigure_the_vnffg()
1919 update_the_counter_with_new_one()

2121 else
2323 mark_entry_as_negative_in_list()
2525 add_entry_as_negative_in_list()

78 Contributions on Service Management

When an orchestrator receives a reply, it will execute Algorithm 6. First, the
orchestrator stores the reply in the list for the VNF-FG reconfiguration (line 3). If all
entries are positive, the orchestrator will apply the update (lines 7, 9).

Receive a reply message algorithm - the preventive variant
1 VNFFGReceive()
33 mark_entry_with_answer()
55 if all_entries_of_list_are_positive_and_counter_is_greater then
77 reconfigure_the_vnffg()
99 update_the_counter_with_new_one()

Consider the same reconfiguration of a shared VNF-FG as in Section 4.2.3 where
four orchestrators o1, o2, o3, o4 manage two VNF encoders g1, g2 and two VNF decoders
g3, g4, respectively. The first orchestrator o1 manages g1, the second orchestrator o1
manages g2, and so on. Figure. 4.6 shows the execution for the reconfiguration to
ensure all replicas are consistent by having the same values. For ease of readability,
the figure only shows a single value that changes whenever a reconfiguration happens.
However, in reality the proposed approach considers the whole data structure of the
VNF-FG to be compliant with to the ETSI information model.

p

a

o1

1 2 3 4 5 6 7 8

o2

o3

o4
a

a

a

a

a a

a

g1 g2 g3

1
p

a

p

a

1

p

a

p

a
22

2 2

2 2

3 3

3 3

33

3

4

4

5

5

5

6

6

6

4 6

7

5

7

7

8

8

4

g4

Dependencies

depend(g4, {g1,g2})

depend(g3, {g1,g2})

Replicas

g1

Encoders

** g2 oo

Decoders

g3 g4

Figure 4.6: Example of the coordination-free VNF-FG reconfiguration - preventive variant

o3 and o4 try to concurrently update the VNF-FG (Figure. 4.6, step1). o3 proposes
a new value a for its VNF-FG; while, the o4 updates its VNF-FG to p. Both store
the values in their respective lists and send the proposal to all affected orchestrators
(in this example all the other orchestrators). Then, three concurrent tasks need to
be executed (step2). Firstly, o1 receives the proposal from o3. After validating this
proposal, it stores it in a list of pending reconfigurations as shown in the right side of
the figure, where a question symbol is stored in the entries for g1 and g3, respectively.
After that, o1 sends notification to all affected orchestrators. Secondly, similarly to
o1, the o2 accepts, stores, and sends notifications for value a. Thirdly, o4 receives
the proposal from o3 and also does the three operations as the others. In Step3, four

Coordination-free orchestration algorithm for multi-domain environments 79

concurrent operations are being executed. The following description only covers the
first two as the very same Three operations apply to the others aswell. For the first
task, o1 receives the proposal from o4. The orchestrator verifies if the reconfiguration
is valid; however, it decides not to accept it. o1 then adds the proposal as negative,
as shown in the right side of the Figure. All subsequent notifications of proposal for
value p will be automatically negated. For the second task, o2 validates the proposal
for value p. Steps 4 and 5 shows the notifications arriving to the orchestrators. As
for the notification from o1 to o4, since all values are already validated by replicas,
the o4 finally can reconfigure its VNF-FG replica. This is highlighted in Figure. 4.6 by
the change of color and value of the g4 VNF decoder. Eventually, all notification and
proposals arrive with Steps 6-8. At the end of the reconfiguration, all VNF-FG replicas
have the same values.

4.4.2 Corrective variant

The corrective variant of the proposed coordination-free approach is named CF-C.
It reconfigures a VNF-FG when a notification arrives with no delays. Moreover, it
does not send a notification to other orchestrators. Only when a dependency does not
accept a reconfiguration due to violating non-functional requirements, the orchestrator
will send a negative notification to the others. Specifically, whenever an orchestrator
receives a negative notification, it will reconfigure its VNF-FG to a provisional state after
merging with the notification. Algorithm 7, Algorithm 8, and Algorithm 9 implement
The procedures of the CF-C variant.

When the orchestrator reconfigures a VNF-FG, it starts by executing Algorithm 7.

Update the VNF-FG algorithm - the corrective variant
1 VNFFGUpdate()
33 apply_reconfiguration_to_vnffg()
55 increase_the_vnffg_counter()
77 get_list_of_orchestrators_to_send_notification()
99 add_reconfiguration_entry_to_heap()

1111 create_update_notification_message()
12 send_notification_to_all_affected_orchestrators()

First, the orchestrator updates the VNF-FG (line 3). Then, it increases the counter
to assign a unique identifier to the operation (line 5). After that, the orchestrator
computes the list of orchestrators that have replicas of the VNF-FG (line 7). Next, it
adds the reconfiguration to the heap of accepted reconfigurations (line 9). Finally, the
orchestrator creates a message and sends it to the list of orchestrators (lines 11, 12).
When an orchestrator receives this message, it executes Algorithm 8.

For Algorithm 8, the orchestrator first checks if the reconfiguration is already
stored in the list of negated reconfigurations; if not, it continues (line 3). After, the

80 Contributions on Service Management

Receive a notification to update the VNF-FG algorithm - the corrective variant
1 VNFFGReceive(∆)
33 pass_if_entry_is_negated()
55 if check_feasibility(∆) then
77 if counter_greater_equal_greater_identifier then
99 apply_the_reconfiguration_to_the_vnffg()

1111 increase_the_counter_for_the_vnffg()

1313 add_entry_to_heap()

1515 else
1717 get_list_of_affected_orchestrators()
1919 add_reconfiguration_to_list_of_rejected_operations()
2121 create_negative_reply_message()
22 send_negative_reply_to_affected_orchestrators()

orchestrator checks if the reconfiguration is feasible (i.e., replicas and dependencies’
non-functional properties will be satisfied after reconfiguration). If it is valid, the
orchestrator checks if both counters are greater than the current ones before proceeding
with the VNF-FG reconfiguration. The top counter is then updated (lines 9, 11).
Otherwise, if the condition on the counters is not satisfied, it is added to the heap in
the correct place by using the counters as identifiers (line 13). If the reconfiguration
is not accepted, the orchestrator computes the list of affected orchestrators, adds the
reconfiguration to the list of rejected operations, creates a negative reply message, and
sends it to all affected orchestrators (lines 17-22). When an orchestrator receives the
negative reply, it executes Algorithm 9.

Receive a reply message algorithm - the corrective variant
1 VNFFGReceive()
33 remove_operation_from_heap()
55 add_reconfiguration_to_list_of_rejected_operations()
77 apply_new_update_from_consistent_state()

For Algorithm 9, the orchestrator removes the operation from the heap (this could
be the top or any other position), adds the reconfiguration to the list of negated
operations, re-orders the heap, and applies the reconfigurations starting from the
initial consistent state (lines 3-7).

Consider the same reconfiguration of a shared VNF-FG as in Section 4.2.2 where
four orchestrators o1, o2, o3, o4 manage two shared VNF encoders g1, g2 and two shared
VNF decoders g3, g4, respectively. The first orchestrator o1 manages g1, the second
orchestrator o1 manages g2, and so on. Figure. 4.7 shows the execution for the re-

Implementation and evaluation 81

configuration to ensure all VNF-FG replicas are consistent by having the same values.
For ease of readability, the figure only show a single value that changes whenever a
reconfiguration happens. However, in reality, the proposed approach considers the
whole data structure of the VNF-FG as sipulated by the ETSI NFV information model.

p

a

o1

1 2 3 4 5 6 7 8

o2

o3

o4
a

a

a

a

a a

a

g1 g2 g3

1
p

a

p

a

1

p

a

p

a
22

2 2

2 2

3 3

3 3

33

3

4

4

5

5

5

6

6

6

4 6

7

5

7

7

8

8

4

g4

Dependencies

depend(g4, {g1,g2})

depend(g3, {g1,g2})

Replicas

g1

Encoders

** g2 oo

Decoders

g3 g4

Figure 4.7: Example of the coordination-free VNF-FG reconfiguration - corrective variant

In Step1, o3, o4 concurrently update the VNF-FG. o3 updates its VNF-FG with a new
value a; while o4 with p, respectively. Both add the value to their heap and then send
the proposal to the affected orchestrators. In Step2, two concurrent tasks are being
executed. Firstly, o1 receives the proposal from o3. After validating this proposal,
it applies the reconfiguration to VNF-FG g1 and adds the state to the heap. This is
shown on the right side of the figure. Secondly, similarly to o1, o2 accepts, reconfigures,
and saves the state. In Step 3 three concurrent tasks are being executed. Firstly, the
proposal from o4 arrives to o1. The orchestrator verifies if the reconfiguration is valid;
however, it decides not to accept it. o1 adds it to the list of negative proposals and
notifies all the affected orchestrators (in this example, all the others). Secondly, the
proposal from o4 arrives to o2; unlike o1, o2 accepts the proposal and reconfigures
the VNF-FG g2 to match the state of value p. This is shown in Figure. 4.7 where
the top now is p; unlike in the previous Step2. Thirdly, the proposal from o3 arrives
at o4 that accepts it. However, because its reconfiguration takes precedence, it will
not apply the reconfiguration. In Steps 4 and 5, the rest of the notifications arrive.
Whenever an orchestrator receives a negative reply, it reconfigures again to another
state. The value in the heap is removed and added to the list of negated proposals.
This is shown in steps4 and 5 in Figure. 4.7. At the end of reconfiguration, all VNF-FG
replicas have the same values.

4.5 Implementation and evaluation

The proposed coordination-free orchestration approach was implmented to validate
and evaluate its findings. The running prototype supports the 2 designed variants
(i.e., preventive variant and the corrective vraiant). The evaluation experiments were

82 Contributions on Service Management

performed in a public distributed cloud infrastructure over a multi-domain federation.
The aim of the performed experiments is to evaluate the proposed approach versus the
ETSI standard orchestration algorithm for consistent VNF-FG reconfiguration based a
set of well-defined metrics.

4.5.1 Proof of Concept

The developed prototype implements the preventive variant (CF-P), as well as, the
corrective variant (CF-C) of the proposed approach in Python. For evaluation pur-
poses, the ETSI standard procedure (NCF-E) was implemented too. As a reminder,
the associated algorithm use eventual consistency. It enables VNF-FG reconfiguration
by applying updates the moment they arrive.

As for the deployment, the prototype was provisioned in Microsoft Azure1, a public
cloud provider infrastructure. To set up a representative multi-domain federations,
several and remote domains of the service provider were selected from the following
locations: North Europe, West US, South Korea, East US, and the UK. The network
federation topology is generated randomly. Connections are achieved either by internal
or external dependencies. The network domains are connected to each other over the
Internet, such that average latency is representative of real conditions. Every single
domain has its own orchestrator and policies. Identical virtual machines with the
same configuration (i.e., 2 CPU cores, 30GB of hard drive, 4GB of RAM, and Ubuntu
18.04-LTS) were created in each domain to host and execute the local orchestrators.
The network policies and topology of each domain are described with JSON-based
descriptor. The descriptors are randomly generated and lists information such as
location of the domain, types and number of running VNFs, their related VNF-FG and
any other required information for VNF-based network services (e.g., communication
protocols, data storage). The VNFs were implemented and hosted within Docker2

containers. In addition, yet another descriptor was designed to implement and describe
the workload and the required concurren changes at runtime. The source code of the
prototype is available at: https://zenodo.org/record/5336614.

In addition to the prototype, for evaluation purposes, a multi-domain orchestrator
implementing the ETSI standard orchestration algorithm for consistent VNF-FG re-
configuration was developed in Python. The several existing open-source ETSI NFV
orchestrators (e.g., OSM3, Open Baton4) do no implement the required interfaces to
support a federation.

1azure.microsoft.com
2docker.com
3osm.etsi.org
4openbaton.github.io

Implementation and evaluation 83

Table 4.2: The parameters for the VNF-FG reconfiguration prototype

Parameter Range
Maximum Delay (Max_D) [1, 10, . . . , 100000] ms

Number of Reconfigurations (Nm_R) 0, 150, 300, . . . , 1800
Type of Reconfigurations (T_R) Concurrent
Probability to Negate (Pb_N) 0 - 5 - 10 - 20 - 40 - 80 %

4.5.2 Evaluation scenarios and considered metrics

The prototype is measured under different experimental scenarios and considering
several parameters for each experiment. Table 4.2 lists the defined parameters for the
experiments. Each configuration parameter creates different test scenarios from the
ideal to the worst case. For instance, an ideal scenario would have zero delay (i.e.,
Max_D=0), accept all reconfigurations (i.e., Pb_N=0), and non-concurrent recon-
figurations (i.e., Nm_R=0). A worse scenario, compared to the ideal, would have the
greatest delay (i.e., Max_D=100ms), negate all reconfigurations (i.e., Pb_N=20),
and have concurrent reconfigurations (i.e., Nm_R=1200).

The list of the considered metrics for the evaluation is as follows:

• Total reconfiguration time is the time in milliseconds necessary for for each
algorithm to process a VNF-FG reconfiguration . A lower value is preferred.

• Number of reconfigurations is the number of times a particular VNF-FG is
reconfigured. Some algorithms allow a certain period of inconsistency, thus this
metric measures the extra cost associated with more flexibility in terms of quick
reconfigurations. A lower value is preferred.

• Latency per operation is the time difference in milliseconds between a VNF-
FG reconfiguration request and its concrete reconfiguration. A lower value is
preferred.

• Inconsistencies refers to the number of updates that are different for each
replica. A lower value is preferred since inconsistencies directly translate to cost
for providers and lower performance for users.

• Overhead per messages refers to the amount of data each orchestrator sends
to other replicas and dependencies when executing an algorithm. A lower value
is preferred. This metric is associated with a cost for CRDT-based algorithms.

All combinations of the configuration parameters, listed in Table 4.2, were used for
the experiments. Each experiment is performed thirty times and the average values
is calculated for each metric previously described. The running prototypes of CF-
C, CF-C and ETSI-C were evaluated considering the same scenarios, test collections
and metrics. The experiments mainly focus on the concurrent scenarios.

84 Contributions on Service Management

Two variables were varied and monitored during the experiments, i.e., probability
of negation and network delay. The probability of negation is selected in four scenarios
(i.e., 0%, 5-10%, 20-40%, and 80%). A negation of 0% means that the replicas and the
dependencies always accept changes. A negation of 5-10% means that replicas almost
always accept changes. In fact, higher values of negation incu more complexity for the
algorithms considered, since they have to ensure no inconsistencies happen. For low
probability negations, the service providers have sufficient resources to apply changes
and will accept the reconfigurations. Higher probability negations mean there is a
lack of resources for providers to reconfigure.

As for the network delay, the values were varied to evaluate different scenarios.
This Section mainly discusses the scenarios with delays of 100ms and 1000ms. The
data test collections, the comprehensive experiment scenarios and their results are
available at:https://zenodo.org/record/5336614.

4.5.3 Obtained results

The obtained measurements are depicted in the figures of this Section. The proposed
preventive variant (CF-P) is represented with a green axis/diamond for delays for 100
and 1000ms, respectively. The proposed corrective variant (CF-C) is represented with
a blue right/left triangle for 100 and 1000ms, respectively. Finally, the ETSI algorithm
(NCF-E) is represented with an orange up/down triangle for 100 and 1000ms, respec-
tively. The reader should note that, for all the obtained results, a confidence interval
was drawn at 95% using the Seaborn Python library5 that implements a bootstrapping
algorithm.

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

In
co
ns
is
te
nc
ie
s

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

In
co
ns
is
te
nc
ie
s

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Figure 4.8: Number of inconsistencies per number of performed VNF-FG reconfigurations

5seaborn.pydata.org

Implementation and evaluation 85

Figure. 4.8 depicts the evolution of the number of inconsistencies per number of
performed VNF-FG reconfigurations (lower is better). These inconsistencies happen
because the replicas or dependencies have different values. The ETSI standard algo-
rithm does not prevent inconsistencies. It has the worst performance, as the number
of inconsistencies increases with more concurrent reconfigurations. Both variants pre-
vent inconsistencies for any type of scenario; thus, negation and delay factors do not
have an impact on the variants. The obtained results for both variants are equal
independently of the probability of negation. This is explained by the fact that both
variants enforce strong eventual consistency, and replicas converge to a consistent state
irrespective of the number of negations and network delay. The results remained the
same for the three algorithms when the probability of negation were varied.

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

10

20

30

40

50

60

70

80

Av
er
ag

e
la
te
nc
y
pe

r o
pe

ra
tio
n
(s
)

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

10

20

30

40

50

60

70

80

Av
er
ag

e
la
te
nc
y
pe

r o
pe

ra
tio
n
(s
)

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Figure 4.9: The latency variation per VNF-FG reconfiguration operations

Figure. 4.9 measures the latency per VNF-FG reconfiguration operations (lower is
better). This represents the time needed to wait before reconfiguring a VNF-FG. Obvi-
ously, the standard behaves the best as it applies the reconfiguration when it receives
the request. The preventive variant is the worst since it must wait. With 1800 concur-
rent reconfigurations and 0% negation probability, the average latency per operation is
about 1 minute for the preventive algorithm. However, when the negation probability
increases (e.g. 20-40%), the latency reduces. This behavior is consistent with the way
the preventive algorithm performs. If one entry in the table is false (because either a
dependency or replica did not accept the changes), the preventive algorithm can abort
the reconfiguration without waiting for the rest of the answers. Thus, when orches-
trators negate more updates, the latency for the preventive is reduced. Moreover, one
minute of latency per operation might seem a high number compared to the corrective
and standard but this latency is still lower compared to the latency per transaction
of consensus solutions (e.g. 10 minutes per transaction [120]). The depicted latency

86 Contributions on Service Management

is representative for all the parameters’ combinations.
Figure. 4.10 shows the amount of the necesary messages that the orchestrators

need to send to resolve conflicts dunring VNF-FG reconfigurations (lower is better).
The preventive variant gets the worst performance of all. The corrective algorithm
sits in the middle of the preventive and standard algorithms. However, with a high
number of negations (i.e. = 20%), the corrective algorithm behaves like the preventive,
as seen in how the corrective trend line moves towards the preventive one. In the
worst-case scenario (i.e., 100% negation probability), the corrective variant will send
the same number of messages. Delay has a slight impact on the number of messages
sent. It widens the interval but the behavior remains the same.

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

20
00

40
00

60
00

80
00

10
00
0

12
00
0

14
00
0

M
es
sa
ge

s
se
nt

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

20
00

40
00

60
00

80
00

10
00
0

12
00
0

14
00
0

M
es
sa
ge

s
se
nt

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Figure 4.10: Number of generated messages to resolve conflicts

Figure. 4.11 shows the overhead (the extra) per message that need to be exchanged
between the orchestrators to achieve consistent VNF-FG reconfigurations (lower is bet-
ter). Similar to the number of messages sent, the preventive variant gets the worst
performance of the other variants. However, the negation probability seems to have a
lesser impact on the corrective algorithm. For instance, with negations between 40%
and 80%, it only doubles the amount of data sent.

Figure. 4.12 shows the number of extra VNF-FG reconfigurations per algorithm
(lower is better). The preventive variant is obviously the better since it is getting
zero extra reconfigurations, while the corrective variant behaves worst. The corrective
variant is sensitive to the negation probability. For instance, if all reconfigurations are
accepted, the corrective variant does not have extra reconfigurations. However, with a
greater probability to negate, the corrective algorithm must reconfigure more services,
as shown in the number of reconfigurations done with 5-10% (i.e., reconfigurations
1000) and 20-40% (i.e., 3000 reconfigurations).

Figure. 4.13 shows the average reconfiguration time for the VNF-FG. Negation prob-

Implementation and evaluation 87

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0.0

0.5

1.0

1.5

2.0

O
ve
rh
ea

d
pe

r M
es

sa
ge

 (K
B
)

1e7 Negation 0%

Corrective_100
Standard_100
Preventive_100

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0.0

0.5

1.0

1.5

2.0

O
ve
rh
ea

d
pe

r M
es
sa
ge

 (K
B
)

1e7 Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100

Figure 4.11: Overhead per messages during a VNF-FG reconfigurations

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

A
dd

ed
 re

co
nf
ig
ur
at
io
ns

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

A
dd

ed
 re

co
nf
ig
ur
at
io
ns

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Figure 4.12: The number of extra VNF-FG reconfigurations.

ability has greater impact than delay. With no negation, the corrective variant achieves
the fastest reconfigurations; while the preventive variant takes more time. This is be-
cause the preventive variant sends more messages than the corrective in this case.
With more negations, the preventive variant has achieved a faster reconfiguration
time; while the standard algorithm takes more time. This is because, as previously
mentioned, it only takes a single negated entry into the list of changes for the preven-
tive variant to abort the reconfiguration. With higher negation probabilities (80%),
the standard has the slowest reconfiguration.

88 Contributions on Service Management

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

1

2

3

4

5

To
ta
l r
ec
on
fig
ur
at
io
n
tim

e
(s
)

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

1

2

3

4

5

To
ta
l r
ec
on
fig
ur
at
io
n
tim

e
(s
)

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Figure 4.13: Reconfiguration time for the VNF Forwarding Graph.

4.5.4 Observations

The network delay does not seem to be of a great impact compared to the negation
probability. From the obtained measurement, this could be seen when two charts of
the evaluated algorithms overlap which happens for most of the experiments. How-
ever, in some scenarios, the network delay has some impact, such as in the evolution
of the number of inconsistencies for the standard algorithm. Moreover, considering
more concurrent reconfigurations, the variance increases for all metrics. Yet, for some
experiments, such as the evaluation of the number of inconsistencies and the added
reconfigurations for the corrective variant, it has a greater impact. These results en-
able refining the optimal configurations the applications can rely on considered each
one of the implemented algorithms. For resources-constrained federations (e.g., IoT
virtualized networks [121]), where consistency is a priority, extra reconfigurations are
expensive, memory is limited but latency is not a constraint. In such environments,
service providers should select the preventive variant over the corrective. On the
other hand, the service providers would use the corrective variant in more specialized
environments where network speed and response time are required, memory is avail-
able, reconfiguration (in terms of resource consumption) is cheap, sending messages is
costly, and the probability to negate reconfigurations is low. NFV satellite networks
are among the examples for these applications [122]. Furthermore, the corrective vari-
ant does not require knowing in advance the number of orchestrators in the federation,
thus, it is possible to use it in open federations where new orchestrators can temporally
join and leave.

Chapter 5

Open Issues and Research
Directions

Contents
5.1 Motivating use case: towards the next-generation autonomous

cars . 90
5.2 Proactive QoS management . 92

5.2.1 ARIMA model design and features configuration 95
5.2.2 Early validation and model evaluation 97

5.3 Haptic communications and tactile Internet 99

Over the years, computing paradigms have evolved from distributed, parallel, and
grid to cloud computing. Although cloud computing has been in the limelight for
decades now, the COVID-19 pandemic has given significant and impressive boost
to its rolling-out in all application domains (e.g., telco, teaching, visio conference,
multimedia). In fact, the cloud evolved from “just about” on-demand computing
and storage capabilities to a comprehensive ecosystem enabling novel opportunities
and providing reliable solutions for meeting the ever-changing needs of the business.
Furthermore, the cloud is no longer centralized with a siloed architecture. Instead, it
evolved to a complex continuum of capabilities and features.

Many organizations are reimagining their business models by migrating to the
cloud continuum. The ultimate goal for them remains the optimization of the CAPEX
and OPEX but this obviously entails evolving their applications and services. The
research work presented in Chapter 2, Chapter 3 and Chapter 4 discuss a set of
methodologies and models that assist and help these organizations to support the
challenging actions and phases that make up the applications/services lifecycle over
the fully distributed, dynamic and mobile cloud continuum resources.

To further square the circle, there is still need to investigate, design and sketch ad-
ditional procedures and models that would automate the support of the whole lifecycle
process introduced in Figure 1.2. For instance, similarly to the DevOps/continuous
integration methodologies in the software engineering, there is a need of appropriate
and novel procedures that would enable the automatic, or even the autonomic - when
this can be possible, switch from one lifecycle step to another. In a further analogy,

89

90 Open Issues and Research Directions

the MLOps methodologies, applied in machine learning engineering, can be source of
inspriration in this context and considered as a starting point to lay out the premises
for a automatic/autonomic analytics models in the cloud continuum. Both research
directions combined would require to step away from the classical QoS management
patterns and emphasize the need for proactive QoS management techniques instead of
the classical reactive QoS management that is commoly used nowadays in the cloud
continuum. Section 5.1 introduces a common use case for cloud continuum (i.e., au-
tonomous cars) and motivates the needs for introducing and supporting proactive
QoS management. The end goal of this research statement is to achieve the so-called
“Tactile Internet” within a few years.

5.1 Motivating use case: towards the next-generation au-
tonomous cars

Autonomous cars are self-driving vehicles that could ride without the intervention of a
humans. It gather and process data in the cars’ neighborhood and autonomously plan
and execute the right control actions to make in efficient and safe way (e.g., brake the
car, change driving lane, avoid obstacle).

The next-generation of autonomous cars aim at (i) outsourcing part of the car
computation over external resources and (ii) enabling the communication between the
car and the remote services [11] [12]. For instance, during a ride from location A to
location B, the car could intercat with other remote entities and services in the smart
city to wind an optimal itenerary (e.g. the fastest, the closest). Consequently, the
autonoumous services are location-aware and latency-sensitive. These services would
help the car to be aware about the prospective events that might happen along the way
and, when necessary, dynamically anticipate alternate iteneraries. Two kind of events
are considered: planned events such as scheduled construction (Figure 5.1, event1)
and unplanned events such as traffic congestion or accidents (Figure 5.1, event2) that
might happen during the trip. While it is relatively straightforward to take into
consideration the planned events in the itenerary calculation, updating the itenerary,
on-the-fly, considering the unplanned events is challenging for the autonomous cars.
In this scenario, the neighboring entities (e.g., involved cars in the accident, traffic
outdoor cameras, and witnesses with their smartphones) could forward the information
to the cars heading to the accident zone.

Obviously, existing navigation applications such as Google Maps1 or Waze2 are
able to provide human drivers with these information in “real time” and dynamically
adapt/adjust the navigation itenerary based on the application’s configuration and/or
the end-users preferences. Figure 5.1 depicts the fully-cloud architecture associated to
this scenario. The information are first aggregated (communication delay 1) and pro-

1maps.google.com
2waze.com

Motivating use case: towards the next-generation autonomous cars 91

cessed (processing delay) in remote Web servers before being transmitted to end users
with some time shifting (communication delay 2). This inevitably causes considerable
delays that could be tolerated for regular cars, but not for the autonomous ones.

Figure 5.1: The communication flow for autonomous cars - fully-cloud architecture

To address these limitations, an alternative for autonomous cars is to get advantage
from the cloud continuum and outsource part of their computation and data analytics
to external but very close resources in the neighborhood as it is depicted in Figure 5.2.
These resources could be implemented as fog/edge nodes and then host the services
that will be able to gather (communication delay 1), parse (processing delay) and forward
to the car any relevant information for its navigation (communication delay 2). The
communication delays between the car and these remote services are then extremely
short and do not affect the proper functioning of the car. This is quite challenging
keeping in mind that, as discussed in Section 1.3, the topology of the fog/edge networks
is highly dynamic. As a reminder, fog/edge nodes might arbitrarily (dis)appear and/or
move and change location during runtime. This will inevitably increase the probability
of QoS degradation at runtime. For instance, the car could communicate with a remote
service to get additional relevant data for its navigation. The service is hosted and
executed over a close edge device. A sudden workload increase (in the edge node), a
system shutdown (of the edge node), or a car movement are among the reasons that
would trigger a significant increase of the latency between the car and the edge node
which might cause the car not to operate in a proper and safe way. The associated
QoS management techniques must be efficient enough to detect and fix any prospective
QoS degradation and continuously able to maintain the network latency within the
required range for the autonoumous car proper functioning. To that end, it is obvious
that a reactive QoS management will not be able to meet such requirement and that

92 Open Issues and Research Directions

proactive QoS management with the suitable techniques would allow to detect and fix
the prospective QoS degradation that might happen at runtime is more appropriate.

Figure 5.2: The communication flow for autonomous cars - hybrid cloud-edge architecture

5.2 Proactive QoS management

The conducted literature review highlighted a close relationship between QoS man-
agement in dynamic and mobile environments from one side and event-based service
placement problems in these environments from the other side. Indeed, managing
QoS metrics (e.g., latency, bandwidth, jitter, response time, packets loss) in dynamic
and mobile environments often meant (re)placing and/or migrating the services over
the available resources in such way to optimize the QoS metrics with respects to the
applications/services requirements. Figure 5.3 shows the classification of the relevant
literature [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136]
[137] [138] [139]. The performed classification takes into consideration the work that
only deal with network dynamicity (with no support of the edge nodes/end-users
mobility), as well as, the work that deal with both characteristics. For each one of
them, the classification tree involves the reactive and the proactive QoS management
approaches.

To set the stage for proactive QoS management, a prelimenary research work is
already done. It relies on the case study introduced in Section 5.1 and aims to support
a statistical approach for QoS metrics prediction (see the highlighted branch in the
classification tree). The considered service metric is the network latency. The latter
refers to the communication delay from the vehicle to the computing edge node, the
processing time of the service, and the communication delay from the computing node
back to the vehicle. It is calculated through the following equation:

latencycni = cdv,cni + texeccni + cdcni,v (5.1)

Proactive QoS management 93

Figure 5.3: Classifiation of the literature for service placement

Where:

• latencycni is the latency of the ith computing node (cni).

• cdv,cni is the communication delay from the vehicle v to the cni.

• texeccni is the processing time of the decision module by cni.

• cdcni,v is the communication delay from cni back to v.

The selection of this approach was motivated by the target deployment environ-
ment (i.e., mobile and resources-limited edge nodes). Indeed, statistical models are
less demanding than other machine learning models such as the neural networks. For
the considered use case, predicting the latency degradation implies identifying the op-
timal next edge node to host and execute the remote service and proceeding with its
re placement (i.e., stateful migration) to that node, in advance, before even than the
QoS degradation occurs. This process should be completely independent and trans-
parent to the moving autonomous car. Figure 5.4 depicts the high-level architecture
introduced in [12] and enabling the next-generation autonomous car to ride and in-
tercat with the smart city edge devices. For autonomous navigation and cruising, the
car relies on several services, part of the Autonomous car domain:

• The Perception service relies on the car’s equipment (e.g. sensors, cameras) to
gather the navigation data like video stream and distances from other objects
on the road.

94 Open Issues and Research Directions

Figure 5.4: High-level architecture of the next-generation autonomous car case study

• The Collecting-data service is in charge of collaborating with the other devices
in the car’s neighborhood (e.g. crossing cars, edge nodes) to collect real-time
information (e.g. traffic, accidents, temporary roads closure) that are relevant
with the car itinerary.

• The Navigation service is responsible of determining the shortest itinerary of
the car trip. Based on the real-time information gathered by the Collecting-data
service, the navigation itinerary is likely to be updated, on-the-fly, so that the
car gets to destination with the minimum of delays.

• The Decision service implements the driving policies and specifies the car be-
havior in traffic condition (e.g. rolling into a traffic lane, brake and stop when
traffic light is red, yield crossing pedestrians). The inputs of this module is
provided by the Perception service.

• The Storage service takes care of saving the navigation data (e.g. traffic video
stream) provided by the Perception service, as well as, the taken decisions by
the Decision service in appropriate datacenters for prospective offline processing
(e.g. optimization and learning purposes).

The 5G telco network domain includes entities at the core and the edge of the
network. On one hand, the core of the 5G telco network involves cloud data centers
for storage purposes, as well as, 3GPP IP Multimedia Subsystem (IMS) servers that
are required for the inner functioning of a telco network are deployed in the core.
For instance, it hosts the Home Subscriber Server (HSS) responsible of managing the
subscribed cars within the network. On the other hand, the edge carries the edge nodes
that implement the MEC servers (e.g. smartphone, laptop) and representing potential

Proactive QoS management 95

placement hosts for the latency-sensitive services of the autonomous car. Edge nodes
could be mobile (e.g. smartphones) and might change their location during runtime.

The third domain represents the smart city infrastructure and facilities. According
to mobile telecommunication networks specification, the city is split up into distinct
geographic zones assimilated as logic Points of Presence (PoPs) of the 5G network.
Each PoP has its own Access Point, Distributed Antenna Systems (DAS), IMS Pres-
ence Server, an Edge Node Administrator and an Orchestrator Engine. The Presence
Server lists and tracks the edge nodes of a PoP. The Edge Node Administrator is
responsible of managing the required runtime over them. The Orchestration Engine
is responsible of deploying and executing the autonomous car services.

For this study, the outsourced service is the Decision service and th selected model
is the Autoregressive Integrated Moving Average (ARIMA). The latter is often used for
time series prediction. ARIMA models could represent different types of time series,
e.g., exclusive AutoRegressive (AR), that predicts the future values of the time series
based on its own p past behavior, i.e., lagged values; exclusive moving average (MA),
that predicts the future values of the time series based on its own q past forecast errors;
and mixed AR and MA (ARMA) series. The integrated part I of order d represents the
number, i.e., d, of the differences needed to make the time series stationary. According
to [140], an ARIMA model of orders p, d, and q, i.e., ARIMA(p, d, q), can be written
as:

y′t = c+ φ1y′t−1 + · · ·+ φpy′t−p + θ1εt−1 + · · ·+ θqεt−q + εt (5.2)

where y′t is the differenced series, c is the intercept, φ1 · · ·φp represent the coefficients
of the lagged values, y′t−1y · · · ′t−p represent the lagged values of y′t, θ1 · · · θq represent
the coefficients of the past forecast errors, εt−1 · · · εt−q represent the past forecast errors
and εt represents the white noise.

5.2.1 ARIMA model design and features configuration

Considering the three previously introduced parameters of ARIMA ’i.e., p, d and q),
Algorithm 10 was designed to to determine d. Its associated complexity is O(n).
Different d values are tested in a given range, determining the number of differences
needed to make the time series stationary. A stationarity check is done for each selected
value using the Augmented Dickey-Fuller (ADF) unit-root test on the differenced time
series. The first value that makes the time series stationary is chosen.

The identification of p and q is made using a grid search method that takes into
consideration all combinations of parameters in a given range and selects the combi-
nation with the lowest Akaike’s Information Criterion (AIC) value as described by
Algorithm 11. The AIC, introduced in [141], imposes a penalty on the adjustment
quality of models with multiple parameters and is expressed by Equation 5.3, intro-
duced in [142].

AIC = −2× LL+ (log(n) + 1)×NP (5.3)

96 Open Issues and Research Directions

Algorithm for the detection of the parameter d
1 Compute-d(series, maxd)

; // series represents a training set
; // maxd represents the maximum number of differences

2 bestd← −1
3 d← 1
4 checkstat← False
5 while ¬checkstat AND d ≤ maxd do
6 series← difference(series)
7 checkstat← adftest(series)
8 d← d+ 1

9 if checkstat then
10 bestd← d− 1

11 return bestd

where LL is the likelihood function logarithm, n refers to the observations number of
the TS, and NP comprises the parameters’ number [142]. Algorithm 11 implements
the designed procedure to detect the best combination of the ARIMA’s orders p and
q that minimizes the AIC. Its associated time complexity is O(n2).

Grid search algorithm to determine the best p and q parameters
1 GridSearch(series, maxp, maxq, d, aicthreshold)

; // series represents a training set
; // maxp represents the maximum lag length of AR
; // maxq represents the maximum lag length of MA

2 bestaic← aicthreshold
3 bestp← 0
4 bestq ← 0
5 for p← 1 to maxp do
6 for q ← 1 to maxq do
7 ar ← ARIMA(endog = series, order(p, d, q))
8 model ← ar.fit()
9 if bestaic < model.aic then

10 bestaic← model.aic
11 bestp← p
12 bestq ← q

13 return bestp, bestq

The resulting ARIMA model along with the configured three parameters is applied

Proactive QoS management 97

to the time series to obtain the predicted latency values.

5.2.2 Early validation and model evaluation

To validate and evaluate the prediction model, a realife dataset was generated from the
running prototype introduced in [12]. The dataset contains 10000 entries listing several
QoS metrics (i.e., latency, CPU workload, memory workload) that are collected, every
single second, by an autonomous car during its movement. As for the latency, each line
lists the real and concrete network latency values between the car (i.e., Soundfounder
PiCar X3) and 3 different edge devices (i.e., Raspberry Pi3). The first edge device is
mobile and changes location during runtime while the second and third devices are
not mobile.

Prior to the model execution, several outliers detection techniques were tried on the
real dataset. Similarly, the outliers detection scope, as well as, the outliers processing
operations were varied each time. Table 5.1 details the most relevant combinations of
the performed configurations for the outliers processing.

Table 5.1: List of defined configurations for outliers detection and processing

Configuration Detection technique Size Detection scope Operation
C1 Box Plot Sliding window Time series Replacement
C2 Moving Mean Sliding window Time series Replacement
C3 Moving Mean Cumulative Time series Replacement
C4 Moving Mean Cumulative Time series Removal
C5 Moving Mean Cumulative Residual Removal

As for the evaluation, 3 metrics were considered, i.e., Mean Absolute Error (MAE),
Mean Square Error (MSE) and Root MSE (RMSE). The obtained values are showed
in Table 5.2. The reader should note that these values are truncated to 4 decimal
digits for the RMSE and the MAE and 3 decimal digits for the MSE.

Table 5.2: The obtained prediction results with ARIMA

Configuration RMSE MSE MAE
C1 3.4206 ∗ 10−2 1.170 ∗ 10−3 2.8121 ∗ 10−2
C2 3.4127 ∗ 10−2 1.164 ∗ 10−3 2.8170 ∗ 10−2
C3 2.9305 ∗ 10−2 0.858 ∗ 10−3 2.5230 ∗ 10−2
C4 2.9379 ∗ 10−2 0.863 ∗ 10−3 2.5162 ∗ 10−2
C5 3.0321 ∗ 10−2 0.919 ∗ 10−3 2.5340 ∗ 10−2

Based on the obtained results, the best configuration, for this specific case study
and considering the given dataset, is (C3). Figure 5.5 depicts the obtained results

3docs.sunfounder.com/projects/picar-x

98 Open Issues and Research Directions

with a focus on the computed element size. It shows the obtained predictions for
cumulative (C3) versus sliding window (C2). Figure 5.6 depicts the obtained results
with a focus on the considered outliers processing operation. It shows the obtained
predictions for the replacement operation (C3) versus the removal of the outliers
operation (C4).

Figure 5.5: The obtained latency predictions - computed element size: Cumulative (C3) vs.
Sliding window (C2)

Figure 5.6: The obtained latency predictions - operation selection: Replacement (C3) vs.
Removal (C4)

In the near future, it is intented to generalize this work and design generic proac-
tive QoS management techniques to predict any prospective QoS degradation. The
objective involves supporting any use case (e.g., autonomous cars, virtual/augmented
reality, adaptive streaming) that would be provisioned in the cloud continuum. The
target QoS techniques should be flexible and tunable enough to support the wide
variety of these applications QoS requirements from one side and to take into consid-
eration the hosting environments (e.g., hybrid cloud/edge, IoT, NFV). Furthermore,
the associated data analytics models should be pluggable to optimize the accuracy
and the proactive capability. Better yet, it is envisaged to design a framework that
would be capable to dynamically switch from one data analytics model to another
to optimize even more the predictions. Indeed, considering the constant changes in
terms of network dynamicity and the strong mobility in the target environments, it is
difficult to envision that one unique model could be the optimal one during the whole

Haptic communications and tactile Internet 99

runtime. Ideally, the changes in the network would also trigger a dynamic and auto-
matic switch from one model to another at runtime. To that end, a comprehensive
study of the data analytics models that support the time series will be conducted and
the lessons learned will be used to build a knowledge database and a set of guidelines,
useful to select the most relevant model considering the environement status and the
applications requirements in terms of QoS.

5.3 Haptic communications and tactile Internet

A long term objective would be the achievement of the haptic communications in pub-
lic service providers’ infrastructures which would imply enabling the so-called “tactile
Internet”. Generally speaking, haptic communication is nonverbal and refers to the
way humans communicate and interact via the sense of touch [143]. In computer
networking, haptic communications refers to the emerging field of research that aims
to improve human-human and human-machine interactions. Basically, it aims to aug-
ment traditional audiovisual communications by the haptic modality and henceforth
offer to end-users the ability to physically get in touch with remote humans and
objects. For instance, in [144], the authors propose a prototype that helps poeple
suffering from phopbia. The prototype provides end-users suffering from phobia (e.g.,
touching spiders) to have access to a virtual and safe reality environment where they
can have a therapy session under the guidance of a remote expert therapist.

The Tactile Internet has been defined by the International Telecommunication
Union in August 2014 [145] as an Internet network featuring low latency, an extremely
short transit, a high availability, high reliability and a high level of security. This
technology rests on cloud computing proximity (i.e., multi-access edge computing) and
the augmented/virtual reality for sensory and haptic controls [144]. Figure 5.7 depicts
the reference architecture of the tactile Internet as it was introduced in [146]. This
architecture has to meet to strict QoS requirements in terms of security, jitter, ultra-
responsiveness and ultra-reliability. Basically, this could be translated to 1ms round
trip latency between the master entity (e.g., glove equipped with sensors) and the
slave entity (e.g., robot arm) going through the Radio Area Network (RAN) and the
control servers at the edge of the network. Remote surgery and remote maintenance
are among the most common use cases that the tactile Internet is expected to deliver.

Adhering to such strict QoS requirements impose strong management operation on
the service providers’ infrastructure. It is clear that efficient and reliable proactive QoS
management is required to enable haptic communication between the master and the
slave and, consequently, enable and maintain the tactile Internet during the runtime.
To that end, service providers need (i) to anticipate any prospective breakdown in
the network infrastructure or any eventual QoS degradation before it happens and
(ii) to execute the necessary management actions (e.g., instantiate a new network
resource, scale up the network resource, reconfigure the network resource, update the
traffic rules of a network controller) in advance to prevent the QoS degradation. By

100 Open Issues and Research Directions

Figure 5.7: High-level architecture of the tactile Internet

doing so, the service providers could be able to maintain the required 1ms round trip
latency. A possible starting alternative is to couple the classical QoS management
techniques with appropriate and efficient machine learning models that should be
able to provide the service providers with accurate predictions on the potential QoS
variation over the time. This is challenging taking into consideration that, from one
side, the traffic/data in the network are often stateless and, from the other side, the
most accurate machine learning algorithms rely on stateful models. One can imagine
introducing an assessment intermediate models that, considering a network traffic QoS
dataset, it could inject the appropriate context, or simply adjust it, to the target use
case before proceeding with the model training.

Chapter 6

Conclusion
The adoption of Service-Oriented Architecture (SOA) in cloud computing has pio-
neered the way how applications and services are built. One further noteworthy fact,
cloud resources (e.g., datacenters, servers, storage volumes and even networks) has
now come to be provisioned as SOA-basd software and according to the “Everything-
as-a-Service” (XaaS) utility model. This means that the lifecycle of these resources is
the very same lifecycle as the one introduced by the service computing paradigm in
the 2000s.

The rise of the so-called next-generation networks, in conjunction with the evo-
lution of the cloud computing to the cloud continuum, as well as, the advancement
of the harwdare paving the way for machine learning support, have enabled novel
emerging applications that range from unmanned systems (e.g., autonomous cars, car
platooning, augmented/virtual reality and adaptive streaming are among the exam-
ples of emerging online applications. The fifth-generation/sixth-generation (5G/6G)
wireless telco network, Content Delivery Networks (CDN) and Information-Centric
Networks (ICN) are considered as next-generation networks and among the prospec-
tive hosting environments for these emerging applications.

Such applications and services are distributed, modular, reusable through compo-
sition techniques (e.g., service orchestration, service choreography) and might adopt
novel design patterns that are even more distributed (e.g., micro services, Function-as-
a-Service). Moreover, they are provisioned according to the service computing lifecycle
management process. Broadly speaking, service developers design and develop the ap-
plications’ services that will be deployed, executed and, then, managed, at runtime,
in the target environment.

From one side, these emerging applications’ services are getting more and more
heterogeneous, distributed and mobile. They impose strong conditions and require
strict Quality of Service (QoS) management on the hosting service providers. On the
other side, the target runtime environments for these applications are getting more
and more distributed, hetergenous, dynamic and mobile. Obviously, these bring with
them their own pressures and opportunities from service lifecycle pointof view.

This research work focused on re-considering the service lifecycle management
process to support the provisioning of novel and emerging applications in the cloud
continuum and its inherent next-generation networks and infrastructures. It proposes
several research contributions that cover and support every single step of the process.

101

102 Conclusion

Each chapter of this manuscript is dedicated to the work done for one or several
related lifecycle steps. For practical reasons and for the sake of efficiency, the target
contributions mostly focus on NFV domain and consider the Virtualized Network
Functions (VNF) as the service building block of the cloud continuum.

For the service design, publication and discovery, a domain-independent VIrtual-
ized networK functIoN ontoloGy (VIKING for short) that enables a comprehensive
and generic description of the VNF capabilities from functional and non-functional
perspectives. In addition, a semantic-based matchmaker that relies on VIKING to en-
sure the best matching between requested VNFs and published ones were designed and
contributes to enabling accurate and automatic VNF discovery. As for validation, a
prototype called “Mastermyr Chest tool box”, including VIKING’s instantiation along
with the matchmaker in Content Delivery Networks (CDN) domain was implemented.
This prototype illustrates a new way to contribute to the redesign of the CDN’s tra-
ditional architecture by enabling value-added CDN service provisioning in an agile
and dynamic manner. The performed experiments highlight the value-added and the
reasonable overhead with regad to classical semantic-based approaches such as Web
Ontology Language for Web Services (OWL-S).

For the service instantiation and deployment, a dynamic and agile VNF wiring
(service composition) and instantiation (service deployment) approach is designed
and implemented. This contribution introduces a model, as well as, an exhaustive
procedure to: (i) draw the composition of a set of elementary VNF, (ii) instantiate
and deploy the resulting Network Service (NS) in a target environment. This work
advocated for “routing VNFs” with re-configurable wiring capabilities as a novel con-
cept that would allow agile and dynamic VNFs wiring from design-time to run-time.
As for validation, a proof-of-concept was developed as a plugin on top of the ETSI
Open Source MANO orchestrator. The performed experiments show that the pro-
posed approach: (i) performs better than the SDN-based solution in terms of latency
and Mean Time-To-Operation (MTTO), and (ii) shows that the associated cost, with
regard to SDN-based solution, remains acceptable.

For service management, a coordination-free orchestration for consistent VNF re-
configuration at runtime was introduced. The proposed model supports a prospective
NS deployment under multi-domain federations while taking into consideration the
non-functional dependencies between the involved VNF in the orchestration. Unlike
the current state of the art, the proposed approach skips the coordination phase,
necessary in ETSI NFV to avoid inconsistencies, and offers strong eventual consis-
tency while supporting the non-functional dependencies during the reconfiguration.
Two variants of the reconfiguration algorithm were designed: (i) A preventive vari-
ant, where transient inconsistent states are prevented, and (ii) a corrective variant
, where intermediary inconsistent states are tolerated during the updating process.
The performed evaluation in reallife cloud-based network federation showed that the
preventive variant is stable and its performance is similar with different parameters
while the corrective variant is sensitive to parameters. With high delays, the correc-

103

tive variant behaves like the preventive one. With low delays, it offers performance
similar to the ETSI standard reconfiguration procedure but without the coordination
phase and with the support of non-functional dependencies during the process.

Potential research directions for this work would be designing novel and appropri-
ate models and procedures to cover additional aspects of service management lifecycle
phase such as the predictive QoS management. An early investigation work proved
the relevance and the feasbility of this research direction. The considered case study
implements a next-generation autonomous car that interact with edge nodes in its
neighborhood to offload part of its processing and rely on predictive network latency
model to place part of the cars’ services over the remote edge nodes. Yet another
research perspective would be the adaptation and the inegration of innovative mech-
anisms that would allow such applications, provisioned in the cloud continuum, to
dynamically select the most appropriate machine learning models for the data ana-
lytics (e.g., the QoS prediction) and, even more, switch from one model to another at
runtime considering a pre-defined list of criteria such as the temporal data stationarity,
the selected QoS metrics and the requirements of the running applications.

104 Conclusion

Appendix 1: List of Publications
• For journal publications, the Scimago Journal & Country Rank (SJR) ranking

(2023) and the journal impact factor (2023) are indicated for each entry.

• For conference, demonstration and poster publications, Era Core 2023 ranking
is indicated for each entry.

• The post PhD publications (2015-2023) are in red.

Peer-Reviewed Journal Articles

1. X. Li, Z. Zhou, Q. He, Z. Shi, W. Gaaloul, S. Yangui. Re-Scheduling IoT Services
in Edge Networks. IEEE Transactions on Network and Service Management,
2023, in press. (SJR Q1, Impact Factor = 5.3)

2. D. Zhao, Z. Zhou, Z. Cai, S. Yangui, X. Xue. ASTL: Accumulative STL with
a Novel Robustness Metric for IoT Service Monitoring. IEEE Transactions on
Mobile Computing, Vol.22, Issue.10, pp. 5751-5768, 2023, IEEE. (SJR Q1,
Impact Factor = 7.9)

3. H. Sliman, I. Megdiche, L. Alajramy, A. Taweel, S. Yangui, A. Drira, E. Lamine:
MedWGAN based synthetic dataset generation for Uveitis pathology. Intelligent
Systems with Applications. Vol.18. p. 200223, 2023, ELSEVIER. (SJR Q1,
Impact Factor = 9.4)

4. S. Ghrab, I. Lahyani, S. Yangui, M. Jmaiel: A Core IoT Ontology for Automa-
tion Support in Edge Computing. Service Oriented Computing and Applica-
tions. Vol.17, Issue.1, pp. 25-37, 2023, Springer. (SJR Q2, Impact Factor =
1.3)

5. J. C Cisneros, S. E. Pomares Hernandez, J. C. Perez Sansalvador, L. M. Rodriguez-
Henriquez, S. Yangui, K. Drira. Coordination-free Multi-domain NFV Orches-
tration for Consistent VNF Forwarding Graph Reconfiguration. IEEE Transac-
tions on Network and Service Management, Vol.19, Issue.4, pp.5133-5151, 2022,
IEEE. (SJR Q1, Impact Factor = 5.3)

6. J. C Cisneros, S. Yangui, S. E. Pomares Hernandez, K. Drira. A survey on dis-
tributed NFV multi-domain orchestration from an algorithmic functional per-
spective. IEEE Communications Magazine, Vol.60, Issue. 8, pp. 60-65, 2022,
IEEE. (SJR Q1, Impact Factor = 11.2)

7. J. C Cisneros, S. E. Pomares Hernandez, S. Yangui, J. C. Perez Sansalvador,
L. M. Rodriguez-Henriquez, K. Drira. VNF-based network service consistent
reconfiguration in multi-domain federations: A distributed approach. Journal of

105

106 Conclusion

Network and Computer Applications, Vol. 195, pp. 103226, 2021, ELSEVIER.
(SJR Q1, Impact Factor = 8.7)

8. N. E. Nouar, S. Yangui, N. Faci, K. Drira, S. Tazi. A Semantic virtualized net-
work functions description and discovery model. Journal of Computer Networks,
Vol.195, pp. 108152, 2021, ELSEVIER. (SJR Q1, Impact Factor = 5.6)

9. A. Yahyaoui, T. Abdellatif, S. Yangui, R. Attia. READ-IoT: Reliable Event and
Anomaly Detection Framework for the Internet of Things. IEEE Access, Vol.9,
pp. 24168-24186, 2021, IEEE. (SJR Q1, Impact Factor = 3.9)

10. S. Yangui. A Panorama of Cloud Platforms for IoT Applications Across Indus-
tries. Sensors, Vol.20, Issue 9, 2701, 2020, MDPI. (SJR Q1, Impact Factor
= 3.9)

11. A. Soltanian, F. Belqasmi, S. Yangui, M. A. Salahuddin, R. H. Glitho, H. El-
biaze. A Cloud-Based Architecture for Multimedia Conferencing Service Provi-
sioning. IEEE Access, Vol.6, pp. 9792-9806, 2018, IEEE. (SJR Q1, Impact
Factor = 3.9)

12. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, P. A. Po-
lakos. A Comprehensive Survey on Fog Computing: State-of-the-art and Re-
search Challenges. IEEE Surveys and Tutorials, Vol.20, Issue 1, pp.416-464,
2018, IEEE. (SJR Q1, Impact Factor = 35.6)

13. S. Yangui, S. Tata. An OCCI Compliant Model for PaaS Resources Description
and Provisioning. The Computer Journal: Science and Mathematics, Vol.59,
Issue 3, pp.308-324, 2016, Oxford Journals. (SJR Q2, Impact Factor = 1.4)

14. S. Yangui, R. H. Glitho, C. Wette. Approaches to End-user Applications Porta-
bility in the Cloud: A Survey. IEEE Communications Magazine, Vol.54, Issue
7, pp.138-145, 2016, IEEE. (SJR Q1, Impact Factor = 11.2)

15. S. Yangui, S. Tata. The SPD Approach to Deploy Service-based Applications in
the Cloud*. Concurrency and Computation: Practice and Experience, Vol.17,
Issue 15, pp.3943-3960, 2015, John Wiley & Sons Ltd. (SJR Q2, Impact
Factor = 2)
*Best Research Publication Award - Université Val d’Essonne .

16. S. Yangui, I.J. Marshall, J.P. Laisne, Samir Tata. CompatibleOne: The Open Source
Cloud Broker. Journal of Grid Computing, Vol.12, Issue 1, pp.93-109, 2014, Springer
Netherlands. (SJR Q1, Impact Factor = 4.1)

17. S. Moalla, S. Yangui. Discovery of Capacity-driven Web services. International Journal
of Web Applications, Vol.2, Issue 4, pp.261-279, 2010, DLine Editor. (Impact Factor
= 0.7)

107

Peer-Reviewed Conference Papers

18. A. Abusafia, A. Bouguettaya, A. lakhdari, S. Yangui: Context-Aware Trust-
worthy IoT Energy Services Provisioning, Internationl Conference on Service-
Oriented Computing, ICSOC’23, in press, Rome, Italy, November 28-December
1, 2023. (Era core A)

19. D. Zhao, Z. Zhou, X. Xue, J. Diao, S. Yangui, B Liu, W Gaaloul: A Novel
Logic-Based Adaptive Monitoring for Composite Edge Services. The IEEE In-
ternational Conference on Web Services, IEEE ICWS’23, pp. 310-317, Chicago,
USA, July 2-8, 2023. (Era core A)

20. H. Sliman, I. Megdiche, S. Yangui, A. Drira, I. Drira, E. Lamine: A Synthetic
Dataset Generation for the Uveitis Pathology Based on MedWGAN Model. The
ACM/SIGAPP Symposium On Applied Computing, ACM/SIGAPP SAC’23,
pp. 559-566, Tallinn, Estonia, March 27-32, 2023. (Era core B)

21. D. Zhao, Z. Zhou, Z. Cai, T. Long, S. Yangui, X. Xue. ASTL: Accumulative
Signal Temporal Logic for IoT Service Monitoring. The IEEE International
Conference on Web Services, IEEE ICWS’22, pp. 256-265, Barcelona, Spain,
July 11-25, 2022. (Era core A)

22. N. E. Nouar, S. Yangui, N. Faci, K. Drira, S. Tazi. Agile and Dynamic Virtual-
ized Network Functions Wiring in Network Services. The IEEE Conference on
Cloud Computing, IEEE CLOUD’21, pp. 322-332, virtual conference, October
18-24, 2021. (Era core B)

23. J.C. Cisneros, S. Yangui, S.E. Pomares Hernandez, J.C Perez Sansalvador, L.
M. Rodriguez-Henriquez, K. Drira. Towards Consistent VNF Forwarding Graph
Reconfiguration in Multi-domain Environments. The IEEE Conference on Cloud
Computing, IEEE CLOUD’21, pp. 355-366, virtual conference, October 18-24,
2021. (Era core B)

24. X. Li, Z. Zhou, Z. Zhao, S. Yangui, W. Zhang. Data and Computation-Intensive
Service Re-Scheduling In Edge Networks. International Conference on Web
Services, IEEE ICWS’21, pp.389-396, virtual conference, October 18-24, 2021.
(Era core A)

25. J. Tang, X. Xue, S. Yangui, Z. Zhou. Efficient Search for Moving Object Devices
in Internet of Things Networks. International Conference on Web Services, IEEE
ICWS’20, pp.454-462, virtual conference, October 19-23, 2020. (Era core A)

26. J.C. Cisneros, S. Yangui, S.E. Pomares Hernandez, J.C Perez Sansalvador, K.
Drira. Coordination Algorithm for Migration of Shared VNFs in Federated Envi-
ronments. IEEE Conference on Network Softwarization, NetSoft’20, pp.252-256,
virtual conference, June 29- July 3, 2020. (Era core B)

108 Conclusion

27. F. Raissi, S. Yangui, F. Camps. Autonomous Cars, 5G Mobile Networks and
Smart Cities: Beyond the Hype*. IEEE International Conference on Collabora-
tion Technologies and Infrastructures, Wetice’19, pp.180-185, Capri, Italy, June
12-14, 2019. (Era core C)
*Best Research Paper Award.

28. M. Aloui, H. Elbiaze, R.H. Glitho, S. Yangui. Analytics as-a-Service Architecture for
Cloud-based CDN: Case of Video Popularity Prediction. IEEE Consumer Communi-
cations & Networking Conference, CCNC’18, pp. 1-4 Las Vegas, NV, USA, January
12-15, 2018. (Era core B)

29. C. Mouradian, S. Yangui, R.H. Glitho. Robots as-a-Service in Cloud computing: Search
and Rescue in Large-scale Disasters Case Study. IEEE Consumer Communications &
Networking Conference, CCNC’18, pp.1-7, Las Vegas, NV, USA, January 12-15, 2018.
(Era core B)

30. M.A Naceur, S. Yangui, S. Tata, R.H. Glitho. Provisioning of Component-based Ap-
plications Across Multiple Clouds. International Conference on Cloud Computing and
Services Science, CLOSER’17, pp104-114, Porto, Portugal, April 24 -26, 2017.

31. N.T Jahromi, S. Yangui, A. Larabi, D. Smith, M.A. Salahuddin, R.H. Glitho, R. Brun-
ner, H. Elbiaze. NFV and SDN-based Cost-efficient and Agile Value-added Video Ser-
vices Provisioning in Content Delivery Networks. IEEE Consumer Communications
& Networking Conference, CCNC’17, pp.671-677, Las Vegas, NV, USA, January 8-11,
2017. (Era core B)

32. S. S Chauhan, S. Yangui, R.H. Glitho, C. Wette. A Case Study for a Presence Service
in the Cloud. IEEE International Conference on the Network of the Future, NoF’16,
pp. 1-7, Buzios, Brazil, November 16-18, 2016.

33. M. Abu-Lebdeh, S. Yangui, D. Naboulsi, R.H. Glitho, C. Wette. A Virtual Network
PaaS for 3GPP 4G and Beyond Core Network Services. IEEE International Conference
on Cloud Networking, Cloudnet’16, pp.7-13, Pisa, Italy, October 3-5, 2016.

34. A.F. Bin Alam, A. Soltanian, S. Yangui, M.A Salahuddin, R.H. Glitho, H. Elbiaze. A
Cloud Platform as-a-Service for Multimedia Conferencing Service Provisioning. IEEE
Symposium on Computers and Communication, ISCC’16, pp.289-294, Messina, Italy,
June 27-30, 2016. (Era core B)

35. S. Yangui, P. Ravidran, O. Bibani, R.H. Glitho, N.B. Hadj Alouane, M. Morrow, P.
Polakos. A Platform as-a-Service for Hybrid Cloud/Fog Environments. IEEE Inter-
national Symposium on Local and Metropolitan Area Networks, LANMAN’16, pp.1-7,
Rome, Italy, June 13-15, 2016. (Era core C)

36. S. Yangui, K. Klai, S. Tata. Deployment of Service-based Processes in the Cloud using
Petri Net Decomposition. International Conference on COOPERATIVE INFORMA-
TION SYSTEMS, CoopIS’14, pp.57-74, Amantea, Italy, October, 2014. (Era core
B)

109

37. S. Yangui, M. Nasrallah, S. Tata. PaaS-independent Approach to Provision Appro-
priate Cloud Resources for SCA-based Applications Deployment. IEEE International
Conference on Semantics, Knowledge & Grids, Beijing, SKG’13, pp. 14-21, Beijing,
China, October, 2013. (Era core - National China)

38. M. Sellami, S. Yangui, M. Mohamed, S. Tata. PaaS-independent Provisioning and
Management of Applications in the Cloud. IEEE International Conference on Cloud
Computing, CLOUD’13, pp. 693-700, Santa Clara Marriott, CA, USA, June-July, 2013.
(Era core B)

39. S. Yangui, S. Tata. CloudServ: PaaS Resources Provisioning for Service-based Ap-
plications. IEEE International Conference on Advanced Information Networking and
Applications, AINA’13, pp.522-529, Barcelona, Spain, March 25-28, 2013. (Era core
B)

40. A. Omezzine, S. Yangui, N. Bellamine, S. Tata. Mobile Service Micro-containers for
Cloud Environments. IEEE International Conference on Collaboration Technologies
and Infrastructures, Wetice’12, pp.154-160, Toulouse, France, June 2012. (Era core
C)

41. S. Yangui, M. Mohamed, S. Tata, S. Moalla. Scalable Service Containers*. IEEE
International Conference on Cloud Computing Technology and Science, CloudCom’11,
pp.348-356, Athens, Greece, November 29 - December 1, 2011. (Era core C)
*Best Research Paper Award .

42. M. Mohamed, S. Yangui, S. Moalla, S. Tata. Service Micro-container for Service-based
Applications in Cloud Environments. IEEE International Conference on Collaboration
Technologies and Infrastructures, Wetice’11. pp.61-66, Paris, France, June 27-29, 2011.
(Era core C)

Peer-Reviewed Demos, Posters & Workshops Papers

43. F. Raissi, C.A. Ouedraogo, S. Yangui, F. Camps, N.B. Hadj-Alouane. Paving
the Way for Autonomous Cars in the City of Tomorrow: A Prototype for Mo-
bile Devices Support at the Edges of 5G Network*. Internationl Conference
on Service-Oriented Computing, ICSOC’18, pp.481-485, Hangzhou, Zhejiang,
China, November 12-15, 2018. (Era core A)
*Best Demo Award.

44. C.A. Ouedraogo, E.F. Bonfoh, S. Medjiah, C. Chassot, S. Yangui. A Prototype for
Dynamic Provisioning of QoS-oriented Virtualized Network Functions in the Internet
of Things. IEEE Conference on Network Softwarization, NetSoft’18, pp.323-325, Mon-
treal, QC, Canada, June 25- 29, 2018. (Era core B)

45. N.T Jahromi, S. Yangui, S. Shanmugasundaram, A. Rangy, R.H. Glitho, A. Larabi, D.
Smith, R. Brunner. A Prototype for Value-added Video Services Provisioning in Con-
tent Delivery Networks*. IEEE Consumer Communications & Networking Conference,
CCNC’17, Las Vegas, NV, USA, January 8-11, 2017. (Era core B)
*Runner-up Demo Award.

110 Conclusion

46. O.Bibani, S. Yangui, C. Mouradian, R.H. Glitho, W. Gaaloul, N.B. Hadj-Alouane, M.
Morrow, P. Polakos. A demo of IoT Healthcare Application Provisioning in Hybrid
Cloud/Fog Environment. IEEE International Conference on Cloud Computing Tech-
nology and Science, CloudCom’16, Luxembourg City, Luxembourg, December 12-15,
2016. (Era core C)

47. O.Bibani, S. Yangui, R.H. Glitho, W. Gaaloul, N.B. Hadj Alouane, M.Morrow, P. Po-
lakos. A Demo of a PaaS for IoT Applications Provisioning in Hybrid Cloud/Fog
Environment*. IEEE International Symposium on Local and Metropolitan Area Net-
works, LANMAN’16, pp.1-2, Rome, Italy, June 13-15, 2016. (Era core B)
*Runner-up Demo Award.

48. S. Yangui, R.H. Glitho, F. Belqasmi, M. Morrow, P. Polakos. IoT End-user Applica-
tions Provisioning in the Cloud: State of the Art. IEEE International Conference on
Cloud Engineering, IC2E’16, pp.232-233, Berlin, Germany, April 4-8, 2016.

49. I. Khan, F.Z Errounda, S. Yangui, R.H Glitho, N. Crespi. Getting Virtualized Wireless
Sensor Networks’ IaaS Ready for PaaS. DCOSS’15, International workshop on Internet
of Things and Ideas and Perspectives, Fortaleza, Brazil, June, 2015. (Era core B)

50. K. Gaaloul, S. Yangui, S. Tata, H.A. Proper. Architecting Access Control for Busi-
ness Processes in the Cloud. IEEE International Workshop on Advanced Information
Systems for Enterprises, IWAISE’14, Hammamet, Tunisia, November, 2014.

51. S. Yangui, S. Tata. Paas Elements for Hosting Service-based Applications. Interna-
tional Conference on Cloud Computing and Services Science, CLOSER’12, pp.476-479,
Porto, Portugal, April 2012.

Appendix 2: Teaching Activities
and Perspectives

LIST OF TAUGHT COURSES

INSA Toulouse (September 2017 - Present)

• Cloud computing and virtualization technologies,

• (Cloud and edge computing) (previously Cloud computing and adaptability),

• Containerization and DevOps,

• Big data architectures and frameworks,

• Software-defined communication infrastructure,

• Software design (UML),

• Object-oriented programming (advanced JAVA),

• ADA programming.

Concordia University (2015 - 2017)

• Cloud networking and service provisioning,

• Higher layer telecommunications protocols.

Télécom SudParis & Télécom Ecole de Management (2011 - 2014)

• Relational databases,

• Application design (UML),

• Object-oriented programming (Java),

• Multi-tier applications.

Faculty of Science of Tunis (2009 - 2011)

• Web programming,

• Graphic user interfaces,

• Algorithmics and data structures,

111

112 Conclusion

• Applied-mathematics programming (Matlab).

It should be noted that additional Master courses were tought as visiting scholar or
guest lecturer in several foreign universities. The list below enumerates some examples
(non-comprehensive list):

• Distributed systems, ISIMM, University of Monastir, Tunisia (2020, 2021)

• Service and Business Process Management, China University of Geosciences in
Beijing, China (2018)

• Internet of Things, ENIT, University of Tunis EL-Manar, Tunisia (2017, 2018)

113

TEACHING MOCKUP & TIMETABLE

The following tables detail the comprehensive list of the taught courses. The first
subsection describes the teaching activities from 2017 (INSA appointment) to present
while the second subsection describes the teaching activities during the PhD and the
postdoc appointments.

Teaching courses and classes (2017 - Present)

INSA Toulouse (1192 Hours)
Year Course Class Hours

2023-24
Virtualization & cloud computing Engineering (Y5)/Master 26 hours
Containerization and DevOps Engineering (Y5) 12 hours

Big data architectures and frameworks Engineering (Y5) 31 hours
Advanced software design Engineering (Y4) 14 hours

Advanced Java Engineering (Y4) 70 hours
Integrator project Engineering (Y5) 24 hours

Cloud and edge computing Engineering (Y5) 25 hours
Collaborative tools and methodologies Engineering (Y4) 10 hours

2022-23
Virtualization & cloud computing Engineering (Y5)/Master 26 hours

Big data architectures and frameworks Engineering (Y5) 28 hours
Advanced software design Engineering (Y4) 14 hours

Advanced Java Engineering (Y4) 70 hours
Integrator project Engineering (Y5) 24 hours

Cloud computing and adaptability Engineering (Y5) 18 hours
Software-defined communication infrastructure Engineering (Y5) 12 hours

2021-22
Virtualization & cloud computing Engineering (Y5)/Master 26 hours

Big data architectures and frameworks Engineering (Y5) 31 hours
Advanced software design Engineering (Y4) 14 hours

Advanced Java Engineering (Y4) 70 hours
Integrator project Engineering (Y5) 24 hours

Cloud computing and adaptability Engineering (Y5) 18 hours

2020-21
Virtualization & cloud computing Engineering (Y5)/Master 26 hours

Big data architectures and frameworks Engineering (Y5) 31 hours
Advanced software design Engineering (Y4) 14 hours

Advanced Java Engineering (Y4) 20 hours
Integrator project Engineering (Y5) 24 hours

Cloud computing and adaptability Engineering (Y5) 18 hours

114 Conclusion

INSA Toulouse (1192 Hours)
Year Course Class Hours

2019-20
Virtualization & cloud computing Engineering (Y5)/Master 23 hours

Big data architectures and frameworks Engineering (Y5) 28 hours
UML & object-oriented programming Engineering (Y4) 61 hours

XML language Engineering (Y5) 37 hours
Integrator project Engineering (Y5) 15 hours

Cloud computing and adaptability Engineering (Y5) 18 hours

2018-19
Virtualization & cloud computing Engineering (Y5)/Master 23 hours

Big data architectures and frameworks Engineering (Y5) 28 hours
UML & object-oriented programming Engineering (Y4) 61 hours

ADA programming Common Curriculum (Y1) 21 hours
Integrator project Engineering (Y5) 11 hours

Cloud computing and adaptability Engineering (Y5) 18 hours

2017-18
Virtualization & cloud computing Engineering (Y5)/Master 23 hours

Big data architectures and frameworks Engineering (Y5) 28 hours
Object-oriented programming Engineering (Y4) 33 hours

ADA programming Common Curriculum (Y1) 21 hours
Integrator project Engineering (Y5) 19 hours

Cloud computing and adaptability Engineering (Y5) 4 hours

Total : 1192 hours

Teaching courses and classes (2010 - 2017)

115

Concordia University (120 Hours)
Year Course Class Hours

2016–2017
Cloud networking and service provisioning Graduate students 20 hours
Higher layer telecommunications protocols Graduate students 20 hours

2015–2016
Cloud networking and service provisioning Graduate students 20 hours
Higher layer telecommunications protocols Graduate students 20 hours

2014–2015
Cloud networking and service provisioning Graduate students 20 hours
Higher layer telecommunications protocols Graduate students 20 hours

Institut Mines-Télécom, Télécom SudParis (99 Hours)
Year Course Class Hours

2013–2014
Relational databases Bachelor (B2) 15 hours
Relational databases Master (M1) 9 hours

Databases Bachelor (B2) 15 hours
UML design & object-oriented programming Engineering (E2) 27 hours

Multi-tier applications Engineering (E2) 21 hours
Algorithmics & Java programming Bachelor (B1) 12 hours

Faculty of Science of Tunis, University Tunis El Manar (150 Hours)
Year Course Class Hours

2009–2010
Web programming Bachelor (B3) 15 hours

Algorithmics & data structures Core Curriculum (L1) 30 hours

2010–2011
Graphic User Interfaces Bachelor (B3) 30 hours

Algorithmics & C programming Bachelor (B2) 30 hours
Oriented-object programming Bachelor (B3) 15 hours

Maple Programming Core Curriculum (L2) 30 hours

Perspectives and future projects

The various teaching activities could be classified into three categories: (i) software
engineering (e.g., software design, programming), virtualization and distributed sys-
tems (e.g., cloud computing, edge computing, service containers), frameworks and
solutions for big data (e.g., NoSQL, Hadoop and MapReduce, Spark).

For the software engineering category, a logical and natural evolution of the teach-
ing courses would be the inclusion of the emerging engineering methodologies such as
the model-driven engineering (i.e., from examples to knowledge) and the design think-
ing. Yet another perspective would be the integration of formal and agile methodolo-
gies (e.g., SCRUM, SAFE) that are now set to become a culture and a mindset in the
IT compagnies.

As for the second category, it is envisaged to evolve the current courses mate-
rial with a focus on service automation. For instance, the adoption of the DevOps
methodologies and tools could even better leverage and bring to light the potential

116 Conclusion

of the cloud continuum in service engineering (e.g., collaborative coding, automatic
testing, continuous integration, continuous development). Obviously, this ties in with
the discussed evolution and the perspectives of the software engineering category.

When it comes to the frameworks and solutions for big data, the current courses
material is oriented “data-engineering”. A short-term objective is upskilling, not only
the materials, but also the course scope to involve and cover “data science” as well.
This includes data analytics and machine learning models in particular.

Last but not least, a promising and challenging teaching perspective would be
setting up and supervising cross-cutting and multidisciplinary study projects where
students might need additional skills, in addition to computer engineering, to un-
derstand, model, design, implement and evaluate the required solutions. Software
business, Information and Communications Technology (ICT) entrepreneurship are
among the required additional skills for carrying out such projects.

Bibliography
[1] The service definition in the cambridge dictionary.

https://dictionary.cambridge.org/dictionary/english/service, May 2023.

[2] The principle of services and services computing. In Services Computing, pages
3–19. Springer Berlin Heidelberg.

[3] B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. Ngu, and A.K. Elma-
garmid. Business-to-business interactions: issues and enabling technologies. The
VLDB Journal The International Journal on Very Large Data Bases, 12(1):59–
85, may 2003.

[4] Sami Yangui. Service-based applications provisioning in the cloud. (Déploiement
des applications à base de services dans le cloud). PhD thesis, Telecom & Man-
agement SudParis, Évry, Essonne, France, 2014.

[5] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C. Naren-
dra, and Bo Hu. Everything as a service (xaas) on the cloud: Origins, current
and future trends. In 2015 IEEE 8th International Conference on Cloud Com-
puting, pages 621–628, 2015.

[6] Christof Ebert and Lorin Hochstein. Devops in practice. IEEE Software,
40(1):29–36, 2023.

[7] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site re-
liability engineering: How Google runs production systems. " O’Reilly Media,
Inc.", 2016.

[8] Vodafone taas: A telecommunications paradigm shift.
https://vodafone.bblabs.co.uk/vodafone-taas-a-telecommunications-paradigm-
shift/, May 2023.

[9] Hanif Ullah, Nithya Gopalakrishnan Nair, Adrian Moore, Chris Nugent, Paul
Muschamp, and Maria Cuevas. 5g communication: An overview of vehicle-
to-everything, drones, and healthcare use-cases. IEEE Access, 7:37251–37268,
2019.

[10] Amine Abouaomar, Soumaya Cherkaoui, Zoubeir Mlika, and Abdellatif Kob-
bane. Resource provisioning in edge computing for latency-sensitive applica-
tions. IEEE Internet of Things Journal, 8(14):11088–11099, 2021.

[11] Fatma Raissi, Clovis Anicet Ouedraogo, Sami Yangui, Frédéric Camps, and Ne-
jib Ben Hadj-Alouane. Paving the way for autonomous cars in the city of tomor-
row: A prototype for mobile devices support at the edges of 5g network. In Xiao

117

118 Bibliography

Liu, Michael Mrissa, Liang Zhang, Djamal Benslimane, Aditya Ghose, Zhongjie
Wang, Antonio Bucchiarone, Wei Zhang, Ying Zou, and Qi Yu, editors, Service-
Oriented Computing - ICSOC 2018 Workshops - ADMS, ASOCA, ISYyCC,
CloTS, DDBS, and NLS4IoT, Hangzhou, China, November 12-15, 2018, Re-
vised Selected Papers, volume 11434 of Lecture Notes in Computer Science, pages
481–485. Springer, 2018.

[12] Fatma Raissi, Sami Yangui, and Frederic Camps. Autonomous cars, 5g mobile
networks and smart cities: Beyond the hype. In 2019 IEEE 28th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE), pages 180–185, 2019.

[13] Lingling Lv, Yanjun Shi, and Weiming Shen. Mobility-as-a-service research
trends of 5g-based vehicle platooning. Service Oriented Computing and Appli-
cations, 15:1 – 3, 2020.

[14] Heekwang Kim and Kwangsue Chung. Multipath-based http adaptive streaming
scheme for the 5g network. IEEE Access, 8:208809–208825, 2020.

[15] Daniel S. Berger. Towards lightweight and robust machine learning for CDN
caching. In Proceedings of the 17th ACM Workshop on Hot Topics in Networks.
ACM, nov 2018.

[16] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J.
Morrow, and Paul A. Polakos. A comprehensive survey on fog computing: State-
of-the-art and research challenges. IEEE Communications Surveys & Tutorials,
20(1):416–464, 2018.

[17] Hani Attar, Haitham Issa, Jafar Ababneh, Mahdi Abbasi, Ahmed AA Solyman,
Mohammad Khosravi, Ramy Said Agieb, et al. 5g system overview for ongoing
smart applications: Structure, requirements, and specifications. Computational
Intelligence and Neuroscience, 2022, 2022.

[18] Sami Yangui. A panorama of cloud platforms for iot applications across indus-
tries. Sensors, 20(9), 2020.

[19] Suryaveer Singh Chauhan, Sami Yangui, Roch H. Glitho, and Constant Wette.
A case study for a presence service in the cloud. In 2016 7th International
Conference on the Network of the Future (NOF), pages 1–7, 2016.

[20] Mohammad Abu-Lebdeh, Sami Yangui, Diala Naboulsi, Roch Glitho, and Con-
stant Wette Tchouati. A virtual network paas for 3gpp 4g and beyond core
network services. In 2016 5th IEEE International Conference on Cloud Net-
working (Cloudnet), pages 7–13, 2016.

Bibliography 119

[21] Jose Ordonez-Lucena, Pablo Ameigeiras, Diego Lopez, Juan J Ramos-Munoz,
Javier Lorca, and Jesus Folgueira. Network slicing for 5g with sdn/nfv: Con-
cepts, architectures, and challenges. IEEE Communications Magazine, 55(5):80–
87, 2017.

[22] The Principle of Services and Services Computing, pages 3–19. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[23] Sami Yangui, Roch H. Glitho, and Constant Wette. Approaches to end-user ap-
plications portability in the cloud: A survey. IEEE Communications Magazine,
54(7):138–145, 2016.

[24] Nour el houda Nouar, Sami Yangui, Noura Faci, Khalil Drira, and Saïd Tazi. A
semantic virtualized network functions description and discovery model. Com-
put. Networks, 195:108152, 2021.

[25] Online, February 2020.

[26] Ulrich Küster, Birgitta König-Ries, Mirco Stern, and Michael Klein. Diane: an
integrated approach to automated service discovery, matchmaking and compo-
sition. In Proceedings of the 16th international conference on World Wide Web,
pages 1033–1042, 2007.

[27] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott,
Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne,
et al. Owl-s: Semantic markup for web services. W3C member submission, 22(4),
2004.

[28] John Domingue, Dumitru Roman, and Michael Stollberg. Web service modeling
ontology (wsmo)-an ontology for semantic web services, 2005.

[29] John F. Sowa. Semantic networks, 1987.

[30] Stuart C Shapiro and William J Rapaport. Sneps considered as a fully inten-
sional propositional semantic network. In The knowledge frontier, pages 262–315.
Springer, 1987.

[31] Shaun Voigt, Catherine Howard, Dean Philp, and Christopher Penny. Repre-
senting and reasoning about logical network topologies. In Madalina Croitoru,
Pierre Marquis, Sebastian Rudolph, and Gem Stapleton, editors, Graph Struc-
tures for Knowledge Representation and Reasoning, pages 73–83, Cham, 2018.
Springer International Publishing.

[32] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer informa-
tion retrieval using self-organizing semantic overlay networks. In Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications - (SIGCOMM). ACM Press, 2003.

120 Bibliography

[33] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-
tic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440, June 2015.

[34] Committee Specification. Tosca simple profile for networkfunctions virtualiza-
tion (nfv) version 1.0. techreport, OASIS, May 2017.

[35] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Tosca:
portable automated deployment and management of cloud applications. In Ad-
vanced Web Services, pages 527–549. Springer, 2014.

[36] Marouen Mechtri, Chaima Ghribi, Oussama Soualah, and Djamal Zeghlache.
Nfv orchestration framework addressing sfc challenges. IEEE Communications
Magazine, 55(6):16–23, 2017.

[37] Georgios Xilouris, Eleni Trouva, Felicia Lobillo, João M Soares, Jorge Carap-
inha, Michael J McGrath, George Gardikis, Pietro Paglierani, Evangelos Pallis,
Letterio Zuccaro, et al. T-nova: A marketplace for virtualized network func-
tions. In 2014 European Conference on Networks and Communications (Eu-
CNC), pages 1–5. IEEE, 2014.

[38] Tm forum information framework (sid) gb922. Technical report, November 2013.

[39] Joao Soares, Miguel Dias, Jorge Carapinha, Bruno Parreira, and Susana Sar-
gento. Cloud4nfv: A platform for virtual network functions. In 2014 IEEE 3Rd
international conference on cloud networking (cloudnet), pages 288–293. IEEE,
2014.

[40] L. C. Hoyos and C. E. Rothenberg. Non: Network function virtualization ontol-
ogy towards semantic service implementation. In 2016 8th IEEE Latin-American
Conference on Communications (LATINCOM), pages 1–6, Nov 2016.

[41] I. Oliver, S. Panda, K. Wang, and A. Kalliola. Modelling nfv concepts with
ontologies. In 2018 21st Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN), pages 1–7, Feb 2018.

[42] N. Bouten, M. Claeys, R. Mijumbi, J. Famaey, S. Latré, and J. Serrat. Semantic
validation of affinity constrained service function chain requests. In 2016 IEEE
NetSoft Conference and Workshops (NetSoft), pages 202–210, June 2016.

[43] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. Network function virtualization: State-of-the-art and re-
search challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262,
2016.

[44] Erl Thomas. Soa principles of service design. Boston: Prentice Hall, 37:71–75,
2007.

Bibliography 121

[45] Andrea Ordanini and Paolo Pasini. Service co-production and value co-creation:
The case for a service-oriented architecture (soa). European Management Jour-
nal, 26(5):289–297, 2008.

[46] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the web services web: an in-
troduction to soap, wsdl, and uddi. IEEE Internet computing, 6(2):86–93, 2002.

[47] Aaron E Walsh. Uddi, Soap, and WSDL: the web services specification reference
book. Prentice Hall Professional Technical Reference, 2002.

[48] Xiaofeng Tao, Yan Han, Xiaodong Xu, Ping Zhang, and Victor C. M. Leung.
Recent advances and future challenges for mobile network virtualization. Science
China Information Sciences, 60(4):040301, Mar 2017.

[49] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network
virtualization. Computer Networks, 54(5):862–876, apr 2010.

[50] Luis Cuellar Hoyos and Christian Esteve Rothenberg. Non: Network function
virtualization ontology towards semantic service implementation. In 2016 8th
IEEE Latin-American Conference on Communications (LATINCOM), pages 1–
6. IEEE, 2016.

[51] Yasmine M Afify, Nagwa L Badr, Ibrahim F Moawad, and Mohamed F Tolba. A
comprehensive business domain ontology for cloud services. In 2017 Eighth In-
ternational Conference on Intelligent Computing and Information Systems (ICI-
CIS), pages 134–143. IEEE, 2017.

[52] Artan Mazrekaj, Isak Shabani, and Besmir Sejdiu. Pricing schemes in cloud
computing: An overview. 2016.

[53] Network Functions Virtualisation NFV. Etsi gs nfv-sec 009 v1. 1.1 (2015-12).
2015.

[54] Shankar Lal, Tarik Taleb, and Ashutosh Dutta. Nfv: Security threats and best
practices. IEEE Communications Magazine, 55(8):211–217, 2017.

[55] Jagruti Sahoo, Mohammad Ali Salahuddin, Roch H. Glitho, Halima Elbiaze,
and Wessam Ajib. A survey on replica server placement algorithms for content
delivery networks. IEEE Communications Surveys & Tutorials, 19:1002–1026,
2016.

[56] Meisong Wang, Prem Prakash Jayaraman, Rajiv Ranjan, Karan Mitra, Mi-
randa Zhang, Eddie Li, Samee Khan, Mukkaddim Pathan, and Dimitrios
Georgeakopoulos. An Overview of Cloud Based Content Delivery Networks:
Research Dimensions and State-of-the-Art, pages 131–158. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2015.

122 Bibliography

[57] The streaming media magazine. Online, 2020.

[58] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. ACM SIGCOMM Computer Communication Re-
view, 42(4):13–24, 2012.

[59] N. Bouten, J. Famaey, R. Mijumbi, B. Naudts, J. Serrat, S. Latré, and F. De
Turck. Towards nfv-based multimedia delivery. In 2015 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pages 738–741, May
2015.

[60] Narjes T. Jahromi, Sami Yangui, Adel Larabi, Daniel Smith, Mohammad A.
Salahuddin, Roch H. Glitho, Richard Brunner, and Halima Elbiaze. NFV and
sdn-based cost-efficient and agile value-added video services provisioning in con-
tent delivery networks. In 14th IEEE Annual Consumer Communications &
Networking Conference, CCNC 2017, Las Vegas, NV, USA, January 8-11, 2017,
pages 671–677, 2017.

[61] R. Song, Z. Luo, J-R. Wen, Y. Yu, and H-W. Hon. Identifying ambiguous
queries in web search. In Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages
1169–1170, 2007.

[62] Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web
service discovery with owls-mx. In Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’06, page
915–922, New York, NY, USA, 2006. Association for Computing Machinery.

[63] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76, 2015.

[64] Nour el houda Nouar, Sami Yangui, Noura Faci, Khalil Drira, and Saïd Tazi.
Agile and dynamic virtualized network functions wiring in network services. In
Claudio Agostino Ardagna, Carl K. Chang, Ernesto Daminai, Rajiv Ranjan,
Zhongjie Wang, Robert Ward, Jia Zhang, and Wensheng Zhang, editors, 14th
IEEE International Conference on Cloud Computing, CLOUD 2021, Chicago,
IL, USA, September 5-10, 2021, pages 322–332. IEEE, 2021.

[65] Network functions virtualisation (nfv);management and orchestration. Technical
report, ETSI GS NFV-MAN 001 V1.1.1, 2014.

[66] Network functions virtualisation (nfv);use cases. Technical report, ETSI GR
NFV 001 V1.2.1, 2017.

Bibliography 123

[67] M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger, and W. Xu. Connected
roads of the future: Use cases, requirements, and design considerations for
vehicle-to-everything communications. IEEE Vehicular Technology Magazine,
13(3):110–123, 2018.

[68] Hanwen Cao, Sandip Gangakhedkar, Ali Ramadan Ali, Mohamed Gharba, and
Josef Eichinger. A 5g v2x testbed for cooperative automated driving. In 2016
IEEE Vehicular Networking Conference (VNC), pages 1–4. IEEE, 2016.

[69] Nathan F Saraiva De Sousa, Danny A Lachos Perez, Raphael V Rosa, Mateus AS
Santos, and Christian Esteve Rothenberg. Network service orchestration: A
survey. Computer Communications, 2019.

[70] Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A Carella, Stefan
Covaci, and Thomas Magedanz. Service function chaining in next generation
networks: State of the art and research challenges. IEEE Communications
Magazine, 55(2):216–223, 2016.

[71] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey
on service function chaining. Journal of Network and Computer Applications,
75:138–155, 2016.

[72] Molka Gharbaoui, S Fichera, Piero Castoldi, and Barbara Martini. Network
orchestrator for qos-enabled service function chaining in reliable nfv/sdn infras-
tructure. In 2017 IEEE Conference on Network Softwarization (NetSoft), pages
1–5. IEEE, 2017.

[73] Eder J Scheid, Cristian C Machado, Ricardo L dos Santos, Alberto E Schaeffer-
Filho, and Lisandro Z Granville. Policy-based dynamic service chaining in net-
work functions virtualization. In 2016 IEEE Symposium on Computers and
Communication (ISCC), pages 340–345. IEEE, 2016.

[74] Franco Callegati, Walter Cerroni, Chiara Contoli, and Giuliano Santandrea. Dy-
namic chaining of virtual network functions in cloud-based edge networks. In
Proceedings of the 2015 1st IEEE Conference on Network Softwarization (Net-
Soft), pages 1–5. IEEE, 2015.

[75] Junjie Liu, Wei Lu, Fen Zhou, Ping Lu, and Zuqing Zhu. On dynamic service
function chain deployment and readjustment. IEEE Transactions on Network
and Service Management, 14(3):543–553, 2017.

[76] Zoltan Zsoka and Khalil Mebarkia. Layered solutions for dynamic service chain-
ing. In 2019 22nd Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN), pages 292–296. IEEE, 2019.

124 Bibliography

[77] AA Mohammed, Molka Gharbaoui, Barbara Martini, Federica Paganelli, and
Piero Castoldi. Sdn controller for network-aware adaptive orchestration in dy-
namic service chaining. In 2016 IEEE NetSoft Conference and Workshops (Net-
Soft), pages 126–130. IEEE, 2016.

[78] Barbara Martini and Federica Paganelli. A service-oriented approach for dy-
namic chaining of virtual network functions over multi-provider software-defined
networks. Future Internet, 8(2):24, 2016.

[79] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, Andràs Gulyas,
Wouter Tavernier, and Sahel Sahhaf. Escape: Extensible service chain proto-
typing environment using mininet, click, netconf and pox. ACM SIGCOMM
Computer Communication Review, 44(4):125–126, 2014.

[80] A. Campanella. Intent based network operations. In 2019 Optical Fiber Com-
munications Conference and Exhibition (OFC), pages 1–3, 2019.

[81] Y. Han, J. Li, D. Hoang, J. Yoo, and J. W. Hong. An intent-based network vir-
tualization platform for sdn. In 2016 12th International Conference on Network
and Service Management (CNSM), pages 353–358, 2016.

[82] Mariam Kiran, Eric Pouyoul, Anu Mercian, Brian Tierney, Chin Guok, and In-
der Monga. Enabling intent to configure scientific networks for high performance
demands. Future Generation Computer Systems, 79:205–214, 2018.

[83] F. Paganelli, F. Paradiso, M. Gherardelli, and G. Galletti. Network service
description model for vnf orchestration leveraging intent-based sdn interfaces.
In 2017 IEEE Conference on Network Softwarization (NetSoft), pages 1–5, 2017.

[84] Open vswitch,.

[85] Paul Quinn, Uri Elzur, and Carlos Pignataro. Network service header (nsh). In
RFC 8300. RFC Editor, 2018.

[86] Michele Segata, Renato Lo Cigno, and Falko Dressler. Towards communication
strategies for platooning, 2013.

[87] Irshad Ahmed Sumra, Halabi Bin Hasbullah, et al. Effects of attackers and
attacks on availability requirement in vehicular network: a survey. In 2014
International Conference on Computer and Information Sciences (ICCOINS),
pages 1–6. IEEE, 2014.

[88] Giuseppe Araniti, Massimo Condoluci, Pasquale Scopelliti, Antonella Molinaro,
and Antonio Iera. Multicasting over emerging 5g networks: Challenges and
perspectives. Ieee network, 31(2):80–89, 2017.

Bibliography 125

[89] Konstantinos Antonakoglou, Xiao Xu, Eckehard Steinbach, Toktam Mahmoodi,
and Mischa Dohler. Toward haptic communications over the 5g tactile internet.
IEEE Communications Surveys & Tutorials, 20(4):3034–3059, 2018.

[90] Patricia T Endo, Moisés Rodrigues, Glauco E Gonçalves, Judith Kelner,
Djamel H Sadok, and Calin Curescu. High availability in clouds: systematic
review and research challenges. Journal of Cloud Computing, 5(1):1–15, 2016.

[91] Kostas Katsalis, Vasilis Sourlas, Thanasis Korakis, and Leandros Tassiulas. A
cloud-based content replication framework over multi-domain environments. In
2014 IEEE International Conference on Communications (ICC), pages 2926–
2931, 2014.

[92] Ricard Vilalta, Arturo Mayoral, Ramon Casellas, Ricardo Martínez, and Raul
Muñoz. Sdn/nfv orchestration of multi-technology and multi-domain networks
in cloud/fog architectures for 5g services. In 2016 21st OptoElectronics and
Communications Conference (OECC) held jointly with 2016 International Con-
ference on Photonics in Switching (PS), pages 1–3, 2016.

[93] Raphael Vicente Rosa, Mateus Augusto Silva Santos, and Christian Esteve
Rothenberg. Md2-nfv: The case for multi-domain distributed network functions
virtualization. In 2015 International Conference and Workshops on Networked
Systems (NetSys), pages 1–5, 2015.

[94] Nathan F. Saraiva de Sousa, Danny A. Lachos Perez, Raphael V. Rosa, Ma-
teus A.S. Santos, and Christian Esteve Rothenberg. Network Service Orches-
tration: A survey. Computer Communications, 142-143(May):69–94, jun 2019.

[95] ETSI, NFVISG. GS NFV-SOL 004 V2. 3.1 Network Functions Virtualisation
(NFV) release 2; Protocols and Data Models; NFV descriptors based on YANG
Specification, 2019.

[96] Omar Houidi, Oussama Soualah, Wajdi Louati, and Djamal Zeghlache. Dynamic
VNF Forwarding Graph Extension Algorithms. IEEE Transactions on Network
and Service Management, 17(3):1389–1402, sep 2020.

[97] Josué Castañeda Cisneros, Sami Yangui, Saúl E. Pomares Hernández, Julio
César Pérez Sansalvador, Lil María Rodríguez-Henríquez, and Khalil Drira. To-
wards consistent VNF forwarding graph reconfiguration in multi-domain envi-
ronments. In Claudio Agostino Ardagna, Carl K. Chang, Ernesto Daminai, Ra-
jiv Ranjan, Zhongjie Wang, Robert Ward, Jia Zhang, and Wensheng Zhang, ed-
itors, 14th IEEE International Conference on Cloud Computing, CLOUD 2021,
Chicago, IL, USA, September 5-10, 2021, pages 355–366. IEEE, 2021.

[98] ETSI, NFVISG. ETSI GS NFV 002 V1.1.1 Network Functions Virtualisation
(NFV); Architectural Framework, 2013.

126 Bibliography

[99] Josué Castañeda Cisneros, Saúl E. Pomares Hernández, Julio César Pérez
Sansalvador, Lil María Rodríguez-Henríquez, Sami Yangui, and Khalil Drira.
Coordination-free multi-domain NFV orchestration for consistent VNF forward-
ing graph reconfiguration. IEEE Trans. Netw. Serv. Manag., 19(4):5133–5151,
2022.

[100] Josué Castañeda Cisneros, Sami Yangui, Saúl E. Pomares Hernández, and Khalil
Drira. A survey on distributed NFV multi-domain orchestration from an algo-
rithmic functional perspective. IEEE Commun. Mag., 60(8):60–65, 2022.

[101] Luis M. Vaquero, Felix Cuadrado, Yehia Elkhatib, Jorge Bernal-Bernabe,
Satish N. Srirama, and Mohamed Faten Zhani. Research challenges in nextgen
service orchestration. Future Generation Computer Systems, 90:20–38, 2019.

[102] Wei Ren, R W Beard, and E M Atkins. A survey of consensus problems in multi-
agent coordination. In Proceedings of the 2005, American Control Conference,
2005., pages 1859–1864 vol. 3, jun 2005.

[103] Heidi Howard and Richard Mortier. Paxos vs Raft: Have we reached consensus
on distributed consensus? Proceedings of the 7th Workshop on Principles and
Practice of Consistency for Distributed Data, PaPoC 2020, pages 8–10, 2020.

[104] Y Xiao, N Zhang, W Lou, and Y T Hou. A Survey of Distributed Consensus
Protocols for Blockchain Networks. IEEE Communications Surveys Tutorials,
22(2):1432–1465, 2020.

[105] Peter Bailis and Ali Ghodsi. Eventual Consistency Today: Limitations, Exten-
sions, and Beyond. Queue, 11(3):20–32, mar 2013.

[106] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
Free Replicated Data Types. In Xavier Défago, Franck Petit, and Vincent Vil-
lain, editors, Stabilization, Safety, and Security of Distributed Systems, pages
386–400, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[107] Werner Vogels. Eventually Consistent: Building Reliable Distributed Systems at
a Worldwide Scale Demands Trade-Offs?Between Consistency and Availability.
Queue, 6(6):14–19, oct 2008.

[108] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types. Europe,
2011.

[109] ETSI. Dgr/nfv-ifa028. network functions virtualisation (nfv) release 3; man-
agement and orchestration; report on architecture options to support multiple
administrative domains. techreport, ETSI, January 2018.

Bibliography 127

[110] Gao Zheng, Anthony Tsiopoulos, and Vasilis Friderikos. Dynamic VNF Chains
Placement for Mobile IoT Applications. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–6. IEEE, dec 2019.

[111] Pham Tran Anh Quang, Abbas Bradai, Kamal Deep Singh, Gauthier Picard,
and Roberto Riggio. Single and Multi-Domain Adaptive Allocation Algorithms
for VNF Forwarding Graph Embedding. IEEE Transactions on Network and
Service Management, 16(1):98–112, 2019.

[112] Changwoo Kim, Yujeong Oh, and Jaiyong Lee. Latency-based graph selection
manager for end-to-end network service on heterogeneous infrastructures. In
2018 International Conference on Information Networking (ICOIN), pages 534–
539. IEEE, jan 2018.

[113] M Zeng, W Fang, and Z Zhu. Orchestrating Tree-Type VNF Forwarding
Graphs in Inter-DC Elastic Optical Networks. Journal of Lightwave Technology,
34(14):3330–3341, jul 2016.

[114] Oussama Soualah, Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache.
A Green VNF-FG Embedding Algorithm. In 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), pages 141–149. IEEE, jun
2018.

[115] S Khebbache, M Hadji, and D Zeghlache. Dynamic Placement of Extended
Service Function Chains: Steiner-based Approximation Algorithms. In 2018
IEEE 43rd Conference on Local Computer Networks (LCN), pages 307–310, oct
2018.

[116] Bart Spinnewyn, Steven Latré, and Juan Felipe Botero. Delay-constrained
NFV orchestration for heterogeneous cloud networks. Computer Networks,
180:107420, 2020.

[117] Josué Castañeda Cisneros, Sami Yangui, Saul E Pomares Hernández, Julio
César Pérez Sansalvador, Lil M Rodríguez Henríquez, and Khalil Drira. To-
wards Consistent VNF Forwarding Graph Reconfiguration in Multi-domain En-
vironments. In 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), pages 355–366, 2021.

[118] P T Anh Quang, Y Hadjadj-Aoul, and A Outtagarts. Evolutionary Actor-Multi-
Critic Model for VNF-FG Embedding. In 2020 IEEE 17th Annual Consumer
Communications Networking Conference (CCNC), pages 1–6, jan 2020.

[119] Pham Tran Anh Quang, Abbas Bradai, Kamal Deep Singh, and Yassine
Hadjadj-Aoul. Multi-domain non-cooperative VNF-FG embedding: A deep re-
inforcement learning approach. In IEEE INFOCOM 2019 - IEEE Conference on

128 Bibliography

Computer Communications Workshops (INFOCOM WKSHPS), pages 886–891.
IEEE, apr 2019.

[120] Yue Hao, Yi Li, Xinghua Dong, Li Fang, and Ping Chen. Performance Analysis
of Consensus Algorithm in Private Blockchain. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 280–285. IEEE, jun 2018.

[121] Iqbal Alam, Kashif Sharif, Fan Li, Zohaib Latif, M M Karim, Sujit Biswas,
Boubakr Nour, and Yu Wang. A Survey of Network Virtualization Techniques
for Internet of Things Using SDN and NFV. ACM Computing Surveys, 53(2):1–
40, mar 2021.

[122] G Gardikis, S Costicoglou, H Koumaras, Ch. Sakkas, A Kourtis, F Arnal, L M
Contreras, P Aranda Gutierrez, and M Guta. NFV applicability and use cases
in satellite networks. In 2016 European Conference on Networks and Commu-
nications (EuCNC), pages 47–51. IEEE, jun 2016.

[123] Min Chen, Wei Li, Giancarlo Fortino, Yixue Hao, Long Hu, and Iztok Humar.
A dynamic service migration mechanism in edge cognitive computing. ACM
Transactions on Internet Technology (TOIT), 19:1 – 15, 2018.

[124] Tao Ouyang, Rui Li, Xu Chen, Zhi Zhou, and Xin Tang. Adaptive user-managed
service placement for mobile edge computing: An online learning approach. In
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages
1468–1476, 2019.

[125] Yuxuan Sun, Xueying Guo, Sheng Zhou, Zhiyuan Jiang, Xin Liu, and Zhisheng
Niu. Learning-based task offloading for vehicular cloud computing systems.
In 2018 IEEE International Conference on Communications (ICC), pages 1–7,
2018.

[126] Yuxuan Sun, Sheng Zhou, and Jie Xu. Emm: Energy-aware mobility manage-
ment for mobile edge computing in ultra dense networks. IEEE Journal on
Selected Areas in Communications, 35(11):2637–2646, 2017.

[127] Zehong Lin, Suzhi Bi, and Ying-Jun Angela Zhang. Optimizing ai service place-
ment and resource allocation in mobile edge intelligence systems. IEEE Trans-
actions on Wireless Communications, 20(11):7257–7271, 2021.

[128] Nathaniel Hudson, Hana Khamfroush, and Daniel E. Lucani. Qos-aware place-
ment of deep learning services on the edge with multiple service implementations.
In 2021 International Conference on Computer Communications and Networks
(ICCCN), pages 1–8, 2021.

[129] Tao Ouyang, Zhi Zhou, and Xu Chen. Follow me at the edge: Mobility-aware
dynamic service placement for mobile edge computing. IEEE Journal on Selected
Areas in Communications, 36(10):2333–2345, 2018.

Bibliography 129

[130] Chao-Lun Wu, Te-Chuan Chiu, Chih-Yu Wang, and Ai-Chun Pang. Mobility-
aware deep reinforcement learning with glimpse mobility prediction in edge com-
puting. In ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), pages 1–7, 2020.

[131] Amin Azari, Panagiotis Papapetrou, Stojan Denic, and Gunnar Peters. User
traffic prediction for proactive resource management: Learning-powered ap-
proaches. In 2019 IEEE Global Communications Conference (GLOBECOM),
pages 1–6, 2019.

[132] Bin Gao, Zhi Zhou, Fangming Liu, and Fei Xu. Winning at the starting line:
Joint network selection and service placement for mobile edge computing. In
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages
1459–1467, 2019.

[133] Vajiheh Farhadi, Fidan Mehmeti, Ting He, Tom La Porta, Hana Khamfroush,
Shiqiang Wang, and Kevin S Chan. Service placement and request scheduling
for data-intensive applications in edge clouds. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pages 1279–1287, 2019.

[134] Jan Plachy, Zdenek Becvar, and Emilio Calvanese Strinati. Dynamic resource
allocation exploiting mobility prediction in mobile edge computing. In 2016
IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), pages 1–6, 2016.

[135] Huirong Ma, Zhi Zhou, and Xu Chen. Predictive service placement in mobile
edge computing. In 2019 IEEE/CIC International Conference on Communica-
tions in China (ICCC), pages 792–797, 2019.

[136] Lucas Pacheco, Denis Rosário, Eduardo Cerqueira, and Leandro Villas. Service
migration in edge computing environments for connected autonomous vehicles.
In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos, pages 533–546, Porto Alegre, RS, Brasil, 2020. SBC.

[137] Lucas Pacheco, Denis Rosário, Eduardo Cerqueira, Leandro Villas, Torsten
Braun, and Antonio A. F. Loureiro. Distributed user-centric service migra-
tion for edge-enabled networks. In 2021 IFIP/IEEE International Symposium
on Integrated Network Management (IM), pages 618–622, 2021.

[138] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. Latency-
aware application module management for fog computing environments. ACM
Transactions on Internet Technology (TOIT), 19:1 – 21, 2018.

[139] Faizan Murtaza, Adnan Akhunzada, Saif ul Islam, Jalil Boudjadar, and Ra-
jkumar Buyya. Qos-aware service provisioning in fog computing. Journal of
Network and Computer Applications, 165:102674, 2020.

130 Bibliography

[140] Paul Newbold. Arima model building and the time series analysis approach to
forecasting. Journal of forecasting, 2(1):23–35, 1983.

[141] Hirotogu Akaike. Information Theory and an Extension of the Maximum Like-
lihood Principle, pages 199–213. Springer New York, New York, NY, 1998.

[142] Antonio Rafael Sabino Parmezan, Vinicius M.A. Souza, and Gustavo E.A.P.A.
Batista. Evaluation of statistical and machine learning models for time series
prediction: Identifying the state-of-the-art and the best conditions for the use
of each model. Information Sciences, 484:302–337, 2019.

[143] Kory Floyd Judee K Burgoon, Laura K Guerrero. Nonverbal Communication.
Pearson, 1 edition, 2009.

[144] Yassine Jebbar, Fatna Belqasmi, Roch H. Glitho, and Omar Alfandi. A fog-
based architecture for remote phobia treatment. In 2019 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), Sydney,
Australia, December 11-13, 2019, pages 271–278. IEEE, 2019.

[145] Thomas Wiegand Erich Zielinsk Hans Schotten Peter Merz Sandra Hirche An-
dreas Festag Walter Häffner Michael Meyer Eckehard Steinbach Rolf Kraemer
Ralf Steinmetz Frank Hofmann Peter Eisert Reinhard Scholl Frank Ellinger Erik
Weiss Ines Riedel Gerhard Fettweis, Holger Boche. The tactile internet. Tech-
nical report, ITU-T Technology Watch Report, 2014.

[146] Adnan Aijaz, Mischa Dohler, A. Hamid Aghvami, Vasilis Friderikos, and Mag-
nus Frodigh. Realizing the tactile internet: Haptic communications over next
generation 5g cellular networks. IEEE Wireless Communications, 24(2):82–89,
2017.

