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Résumé
L’énergie photovoltaïque a pris une place vraiment importante parmi les énergies
renouvelables, atteignant une capacité installée mondiale cumulée d’environ 75 GW
en 2016 [energy agency 2016] et selon le rapport NREL [Feldman 2022], environ 171
GW de PV seront seront installés dans le monde en 2021, et ils prévoient que dans
les années 2022 et 2023, 209 GW et 231 GW seront installés, respectivement. Même
des rapports tels que GlobalData estiment que la capacité photovoltaïque installée
dans le monde dépassera 1 500 GW en 2030 [Data 2019]. Dans ces installations
photovoltaïques, le diagnosis de l’état de santé des composants et des systèmes est
essentiel pour garantir la production d’énergie, prolonger la durée de vie utile et
prévenir les événements imprévus dans les systèmes solaires photovoltaïques. Dans
une étude, Solar Power Europe study [SPE 2022] analyse la capacité solaire photo-
voltaïque installée cumulée dans le monde, elle a augmenté de 22% pour atteindre
940,0 GW fin 2021, contre 772,2 GW en 2020, comme on peut le voir sur la Figure
2.4. Cela signifie que l’énergie solaire totale a été multipliée par plus de 500 depuis
le début du millénaire, lorsque l’ère solaire connectée au réseau a commencé avec le
lancement de la loi allemande sur les tarifs de rachat [SPE 2022].
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Figure 1: Capacité installée solaire photovoltaïque totale 2000-2021 et parts totales
installées des 10 principaux marchés solaires photovoltaïques 2021 [SPE 2022].

En comparant les valeurs de la capacité solaire photovoltaïque installée accu-
mulée pour l’année 2021 et 2010, on peut observer une augmentation de 41,3 GW
à 940,0 GW (environ 1 TW), ce qui représente une augmentation impressionnante
d’environ 2176,0 %. Dans la même Figure 2.4, une comparaison de pays individuels
peut être observée, que la Chine est suivie par les États-Unis, le Japon, l’Allemagne,
l’Inde et l’Australie. Enfin, il est intéressant de savoir quelles sont les perspectives
de la filière photovoltaïque pour les années à venir. Dans [SPE 2022] une anal-
yse prédictive de l’industrie photovoltaïque jusqu’en 2026 est réalisée. Dans cette
analyse, 3 scénarios de marché sont proposés tels que présentés dans la Figure 2.5.
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Figure 2: Scénarios annuels mondiaux du marché solaire photovoltaïque 2022-2026
[SPE 2022].

Comme le montre la figure [SPE 2022], dans le scénario moyen, d’ici 2022, les
nouvelles capacités installées devraient atteindre 228,5 GW d’ici la fin de 2022, ce
qui représente un taux de croissance de 36 % sur la 167,8 GW installés en 2021.
Le scénario bas estime une baisse de la demande à 181,4 GW d’ici fin 2022, ce qui,
comme mentionné [SPE 2022], est vraiment improbable compte tenu de la forte
demande d’énergie solaire ces dernières années. Enfin, le scénario haut prévoit
jusqu’à 270,8 GW d’ajouts solaires en 2022. De plus, comme on peut le voir sur
la même Figure [SPE 2022], il est prévu qu’en 2026 les capacités installées seront
comprises entre 243,5 GW , dans le pire des cas, et 458,8 GW dans le meilleur des
cas, soit 1,7 la capacité installée dans le meilleur des cas en 2022.

Dans les grandes installations photovoltaïques représentant plus de 100 kWc
et un hectare de surface, on comprend qu’il devient rapidement plus difficile de
détecter ou d’identifier l’état physique d’un défaut et même sa nature. Cet ob-
jectif peut être difficile à atteindre dans certains cas où la valeur par défaut est
cachée dans toutes les caractéristiques de l’installation PV jusqu’à ce qu’il y ait
un réel impact sur la production du système PV. Dans le monde entier, certains
des aspects qui rendent difficile la détection des défauts sont : i) l’occurrence
dans des scénarios de faible irradiation [Yi 2017c]; ii) les défauts qui se pro-
duisent en moins d’une seconde [Wang 2013]; iii) présence du dispositif MPPT
qui optimise la puissance de sortie d’un champ photovoltaïque [Zhao 2013a]; ou iv)
des défauts avec un comportement électrique similaire à celui d’un panneau sain
[Hariharan 2016a, Sepúlveda Oviedo 2022]. Si ces défauts ne sont pas détectés, non
seulement l’état de la centrale peut se détériorer, mais cela représente également un
danger pour la sécurité humaine [Strobl 2010, Wang 2014a, Rabla 2013], générant
même de grands incendies [Brooks 2011, Ministry of Housing 2017].

En tant que solution pour évaluer les performances du système PV et calculer
la perte d’énergie sur de longues périodes des installations PV, de nombreuses in-
stallations PV disposent aujourd’hui de données PV massives (à la fois instanta-
nées et historiques) provenant de sources telles que les stations météorologiques, les
onduleurs PV et le réseau public [Zhao 2015a]. Cependant, ces plates-formes de
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surveillance ne sont pas orientées vers un diagnosis précis des défauts et ne prêtent
donc pas attention à la qualité des données ou n’ont pas de soumissions de données
à fréquence d’échantillonnage élevée.

Comme recommandé dans [Dhimish 2018a], pour augmenter la précision du
diagnosis, il est nécessaire d’augmenter le temps d’échantillonnage même à des
vitesses de quelques microsecondes. Cependant, ces types de systèmes qui capturent
des données à ces vitesses sont vraiment un défi lié aux capacités des micropro-
cesseurs utilisés dans les appareils. De plus, l’utilisation de ce type de plate-forme
d’instrumentation dans les centrales photovoltaïques au sol est vraiment un défi
car l’autonomie énergétique doit être garantie en raison de l’absence de prises de
courant ou de systèmes d’alimentation, des conditions d’humidité, entre autres.

Malgré la complexité de ces systèmes, l’utilisation croissante du photovoltaïque
et la baisse du coût des panneaux solaires suscitent de plus en plus l’intérêt des
chercheurs, tant dans le milieu universitaire qu’industriel. L’objectif de cette thèse
est le développement de méthodes de diagnosis de défauts embarquées dans des
systèmes de surveillance d’installations photovoltaïques de forte puissance, respec-
tant les contraintes industrielles et prenant en compte le rapport coût/bénéfice en
productivité ou temps de fonctionnement. La détection précoce des défauts permet
de définir efficacement les actions à mener en termes d’utilisation de la centrale
photovoltaïque mais aussi en termes de maintenance corrective ou préventive, en
tenant compte de l’état de santé de la centrale photovoltaïque ou encore en prenant
en compte les prévisions de l’évolution des dégradations.

Motivation du projet

Des centrales photovoltaïques (PV) de grande puissance sont déployées dans le
monde entier. Sa durée de vie et son utilisation doivent dépasser 25 ans pour
garantir le retour sur investissement des infrastructures. Pour cela, il est préférable
d’effectuer la maintenance périodiquement, ou lorsqu’un défaut grave survient et
qu’une perte définitive de productivité est détectée. En effet, cette situation peut
conduire à l’arrêt total ou partiel de la centrale. Chaque arrêt de production,
même lié à un nombre réduit de panneaux et même temporaire, entraîne une perte
économique importante dans les centrales de plus de 250 kWc, ce qui justifie la
nécessité de diagnostiquer l’état de la centrale et d’anticiper les interventions en
fonction des délais.

La productivité des installations photovoltaïques est fortement affectée par des
aspects tels que la disponibilité et les performances. La disponibilité fait référence
au rapport entre la durée de continuité de la production d’énergie, même sans per-
formance optimale, et la durée totale observée [Díaz 2007]. Le rendement, d’après
Díaz et al. [Díaz 2007], fait référence à l’efficacité globale de la chaîne de conversion
de puissance. Cette performance est couramment mesurée à l’aide de "l’indice de
performance" [CEC 1997, IEC 1998]. Selon des études réalisées par IEA PVPS, le
taux de disponibilité annuel d’une installation photovoltaïque bien supervisée peut
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atteindre 97 % [Janh 2000]. Comme mentionné dans [Bun 2011b], la productivité
d’un système PV peut être améliorée en réduisant le taux de temps d’arrêt et en
faisant fonctionner le système à des performances optimales.

Pour réduire les temps d’arrêt ou le temps de production (non optimal), il est
nécessaire de réduire le nombre de défauts de composants et le temps de réparation
préventive et corrective. C’est là qu’un système de diagnosis intégré dans une plate-
forme de surveillance robuste est vital pour identifier le défaut le plus rapidement
possible. Il est vrai qu’un suivi ou une supervision classique des données historiques
de la centrale permet d’identifier (généralement de manière imprécise) la présence
d’anomalies dans la production d’énergie. Cependant, la surveillance classique ne
permet pas de les détecter immédiatement ou dans des délais plus courts, de sorte
que la centrale photovoltaïque continue de fonctionner dans un état sous-optimal.
A ce jour, plusieurs sociétés proposent des produits d’aide à la gestion des centrales
photovoltaïques, comme S4E avec le produit EnergySoft [S4E 2022] ou Circutor avec
son produit scada dédié aux centrales photovoltaïques [Circutor 2022]. Certains
fabricants dans le domaine vendent également des onduleurs et des panneaux en
tant que SMA et proposent des produits pour aider à estimer les performances de
la centrale [SMA 2022]. Cependant, les produits actuellement sur le marché ne
sont souvent pas adaptés pour analyser les raisons des pertes de production et se
limitent souvent à une visualisation des données, sans autre analyse. La société
Feedgy Solar a fait un travail plus poussé avec son outil d’analyse Feedgy pour
surveiller et diagnostiquer les systèmes photovoltaïques en ligne, sur la base des
données historiques de [Feedgy 2022].

Cependant, malgré ces efforts, les systèmes de surveillance classiques n’ont pas la
portabilité pour être couplés à différentes topologies d’installations photovoltaïques,
c’est-à-dire qu’ils ne sont pas capables d’être couplés à la fois à des installations
résidentielles et à des installations d’autres tailles et topologies telles que les grandes
centrales PV au sol. Ces derniers représentent l’un des plus grands défis car ils ne
disposent pas de prises de courant ou de sources d’énergie pouvant alimenter le
système de détection et de surveillance des défauts, en plus des fortes conditions
météorologiques qui affectent ces centrales.

Il est nécessaire de préciser que l’installation d’un système de surveillance avancé
ne garantit pas une détection précoce des défauts de l’installation photovoltaïque.
Ce système de surveillance doit avoir un système de diagnosis intégré capable de
comparer le comportement de différentes chaînes d’une même centrale, en tenant
compte : des conditions climatiques, de la technologie, de la topologie, de la dégra-
dation, etc. En d’autres termes, il doit s’agir d’un système de diagnosis soutenu
par des experts avec connaissance de la centrale photovoltaïque et mesures de son
comportement électrique et météorologique. Un système aussi robuste garantirait
que le système photovoltaïque ne fonctionnerait pas pendant des semaines ou des
mois dans un état sous-optimal. Ce système de diagnosis de défaut doit intégrer de
nouvelles techniques de pointe qui ne nécessitent pas une grande quantité de don-
nées pour détecter les phénomènes de défaut. Cette condition est vitale, car lors
de l’installation du système dans la centrale, ses données historiques ne seront pas
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connues, mais on souhaite également effectuer un diagnosis précoce des défauts pen-
dant les premières heures de fonctionnement du dispositif de diagnosis. Pour cela,
il est obligatoire d’augmenter et de standardiser les connaissances existantes sur les
causes des défauts et leurs probabilités. Réaliser ce diagnosis précoce des défauts
permet de réduire les interventions humaines et leur programmation uniquement
basée sur les signaux de défaut.

Toutes ces raisons ont été à la base de cette recherche et révèlent la nécessité de
construire un système de diagnosis plus sophistiqué pour détecter et diagnostiquer
les défauts afin d’améliorer la productivité de l’installation photovoltaïque. L’énoncé
formel du problème de recherche est présenté ci-dessous.

Déclaration de problème

Cette thèse aborde le problème de la perte de performance de l’ensemble du système
photovoltaïque et de la réduction de la puissance de sortie générée par l’apparition
de défauts. Cette thèse décrira quelques symptômes ou signatures permettant
d’identifier les principaux défauts des systèmes photovoltaïques. En outre, il con-
tribuera à l’amélioration de la surveillance classique, en proposant et en constru-
isant une nouvelle plate-forme polyvalente, portable et autonome, au niveau de
l’alimentation en énergie, d’acquisition de données et de détection de défaut asso-
ciée à une station météo proposée et construite qui surveille la vitesse du vent, la
température ambiante et irradiation. Cette plateforme dispose de deux systèmes
intégrés qui fonctionnent en collaboration. Le premier système intégré s’est con-
centré sur la collecte et le prétraitement des données axées sur le diagnosis. Le
deuxième système aborde le problème du diagnosis des défauts dans les systèmes
photovoltaïques avec peu de données. Ce deuxième système embarqué effectue la
détection des défauts pendant de petits intervalles de temps et est composé d’ algo-
rithmes d’apprentissage automatique qui pourraient être utilisés pour détecter les
défauts dans les centrales photovoltaïques de différentes configurations et technolo-
gies.

Les défauts trouvés dans cette thèse incluent la trace d’escargot, l’ombrage et le
verre cassé. Le défaut de trace d’escargot est inclus pour tester le niveau de diagnosis
fin du système embarqué. Ce type de défaut est très difficile à détecter du fait de sa
signature électrique très proche de celle d’un panneau sain. Les traces d’escargots
extérieures apparaissent sous la forme de lignes brunes décolorées, en particulier
autour des bords des cellules et des zones de microfissures. Ce phénomène a été
attribué à l’entrée d’humidité et d’oxygène à travers les microfissures, de plus ce
défaut peut aggraver les microfissures ou déclencher d’autres défauts plus sévères.
Des défauts de type ombrage et verre cassé ont été inclus dans l’intérêt de tester
certains défauts courants dont les niveaux d’impact étaient supérieurs à ceux du
trace d’escargot. Cette variété de pertes de production nous permet de démontrer
que le système proposé est capable de détecter des défauts dans toute la plage
d’impact. La Figure 3 montre les trois types de défauts mentionnés.
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Figure 3: Défauts analysés dans les systèmes PV. a) Traces d’escargot; b) Verre
cassé; c) Ombrage

Plusieurs approches ont effectué la détection de défauts dans les systèmes pho-
tovoltaïques sur la base de l’analyse de la courbe caractéristique I(V). Ce type de
détection est limité pour sa mise en œuvre à grande échelle puisque pour obtenir
la courbe caractéristique il faut couper la production du système, rendant cette
approche irréalisable du point de vue industriel. Ainsi, cette thèse traite également
de la détection de défauts dans les signaux électriques de la centrale en production.
Notre système de diagnosis n’a pas besoin de couper ou de suspendre la production
de la centrale pour réaliser le diagnosis. Tout le développement de cette thèse est
également conçu en respectant les contraintes industrielles et en prenant en compte
le gain de coût/productivité ou l’engagement du temps d’exploitation.

Objectifs

L’objectif principal de ce travail de recherche est de concevoir et mettre en œu-
vre une plate-forme physique d’acquisition de données et de détection de défauts.
La surveillance du système photovoltaïque doit avoir une fréquence de capture de
données inférieure à une seconde et le système embarqué doit être une approche
basée sur l’apprentissage automatique capable de détecter plusieurs défauts qui se
produisent dans les installations photovoltaïques sans grandes quantités de données
historiques. Le dispositif de détection sera testé sur des centrales photovoltaïques
à différentes échelles (petites, moyennes et grandes centrales), emplacements géo-
graphiques, conditions météorologiques et technologies. Pour réaliser un diagnosis
efficace, il est nécessaire d’avoir une connaissance approfondie des types de défauts,
des signatures associées et des méthodes actuellement utilisées. Par conséquent,
dans cette thèse, le plus grand nombre d’articles associés à ce sujet sera analysé.

Il y a dix objectifs principaux à cette recherche, qui sont :

1. Proposer deux nouvelles approches pour construire un état de l’art en utilisant
des techniques statistiques et d’apprentissage automatique.

2. Construire un dictionnaire de défauts, contenant la description et les princi-
pales signatures associées à un large ensemble de défauts.
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3. Formuler, concevoir et construire un nouveau système polyvalent d’acquisition
de données photovoltaïques. Cette plateforme doit être portable, autonome
en énergie et capable de recevoir le signal analogique des capteurs de com-
portement électrique (tension et courant) et des données météorologiques.

4. Concevoir et construire une station météorologique pouvant être facilement
couplée à une centrale photovoltaïque et compatible avec la plate-forme
d’acquisition de données. Cette station météo doit surveiller la température
ambiante, la vitesse du vent, l’irradiation et envoyer le signal analogique au
système d’acquisition de données.

5. Proposer un ensemble de techniques d’extraction et de sélection de carac-
téristiques, sur des séries temporelles, visant à détecter les défauts dans les
systèmes PV.

6. Proposer une approche d’apprentissage automatique pour la détection de dé-
fauts fins tels que la traces d’escargot dans les modules PV.

7. Proposer un algorithme hybride univarié d’apprentissage automatique com-
binant un apprentissage supervisé et non supervisé axé sur la détection de
défauts non évidents tels que les défauts de type traces d’escargot et les dé-
fauts conventionnels tels que le verre brisé.

8. Proposer un ensemble d’équations pour la normalisation des données élec-
triques et des variables environnementales permettant de comparer les per-
formances des centrales photovoltaïques avec différents âges de démarrage,
nombre de panneaux, technologies, etc.

9. Proposer un modèle mathématique PV capable de prédire la production PV
d’une centrale en fonction de variables telles que : la température ambiante, la
vitesse du vent, l’irradiation, les caractéristiques dans des conditions standard
des panneaux PV d’une centrale PV, la date de l’installation de la centrale
photovoltaïque, entre autres aspects. Le comportement du modèle doit être
comparé aux données réelles d’une centrale photovoltaïque.

10. Proposer une nouvelle approche d’apprentissage automatique adaptatif qui
combine l’apprentissage supervisé et non supervisé, ainsi que l’apprentissage
basé sur des modèles et des données. De plus, cette approche doit utiliser
plusieurs variables électriques et environnementales pour améliorer la détec-
tion des défauts au niveau de la branche PV. Enfin, le système doit être intégré
dans le nouveau système d’acquisition de données photovoltaïques, être capa-
ble de se mettre à jour au fur et à mesure que de nouvelles données provenant
d’autres centrales photovoltaïques sont collectées et être capable d’effectuer
une détection de défauts dans des centrales photovoltaïques de différentes
technologies et topologies.
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Étude de cas de défaut à l’aide de l’apprentissage au-
tomatique

Sur la base des informations compilées dans cette thèse sur l’état de l’art des dé-
fauts possibles dans les champs photovoltaïques, cette recherche choisit d’étudier
principalement les défauts de type Snail Trail et Broken Glass (trace d’escargot et
verre cassé). Ce choix est dû au fait que les défauts de type verre cassé sont à
l’origine de la plus grande perte de production dans les systèmes photovoltaïques.
Au contraire, la défaut de type trace d’escargot n’entraîne pas de réduction signi-
ficative de la production dans les systèmes photovoltaïques, cependant, ce défaut
est à l’origine de multiples défauts sévères pouvant générer la perte totale de pro-
duction d’énergie voire des incendies. Tenant compte de cela, cette recherche part
de l’hypothèse que si les algorithmes proposés parviennent à détecter les défauts
qui se situent dans les limites supérieure et inférieure de perte de puissance, ils sont
capables de détecter toute la gamme de défauts qui se produisent entre eux. Ces
défauts sont étudiés uniquement avec des données réelles provenant d’un système
photovoltaïque spécifiquement conçu pour cette étude.

Apports de la thèse et aspects innovants

Pour répondre aux problématiques abordées ci-dessus, cette recherche présente des
contributions sur dix aspects :

1. Une revue de l’état de l’art en matière de détection de défauts
dans les systèmes PV qui comprend des méthodes de détection conven-
tionnelles et des méthodes avancées basées sur l’apprentissage automatique.
Dans ce contexte scientifique, cette recherche est menée avec deux nouvelles
méthodologies d’analyse computationnelle et systématique de la littérature.
Ces nouvelles approches peuvent être facilement extrapolées sur la base de la
bibliométrie et de la modélisation thématique et couvrir davantage d’articles
pour avoir une idée plus précise de l’état actuel de l’art. En outre, ce type
de revue présente non seulement des articles pertinents, mais analyse égale-
ment des aspects tels que : i) les relations de travail collaboratives existantes
entre les pays, les auteurs, les institutions scientifiques et les algorithmes
d’apprentissage automatique les plus performants dans le domaine en fonc-
tion du type d’apprentissage ( supervisé, non supervisé, renforcement, semi-
supervisé) et les familles de l’algorithme maître d’apprentissage automatique
[Domingos 2015]. Cela permet d’identifier, en fonction des conditions du prob-
lème, les algorithmes les plus appropriés pour la détection de défauts. Enfin,
cette analyse détermine des sujets de recherche intéressants et des défis liés à
la détection de défauts dans ces systèmes.

2. Dictionnaire formel des défauts qui contient quatre types de sources de
défauts identifiés : causes externes, interaction matérielle, vieillissement des
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composants ou causés par d’autres défauts (cercle cause-effet). À son tour,
au sein de ce dictionnaire, une nouvelle classification à plusieurs niveaux des
défauts du système est proposée selon le type de défaut, le composant où il
se produit (cellule, module, vieillissement, système de protection ou boîte de
jonction), qu’il soit structurel, électrique , causé par des augmentations anor-
males de température (point chaud), de mauvaises connexions ou d’ombre (à
cause d’obstacles ou de saleté). Chaque défaut est exposé avec son explication
et son illustration graphique. Ce dictionnaire inclut également les aspects de
fréquence d’occurrence et d’impact en termes de sécurité humaine et de perte
d’énergie.

3. Une nouvelle plate-forme d’acquisition de données et de surveil-
lance nommée Solar-Vitality dans les systèmes PV visant à diagnostiquer
les défauts dans les chaînes PV. Cette plateforme contient deux systèmes em-
barqués en charge de : i) un nouveau système de surveillance photovoltaïque
polyvalent qui capte le courant et la tension au niveau de la chaîne PV; et ii)
détection automatique des défauts.

4. Une station météo portable adaptable à différentes configurations de
centrales photovoltaïques. Cette station météo capture des variables cli-
matologiques telles que la température ambiante, la vitesse du vent et
l’irradiation.

5. Une contribution au traitement et à l’analyse du signal pour
l’extraction et la sélection des caractéristiques de défaut qui com-
prend un ensemble d’opérations de transformation effectuées sur les signaux
de défaut comme guide pour augmenter la richesse des signaux analysés par
les algorithmes d’apprentissage automatique et ainsi améliorer la capacité de
discriminer entre les classes.

6. Un algorithme d’apprentissage d’ensemble nommé EB-diag capable
de détecter les défauts de trace d’escargot dans les modules PV. EB-diag com-
bine plusieurs modèles d’apprentissage, plutôt que d’utiliser un seul modèle
d’apprentissage. De plus, cette approche tire parti des techniques d’extraction
et de sélection de caractéristiques du point 5, améliorant considérablement la
précision de la détection. Les résultats de cette approche démontrent qu’elle
est capable de classer les modules PV sains et ceux avec des traces d’escargot
de manière efficace et rentable, car elle utilise uniquement le signal de courant
électrique des modules obtenu à partir de systèmes d’acquisition de données
PV standard. De plus, l’approche est générique et peut être facilement ex-
trapolée à d’autres problèmes de diagnosis dans d’autres domaines.

7. Un nouvel algorithme hybride d’apprentissage automatique nommé
Serial-diag pour la détection de défauts dans les systèmes photovoltaïques.
Ces approches sont même capables de détecter et de diagnostiquer des défauts
comme la traînée d’escargot dont le comportement est similaire à celui d’un



10 Résumé

panneau sain. Cet algorithme est également testé pour détecter les panneaux
avec du verre brisé, en réussissant à les classer efficacement. De plus, cette
approche proposée s’est avérée très rapide en termes de calcul car, grâce à la
combinaison proposée d’apprentissage non supervisé et supervisé, le calcul le
plus lourd n’est effectué que sur une partie des panneaux défaillants.

8. Une méthode de normalisation efficace pour les données des cen-
trales photovoltaïques qui apporte une contribution importante. Ce type
d’approche permet non seulement de comparer des chaînes PV avec différents
nombres de panneaux PV, mais également avec différentes températures, irra-
diations, vitesses de vent et même technologies. Cette approche inclut égale-
ment le facteur de dégradation de la centrale photovoltaïque.

9. Un modèle de prédiction de puissance PV ajusté aux données réelles
qui utilise les variables suivantes : température ambiante, vitesse du vent,
irradiation, puissance STC, nombre de panneaux connectés en série, date
d’installation de la centrale et taux de dégradation annuel. Grâce à tous
ces paramètres, le modèle proposé est capable d’estimer la production PV
au niveau du module PV ou de la chaîne PV. Les résultats d’estimation du
module sont comparés aux données réelles d’une centrale photovoltaïque, ob-
tenant un niveau élevé de coïncidence avec les données réelles. Ce modèle
est également utilisé pour générer une stratégie d’augmentation de données
et de génération de défauts synthétiques, comme solution aux problèmes de
quantité insuffisante de données ou de données déséquilibrées.

10. A new approach to machine learning integrated into the new versatile
data acquisition system Solar Vitality.

11. Une nouvelle approche d’apprentissage automatique adaptatif nom-
mée Adaptive-diag intégrée dans le nouveau système d’acquisition de don-
nées polyvalent Solar Vitality. Cette approche combine l’apprentissage su-
pervisé et non supervisé, ainsi que l’apprentissage basé sur des modèles et
des données. Cette approche utilise les données de la modélisation du point
9, les techniques décrites au point 5, ainsi que la normalisation du point 8,
pour détecter, localiser et identifier les défauts dans les systèmes PV. Cette
approche est capable d’utiliser la vitesse du vent, la température ambiante,
l’irradiation, les informations de la fiche technique et l’âge de l’installation
photovoltaïque pour générer automatiquement un groupe de panneaux ou de
chaînes de référence sains. Avec ces informations, cette approche est non
seulement capable de détecter les défauts du système PV, mais également de
générer automatiquement un rapport de priorité de maintenance pour les pan-
neaux défectueux. Ce système est également évolutif, car au fur et à mesure
que des erreurs sont détectées et que de nouveaux échantillons sont classés,
la base de données interne s’agrandit. Une fois que de nouveaux clusters sont
détectés, le système s’entraîne et met à jour le modèle de diagnosis de défauts.
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Cette thèse démontre plusieurs importantes contributions à la recherche et
avancées scientifiques par rapport aux solutions existantes. Parmi les produits
académiques obtenus avec cette thèse figurent:

Conférences internationales

1. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Corinne Alonso and Marko Pavlov. Hierarchical clustering and dynamic time
warping for fault detection in photovoltaic systems. In X Congreso interna-
cional Ingeniería Mecánica, Mecatrónica y Automatización, Bogotá, Colom-
bia, May 2021. (Accepté et présenté)

2. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. DTW k-means clustering for fault detection in
photovoltaic. In XI Congreso internacional Ingeniería Mecánica, Mecatrónica
y Automatización, Cartagena, Colombia, May 2023. (Accepté et présenté)

3. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Detection and classification of faults aimed at
preventive maintenance of pv systems. In XI Congreso internacional Ingeniería
Mecánica, Mecatrónica y Automatización, Cartagena, Colombia, May 2023.
(Accepté et présenté)

Conférences nationales

1. Edgar Hernando Sepúlveda Oviedo. Extraction de signatures et prédiction de
l’état de santé des centrales photovoltaïques. In Journée annuelle de l’école
doctorale Geets, Toulouse, France, April 2022. (Accepté et Présenté)

Workshops

1. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Fault detection and diagnosis for PV systems
using machine Learning, Poster, In 9th NextPV workshop, online edition,
November 2020. (Accepté et Présenté)

2. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Acquisition de données, et prédiction de l’état
de santé de systèmes photovoltaïques. Oral presentation. In Workshop DO,
Mauvezin, October 2021. (Accepté et Présenté)

3. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Advanced machine learning methods, for the
detection of fine faults in PV systems, aimed to preventive maintenance. Oral
presentation. In 10th NextPV workshop, Bordeaux, France, January 2023.
(Accepté et Présenté)
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Articles de revues scientifiques

1. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Corinne Alonso and Marko Pavlov. Feature extraction and health status pre-
diction in PV systems. Advanced Engineering Informatics, vol. 53, page
101696, 2022. (journal Q1)

2. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov and Corinne Alonso. Artificial intelligence based fault diag-
nosis in photovoltaic systems Part I: A Bibliometric survey. Renewable and
Sustainable Energy Reviews, vol. 00, page 00, 2022. (Soumis dans un journal
Q1)

3. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov and Corinne Alonso. An Ensemble Learning-Based Fault De-
tection and Diagnosis for PV modules. Sustainability, vol. 00, page 00, 2022.
(Soumis dans un journal Q1)

4. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov and Corinne Alonso. Artificial intelligence based fault diagnosis
in photovoltaic systems Part II: A topic modeling approach. Renewable and
Sustainable Energy Reviews, vol. 00, page 00, 2022. (Soumis dans un journal
Q1)

Brevet

1. Patent Feedgy/LAAS-CNRS (en procès)

Prix obtenus

• Prix de la meilleure communication orale à la conférence sur le génie électrique
et la gestion de l’énergie à Journée annuelle de l’école doctorale Geets.

Plan de thèse

Le reste de la thèse est organisé en neuf chapitres comme suit :

Chapter 1:

Ce chapitre aborde l’intérêt académique et industriel sous lequel cette thèse est
développée, l’approche formelle du problème, le but et les objectifs et les cas qui
sont étudiés dans la thèse. Ainsi que les produits académiques obtenus à partir de
cette thèse
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Chapitre 2

Trois aspects principaux sont présentés dans ce chapitre. En premier lieu, un état de
l’art sur les éléments constitutifs d’un système photovoltaïque classique. Deuxième-
ment, un dictionnaire formel des défauts est proposé qui contient quatre sources de
défauts identifiées : les causes externes, l’interaction matérielle, le vieillissement des
composants ou causés par d’autres défauts, dans ce que nous appelons le cercle de
cause à effet. Dans ce même dictionnaire, une nouvelle classification multiniveau
des défauts du système est proposée selon le type de défaut, le composant où elle se
produit (cellule, module, vieillissement, système de protection ou boîte de jonction),
qu’elle soit structurelle, électrique, par élévation de température anormale (point
chaud), mauvaises connexions ou ombrage (ombrage ou saleté). Enfin, ce diction-
naire, basé sur une revue bibliographique intense, contient également une descrip-
tion de chaque défaut en fonction de sa signification ainsi qu’un support illustratif,
la fréquence d’occurrence et l’impact en termes de sécurité humaine et de perte
d’énergie sont exposés. Enfin, le troisième aspect abordé dans ce chapitre traite
des méthodes classiques de détection de défauts dans les systèmes photovoltaïques,
en les divisant en cinq grandes catégories : méthodes visuelles, méthodes basées
sur l’image, méthodes de détection électrique, technique basée sur des dispositifs de
protection et détecteur. détection (AFD).

Ce chapitre part de l’hypothèse que le large éventail de conditions et de scénarios
dans lesquels un défaut peut se produire signifie que le choix de la méthode de dé-
tection de défaut dépend des connaissances disponibles sur le système (composants
du système), parfois de sa taille (niveau d’impact du défaut), ses caractéristiques
(électriques, thermiques...), son origine et le type de défaut à diagnostiquer. Pour
cette raison, il est évident que des défis subsistent autour de la détection de défauts
dans le système photovoltaïque.

De plus, les conditions de détection des défauts dans les systèmes
photovoltaïques deviennent plus difficiles lorsque l’influence des conditions
météorologiques [Yi 2017c] et ses changements continus de conditions, les sorties
non linéaires du système [Fadhel 2018], la la présence ou non de dispositifs de suivi
du point de puissance maximale (MPPT) [Zhao 2013a], l’apparition de plusieurs
défauts simultanés ou de défauts primaires générant des défauts secondaires plus
graves. En fait, il existe également d’énormes scénarios dans ce domaine où le
comportement électrique des panneaux avec défauts est très similaire à celui des
panneaux sans défaut [Hariharan 2016a, Sepúlveda Oviedo 2022]. Compte tenu de
tout cela, il est évident que les approches présentées dans ce chapitre atteignent
leurs propres limites lorsque les conditions mentionnées ci-dessus sont remplies ou
lorsque de grandes quantités de données de grande dimension (Big data) sont in-
troduites dans les nouveaux systèmes de surveillance.

Par conséquent, cette recherche considère que les stratégies de détection des dé-
fauts dans les systèmes PV peuvent être améliorées pour obtenir des systèmes plus
efficaces avec des fonctions de détection prédictive des défauts et être appliquées à
une large gamme de centrales PV avec divers systèmes de surveillance. De plus,
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cette recherche accorde une importance particulière à la détection des défauts avec
des signatures similaires à celles des panels sains, en tenant compte de la classifica-
tion multiniveaux présentée dans ce chapitre et des relations entre les défauts dans
le cercle cause-effet. Ceci est primordial, car la détection d’un défaut à l’origine de
plusieurs défauts graves augmenterait considérablement le niveau de précision des
systèmes de détection de défauts.

Cette thèse considère que des améliorations peuvent être fortement soutenues
par des approches d’intelligence artificielle en raison de la capacité de l’intelligence
artificielle (IA) à gérer des données multivariées de grande dimension et à extraire
des relations cachées au sein des données dans des environnements complexes et
dynamiques [Wuest 2016]. De plus, les nouvelles approches doivent être capables
de détecter les défauts non seulement lorsque l’impact est sévère mais même dès le
début ou lorsque leurs signatures sont similaires à celles d’un panneau sans défaut,
comme dans le cas du Snail Trail. Ces approches sont essentielles pour éviter les
conséquences destructrices et les risques pour le personnel qui entre en contact avec
le système PV. En tenant compte de tous ces aspects, le chapitre 3 traite d’une
analyse détaillée de l’état actuel de l’art sur les questions de détection de défauts
dans les systèmes PV utilisant l’intelligence artificielle.

Chapitre 3

Ce chapitre présente une étude approfondie de l’état de l’art sur les techniques
d’intelligence artificielle utilisées pour la détection de défauts dans les systèmes pho-
tovoltaïques. Dans ce chapitre, deux méthodologies computationnelles innovantes
qui combinent l’apprentissage automatique, la bibliométrie et l’analyse d’experts
sont proposées et utilisées pour extraire les informations pertinentes qui détermi-
nent les domaines de recherche actuels et les défis dans ces domaines. De plus,
cela permet de positionner la recherche présentée dans cette thèse en effectuant une
analyse approfondie de l’état de l’art qui réduit la subjectivité existante dans les re-
vues conventionnelles et positionne le lecteur à l’avant-garde dans la compréhension
des aspects de la détection efficace des défauts dans les systèmes photovoltaïques.

Dans ce chapitre de revue, plus de 620 articles publiés depuis 2010 sur les méth-
odes d’intelligence artificielle pour la détection de défauts dans les systèmes pho-
tovoltaïques sont analysés. Pour extraire les grandes tendances de la recherche, en
particulier pour repérer les algorithmes et les approches les plus prometteurs qui
s’affranchissent des temps de calcul excessifs, une revue de littérature convention-
nelle aurait été extrêmement difficile à réaliser. C’est pourquoi dans ce travail il
est proposé de réaliser une revue avec une approche innovante basée sur une méth-
ode statistique dite Bibliométrique et une Analyse Experte de Contenu Qualitative.
L’approche bibliométrique a un caractère générique qui peut être facilement utilisé
et extrapolé dans les années futures ou appliqué dans d’autres domaines. Cette
méthodologie se compose de trois étapes. Tout d’abord, une collecte de données à
partir de bases de données est réalisée avec toutes les précautions pour aboutir à
une base de données volumineuse, robuste et de qualité. Deuxièmement, de mul-
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tiples indicateurs bibliométriques sont choisis en fonction des objectifs à atteindre
et analysés pour évaluer leur impact réel, tels que le nombre et le type de publica-
tions, les liens de collaboration entre institutions, auteurs et pays, les articles les
plus cités, etc. Enfin, l’analyse qualitative du contenu expert réalisée par des ex-
perts identifie les sujets de recherche actuels et émergents ayant le plus grand impact
sur la détection de défauts dans les systèmes photovoltaïques utilisant l’intelligence
artificielle.

De manière complémentaire, dans ce même chapitre, une revue alternative
est proposée en utilisant une méthodologie innovante qui combine deux méth-
odes d’apprentissage automatique : la modélisation thématique (topic modeling)
et l’incorporation de voisins stochastiques distribués en t (t-distributed stochastic
neighbor embedding t-SNE). Ensuite, un processus d’analyse qualitative du contenu
des sujets guidé par des experts permet d’extraire les informations pertinentes qui
déterminent les domaines de recherche actuels et les défis dans ces domaines. Cette
méthodologie, qui peut être extrapolée à d’autres domaines, réduit la subjectivité
existante dans les revues conventionnelles et positionne le lecteur à l’avant-garde
dans la compréhension des aspects de la détection efficace des défauts dans les
systèmes photovoltaïques.

Une fois ces deux méthodologies appliquées, les résultats sont croisés pour sélec-
tionner un ensemble d’articles représentatifs de l’état de l’art qui sont analysés en
détail. Ces articles sont analysés en fonction des algorithmes qu’ils utilisent, des
signaux d’entrée, des défauts détectés, du temps d’échantillonnage des signaux, des
variables utilisées, entre autres.

Grâce à l’application de ces méthodologies, il est possible d’extraire les
paramètres clés, les défis et les opportunités de recherche qui favorisent et orientent
la recherche dans le domaine de la détection des défauts. Dans les systèmes photo-
voltaïques utilisant l’intelligence artificielle, une liste d’algorithmes représentatifs et
des documents organisés par groupes sont fournis pour accroître la compréhension
des différents types d’algorithmes à considérer dans les recherches futures. L’une
des conclusions est que la recherche sur l’apprentissage automatique hybride et les
études comparatives de ces méthodes dans la détection de défauts dans les systèmes
photovoltaïques sont recommandées. De même, la recherche sur la prévision des sys-
tèmes PV devrait être encouragée pour fournir une maintenance préventive basée
sur l’état et réduire les temps de retour sur investissement. Même si les demandes
industrielles ont tendance à être directement orientées vers des générateurs photo-
voltaïques entiers, la surveillance au niveau des panneaux photovoltaïques a encore
un long chemin à parcourir et doit être construite en parallèle avec des algorithmes
d’apprentissage automatique. De plus, la méthodologie d’examen d’art utilisant
ces outils innovants tire parti des dernières avancées en matière de traitement du
langage naturel pour fournir des détails sur le comportement de la recherche dans
un domaine de la connaissance.

Il est important de mentionner que cette recherche n’a pas pris en compte les ar-
ticles qui ne présentent que le cadre général du sujet sans recherche expérimentale.
L’objectif principal de ce chapitre est de favoriser le développement d’approches et
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d’outils pour la détection et la classification des défauts dans les systèmes photo-
voltaïques. Pour cette raison, cette recherche concentre ses efforts sur la fourniture
d’une vision objective, cohérente et méta-analytique des recherches actuelles sur
l’intelligence artificielle durable appliquée au domaine de l’énergie. En raison du
rôle important de la surveillance des systèmes PV pour la détection des défauts dans
les systèmes PV, cette thèse propose une nouvelle plate-forme de surveillance des
systèmes PV avec un système de détection des défauts intégré. Pour cette raison,
et afin de positionner notre nouvelle plateforme de surveillance, le chapitre 4 vise à
connaître les caractéristiques et les limites des systèmes de surveillance actuels, et
la description de la nouvelle plate-forme construite et testée dans cette thèse.

Chapitre 4

Ce chapitre présente une revue des systèmes de surveillance actuels dans les sys-
tèmes photovoltaïques, leurs limites, avantages, inconvénients et défis de développe-
ment. De plus, une plate-forme industrielle et commerciale Tigo utilisée dans cette
thèse est présentée pour tester les limites de la détection de défauts dans les sys-
tèmes photovoltaïques à l’aide de plates-formes de surveillance largement commer-
cialisées. Enfin, un nouveau système de surveillance photovoltaïque est présenté
qui suit les directives de la norme CEI 61724. Cette nouvelle plate-forme utilise la
carte de développement électronique open source Arduino pour résoudre le prob-
lème actuel de surveillance des systèmes photovoltaïques (PV) avec un Raspberry
Pi4 . Cette plate-forme peut être utilisée pour surveiller les défauts des systèmes
photovoltaïques, des centrales résidentielles aux centrales photovoltaïques de grande
puissance, dans les pays développés et en particulier dans les zones reculées ou les
régions des pays en développement.

Dans ce chapitre, une revue complète des systèmes de surveillance photo-
voltaïques existants rapportés dans la littérature est présentée en termes de capteurs
et de systèmes d’acquisition utilisés. De plus, les paramètres les plus utilisés dans
la surveillance des systèmes photovoltaïques ont été analysés, parmi lesquels : la
tension, le courant, le rayonnement solaire, la température et la vitesse du vent.
Dans le domaine des systèmes d’acquisition de données, ce chapitre couvre les con-
trôleurs utilisés pour le système d’acquisition de données, les types de méthodes
de transmission de données, le stockage des données et l’analyse des données. De
même, il a été identifié qu’un système de transmission de données efficace est es-
sentiel pour assurer la qualité des données, surtout compte tenu des conditions de
travail difficiles auxquelles sont soumis ces systèmes d’acquisition de données. Dif-
férents moyens de transmission de données (filaires, sans fil et sur courant porteur,
etc.) ont été trouvés.

Le choix du meilleur support de transmission est totalement lié aux conditions de
fonctionnement du système d’acquisition de données. Plusieurs paramètres peuvent
être évalués pour déterminer le meilleur support de transmission de données. Tout
d’abord, la zone de couverture et la longueur de la distance entre les capteurs et le
système d’acquisition de données doivent être prises en compte. Par exemple, les
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câbles coaxiaux ne peuvent pas fonctionner sur de longues distances par rapport
au câble à fibre optique. Cependant, pour de courtes distances, il a été démontré
que de nombreuses études préfèrent les câbles coaxiaux qui montrent de grandes
performances. D’autre part, le protocole WLAN ne peut couvrir qu’une petite zone
d’environ 20 km2, par rapport au GPRS-GSM, mais peut transmettre des données
sur des distances de centaines ou de milliers de kilomètres via Internet. Le protocole
Power Line Communication (PLC) transmet des informations sur des centaines
ou des milliers de mètres en utilisant l’infrastructure filaire existante sans aucune
installation supplémentaire. Cependant, il existe des problèmes de vieillissement
du câblage et des causes externes qui peuvent affecter l’envoi de données sur des
scénarios de plusieurs centaines de mètres. De plus, lorsque le câblage est étendu et
que le signal de sortie du capteur est sous tension, des pertes de signal importantes
peuvent se produire. Il est donc recommandé de concevoir le système pour une
sortie de capteur de courant lorsque le signal doit parcourir de longues distances
via un câble.

Chapitre 5

Comme expliqué au chapitre 4, les systèmes actuels de surveillance des centrales
photovoltaïques ne sont pas conçus pour le diagnosis des défauts, encore moins, ils
visent à détecter les défauts dont l’occurrence est très rapide, ce qui nécessite des
vitesses élevées d’échantillonnage des données. Comme proposition pour résoudre
ce problème, ce chapitre 5 présente un nouveau système d’acquisition de données
orienté diagnosis nommé Solar Vitality. Solar Vitality est conçu avec un accent par-
ticulier sur sa précision ou ses incertitudes selon la norme IEC 61724 [IEC 1998].
Solar Vitality utilise la carte de développement électronique open source Arduino
pour résoudre le problème actuel des systèmes photovoltaïques (PV) d’acquisition
de données avec un Raspberry PI4. Solar Vitality peut être utilisé pour surveiller
les défauts des systèmes photovoltaïques, des centrales photovoltaïques résidentielles
aux centrales électriques, dans les pays développés et en particulier dans les zones
reculées ou les régions des pays en développement. Solar Vitality répond à toutes les
exigences pertinentes en termes de précision incluses dans les normes de la Com-
mission électrotechnique internationale (CEI) pour les systèmes photovoltaïques,
avec des mesures toutes les 15 millisecondes, comprenant 11 entrées analogiques
pour mesurer jusqu’à 4 chaînes photovoltaïques indépendantes et les paramètres
météorologiques d’irradiation, la température ambiante et la vitesse du vent. Solar
Vitality est complètement autonome en termes d’alimentation électrique, portable
et facilement couplée à différentes topologies de systèmes photovoltaïques. Solar
Vitality est testé dans différents scénarios et avec différentes topologies de systèmes
photovoltaïques en conditions réelles de production. Solar Vitality est testé en
fonctionnement continu pendant plus de 6 mois, présentant un fonctionnement ro-
buste même dans les conditions environnementales difficiles de l’été et de l’hiver en
France.

Solar Vitality est capable de capturer le comportement électrique du système
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photovoltaïque avec une fréquence d’échantillonnage élevée (toutes les 15 mil-
lisecondes) et des variables météorologiques telles que la température ambiante,
l’irradiation et la vitesse du vent. La conception et la construction de Solar Vitality
visent à répondre à deux objectifs. Le premier est de démontrer l’influence de la
fréquence d’échantillonnage dans la détection et la classification des défauts dans
les systèmes photovoltaïques. La seconde est de démontrer et de quantifier l’effet
des variables météorologiques sur le système photovoltaïque. Ensuite, l’explication
de la vitalité solaire est présentée. Les résultats des données recueillies à partir des
capteurs météorologiques et électriques indiquent que le nouveau système est fiable
et présente des performances comparables à celles des systèmes commerciaux. Solar
Vitality présente un intérêt particulier pour la recherche et l’industrie. Enfin, Solar
Vitality est facilement personnalisable pour les besoins spécifiques de chaque projet
et système photovoltaïque et peut même être étendu à d’autres domaines.

Solar Vitality capture le comportement électrique et météorologique de la cen-
trale photovoltaïque. La capture de ces deux comportements est essentielle pour
améliorer la précision et le nombre de défauts différents détectés dans les systèmes
PV [Blaesser 1997]. La plupart des systèmes d’acquisition de données se sont con-
centrés sur la capture du comportement électrique du système, car pour le com-
portement météorologique, ils utilisent des données compilées par des institutions
nationales ou européennes [NAS 2022, Atl 2022, PVG 2022]. Ces informations sont
utiles pour connaître de manière générale les conditions météorologiques de fonc-
tionnement d’une région ou d’une zone. Cependant, lorsque l’on pense à la dé-
tection de défauts dans les systèmes PV, l’utilisation de ces données satellitaires
présente plusieurs inconvénients. Premièrement, ces données ne peuvent se sub-
stituer aux données spécifiques relevées sur le site. Deuxièmement, il existe de
nombreux endroits où ces bases de données ne sont pas disponibles ou sont en train
d’être compilées. Troisièmement, bien qu’un large éventail de bases de données
météorologiques soient disponibles, elles sont généralement coûteuses, très sophis-
tiquées et difficiles à gérer [Fuentes 2014].

En conséquence, un développement plus poussé des systèmes d’acquisition de
données est nécessaire pour collecter et traiter les données électriques et les données
météorologiques en fonctionnement, dans le but d’obtenir des valeurs mesurées à
l’aide de données précises et faciles à manipuler. Tenant compte de ces aspects,
cette recherche présente un nouveau système d’acquisition de données orienté vers
le diagnosis (Solar Vitality) qui peut être utilisé pour instrumenter des installa-
tions photovoltaïques de toute taille, au niveau d’un panneau PV, d’une chaîne
PV ou d’un générateur PV. Il peut également être utilisé pour capturer des don-
nées provenant d’installations photovoltaïques avec différentes configurations. Ces
caractéristiques sont essentielles pour assurer et faciliter un développement rapide
et continu. De plus, Solar Vitality a une grande flexibilité et peut être adapté à
chaque cas spécifique (à la fois pour la recherche et les applications industrielles
dans les régions développées et en développement). Solar Vitality permettra à la
communauté photovoltaïque d’avancer plus rapidement dans certains des domaines
de recherche qui ont nécessité une acquisition complète de données photovoltaïques,
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mais qui sont limités par des problèmes de coût et de technologie. Il est nécessaire
de mentionner cela non seulement parce qu’une acquisition de données et un taux
d’échantillonnage de haute qualité peuvent assurer une détection précise des défauts.
Il est également nécessaire de mener des recherches approfondies sur le traitement
du signal pour extraire les attributs appropriés qui permettent d’identifier et de
séparer les différents états de santé de la centrale photovoltaïque. Cette analyse du
traitement des attributs est traitée ci-dessous dans le chapitre 6.

Chapitre 6

Ce chapitre 5 présente un ensemble d’approches pour l’extraction et la sélection de
caractéristiques et quelques exemples d’apprentissage automatique conventionnel
pour la détection de défauts dans les systèmes photovoltaïques. L’objectif de ce
chapitre 5 est de comprendre les limites qui existent avec certains des algorithmes
d’apprentissage automatique supervisés et non supervisés les plus populaires pour
la détection de défauts, tels que Snail Trail et Broken Glass. Ce chapitre 5 pro-
pose 3 méthodes d’extraction de caractéristiques. Tout d’abord, la métrique de
similarité Dynamic Time Warping (DTW) est utilisée pour comparer directement
les mesures actuelles des panneaux PV. Deuxièmement, une décomposition basée
sur les ondelettes pour l’extraction de caractéristiques est proposée. Enfin, une
extraction des caractéristiques statistiques qui caractérisent le signal électrique est
proposée.

En raison de la haute dimensionnalité des matrices obtenues après extraction
des caractéristiques, ce chapitre 5 propose également un ensemble de méthodes
de sélection des caractéristiques. Les deux premières méthodes appelées analyse
en composantes principales (ACP ou PCA en anglais) et cartographie isométrique
(Isomap) sont des approches basées sur la transformation d’espaces de caractéris-
tiques. Ensuite, deux méthodes de réduction de dimensionnalité sont proposées
en analysant la corrélation et la variance des caractéristiques. Ces deux méthodes
préservent les informations pertinentes pour la classification des défauts. Enfin,
dans ce chapitre 5, trois algorithmes d’apprentissage automatique sont utilisés,
deux non supervisés et un supervisé. Les deux algorithmes non supervisés (K-
means et clustering hiérarchique) sont combinés avec la métrique DTW, tandis que
l’algorithme supervisé (Random Forest) est réalisé en utilisant en entrée une combi-
naison des méthodes de sélection et d’extraction de caractéristiques présentées dans
ce chapitre.

Les résultats présentés dans ce chapitre montrent effectivement que certaines des
méthodes d’apprentissage automatique conventionnelles et les plus représentatives,
à la fois non supervisées et supervisées, ont de sérieux problèmes pour détecter
les défauts de Snail Trail. Comme discuté au chapitre 2, le défaut Snail Trail
ne diminue pas de manière significative les performances des panneaux solaires (il
émule un comportement sain) et est donc difficile à détecter au niveau du signal
électrique. Cependant, comme indiqué également au chapitre 2, il s’agit d’un défaut
qui peut provenir de microfissures et de fissures sévères jusqu’à la corrosion et aux
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points chauds. Par conséquent, sa détection précoce est vitale.

Il est intéressant de noter que pour la détection de défauts dont la signature
électrique est différente de celle d’un panneau sain, les algorithmes de détection
non supervisés tels que le clustering hiérarchique et les k-means représentent une
grande opportunité avec un faible coût de calcul puisqu’ils ne nécessitent pas la
fonctionnalité multiple extraction. Un inconvénient des deux méthodes non super-
visées est que le nombre de classes souhaitées doit être défini a priori. Par exemple,
comme mentionné dans [Nielsen 2016], le résultat final du HC dépend du niveau
auquel les grappes sont coupées. Cette caractéristique du HC pourrait être consid-
érée comme un avantage, si l’on souhaite différencier le niveau d’affectation entre
panneaux d’un même défaut, puisque, si la coupe -off augmente le niveau, il est
possible de déterminer des sous-groupes liés au niveau du défaut. Cet aspect est
essentiel pour établir une priorité dans la maintenance préventive. Pour tester la
robustesse des algorithmes HC et k-means, les deux ont été testés avec des fenêtres
temporelles différentes, obtenant toujours le même résultat même avec des fenêtres
de 3 minutes. Cet aspect est important pour établir une priorité dans la mainte-
nance préventive.

En ce qui concerne l’approche Random Forest (RF), il est possible de remar-
quer comment l’augmentation du nombre de caractéristiques augmente également
la précision de la détection et de la classification des défauts. De plus, on peut voir
que bien que la RF ait des limites pour la détection des traces d’escargots, elle est
capable de détecter 3 panneaux sur 4 avec le défaut de trace d’escargot malgré le
petit nombre d’individus (échantillons ou panneaux) et la grande similitude entre
les échantillons. chacune des classes. L’un des avantages de toutes les méthodes
présentées dans cette section est qu’elles parviennent à regrouper les signaux à l’aide
d’une seule variable, qui est le courant du panneau. Cela peut se traduire par une
réduction significative du nombre de capteurs de diagnosis de défaut dont la sig-
nature électrique est différente de celle d’un panneau sain. De plus, il n’est pas
nécessaire de couper la production photovoltaïque pour réaliser le diagnosis et un
nombre réduit d’individus de chaque classe (panneaux par classe) est utilisé, ce qui
évite d’avoir recours à un grand nombre d’échantillons pour entraîner le système de
diagnosis.

Considérant que les défauts Snail Trail sont actuellement détectés par des visites
régulières du personnel dans les centrales photovoltaïques, ces approches apportent
vraiment une contribution importante à la détection automatique des défauts. En
général, le processus de diagnosis proposé ici au moyen de l’extraction et de la
sélection de signatures avec des algorithmes d’apprentissage automatique supervisé,
bien qu’encore limité en termes de détection de panel complet avec Snail Trail,
est une étape vers la compréhension des limitations existantes. Pour les raisons
énoncées ci-dessus, un nouvel algorithme de détection de défaut est présenté au
chapitre 6. Cet algorithme essaie d’améliorer les performances de détection fine des
défauts dans les systèmes PV avec des approches d’IA non conventionnelles.
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Chapitre 7

La performance, la sécurité et la fiabilité des centrales photovoltaïques sont forte-
ment liées à la capacité à détecter les pertes anormales de production d’énergie
et les défauts dès leur apparition. Pour ces raisons, un objectif majeur dans ce
domaine est de développer des paradigmes intelligents de détection et d’isolation
des défauts (FDI) qui peuvent grandement bénéficier de l’apprentissage d’ensemble
(EL). Jusqu’à présent, ces techniques appliquées aux sources d’énergie durables,
telles que les centrales photovoltaïques à haute énergie, s’avéraient trop complexes.
Cependant, les avancées récentes de la communauté scientifique rendent ces tech-
niques plus applicables et peuvent donc assurer un fonctionnement performant
des systèmes photovoltaïques. La technique proposée combine plusieurs modèles
d’apprentissage, à savoir Support Vector Machine (SVM), K-Nearest Neighbor
(kNN) et Decision Trees (DT), au lieu d’utiliser un seul modèle d’apprentissage.
Le modèle combiné est orienté vers la détection de défauts classiques, mais sa par-
ticularité par rapport aux modèles existants est sa capacité à détecter des défauts
dont les caractéristiques électriques sont similaires à celles d’un panneau sain. Dans
la méthodologie proposée, dans un premier temps, une matrice de prédicteurs est
construite en extrayant les caractéristiques temps-fréquence (à l’aide de la décom-
position en ondelettes) et les statistiques du signal de courant photovoltaïque des
panneaux PV. Ensuite, en raison de la dimension élevée de la matrice de prédicteurs,
deux algorithmes de sélection de caractéristiques et de réduction de dimensionnalité
(PCA et Isomap) sont utilisés. Enfin, la matrice de prédicteurs réduite est consti-
tuée entre les algorithmes d’apprentissage d’ensemble. Cette méthode est validée
avec une vraie chaîne photovoltaïque de 8 panneaux (4 sains et 4 avec Snail Trail).

L’approche proposée dans ce chapitre 6 vise à apporter une contribution signi-
ficative à la maintenance préventive des systèmes photovoltaïques. Une amélioration
de la maintenance préventive des installations se traduit par une augmentation de
la garantie de production continue de ces systèmes photovoltaïques. Cela devient
critique si l’on tient compte du fait que les systèmes photovoltaïques distribuent
environ 2% de la consommation totale d’énergie dans le monde [Pillai 2019a] et
présentent des pertes de plus ou moins 18,9% par an dues à l’apparition de défauts
[S 2021]. De même, ce type de recherche est vital étant donné que la croissance de
l’énergie photovoltaïque devrait se poursuivre au cours des prochaines décennies, et
on estime même que d’ici 2050 l’énergie photovoltaïque fournira environ 11 % de la
production mondiale d’électricité et réduira de 2,3 gigatonnes. (Gt) d’émissions de
CO2 par an [IEA 2007c, IEA 2007b]. De même, il est important de souligner que
ce chapitre 6 propose et développe une approche basée sur l’apprentissage automa-
tique qui ne nécessite qu’un ensemble de signaux de courant MPP au fil du temps.
L’approche proposée dans cette recherche utilise uniquement le signal de courant
des panels, un nombre réduit d’individus, ainsi qu’un nombre réduit de fonctions
qui réduisent fortement les coûts de collecte de données, de stockage des données
et de temps de calcul. De plus, le processus de diagnosis proposé ici s’est avéré être
simple et efficace sur le plan informatique.
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Enfin, un autre aspect intéressant est que cette approche est capable de détecter
ce type de défaut même dans des conditions de faible irradiation où il est plus
difficile de diagnostiquer les défauts. Ces résultats démontrent son fort potentiel
pour classer ou discriminer les panneaux présentant des défauts dont la réduction de
puissance est faible, mais qui peuvent être à l’origine d’autres défauts sévères, même
dans des conditions de faible irradiation. L’analyse par fenêtres temporaires est un
autre aspect intéressant de cette approche, puisqu’elle considère que la détection
d’un défaut dans un intervalle de temps peut devenir ultérieurement un défaut grave
ou tout simplement disparaître, entraînant une légère perte de performance. Par
conséquent, cette méthode proposée fournit un outil de surveillance de l’évolution
des défauts qui contribue directement à la maintenance préventive et corrective des
grandes installations photovoltaïques. Cette approche a permis de détecter avec
une grande précision des défauts de type Snail Trail, qui à ce jour ne peuvent
être détectés qu’en visitant régulièrement la centrale photovoltaïque, ce qui est
extrêmement coûteux.

Chapitre 8

Le diagnosis vise à prédire l’état de santé des composants et des systèmes. Dans
les systèmes photovoltaïques (PV), il est vital d’assurer la production d’énergie et
de prolonger la durée de vie des centrales photovoltaïques. Plusieurs algorithmes
de prédiction et de classification ont été proposés dans la littérature à cette fin.
La précision de ces algorithmes dépend directement de la qualité des données avec
lesquelles ils sont ajustés ou entraînés, c’est-à-dire des caractéristiques. Dans ce
chapitre 7, une approche innovante est proposée pour la prédiction de l’état de santé
des systèmes photovoltaïques, qui comprend une étape de sélection des caractéris-
tiques. Cette approche discrimine d’abord les panneaux PV gravement touchés en
utilisant les caractéristiques électriques de base. Dans un second temps, il discrimine
les autres panels défectueux en utilisant des caractéristiques temps-fréquence plus
élaborées et en sélectionnant les caractéristiques les plus pertinentes par corréla-
tion et analyse de variance. Enfin, l’approche prédit l’état de santé des panneaux
photovoltaïques à l’aide d’une méthode de régression non linéaire appelée moindres
carrés partiels. Ceci est ensuite combiné avec une analyse discriminante linéaire et
comparée. L’approche est validée avec des données de courant réel d’une centrale
photovoltaïque composée de 12 panneaux photovoltaïques d’une puissance comprise
entre 205 et 240Wp dans trois états de santé (verre cassé, sain, traces d’escargot).
Les résultats obtenus montrent que l’approche proposée prédit efficacement les trois
états de santé. Détermine le niveau de dégradation des panneaux, indiquant les
priorités pour les actions de maintenance correctives et prédictives. De plus, il est
rentable car il n’utilise que des mesures électriques déjà disponibles dans les sys-
tèmes d’acquisition de données photovoltaïques standard. Surtout, l’approche est
générique et peut être facilement extrapolée à d’autres problèmes de diagnosis dans
d’autres domaines.

Pour résumer, l’approche utilise, dans un premier temps, un simple clustering
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hiérarchique basé sur le Dynamic Time Warping, pour regrouper les panneaux PV
en deux groupes A et B, où le groupe A contient les panneaux PV sévèrement
affectés et le groupe B contient les plus sévèrement panneaux PV concernés, le
reste. À ce stade précoce, la méthode discrimine clairement les types sains et trace
d’escargot des verres cassées, ciblant les actions prioritaires de maintenance pré-
dictive et réduisant par conséquent les coûts globaux. Dans un deuxième temps,
l’utilisation d’un ensemble de caractéristiques temporelles et fréquentielles détail-
lées permet une approche plus précise pour détecter des défauts infimes et montre
sa capacité à discriminer les panneaux faiblement affectés (trace d’escargot) des
panneaux sains.

La seconde étape a été validée en identifiant avantageusement les panneaux
photovoltaïques présentant de gros défauts de traces d’escargot malgré la difficulté
à les discriminer des panneaux sains. Cela représente une nette contribution par
rapport aux travaux antérieurs tels que [Garoudja 2017a] qui ne parvient pas à
détecter les défauts dont le comportement est très similaire à celui des panneaux
sains. Il est également important de noter que notre méthode a le net avantage
de nécessiter un suivi très simple. En fait, seul le courant MPP est nécessaire.
Comme dans le cas du chapitre 6, ces algorithmes contribuent à la détection d’un
type de défaut aujourd’hui généralement détectable en visitant régulièrement la
centrale photovoltaïque. De plus, le processus de diagnosis pour être efficace doit
être informatiquement simple et efficace.

Un avantage supplémentaire est que l’approche proposée dans cet article ne
nécessite qu’un petit nombre d’individus de chaque classe, réduisant ainsi le coût
d’acquisition et de stockage des données. Un autre point intéressant est que, comme
dans l’algorithme proposé au chapitre 6, la méthode proposée présente les meilleures
performances dans les cas de faible irradiation, comme en début et en fin de journée,
où il est plus difficile de diagnostiquer ce type de fins défauts.

Cette méthode et celle proposée au chapitre 6 fournissent des informations sur
des moments spécifiques de la journée qui doivent être surveillés. Ainsi, ce diagnosis
par fenêtres temporaires permet d’analyser l’impact et l’évolution des défauts dans
le temps. Notez que différents intervalles de temps pourraient être utilisés pour
augmenter la résolution dans le diagnosis des défauts tels que les défauts d’arc
[Wang 2013], l’ombrage partiel [Kumar 2018], les défauts LL [Dadhich 2019] qui se
produisent avec de faibles niveaux de irradiation.

En ce qui concerne les aspects temporels, il convient également de noter que la
décomposition du signal multi-résolution est extrêmement efficace pour détecter le
moment exact où un signal change, ainsi que le type et l’étendue du changement
[Misiti 2013]. Cela offre un avantage par rapport à la transformée de Fourier car si
le défaut se manifeste plus rapidement que la fenêtre d’échantillonnage de l’analyse
de Fourier, comme c’est le cas avec les défauts d’arc, il est très probable qu’il ne
soit pas détecté.

Les différents apports mis en évidence ci-dessus font de la méthode proposée
une méthode efficace de surveillance des systèmes photovoltaïques et est suscepti-
ble de réduire significativement les coûts de maintenance. Pour toutes les raisons
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énoncées ci-dessus, il est possible d’affirmer que l’approche développée est très effi-
cace en termes de calcul informatique, de qualité de l’information et de prédiction
de l’état de santé, ainsi qu’économique puisqu’elle ne nécessite pas l’installation de
capteurs supplémentaires. Il montre également des réalisations de bon augure dans
l’extraction de caractéristiques et la réduction de données expérimentales grâce au
diagnosis de défauts dans les systèmes photovoltaïques.

Fait intéressant, la méthode proposée est basée sur des algorithmes génériques
qui pourraient être appliqués aux défauts de générateurs photovoltaïques qui ne
sont pas considérées dans ce chapitre 7, ainsi qu’à d’autres applications dans le
secteur de l’énergie. Ceci est considéré dans nos travaux futurs. Enfin, le chapitre
8 propose et implémente un algorithme encore plus complexe embarqué dans le
système de monitoring proposé dans cette thèse. Ce système a été testé dans des
conditions réelles de fonctionnement.

Chapitre 9

Ce chapitre présente les derniers développements en termes d’intelligence artificielle
et de surveillance des systèmes photovoltaïques réalisés dans cette thèse. Ce chapitre
propose une approche innovante de machine learning intégrée dans la plateforme de
monitoring proposée et construite dans le chapitre 4 de cette thèse. Cette nouvelle
approche conçue au niveau String PV a été testée à différents niveaux de config-
uration photovoltaïque, d’un panneau photovoltaïque à plusieurs centrales photo-
voltaïques à grande échelle, montrant de hautes performances en termes de précision
de détection, d’adaptation à différentes conditions de formation et d’installation
physique. Ce système est capable de détecter, d’identifier et de localiser le défaut,
ainsi que d’identifier la priorité de maintenance de la chaîne défaillante.

En termes d’efficacité de calcul, l’approche de diagnosis proposée parvient à
condenser les informations des caractéristiques initialement extraites en un plus
petit nombre de caractéristiques dans un autre espace, en conservant les informa-
tions essentielles et en éliminant les informations redondantes ou non pertinentes.
Amélioration significative des résultats de diagnosis des défauts. Les grandes lignes
de l’approche sont présentées dans la Figure 4.

General scheme of operation

Diagnosis
box

Technical data

Production data

Weather data

Faulty Strings
Detected faults (Type)
Maintenance priorityR

e
p
o
rt Healthy Strings

Figure 4: Schéma général de la plateforme de diagnosis proposée.

Le système de diagnosis, présenté à la Figure 4, a besoin de trois types
d’informations pour effectuer le diagnosis. Premièrement, il collecte les informa-
tions techniques de la centrale PV, ces informations proviennent des rapports de
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terrain de la centrale PV et de sa fiche technique. Parmi les aspects compilés
figurent l’âge de l’installation, les modifications apportées aux panneaux, la tech-
nologie, la topologie, le comportement des panneaux dans des conditions standard,
etc.

Deuxièmement, la plate-forme utilise la “Diagnosis Box” pour collecter le
comportement électrique de la centrale photovoltaïque. Le comportement de
l’installation est représenté uniquement par la capture du courant et de la ten-
sion en fonction du temps. Enfin, le comportement météorologique est enregistré
en capturant la température ambiante, la vitesse du vent et l’irradiation en utilisant
la station météo. À la suite de l’analyse interne de la box, un rapport est obtenu
qui contient 4 résultats : i) Healthy Strings; ii) Faulty Strings; iii) Detected Faults
(Type); and iv) Maintenance priority.

A la connaissance des chercheurs ayant participé à cette recherche, c’est la pre-
mière fois qu’une plateforme de diagnosis aussi complète que celle-ci est proposée.
Plusieurs tests ont été effectués sur différents systèmes PV, montrant des perfor-
mances élevées dans chacun d’eux. Le diagnosis de la centrale est réalisé en fin de
journée après avoir collecté toutes les données électriques et météorologiques de la
journée. La plateforme de diagnosis se comporte avec deux processus principaux.

Pour réaliser le processus de diagnosis complet, le boîtier de diagnosis dispose
de deux processus qui peuvent être exécutés en fonction des besoins. Le premier
processus se produit en ligne et le second hors ligne. Le processus en ligne est re-
sponsable du diagnosis des installations photovoltaïques dont l’état n’est pas connu
auparavant. Alors que le processus hors ligne est chargé de fournir la caractéristique
évolutive et auto-adaptative du modèle d’apprentissage automatique. C’est-à-dire
qu’il est chargé de recycler le modèle à l’aide de la base de données augmentée avec
les nouveaux échantillons de chaînes ou de panneaux dont l’état (ou les étiquettes
de défaut) est connu.

Comme on peut le voir sur la même Figure 4, cette approche est capable de
déterminer la priorité de maintenance. Pour déterminer la priorité de maintenance,
un calcul résiduel est effectué entre les signaux de la chaîne PV et le centre du cluster
de chaînes saines. Le boîtier de diagnosis est également autonome en termes de con-
sommation d’énergie, puisqu’il dispose de l’ensemble du système de génération PV
qui garantit le fonctionnement de tous les composants. Ce système n’a pas non plus
besoin d’Internet, il peut donc être installé dans des installations photovoltaïques
telles que de grandes centrales photovoltaïques où il n’y a pas de réseaux sans fil.
De plus, l’approche est suffisamment polyvalente pour pouvoir être connectée à dif-
férentes topologies de systèmes photovoltaïques, des installations résidentielles aux
installations de grande puissance.

Un autre aspect intéressant de cette approche est qu’elle propose un ensemble
d’équations de normalisation de variables. Ces variables nous permettent de mettre
toutes les variables dans une échelle correcte pour améliorer la précision des résultats
dans la détection des défauts, et d’augmenter les performances de l’algorithme de
classification en cas de faible irradiation.

Le système est également facilement reconfigurable en fonction des caractéris-
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tiques de l’installation photovoltaïque et du besoin de sortie de données. Autrement
dit, si l’analyse doit être effectuée hors ligne sur un serveur, ce système peut être
facilement configuré pour que les données soient enregistrées dans un fichier ex-
terne sous différents formats (csv, sql, etc.). Sinon, par défaut, le système effectue
le stockage sur un serveur local, ce qui réduit la taille du stockage des données
significativement.

Perspectives

Cette thèse laisse la porte ouverte à de multiples travaux futurs car elle aborde deux
grands domaines : le matériel et le logiciel

Le matériel

Acquisition de données orientée vers le diagnosis (Solar Vitality)

Dans les travaux futurs, les dimensions de Solar Vitality devraient être réduites.
Pour cela, une analyse de marché des différents composants qui maintiennent la
qualité du signal mais réduit la consommation d’énergie et les dimensions doit être
réalisée. Cela peut également améliorer le point faible de Solar Vitality, qui est
le coût associé aux capteurs performants. De plus, les microcontrôleurs utilisés
dans la dernière version de Solar Vitality pourraient être remplacés par ceux qui
consomment moins d’énergie. Un écran tactile pourrait également être ajouté à
la plate-forme, afin de réduire sa dépendance à un ordinateur pour configurer le
système et le démarrer. L’inclusion de l’écran permet également d’ajouter une
nouvelle fonctionnalité qui est la supervision en temps réel.

De plus, cela faciliterait le paramétrage du système avant le démarrage. Les
deux cartes d’acquisition de données et les cartes de traitement de données pour-
raient être remplacées par une seule carte avec le système embarqué afin de réduire
la taille du prototype et la consommation d’énergie. Si possible, une carte électron-
ique personnalisée permettant d’intégrer les diviseurs de tension doit être réalisée.
Cela augmenterait la robustesse de la plateforme étant donné qu’il s’agit d’un pro-
totype portable. Une autre étude sur les panneaux défaillants à différentes vitesses
de capture de données devrait être effectuée pour déterminer si un ADC à haute
vitesse est vraiment nécessaire ou pourrait être remplacé par un ADC avec moins
de fonctionnalités. Cela réduirait le prix, ainsi que la quantité de données à stocker.

Station météo

D’autres protocoles de communication sans fil devraient être explorés pour éviter
le câblage entre la station météo et la nouvelle plateforme de surveillance du sys-
tème PV. Cela facilitera également le couplage de la station avec le système PV. Il
serait intéressant d’examiner la possibilité d’ajouter des capteurs d’humidité liés à la
dégradation accélérée des modules PV et à l’apparition d’autres défauts comme dé-
montré au chapitre 2. Des connecteurs spéciaux doivent être mis sur les bornes des
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câbles des capteurs. la station météo qui va directement à une boîte de connexion
électrique qui accélère le processus de connexion et évite les mauvaises connexions
des capteurs.

Le logiciel

Stockage des données

Le système pourrait être complété en passant à des tables relationnelles qui per-
mettent d’avoir des clés primaires et secondaires pour éviter la confusion entre les
données. Un système de sauvegarde automatique pourrait être mis en place pour
éviter la perte de données. Les données ne pourraient plus être stockées sur un
serveur phpmyadmin local et aller à la place sur des plateformes en ligne telles que
celles fournies par Amazon ou d’autres.

Pré-traitement des données

Le système d’estimateur de kalman qui élimine le bruit dans les signaux capturés
par l’Arduino doit être vérifié avec différents tests sur le terrain. L’un des tests les
plus importants est le retrait et l’apparition de la source de mesure pour adapter
adéquatement les coefficients aux temps de réponse des capteurs et éviter de mas-
quer les défauts.

Système de diagnosis

Les approches présentées dans les chapitres 7 et 8 pourraient être améliorées en
utilisant la normalisation des données présentée dans le chapitre 9. De plus, ils
pourraient être modifiés pour effectuer une classification multivariée afin d’inclure
des aspects tels que l’humidité, la vitesse du vent, l’irradiation et la température
ambiante. Ceci, compte tenu des excellents résultats obtenus dans les chapitres 7 et
8. De plus, tous les paramètres du Chapitre 9 du modèle pourraient être améliorés
en incluant un algorithme d’optimisation (heuristique ou Méta-heuristique).

La base de données de défauts pour améliorer la formation doit continuer à
être construite sur le terrain, idéalement avec des centrales photovoltaïques qui ont
des configurations, des technologies et des types de panneaux différents. Cela aug-
menterait de façon exponentielle la robustesse du système. De plus, cela montrerait
s’il est nécessaire de modifier davantage la normalisation des données proposée dans
la thèse.

Une autre idée serait d’explorer la possibilité de coupler le système avec un
système de véhicule sans pilote qui capture des images afin de localiser efficacement
les défauts de la centrale qui ont une signature thermique au niveau du panneau.
Des tests doivent être effectués pour expédier les algorithmes proposés dans les
Chapitres 6-8 dans des appareils tels que des onduleurs ou des optimiseurs afin de
tester leur utilisabilité et leur précision.
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De plus, un nouveau système couplé dédié au suivi de points MPPT basé sur
des techniques d’apprentissage automatique pourrait être facilement couplé aux
systèmes déjà présentés dans cette thèse.

Système de rapport de priorité de maintenance

Pour le système de rapport de maintenance, un système codé en Visual Basic pour-
rait générer automatiquement des rapports pour le client, en envoyant une série de
recommandations de changement en fonction des défauts détectés.



Introduction

The constant increase in the global demand for electricity, of the price of oil and
gas products and of environmental pollution have driven in consequence an im-
portant interest in the systematic use of renewable energies [Onar 2008]. Among
them, photovoltaic energy is classified as a sustainable electrical energy resource
with a constantly decreasing cost [Ray 2018, Romero-Cadaval 2015]. In addition,
photovoltaic energy can be implemented in all continents and in various climates,
is considered as a clean resource [Shahsavari 2018], can be used in both small in-
stallations and large-scale power plants due to its scalability. Among the different
solutions in the market [Navid 2021a], it is cataloged as the best way to generate
energy from the environment [Madeti 2017a]. It can be also considered as a vi-
tal tool to promote social transformation and sustainable economic development
[Hariharan 2016b].

Currently, the use and the production of photovoltaic panels has increased sub-
stantially [Jean 2015]. This increase in this type of energy has highlighted four
major challenges that these systems face: i) the potential occurrence of faults and
the response time required to detect and solve them [Araneo 2009, Chen 2018b];
ii) degradation faults [Ndiaye 2013] which can reduce the total energy produc-
tion by up to 17.5% per year [Dhere 2012] and deteriorate the system at rates
of 0.8 % per year or may even cause discontinuity or total system failure
[Wohlgemuth 2011, Chamberlin 2011]; iii) reduction in the rate of recovery of ini-
tial investments and increase in maintenance costs of photovoltaic systems [?] and
iv) the need to improve supervision systems of photovoltaic plants due to the ap-
pearance of recurring undetectable faults [Parida 2011]. In an effort to counteract
production losses, improvements in photovoltaic cell efficiency and maximum power
extraction have been developed, which increase the efficiency, stability, reliability
and robustness of photovoltaic systems [Seyedmahmoudian 2016]. However, when a
fault occurs in the system or is imminent, it is also needed to detected and classified
as quickly as possible faults or failures [Huang 2018] in order to trigger appropriate
preventive or corrective maintenance of the photovoltaic system in a timely manner
[Upadhyay 2014].

Faults in photovoltaic systems can be caused by aspects such as the useful life of
components, increases in temperature during operation, external factors (environ-
mental and non-environmental) or interactions between materials [Fadhel 2018].
However, detection is difficult due to the high dependence of the PV system
on weather conditions [Yi 2017c], the presence of maximum power point track-
ing (MPPT) devices [Zhao 2013a], scenarios in which the electrical behavior of
panels with degradations is very similar to others panels with normal behaviors
[Hariharan 2016a, Sepúlveda Oviedo 2022] or scenarios where the occurrence of the
fault is so fast that it does not seem to have occurred [Zhu 2018]. For these rea-
sons, faults can go undetected for hours and not only degrade the state of the
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photovoltaic panel, but can also cause it to catch fire and pose a danger to human
safety [Strobl 2010, Wang 2014a, Rabla 2013]. Thus, early diagnosis of faults in
photovoltaic systems can sometimes be a real challenge [Haque 2019] and also an
attractive and developing area of research [Ahmad 2018].

Selection of the correct fault detection technique depends on factors such as the
type of fault (line-to-line, short circuit, open circuit, hot spot, partial shade, etc.),
severity, and the potential for multiple faults to occur. Multiple review papers have
been published as a guide for the selection of the best fault detection approach in
PV systems [Madeti 2017b, Alam 2015a]. Some of these reviews range from con-
ventional fault detection methods to more recent artificial intelligence approaches
based on Machine Learning algorithms. Although these reviews provide an overview
of the research area, they require a long time to achieve an in-depth review, and
they hardly eliminate the subjective factors in the literature selection, which leads
to some important literature being ignored [Shen 2021].

Thesis Outline

The rest of the thesis is organized into nine chapters as follows:
Chapter 1: This chapter addresses the academic and industrial interest under

which this thesis is developed, the formal approach to the problem, the purpose
and objectives and the cases that are studied in the thesis. As well as the academic
products obtained from this thesis.

Chapter 2: This chapter provides a description of the components of a photo-
voltaic installation, the faults and methods (that do not use artificial intelligence)
for the detection of faults in PV systems. The aim of this chapter is to remember
physical aspects and behavior of a PV plant from a PV cell to a complete system
of a high power PV plant. It is built to help the reader to more understand the
real challenge in this field to improve its reliability and why classical techniques of
monitoring are not sufficient.

Chapter 3: This chapter presents an extensive study of the state of the art on
artificial intelligence techniques used for fault detection in PV systems. In this chap-
ter, two computational methodologies that combine machine learning, bibliometric
and expert analysis are proposed and used to extract the relevant information that
determines the current research areas and the challenges in these areas. In addition,
it allows positioning the research presented in this thesis by performing an in-depth
analysis of the state of the art that reduces the existing subjectivity in conven-
tional reviews and positions the reader at the forefront in understanding aspects of
effective fault detection in photovoltaic systems.

Chapter 4: In order to guarantee the correct operation and performance of
a photovoltaic system, it is essential to implement a robust, effective, low-cost
and sustainable monitoring unit that is capable of monitoring, recording data and
analyzing the number of parameters that are measured in a photovoltaic plant
of small, medium and large scale. As a tool to help understand the necessary
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conditions to correctly monitor a PV system, this chapter deals with two main
aspects. First, a comprehensive review of various photovoltaic monitoring systems
is presented. That review includes a detailed description of all the main photovoltaic
monitoring systems, based on the sensors used and their principles of operation,
controllers used in data acquisition systems, data transmission methods and data
storage. Finally, it presents a commercial and industrial data acquisition platform.

This chapter presents the new Diagnosis-oriented Data Acquisition named Solar
Vitality. This platform is built and tested in this thesis (complying with the IEC
61724 standard). The platform is capable of capturing the current and voltage
variables of multiple strings, as well as capturing meteorological variables such as
temperature, irradiation, and wind speed at a speed of 15 milliseconds. In addition,
the weather station where the weather sensors are coupled is completely versatile
and adaptable to different topologies of PV plants.

Chapter 6: This chapter provides an explanation about some feature extrac-
tion and selection approaches that are used for fault detection in this thesis. Fur-
thermore, some of these approaches are tested with well-known supervised and
unsupervised learning algorithms to determine the limitations of conventional algo-
rithms in our application case.

Chapter 7: This chapter presents the first AI approach proposed in this thesis.
This approach combines the features of multiple machine learning and signature
extraction and selection algorithms for snail trail fault detection. This proposed
approach called Ensemble Learning (EL) combines several learning models, namely
Support Vector Machine (SVM), K-Nearest Neighbor (kNN), and Decision Trees
(DT), instead of using a single learning model.

Chapter 8: In this chapter a detailed analysis focused on reducing compu-
tational calculation time while maintaining accuracy in fault detection at the PV
panel level is presented. The innovative hybrid approach (unsupervised and super-
vised learning) of machine learning proposed in this chapter pays special attention
to the quality of the data with which it is fitted or trained. The approach pre-
sented in this chapter is capable not only of identifying Snail trails and Broken
glass faults with high precision and reduced computational time, but in addition
to evaluating the evolution of the fault over time, it determines the level of degra-
dation of the panels. This is a very important aspect since it allows indicating
priorities for corrective and predictive maintenance actions. Furthermore, this pro-
posed approach is cost-effective as it uses only electrical measurements that are
already available in standard photovoltaic data acquisition systems. Above all, the
approach is generic and can be easily extrapolated to other diagnosis problems in
other domains. Finally, this approach can be extrapolated to PV string configura-
tions or other configurations.

This chapter presents the latest development in terms of artificial intelligence
and monitoring of PV systems made in this thesis. This chapter proposes an in-
novative machine learning approach embedded within the monitoring platform de-
scribed in Chapter 5 of this thesis. This new approach applied at the PV string
level has been tested at different levels of PV configuration, from a PV panel to
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multiple large-scale PV plants, demonstrating high performance in terms of detec-
tion accuracy, adaptation to different training conditions and physical installation.
This system is capable of detecting, identifying and locating the fault, as well as
identifying the maintenance priority of the faulty string.

Finally, at the end of the manuscript, we draw a conclusion about this work and
present some prospects for future work.



Chapter 1

Background and Project
Motivation
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In this chapter, all issues related to the productivity of a photovoltaic installation
and how power losses require a fault detection and diagnosis study are addressed.
Likewise, the academic and industrial interest under which this thesis is developed,
the formal approach to the problem, the purpose and the objectives are described,
and finally, the academic products obtained from this thesis.

1.1 Background

Photovoltaic energy has taken a truly important position among renewable ener-
gies, reaching a cumulative global installed capacity of approximately 75 GW in
2016 [energy agency 2016] and according to the report of NREL [Feldman 2022],
it is estimated that 171 GW of PV will be installed worldwide in 2021, and they
project that in the years 2022 and 2023, 209 GW and 231 GW will be installed, re-
spectively. Even reports such as GlobalData estimate that the photovoltaic power
installed worldwide will exceed 1,500 GW in 2030 [Data 2019]. In existing and
future photovoltaic installations, independently of their nature and sizes, the diag-
nosis of the health status of the components and systems become vital to guarantee
energy production, extend the useful life and prevent unexpected events in photo-
voltaic solar systems.

In large PV systems representing more than 100 kWp and one-hectare area,
it is understandable that it becomes rapidly more difficult to detect or identify a
physical fault position and/or its origin. This target might prove difficult to meet
in some cases where the fault goes unnoticed until generating a significant neg-
ative impact on the PV system production. Globally, some of the aspects that
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make fault detection difficult are: i) occurrence under low irradiation scenarios
[Yi 2017c]; ii) faults that occur in less than one second [Wang 2013]; iii) pres-
ence of the MPPT device that optimizes the output power of a photovoltaic array
[Zhao 2013a]; or iv) faults with electrical behavior similar to that of a healthy panel
[Hariharan 2016a, Sepúlveda Oviedo 2022]. If these faults are not detected also be
qualified as incipient faults, not only can the state of the plant deteriorate, but it
also represents a danger to human safety [Strobl 2010, Wang 2014a, Rabla 2013],
even generating drastic fault as large fires [Brooks 2011, Ministry of Housing 2017].

As a solution for evaluating photovoltaic system performance and calculating
energy loss over long periods of time, many PV installations today have massive
PV data (both instantaneous and historical) from sources such as weather stations,
photovoltaic inverters and the public network [Zhao 2015a]. However, these super-
vision platforms are not oriented to fine diagnosis of faults and therefore they do
not pay attention to the quality of the data or they have data shipments with low
sampling frequencies. As recommended in [Dhimish 2018a], to increase diagnosis
accuracy it is necessary to increase the sampling time even at speeds of a few mi-
croseconds. However, the types of systems that capture data at these speeds present
a challenge linked to the capabilities of the microprocessors used in the devices. In
addition, using this type of instrumentation platform in different types of PV plants
is really a challenge since energy autonomy must be guaranteed due to the absence
of electrical outlets or power supply systems, local humidity and other environmen-
tal conditions must be considered to ensure a robust platform operation, among
others.

Despite the complexity of these systems, the increasing use of photovoltaic en-
ergy and the reduction in the cost of solar panels are increasingly attracting the
interest of researchers, both in academia and in the industrial world. The objective
of this thesis is the development of fault diagnosis methods embedded in high power
data acquisition systems compatible with photovoltaic installations, respecting in-
dustrial limitations and taking into account the cost/benefit trade-off in produc-
tivity or operating time. The early detection of faults allows to define effectively
the actions to be carried out in terms of the use of the photovoltaic plant but also
in terms of corrective or conditional maintenance, taking into account the current
state of health of the photovoltaic plant or even taking into account forecasts of the
evolution of degradation.

1.1.1 Project Motivation

High-power photovoltaic (PV) power plants are being deployed all over the world.
Its useful life and use must exceed 25 years to guarantee the return on investment in
infrastructure. For this, it is preferable to carry out maintenance either periodically,
or when a serious fault occurs and a definitive loss of productivity is detected. In
fact, this situation can lead to the shutdown of all or part of the plant. Each
production loss, even linked to a reduced number of panels and even temporary,
leads to a significant financial loss in plants in particular ones of more than 250



1.1. Background 35

kWp, which justifies the need to diagnose the state of the plant and anticipate
maintenance interventions at the time will be exact useful.

The productivity of PV plants is strongly affected by aspects such as availabil-
ity and performance. Availability refers to the relationship between the duration of
continuity in energy production, even without optimal performance, and the total
period observed [Díaz 2007]. On the other hand, performance refers to the overall
efficiency of the energy conversion chain. Commonly this performance is measured
using the "performance index" [CEC 1997, IEC 1998]. According to studies carried
out by IEA PVPS, the annual availability rate of a well supervised photovoltaic
installation can reach 97 % [Janh 2000]. As mentioned in [Bun 2011b], the produc-
tivity of a PV system can be improved by reducing the downtime rate and operating
the system at maximum performance.

To reduce downtime or (non-optimal) production time it is necessary to reduce
the number of component faults and the time for both preventive and corrective
maintenance. It is there, where a diagnosis system embedded in a robust data
acquisition platform is vital to identify the fault as quickly as possible. It is true
that a classic data acquisition or supervision of the plant’s production data allows
to identify (imprecisely) the presence of anomalies in energy production. How-
ever, classic data acquisition does not allow for an early detection of faults, so the
photovoltaic plant continues to operate in a sub-optimal state. To date, several
companies offer products to help manage photovoltaic power plants, such as S4E
with the EnergySoft product [S4E 2022] or Circutor with its Scada product ded-
icated to photovoltaic power plants [Circutor 2022]. Some inverter manufacturers
offer products and services to help estimate [SMA 2022] plant performance. How-
ever, the products currently on the market are often not adapt at analyzing the
reasons for production losses and are often limited to a visualization of the data,
without further analysis. More advanced work is done by the company Feedgy with
its Feedgy Analytics tool to monitor and diagnose PV systems online, based on
historical data [Feedgy 2022].

However, despite these efforts, classic data acquisition systems do not have the
portability to be coupled to different PV plant topologies. That is signified they are
not capable of being coupled to both residential installations and plants with other
sizes and topologies such as those large plants on the ground. The latter represent
one of the greatest challenges since they do not have electrical outlets or energy
sources that can feed the data acquisition and fault detection system, in addition
to the strong weather conditions that affect these plants.

It is necessary to clarify that installing an advanced data acquisition system
does not guarantee early detection of faults in the PV plant. This data acquisition
system must have embedded a diagnosis system capable of comparing the behavior
of different strings of the same plant, taking into account several constraints such
as weather conditions, technology, topology, degradation, etc. In other words, it
must be a diagnosis system supported by expert knowledge of the PV plant and
measurements of its electrical and meteorological behavior. Such a robust system
would guarantee that the photovoltaic system does not work for weeks or months in
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a sub-optimal state. This fault diagnosis system must integrate new cutting-edge
techniques that do not require a large amount of data to detect fault phenomena.
This condition is vital, because when the system is installed in the plant, its histor-
ical data is not known, but it is also desired to carry out an early diagnosis of faults
during the first hours of operation of the diagnosis device. For this, it is mandatory
to increase and standardize the existing knowledge about the causes of faults and
their probabilities. Achieving this early diagnosis of faults allows a reduction in
human interventions and their programming only based on signs of fault.

All these reasons are the basis for this research and reveal the need to build
a more sophisticated diagnosis system to detect and diagnose faults in order to
improve the productivity of the photovoltaic installation. The formal statement of
the research problem is presented below.

1.1.2 Problem statement

This thesis addresses the problem of loss of performance of the entire photovoltaic
system and reduction of the output power generated due to the appearance of
faults. This thesis will describe some symptoms or signatures that allow identifying
the main faults in photovoltaic systems. In addition, it will make a contribution
to the improvement of classical data acquisition, proposing and building a new
versatile, portable and autonomous data acquisition and fault detection platform
at the energy supply level associated with a proposed and built weather station that
monitors wind speed, ambient temperature and irradiation. This platform has two
embedded systems working in collaboration. The first embedded system focused on
the collection and previous-treatment of diagnosis-oriented data. The second system
addresses the problem of fault diagnosis in PV systems with few levels of data. This
second embedded system performs fault detection for small time intervals and is
made up of novel machine learning algorithms that could be used to detect faults
in photovoltaic plants of different configurations and technologies.

The faults detected in this thesis include snail trail, shading even partial shad-
ing and broken glass faults. The snail trail type fault is included to test the fine
diagnosis level of the embedded system. This type of fault is very difficult to detect
due to its electrical signature highly similar to that of a healthy panel. Snail trails
(also known as snail tracks or worm marks) in outdoor conditions appear as brown-
ish discolored contact fingers, especially around cell edges and areas of microcracks
[Kim 2016, Köntges 2014b]. This phenomenon is attributed to the entry of moisture
and oxygen through microcracks, in addition this fault can worsen the microcracks
or trigger other more severe faults. The broken glass and shading type faults are
included with the interest of testing some common faults whose impact levels are
higher than those of the snail trail. This variety of production losses allows us to
demonstrate that the proposed system is capable of detecting faults in the entire
impact range. Figure 6.1 shows the three types of faults mentioned.

Multiple approaches have performed fault detection in PV systems based on I(V)
characteristic curve analysis. This type of detection is limited for its implementation
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a) b) c)

Figure 1.1: Faults analyzed in PV systems. a) Snail Trails; b) Broken Glass; c)
Shading

on a large scale since to obtain the characteristic curve it is necessary to cut the
production of the system, making this approach infeasible from the industrial point
of view. So, this thesis also deals with the detection of faults on the electrical signals
of the plant in production. The proposed diagnosis system does not need to cut or
suspend the production of the plant to carry out the diagnosis. Furthermore, the
system developed in this thesis is designed respecting the industrial objectives and
therefore taking into account aspects such as the cost, durability and ease of use,
in view of industrializing and commercializing the solution.

1.1.3 Aim and objectives

The main objective of this research work is to design and implement a physical
platform for data acquisition and fault detection. The data acquisition of the PV
system must have a data capture frequency of less than one second and the embed-
ded system must be capable of detecting multiple faults that occur in photovoltaic
installations without large amounts of historical data. The detection device must be
tested on PV plants at different scales (small, medium and large plants), geographic
locations, weather conditions and technologies. To achieve effective diagnosis, it is
necessary to have a broad knowledge of the types of faults, associated signatures
and methods currently used. Therefore, in this thesis a large number of articles
associated with this topic are analyzed.

There are ten main objectives of this research, which are:

1. To propose two new approaches to build a state of the art using statistical
and machine learning techniques.

2. To build a fault dictionary, containing the description and main signatures
associated with a wide set of faults.

3. To formulate, design and build a new and versatile photovoltaic data acquisi-
tion system. This platform must be portable, autonomous in terms of energy
and capable of receiving the analog signal from electrical behavior sensors
(voltage and current) and meteorological data.
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4. To design and build a weather station that can be easily coupled to a PV
plant and is compatible with the data acquisition platform. This weather
station must monitor ambient temperature, wind speed, irradiation and send
the analog signal to the data acquisition system.

5. To propose a set of extraction and selection techniques of features, on time
series, aimed at detecting faults in PV systems.

6. To propose a machine learning approach for the detection of fine faults such
as snail trail in PV modules.

7. To propose a hybrid univariate Machine Learning algorithm combining super-
vised and unsupervised learning focused on the detection of faults non evident
as snail trail type faults and conventional faults such as broken glass.

8. To propose a set of equations for the normalization of electrical data and
environmental variables that allows comparing the performance of PV plants
with different ages of start-up, number of panels, technologies, etc.

9. To propose a PV mathematical model that is capable of predicting the PV
production of a plant based on variables such as: ambient temperature, wind
speed, irradiation, the characteristics in standard conditions of the PV panels
of a PV plant, the date of installation of the PV plant, among other aspects.
The behavior of the model must be compared with real data from a PV plant.

10. To propose a new adaptive machine learning approach that combines super-
vised and unsupervised learning, as well as model- and data-based learning.
In addition, this approach should use multiple electrical and environmental
variables to improve fault detection at the PV string level. Finally, the system
must be embedded in the new photovoltaic data acquisition system, be able
to update itself as new data from other PV plants is collected, and be able to
perform fault detection in PV plants of different technologies and topologies.

1.1.4 Studied fault cases using machine learning

Based on the information analyzed on the state of the art of possible faults in
photovoltaic fields, this research opts to study mainly snail trail and broken glass
type faults. This choice is due to the fact that broken glass type faults are the
cause of the greatest loss of production in PV systems. On the contrary, the snail
trail type fault does not cause a significant reduction in production in PV systems,
however, this fault is the cause of multiple severe faults that can generate the total
loss of energy production or even fires. Bearing this in mind, this research starts
from the hypothesis that if the proposed algorithms manage to detect the faults
that are in the upper and lower limits of power loss, they are capable of detecting
the entire range of faults that occur between them. These faults are studied only
with real data from a PV system specifically designed for this study. The detailed
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configuration of these faults and the presentation of the photovoltaic field to be
studied are detailed in Chapters 4 and 5 of this thesis.

1.1.5 Academic products of the thesis

The list of academic products of the thesis is listed below.

1.1.5.1 International conferences

1. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Corinne Alonso and Marko Pavlov. Hierarchical clustering and dynamic time
warping for fault detection in photovoltaic systems. In X Congreso interna-
cional Ingeniería Mecánica, Mecatrónica y Automatización, Bogotá, Colom-
bia, May 2021. (Accepted and Presented)

2. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. DTW k-means clustering for fault detection in
photovoltaic. In XI Congreso internacional Ingeniería Mecánica, Mecatrónica
y Automatización, Cartagena, Colombia, May 2023. (Submitted)

3. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Detection and classification of faults aimed at
preventive maintenance of pv systems. In XI Congreso internacional Ingeniería
Mecánica, Mecatrónica y Automatización, Cartagena, Colombia, May 2023.
(Submitted)

1.1.5.2 National conferences

1. Edgar Hernando Sepúlveda Oviedo. Extraction de signatures et prédiction de
l’état de santé des centrales photovoltaïques. In Journée annuelle de l’école
doctorale Geets, Toulouse, France, April 2022. (Accepted and Presented)

1.1.5.3 Workshops

1. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Fault detection and diagnosis for PV systems
using machine Learning, Poster, In 9th NextPV workshop, online edition,
November 2020. (Accepted and Presented)

2. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Acquisition de données, et prédiction de l’état
de santé de systèmes photovoltaïques. Oral presentation. In Workshop DO,
Mauvezin, October 2021. (Accepted and Presented)

3. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov, Corinne Alonso. Advanced machine learning methods, for the
detection of fine faults in PV systems, aimed to preventive maintenance. Oral
presentation. In 10th NextPV workshop, Bordeaux, France, January 2023.
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1.1.5.4 Scientific journal articles

1. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Corinne Alonso and Marko Pavlov. Feature extraction and health status pre-
diction in PV systems. Advanced Engineering Informatics, vol. 53, page
101696, 2022. (Published in journal Q1)

2. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov and Corinne Alonso. Artificial intelligence based fault diag-
nosis in photovoltaic systems Part I: A Bibliometric survey. Renewable and
Sustainable Energy Reviews, vol. 00, page 00, 2022. (Submitted in journal
Q1)

3. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov and Corinne Alonso. An Ensemble Learning-Based Fault De-
tection and Diagnosis for PV modules. Sustainability, vol. 00, page 00, 2022.
(To appear in journal Q1)

4. Edgar Hernando Sepúlveda Oviedo, Louise Travé-Massuyès, Audine Subias,
Marko Pavlov and Corinne Alonso. Artificial intelligence based fault diagnosis
in photovoltaic systems Part II: A topic modeling approach. Renewable and
Sustainable Energy Reviews, vol. 00, page 00, 2022. (Submitted in journal
Q1)

1.1.5.5 Patent

1. Patent Feedgy/LAAS-CNRS (in process)

1.1.5.6 Awards obtained

• Prize for the best oral presentation in the session on electrical engineering and
energy management in Journée annuelle de l’école doctorale Geets.
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This section is divided into three main parts. First, to understand the object of
our study, a brief remember on the constituent components of a conventional PV
system is done. Second, a formal dictionary of faults is proposed that contains four
types of identified fault sources: external causes, material interaction, component
aging or caused by other faults, which is named cause-effect circle. This dictionary
is built with a new multilevel classification of system faults based on the type of
fault, the component where it occurs (cell, module, array, protection system or
box junction), whether it is structural, electrical, caused by abnormal increases in
temperature (hot spot), poor connections, or shading (by obstacles or dirt). This
classification based on an intense bibliographic review, contains a description of
each fault based on its meaning together with an illustrative support, the frequency
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Figure 2.1: Solar electricity generation cost in comparison with other power sources
2009-2021 [SPE 2022].

of occurrence and impact in terms of human safety and loss of power are exposed.
Finally, the third aspect discussed in this chapter deals with conventional fault
detection methods in PV systems, dividing them into five broad categories: Visual
Methods, Image-based Methods, Electrical Detection Methods, Protection Device
Based Technique, and ARC Fault Detector (AFD) Techniques.

2.1 Photovoltaic industry

Although the principle of photovoltaic (PV) conversion is well-known since
its discovery by the French physicist Edmond Becquerel in 1839 [Ameur 2021,
Zhang 2021a] and the design of associated sensors is particularly well mastered
in several technology ways to create efficient PV cells, the solar PV industry al-
lowing a large diffusion in the world has really grown since the 1970s under the
pressure from the fossil fuel crisis. According to the International Energy Agency
(IEA) [IEA 2007a], another notable evolution of the photovoltaic industry induced
an important growth in efficiency from 15 % to 20 % between 1991 and 2007. It
can be noticed in this period that the increase of the photovoltaic industry and
its performances is highly connected to the computer and semiconductor industries
improving their technology processes [Vighetti 2010]. Components from microelec-
tronics declared non-compliant are remelted to be reused and supply the raw mate-
rial sector of the PV industry, considerably reducing the cost of manufacturing the
PV cells.

This cost reduction is a key factor, which has presented one of the main advan-
tages of solar energy over its competition such as Wind, Coal, CCGT (combined
cycle gas turbine) and Nuclear. The cost of solar power has been lower than that
of fossil fuel generation and nuclear power for several years, and is now even lower
than wind as presented in Figure 2.1 taken from the study [SPE 2022].

In the same Solar Power Europe study [SPE 2022], it is exposed that the de-
crease in large-scale solar costs has progressed by 3% more compared to the previous
year and is increasingly moving away from other conventional generation technolo-
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gies. Now as large-scale power generation is examined, photovoltaics are remarkably
cheaper than any of the other technologies as can be seen in Figure 2.2.

In the same Figure 2.2, it can be seen that residential, commercial and industrial
PV installations still have a way to go, but it is expected that in a short time their
costs will also be lower than those of other technologies. Along the same way,
in [SPE 2022] it is exposed that more and more countries are installing hybrid
renewable energies, using various renewable sources plus battery storage to achieve
flexible solutions to their energy needs. The installation of these hybrid energies
has further promoted the installation of PV energies. If the annual photovoltaic
installed capacity is analyzed from 2000 to 2021, it is possible to note that in 2021,
167.8 GW of solar capacity were connected to the grid worldwide [SPE 2022]. This
represents a growth of 21 % with respect to the 139.2 GW added in 2020, as shown
in Figure 2.3.

In the same Figure 2.3, China can be seen as the largest market in the world,
followed by the United States. And in fact, if the cumulative installed photovoltaic
solar capacity in the world is analyzed, it grew by 22% to 940.0 GW at the end of
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2021, compared to 772.2 GW in 2020, as can be seen in Figure 2.4. This means
that total solar energy has increased more than 500 times since the turn of the
millennium, when the grid-connected solar era began with the launch of Germany’s
feed-in tariff law [SPE 2022].

When comparing the values of accumulated installed photovoltaic solar capacity
for the year 2021 and 2010, an increase from 41.3 GW to 940.0 GW (approximately
1 TW) can be observed, which represents an impressive increase of approximately
2176.0 %. In the same Figure 2.4, a comparison of individual countries can be
observed, where it stands out that although there were movements in the first 6
positions (with respect to Figure 2.3). China again followed by the United States,
Japan, Germany, India and Australia. Finally, it is interesting to know what are
the prospects of the photovoltaic industry for the coming years. In [SPE 2022] a
predictive analysis of the photovoltaic industry up to the year 2026 is performed.
In this analysis, 3 market scenarios are proposed as presented in Figure 2.5.

As it can be seen in Figure 2.5, in the medium scenario, by 2022 new installed
capacities are expected to reach 228.5 GW by the end of 2022, which represents a
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growth rate of 36% over the 167.8 GW installed in 2021. The low scenario estimates
a drop in demand to 181.4 GW by the end of 2022, which, as mentioned [SPE 2022],
is really improbable considering the strong demand of solar energy in recent years.
Finally, the high scenario forecasts up to 270.8 GW of solar additions in 2022. In
addition, as it can be seen in the same Figure 2.5, it is expected that in 2026 the
installed capacities will be between 243.5 GW , in the worst case, and 458.8 GW in
the best case, being 1.7 the installed capacity in the best case in 2022. After knowing
the context of the photovoltaic industry, the following is presented a description of
the components that are part of the previously mentioned PV systems.

2.2 PV system components

This section briefly introduces the structure of the photovoltaic system comprising
the following elements: the PV generator, the wiring and the junction box, the
inverter, and the protection system.

2.2.1 PV generator

The PV generator corresponds to the unit that produces electrical energy in the
form of direct current. The generator converts solar energy into electrical energy
using the photovoltaic cell as the basic unit. The association of several photovoltaic
cells in series/parallel gives rise to a photovoltaic generator that has a non-linear
current-voltage I(V) characteristic that presents a maximum power point (MPP)
as shown in Figure 2.6.

If the cells are connected in series, the voltages of each cell add, increasing the
total voltage of the generator. If the cells are connected in parallel, their current
adds to obtain a more important current supplied [Bun 2011a, Cid Pastor 2006a].
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Figure 2.7: Historical evolution of technology market share and future trends
[EPIA 2011].

2.2.1.1 PV Cell

The solar cell is the basic unit responsible for converting sunlight directly into
electricity. Photovoltaic cells can be built with different materials. Some of these
materials are still in the research phase. Among the emerging technologies that are
showing very promising results are dye-sensitized [Upadhyaya 2013], organic poly-
mers [Dou 2013] and perovskite [Zhou 2014] cells. These new PV cell technologies
reduce the cost of photovoltaic energy by several orders of magnitude [IEA 2007a].
Due to the great variety of PV cells, extensive studies are carried out evaluating the
efficiency of all solar cell technologies [NREL 2022]. In [NREL 2022], the National
Renewable Energy Laboratory (NREL) exposes a study on the efficiency of PV cell
technologies on the market and the results are presented in Figure 2.7.

As it can be seen in Figure 2.7, multijunction cell technologies have an ac-
celerated growth in efficiency. In the same Figure 2.7, it can be seen that cells
based on thin film technology present efficiencies approximately equal to those of
silicon. However, they still represent a small percentage of the annual production
[Correia 2021]. Because the most commercialized cells are the crystalline Si cells,
this thesis focuses on the faults present in this type of crystalline Si cells, specifically
in polycrystalline. On the other hand, it is important to mention that studies similar
to those presented in this investigation can be applied to the multiple technologies
presented in Figure 2.7.

Knowing the technology with which PV cells are manufactured is extremely
important since the voltage generated by a PV cell is strongly linked to the value
of the gap of the material from which it comes. This generated voltage can vary
between 0.3 V and 0.7 V depending on the material used and its arrangement, as
well as the temperature of the cell and its aging [Cid Pastor 2006b]. For example,
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for crystalline and amorphous silicon type cells it is 0.6 V. Similarly, the current of
a PV cell is a function of the cell surface and for the same surface, it depends on
the cell efficiency. According to [NREL 2022], the efficiency of monocrystalline cells
is between 26.1% and 27.6%, while that of polycrystalline cells is between 21.2% to
23.3%.

A deeper analysis in terms of efficiency comparing multiple PV technologies
is carried out in [Green 2022]. In [Green 2022] the technologies of Figure 2.7 are
compared as a function of Efficiency (%), Area (cm2), Voc (V ), Jsc (mA/cm2),
Fill factor (%), where VOC represents the open- circuit voltage and JSC the short-
circuit current density. Table 2.1 shows some of the comparison results between PV
cell technologies exposed in [Green 2022].

Table 2.1: Confirmed single-junction terrestrial cell and submodule efficiencies
measured under the global AM1.5 spectrum (1000 W/m2) at 25◦C

Classification Efficiency (%) Area
(cm2)

Voc
(V )

Jsc
(mA/cm2)

Fill factor
(%)

Silicon
Si (crystalline cell) 26.7 ± 0.5 79.0 (da) 0.738 42.65 84.9
Si (crystalline cell) 26.3 ± 0.4 274.3 (t) 0.7502 40.49 86.6
Si (DS wafer cell) 24.4 ± 0.3 267.5 (t) 0.7132 41.47 82.5
Si (thin transfer submodule) 21.2 ± 0.4 239.7 (ap) 0.687 38.50 80.3
Si (thin film minimodule) 10.5 ± 0.3 94.0 (ap) 0.492 29.7 72.1
III-V cells
GaAs (thin film cell) 29.1 ± 0.6 0.998 (ap) 1.1272 29.78 86.7
GaAs (multicrystalline) 18.4 ± 0.5 4.011 (t) 0.994 23.2 79.7
I nP (crystalline cell) 24.2 ± 0.5 1.008 (ap) 0.939 31.15 82.6
Thin film chalcogenide
CIGS (cell) (Cd-free) 23.3 ± 0.5 1.043 (da) 0.734 39.58 80.4
CIGSSe (submodule) 19.8 ± 0.3 665.4 (ap) 0.688 37.96 75.9
CdTe (cell) 21.0 ± 0.4 1.0623 (ap) 0.8759 30.25 79.4
CZTSSe (cell) 11.3 ± 0.3 1.1761 (da) 0.5333 33.57 63.0
CZTS (cell) 10.0 ± 0.2 1.113 (da) 0.7083 21.77 65.1
Amorphous/microcrystalline
Si (amorphous cell) 10.2 ± 0.3 1.001 (da) 0.896 16.36 69.8
Si (microcrystalline cell) 11.9 ± 0.3 1.044 (da) 0.550 29.72 75.0
Perovskite
Perovskite (cell) 23.7 ± 0.5 1.062 (da) 1.213 24.99 78.3
Perovskite (minimodule) 21.4 ± 0.4 19.32 (da) 1.149 23.41 79.6
Dye sensitised
Dye (cell) 11.9 ± 0.4 1.005 (da) 0.744 22.47 71.2
Dye (minimodule) 10.7 ± 0.4 26.55 (da) 0.754 20.19 69.9
Dye (submodule) 8.80 ± 0.3 398.8 (da) 0.697 18.42 68.7
Organic
Organic (cell) 15.2 ± 0.2 1.015 (da) 0.8467 24.24 74.3
Organic (minimodule) 14.5 ± 0.3 19.31(da) 0.8518 23.51 72.5
Organic (submodule) 11.7 ± 0.2 203.98 (da) 0.8177 20.68 69.3

In Table 2.1 the abbreviations mean the following: (ap), aperture area; (da),
designated illumination area; (t), total area; a-Si, amorphous silicon/hydrogen alloy;
CIGS, CuIn1,...,yGaySe2; CZTS, Cu2ZnSnS4; CZTSSe, Cu2ZnSnS4,...,ySey; DS,
directionally solidified (including mono cast and multicrystalline); nc-Si, nanocrys-
talline or microcrystalline silicon [Green 2022].

Other studies such as the one by [Dirnberger 2015] have studied the impact



48 Chapter 2. Fault Diagnosis in Photovoltaic Systems

Wavelength [nm]

400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1.0

1.2
a-Si CdTe c-Si high-eff. c-Si CIGS

N
o
rm

a
liz

e
d
 S

p
e
ct

ra
l 
R

e
sp

o
n
se

Figure 2.8: Typical, normalized spectral response data for single junction PV tech-
nologies, as used for calculation of spectral mismatch factors. [Dirnberger 2015].

of solar spectral radiation on the performance of different photovoltaic tech-
nologies. Figure 2.8 shows a comparison between single junction PV technolo-
gies such as amorphous silicon (a-Si), Cadmiumtelluride (CdTe) crystalline sil-
icon (c-Si), high-efficiency crystalline silicon (high-eff c-Si), and chalcopyrites
(Cu(InxGa1,...,x)(SySe1,...,y)2, named CIGS [Dirnberger 2015].

The CIGS module used for tracing Figure 2.8 has a small band gap, there are
CIGS modules with higher band gaps that have the same normalized spectral re-
sponse as crystalline silicon [Dirnberger 2015]. In the same study [Dirnberger 2015],
it is mentioned that for the CIGS module little spectral impact was observed during
the summer months and a positive spectral impact in the winter. In addition, they
were able to conclude that the CIGS technology showed a higher energy output
with an annual spectrum effect of approximately +1.8% compared to crystalline
silicon which showed +1.5%.

Today, most commercial solar cells are photodetectors that use a solid semi-
conductor material to form a p-n (positive-negative) junction onto which light is
incident. This incidence on the semiconductor material excites the flow of electrons
that cross the junction by the electric field created when the p-n junction is formed
[Jenkins 2017].

Finally, the semiconductor’s p-n junction submitted to solar irradiation is con-
nected to an external circuit, where the flow of electrons across the junction creates
direct current (DC) electricity. Figure 2.9 represents the physical principle of oper-
ation of a PV cell.

As solar radiation increases, the number of electrons increases in the PV cell.
In turn, the increase in the flow of electrons increases the current flow generated
by the photovoltaic solar cells. Therefore, the short-circuit current Isc is directly
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Figure 2.9: Operation of a PV cell [Jenkins 2017].
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Figure 2.10: Representation of a solar cell. a) Simple equivalent circuit of an ideal
solar cell. b) Symbolic representation

proportional to the solar radiation G for a given PN junction temperature.
The open circuit voltage Voc of the photovoltaic cell is determined by the elec-

tric field created in the depletion region of the p-n junction, independent of solar
radiation but depending on intern PN temperature [McEvoy 2013]. Therefore, the
well-known operation of an ideal solar cell is described as follows:

I = Iph − I0

[
e

Vcell
VT − 1

]
(2.1)

where Iph is the photocurrent directly proportional to irradiance, I0 is the diode
saturation current, Vcell is the solar cell terminal voltage, and VT is the thermal
voltage described as follows:

VT = KT

q
(2.2)

where K is Boltzmann’s constant (1.38 × 10-23 J/kelvin), T is the absolute
temperature, q is the charge of the electron (1.602×10−19 C). Equation 2.1 leads to
the simple equivalent circuit of a solar cell, which can be represented by a current
source in parallel with a diode, shown in Figure 2.10.

The equivalent circuit named one diode PV model in Figure 2.10 can include
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Figure 2.11: Equivalent circuit of a solar cell with series and shunt resistance.

shunt and series resistors to represent the losses within the PV cell under the con-
figuration in Figure 2.11.

The shunt resistor Rsh represents current leakage through the p-n junction
around the edge of the cell and the effect of sensing and impurities in the junction
region. The series resistor Rs represents the resistance of the bulk semiconductor,
the metal contacts, and the connection of the contacts to the semiconductor mate-
rial [McEvoy 2013]. Including the effect of these losses results in the Equation 2.3,
where n is the ideality factor, also known as the quality factor or sometimes emission
coefficient, that represents the combination of electrons and holes in faults in the
junction region [Caprioglio 2020, Yatimi 2014]. According to [Ryu 2019], the value
of n varies between 1 and 2. The ideality factor n is considered one of the important
parameters describing the performance of photovoltaic cells [Tarabsheh 2011] as it
means the measure of how closely the device follows the ideal p-n junction behavior
[Muhammadsharif 2017]. For this reason, several papers showed different methods
for the calculation of n of PV cells [Yordanov 2013, Bouzidi 2012].

I = Iph − I0

[
e

q(V +RsI )
nkt − 1

]
− V +RsI

Rsh
(2.3)

Individual solar cells are used to power small devices such as electronic calcula-
tors or some home appliances. However, there are configurations of PV cell sets that
aim to increase the voltage they generate to power applications that require larger
amounts of energy. This set of solar cells are electrically connected in series with
a single by-pass diode and encapsulated in an environmental protection laminate
named a PV module [Bressan 2014, Berasategi Arostegi 2013].

2.2.1.2 PV Module

A photovoltaic module is the smallest set of individual solar cells electrically con-
nected to each other. This set of solar cells are assembled in the module, electrically
connected in series, and encapsulated with a protective material to be protected
against corrosion with oxygen and humidity.

This encapsulation has several functions of protection. It provides protection
against shock, humidity, corrosion, dust and more generally direct contact with air.
[Hadj Arab 1989]. In addition, the encapsulation can help to control the intern
temperature of the PV cells, which will allow a good dissipation to the outside.
This point is important to achieve a good electrical conversion efficiency helping to
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Figure 2.12: Details of a PV module constituted of PV cells. Cells are connected in
series to form PV modules and are associated with secure elements named By-pass
diodes.

evacuate the part of the incident solar energy that is not transformed into electrical
energy and increase the intern temperature [Hadj Arab 1989]. Finally, this encap-
sulation isolates the user from possible electric shocks [Vighetti 2010, Bun 2011a].
The number of photovoltaic cells in series that are in a PV module depends on the
requested power. Generally a PV module contains a variable number of 36, 40,
54, 60, 72 and even 92 cells in series [Bun 2011a]. A possible cell configuration is
presented in Figure 2.12.

As it can be seen in Figure 2.12 the cells of a module are associated in sev-
eral groups. Then, each group is connected in antiparallel (series) with a diode,
named a bypass diode (there are usually 18 cells for a bypass diode). Some
less common configurations propose connecting each individual cell to a bypass
diode [Suryanto Hasyim 1986] or modifications to where the diode is connected
[Silvestre 2009, Díaz-Dorado 2010]. The purpose of this diode By-pass is to block
when the voltage of the photovoltaic cells that it groups is positive and let the
current pass otherwise.

Connecting a set of PV cells under the configuration of a PV module like the
one in Figure 2.12 increases the power. In these configurations with PV cells in
series, the current remains the same while the voltage is multiplied by the number
of cells in series. In an analogous way to the connection of a set of PV cells to
increase the power generated, there is a configuration in which a set of PV modules
is connected named a PV string.

2.2.1.3 PV string

A PV string is made up of a set of photovoltaic modules in series to achieve the
voltage level required by the application. The string is equipped with a protection
diode named an anti-reverse diode, the purpose of which is to block the flow of a
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reverse current in the PV string [Bun 2011a]. An example with N panels connected
in series is presented in Figure 2.13.

2.2.1.4 PV Array

A PV array is a complete DC power generation unit. This unit consists of several
photovoltaic strings, each made up of the same number of modules. The strings are
assembled in parallel in order to increase the current, and thus obtain the desired
power for the photovoltaic installation [Bressan 2014, Berasategi Arostegi 2013].
The PV array can be as small as several modules, or large enough to cover acres
like a utility photovoltaic plant [Fadhel 2018].

Figure 2.14 corresponds to one of the most used configurations named series-
parallel (SP) configuration.

As it can be seen in the same Figure 2.14, a photovoltaic installation also has two
important components. First, the parallel junction box [UTE 2008] that designates
the connection box of the different photovoltaic strings in parallel and where the
anti-reverse diodes and DC disconnectors are located. It is necessary to clarify
that the parallel junction box is different from the junction box of the photovoltaic
modules that is located on the back of the PV panels and that includes bypass diode
type protections. Second, one or more inverters to be able to deliver electricity to
the grid and other components. For more technical information on a PV field please
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a) b) c)

Figure 2.15: Examples of configuration of a PV array. a) Series-Parallel (SP) con-
figuration; b) Total-Cross-Tied (TCT) configuration; c) Bridge-Linked (BL) config-
uration [Andrianajaina 2017]

see [UTE 2008].
There are also Total Cross Tied (TCT) and Ridge Linked (RL) type configura-

tions [Andrianajaina 2017, Kaushika 2003]. An example of the three configurations
is presented in Figure 2.15.

This work is developed on this type of configuration since the total cross con-
nection (TCT) and bridge link (BL) type configurations, although they show to
improve field performance, are not widely used due to their low economic viability
[Picault 2010].

2.2.2 Wiring and Junction Box

The connections between the PV modules are made using unipolar cables as shown
in Figure 2.14. Generally the use of double insulated single conductor cables is rec-
ommended to reduce the risk of ground fault or short circuit [Verhoeven 1998]. As
a safety measure, the use of plug-in connectors that simplify the installation proce-
dure and reinforce protection against the risk of electric shock is recommended. As
these PV arrays generally contain several PV strings, these panels are connected in
parallel with the use of a junction box. As it can be seen in Figure 2.14, this junction
box can contain protection elements such as fuses, switches and disconnectors.

2.2.3 Inverter

The role of the inverter is to extract the maximum power from the photovoltaic
generator if it is dotted with MPP Trackings and intern power structures with for
example the dissociation of different strings. Its main function is to convert DC
current and DC voltage into alternative ones to be able to inject it into the grid or
several appliances. To extract the maximum power from the photovoltaic generator,
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the inverter uses an MPPT (Maximum Power Point Tracker) search algorithm.
More detailed information about the architecture of the inverters including their
topologies can be found in [Akbari 2021, Asif 2021, Sathik 2021, Chamarthi 2020,
Syed 2020, Bun 2011a].

2.2.4 Protection system

In PV fields, there are two types of diodes that protect the operation of a
photovoltaic array: bypass and anti-reverse diodes. These diodes are made of
a semiconductor material, in most cases silicon, with two terminals connected
[Bun 2011a, Vighetti 2010]. The function of these diodes is to allow electricity to
flow in one direction but not the other, protecting the cells against their operation
in the reverse regime [Bun 2011a]. These two diodes are discussed below.

2.2.4.1 Bypass diode

Each PV module is equipped with bypass diodes that prevent the destructive effects
of hot spots caused by non-uniform irradiation, protect the weaker PV cells it groups
against reverse bias or other types of faults. A bypass diode is connected in parallel
but with opposite polarity to groups of between 18 and 24 solar cells inside the
photovoltaic module. In other words, this diode is blocked when the voltage of the
photovoltaic cells it groups is positive and it lets the current pass otherwise.

2.2.4.2 Anti-reverse diode

The anti-reverse diode is placed in a photovoltaic field at the end of each of its PV
strings, as seen in Figures 2.14 and 2.13. This diode allows the passage of the current
that leaves the photovoltaic string towards the junction box and blocks the passage
of the incoming current to the photovoltaic string. This type of diode is mainly
installed in two situations. In the first place, when the strings of the photovoltaic
field present different voltages due to the existence of anomalies. In this scenario, the
lower voltage strings consume the currents provided by the higher voltage strings.
Second, under the absence of the energy produced by the photovoltaic field, due
to the absence of sunlight such as during the night. This scenario occurs when
the PV array has batteries that can begin to discharge, turning the PV array into
dissipation mode. However, the use of these diodes introduces a production loss due
to the voltage drop caused by this diode during normal operation of the photovoltaic
field. In addition, these diodes can fail, so periodic inspection is required.

As stated, there are multiple components within a PV array that can fail. There-
fore, it is essential to have a good understanding of the causes of common PV array
faults and conventional detection methods to ensure continuous and optimal PV
array production.



2.3. Formal fault dictionary 55

2.3 Formal fault dictionary

This dictionary attempts to retrieve most of the information available for under-
standing faults in PV systems. However, it is first necessary to define the concept
of fault adopted by this research. As mentioned in [Jordan 2017], defining the term
“fault” in a consistent and meaningful way in PV systems is really challenging. The
IEC 60050-191 standard defines the term fault as "the termination of the ability of
an item to perform a required function" [IEC 1990]. In other domains maybe this
is quite a transparent and clear definition. However, in a PV system it may not be
so clear, leading to several different uses during the last decades in the photovoltaic
field.

Some institutions, a reference in the field of photovoltaics, such as the Electric
Power Research Institute, define the term as a decrease in maximum power of more
than 50% in a module that could not be repaired in the field [S 1993][12]. More re-
cently, the International Energy Agency defined the term “fault” as the irreversible
degradation of a module resulting in power loss or a safety issue [Köntges 2014a].
This definition is adopted for the construction of this dictionary and the develop-
ment of the complete research. The documents discussed in this section contain
information about faults and generally degradation modes that cause observable
changes in the appearance, performance and security of a module.

Using this definition, it is possible to state that PV systems are susceptible to
faults in any of their components. Some faults are due to cell deterioration, cracks,
overheating, humidity penetration, degradation of interconnections, corrosion of
connections between cells. Likewise, in other scenarios the faults are caused by
modules of different performance, broken encapsulation, short circuit, or inverted
modules. If faults are analyzed on the junction box side, faults caused by electrical
circuit breakage, short circuit, destruction or corrosion of connections may occur.
Finally, on the part of the diodes, faults occur due to the destruction of the diodes,
absence or non-operation of the diodes, reversal of the polarity of the diodes during
assembly or poorly connected diodes.

Due to the wide number of faults that can occur in a PV system, this research
proposes a comprehensive study of the most known faults in PV systems. This
study is presented under a scheme of a "Formal Fault Dictionary". The dictionary
proposed in this section makes a significant contribution to the effective and au-
tomatic detection of faults in PV systems. This dictionary contains four sections.
First, the main causes of faults are presented. Second, a new multilevel classification
is proposed and explained along with each element of it. Third, the frequency of
occurrence of faults is divided into degradation faults and sudden faults throughout
the life of a PV system. Finally, the fourth section of this dictionary exposes the
impact of faults in terms of loss of power and risk to human safety.
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2.3.1 Main causes of faults

In the literature, it is conventionally mentioned that faults can be caused by exter-
nal factors, the interaction of materials or the aging of components [Pillai 2018a].
In a complementary way, in [Aghaei 2022, Li 2021c, García-Gutiérrez 2019] , it is
proposed to analyze the causal relationship between the same faults. This analysis
is carried out using a scheme named the cause-effect circle. These 4 types of origins
are adopted for this research and explained below.

2.3.1.1 External causes

External causes include human error and faults caused by environmental condi-
tions. Human error generally occurs during installation or transportation of PV
system elements. Transport is the first critical stage of the life cycle of PV modules
[Strohkendl 2010], since there can be shocks or vibrations that generate breakages
or microcracks in the PV cells [Köntges 2011b]. Equally critical is the installation
process. One of the biggest causes of glass breakage is clamping during installation
[Dietrich 2008]. Another cause is screws that are too tight, clamps that are too
short or too narrow that generate mechanical stress or cracks in the glass. Another
common human error is incorrect wiring of connectors. When the connectors are
poorly adjusted or crimped, an open circuit, a line fault, a ground fault or a loss
of power can be generated [Gallardo-Saavedra 2019]. In other cases, the connectors
are installed near flammable materials, where arc faults can cause fires.

Outdoor PV systems are exposed to strong environmental conditions that can
generate permanent or non-permanent faults [AbdulMawjood 2018a]. Permanent
faults such as cracks or detachments in the frames or glasses of the photovoltaic
module [Madeti 2017b] can be generated due to lightning strikes [Falvo 2015], in-
tense snowfall [Köntges 2014b] or hail [Makarskas 2021]. These cracks allow oxygen
and humidity to enter the photovoltaic module, causing corrosion of the electrical
circuits. Non-permanent faults (of short duration) in these PV systems are gen-
erated by the appearance of tree leaves, contamination, sand or dust, excrement
or dirt in general, shadows from buildings, clouds, among others. Shading is one
of the most studied faults because it generates localized heating or a hot spot
[Molenbroek 1991]. If the temperature of the cell exceeds 150◦C, it can be irrepara-
bly damaged and even start a fire [Fadhel 2018].

2.3.1.2 Material interaction

The combination of different materials used in a photovoltaic module together with
environmental factors such as humidity, heat, UV radiation, etc., can generate
degradations on the surface of the module and its electrical behavior. Visible faults
such as encapsulant discoloration (yellowing or browning), corrosion, cell cracking
or delamination may be observed. Most of the PV cells found in the market, i.e.
crystalline silicon (c-Si) and thin film type, are constructed of front glass layers,
encapsulation layer, solar cell/substrate thin film and backsheet [Li 2021c]. The
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interactions between these layers can also generate various types of faults. Likewise,
electrical degradations such as cell disconnection, short circuits and PID faults
(Potential Induced Degradation) can be generated.

2.3.1.3 Component aging

Another component that strongly affects the performance of PV systems is the
natural aging of components. This natural degradation can cause problems such as
discoloration of the encapsulant, welding faults, detachment of the module frame,
formation of air bubbles on its back face. This degradation of the photovoltaic
system is a continuous process over time, which can be caused by factors such as
mismatch (cells that are not perfectly identical), the penetration of humidity that
generates corrosion [Kuitche 2014] or material degradation caused by UV light. As
mentioned in [Manganiello 2015] between aging and mismatch there is a "closed
loop" link, since aging generates mismatch which in turn accelerates aging mainly
due to thermal effects reducing the production and useful life of the PV system.

2.3.1.4 Cause-effect circle

Finding a single cause for faults in photovoltaic systems is quite complex. In fact,
the occurrence of a fault is usually accompanied by a degradation in other properties
(mechanical, chemical or electrical) of the photovoltaic module. This degradation
in turn aggravates the original fault and/or generates other faults. For this rea-
son, knowing the cause-effect relationships between faults and their impact is vital
to improve the design, data acquisition and, consequently, the detection of faults
in this type of system. A detailed analysis of these interactions is presented in
[Manganiello 2015] using a causal loop, where the mismatch is recognized as the
intermediate fault mode caused by operating parameters such as temperature, volt-
age, or current and external factors such as environmental and human error. For
more information on this type of causal relationship please refer to the reference
[Manganiello 2015].

In this work, only the most frequent faults associated with solar cells, the mod-
ule, the array, the protection system, wiring and junction box are analyzed. This
analysis allows to build for the first time a formal dictionary of faults in photo-
voltaic systems that is explained below. As an introductory part of the dictionary
and based on the main causes of faults in photovoltaic systems, a new multilevel
fault classification is proposed in the following section.

2.3.2 Multilevel fault classification

Carrying out a correct classification of the faults allows to improve the understand-
ing of the similarities and differences between the photovoltaic faults. This is vital
for fine-tuning fault detection in these types of systems. Different classifications are
proposed in the literature. In [AbdulMawjood 2018a] faults are classified as per-
manent, intermittent and incipient, taking into account the duration and severity



58 Chapter 2. Fault Diagnosis in Photovoltaic Systems

Figure 2.16: Aging mechanisms leading to PV module degradation [Dross 2017].

of the fault. The problem with this classification is that sometimes incipient faults
such as delamination or corrosion become permanent. In [Pillai 2018a], faults are
classified as physical, environmental, and electrical based on the cause or nature
of the fault. However, some faults may meet both criteria simultaneously. For
example, a line fault, ground fault, bypass diode faults, or abnormal degradation
could be classified as physical, electrical, environmental damage, or a combination
of these [Li 2021c]. In [Dross 2017], faults are classified as infant-faults, midlife-
faults, and wear-out-faults. The classification exposed in [Dross 2017] is presented
in Figure 2.16.

The difficulty of the classification in Figure 2.16 is that the time of occurrence
of these faults can be strongly linked to the environmental conditions where the
PV system is located and to human errors that allow the appearance in different
periods. In [Triki-Lahiani 2018a] the faults are classified as module faults, inverter
faults and others, that is, depending on the element where the fault occurs. The
problem with this proposal is that it contains a category named "others" that is
highly ambiguous. As a possible solution to this ambiguity problem, in [Li 2021c]
it is proposed to modify the scheme to classify faults based on the moment where
the fault appears in the categories: cell level, module level and at the array level.

Despite the interesting contributions of the aforementioned works, there are still
gaps that do not allow an easy and direct understanding of the aspects that cause
faults in PV systems. As a contribution to solve this problem, this research proposes
a new classification, product of an arduous analysis of the literature, based not
only on the elements in which the fault is found (cell, module, array) or the causes
(causes external, material interaction, component aging, or cause-effect circle), but
rather integrates the two aspects and also differentiates the faults that occur in
the protection system, wiring and the junction box. Finally, this classification also
considers the nature of the fault such as: structural (S), electrical (E), caused by a
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Figure 2.17: Proposed multilevel classification of faults in PV systems

hot spot (H), connection problems (C) or shading (Sh). Since this research focuses
on PV array faults, faults related to DC conditioning units (such as converter,
inverter, battery bank) are excluded. Also, faults that occur on the AC side of
a stand-alone or grid-connected PV system are not considered. Those faults on
the AC side can be detected and isolated using the protection standards specified
in [IEC 2017a, IEC 2016a]. Figure 2.17 shows the general scheme of the proposed
classification.

As it can be seen in Figure 2.17 all faults lead to abnormal degradation of the
PV system. In other words, the abnormal degradation is an integral reflection of
several faults [Manganiello 2015, Masmoudi 2016] that can reduce the output power
by up to 50% [Bastidas-Rodriguez 2013, AbdulMawjood 2018a]. Likewise, it can
be observed in Figure 2.17 that the operation at high temperature (F23 : Abnormal
temperature change) promotes the formation of faults due to the interaction of the
materials and premature aging of the components. For example, high-temperature
protection diodes age rapidly and behave like impedances or contacts that degrade
and cause open-circuit type faults. In the same way, in Figure 2.17, it is possible to
observe the causal relationships with the fault named Corrosion (F24). This fault
occurs when the encapsulant fails to protect the PV elements against environmental
corrosion. Natural corrosion in the absence of water is slow, that is, the greater the
adhesive force, preventing the access of water to the corrosion sites and the drift of
acetic acid towards the corrosion sites, the stronger the protection against corrosion
[Kempe 2007, Walker 2001]. These corrosion phenomena degrade the state of the
PV system and favor the appearance of delamination, and even overheating of the
cell.
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Figure 2.18: Example of Cell crack

This once again reinforces the importance of a deep understanding of the faults
that occur in PV systems. To this end, the set of faults represented in Figure 2.17
is described in detail below.

2.3.2.1 Cell-level faults

Cell-level faults refer to PV faults that affect a single PV cell. However, on some
occasions this type of fault can extend to adjacent areas over time, generally without
affecting the entire surface of the PV module [Li 2021c]. Faults are grouped into
structural and electrical based on the nature of the fault. The set of faults of this
category are presented below.

2.3.2.2 Cell crack (Structure):

Cell cracks are the mechanical stress-induced cracks in the silicon substrate of PV
cells or thermodynamic stresses induced by thermal cycling that can occur at any
level of the PV cell’s lifetime. Normally these cracks are invisible to the naked
eye and can be originated in the stages of production, transportation (poor en-
capsulation or vibrations), installation or operation (internal mechanical problems)
[Cristaldi 2015, Köntges 2014b] and aggravated by increases in temperature due to
other faults or environmental conditions [Manganiello 2015].

Cracks in PV cells are not always expressed with the same geometry, they
can vary in length and orientation. Some of these cracks can be caused during
the production process, as some manufacturers try to increase adhesion between
the layers to avoid delamination or corrosion problems, but this in turn generates
internal stresses that can crack the cell, especially in thin film cells.

The level of impact on power loss is directly related to the "inactive" area of the
cell. For this reason, the behavior of the modules with cracked cells can become
similar to the case of dust, soiling or partial shading covering the cells, because the
cracks reduce the photo-generated current [Meyer 2004]. In addition, these cracks
(microcracks) can be the cause of local hot spots [Köntges 2011a] that reduce the
production of the PV system due to thermal effects.
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Figure 2.19: Example of Discoloration

Discoloration (Structure): The discoloration is generally related to PV mod-
ules that use EVA (ethylene vinyl acetate) as the encapsulating material. Dis-
coloration faults refers to the yellowing, browning or darkening of photovoltaic
cells. Discoloration faults cause a change in the transmission of solar radiation
that reaches the cell surface, reducing energy efficiency. As a possible solution,
some manufacturers are using thermoplastic polyolefin as an encapsulant reducing
discoloration by up to 9 times [Adothu 2019].

In the literature it is reported that the appearance of this fault is strongly
linked to exposure to ultraviolet light and operation at high temperatures (t >
55◦C) [Köntges 2014b]. One of the symptoms that this fault presents is the more
significant intern temperature increase in its central part than in the edges during
normal operation[Parretta 2005]. In addition, this fault is cited as the main factor
inducing aging of PV cells [Rabii 2003, Parretta 2005]. Discoloration particularly
shows up in older systems. However, in more recent systems it appears in warmer
climates, but to a lesser degree [Jordan 2017].

Snail track or Snail Trails (Structure): It is a gray/black discoloration
of the silver paste of the front metallization of screen-printed solar cells. This
discoloration spreads across the surface of the cell giving the illusion of a snail trail,
hence its name. Snail trails generally occur 3 months to 1 year after the installation
of the photovoltaic modules. The origin of this fault is not clear, but in some
documents it is mentioned that it may be due to silver particles containing sulfur,
phosphorus or carbon [Li 2021c]. Other works indicate that cell cracks, EVA film
additives, chemical additives used on the cell surface, or humidity can accelerate
the formation of snail trails [Kim 2016]. This fault can propagate through the PV
cell but at a very slow rate [Köntges 2014b], or saturate directly after the first
occurrence.

Delamination (Structure): This fault represents the loss of adhesion between
the glass, the encapsulant, the active layer and the back layer [Munoz 2011]. When
the cell is a thin film, the transparent conductive oxide (TCO) can also flake off
from the adjacent glass layer [Li 2021c]. The main causes of this fault are related to
environmental limitations such as high humidity and temperature, exposure to UV
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Figure 2.20: Example of Snail track or Snail Trails

Figure 2.21: Example of Delamination [Omazic 2019]

radiation, abnormal increase in cell temperature, salt accumulation, contamination,
cell movement or external factors. [Manganiello 2015, Dumas 1982, Oreski 2010].
This type of fault generally causes high levels of corrosion [Li 2021c].

Among the best known methods to detect this fault are thermography, ul-
trasonic scanning and X-ray tomography. The irregularity of the surface can
be quantified using a reflectometer. Delamination cannot be completely avoided
[Zimmermann 2013], leading to changes in the electrical performance of the PV
module [Park 2011]. In addition, this type of fault can be aggravated in conditions
of high humidity and temperature [Kempe 2006]. Extensive studies of this type of
fault are developed over long periods of time (22 years) in c-Si photovoltaic modules
exposed to outdoor conditions [Dunlop 2006, Kaplanis 2011].

Light Induced Energy Degradation (LID) (Electrical): LID is a natural
degradation caused by a physical reaction as a result of the p-n junction of a pho-
tovoltaic cell. This fault is expressed as a reduction in the short circuit current and
the open circuit voltage of the solar cell [Dross 2017, Lindroos 2016]. According to
the EN 50380 [IOS 2017] standard, this fault must be taken into account by man-
ufacturers for the power rating of the PV cell. For this reason, some classifications
do not take this fault into account in their classifications. The occurrence of this
fault can be between a few hours, days or even weeks. However it always occurs in
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Figure 2.22: Example of Light Induced Energy Degradation (LID)

Figure 2.23: Example of Frame breakage [Köntges 2014b]

the early stages of panel operation [Köntges 2014b].

2.3.2.3 Module-level faults

At the module level, the faults presented in the PV cells are inherited. In addition,
a set of faults classified in the categories of shading, structure and electrical are
added. The detailed presentation of these faults is given below.

Frame breakage (Structure): Not only the layers of the PV cells can be sep-
arated. The frame can also detach or break, generating in many cases delamination
and allowing the passage of humidity, giving rise to corrosion and electrical risks.
One of the causes of the frame breaking is the heavy load of snow or dust, which will
creep downhill and intrude into the gap between the frame and the glass [Li 2021c].
Another cause may be linked to sealing faults, typically silicone, or installation er-
rors [Munoz 2011] that can cause deformation of the module, detachment of the
photovoltaic glass frame, and therefore a reduction in the power produced.

Bubbles (Structure): This is also a specific form of delamination that is
awarded at the module level. This type of fault produces an optical reflection
that reduces the output power. Additionally, this fault causes humidity penetra-
tion, which then leads to various chemical and physical degradations and heavy
levels of corrosion. Generally this type of fault is related to thermal decomposition
[Pern 1997]. Bubbles can appear on both the back and the front of the module.
These bubbles form an air chamber in which the gas temperature is lower than
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Figure 2.24: Example of Bubbles [Kim 2021]

Figure 2.25: Example of Back sheet adhesion loss (BSAL) [de Oliveira 2018]

in the adjacent cells [Munoz 2011]. This air chamber worsens the heat dissipation
capacity of the nearby cell, so the latter overheats, exhibiting a higher temperature
than the adjacent cells [Ndiaye 2013].

When the bubbles appear in the front part, there is a reduction in the radi-
ation that reaches the photovoltaic cell, thus creating a decoupling of light and
increasing reflection. In other scenarios, the bubbles can rupture and damage
the back sealing surface, allowing humidity ingress and thus generating corro-
sion processes leading to a reduction in series resistance [Kaplani 2012], which
is considered the most frequent mode of degradation of the photovoltaic panel
[Cristaldi 2015, Ndiaye 2013, Köntges 2014b, Schirripa Spagnolo 2012].

Back sheet adhesion loss (BSAL) (Structure): This fault refers to the loss
of adhesion of the back sheet of the module, which is the protection of the electronic
components from external factors and the safety of DC voltages. This fault depends
directly on the type of sheet material [Köntges 2014b, Schirripa Spagnolo 2012,
Sharma 2013, Solórzano 2013] and causes effects similar to those of delamination,
and is also aggravated by sudden changes in temperature, humidity, mechanical
stress, etc. This loss of adhesion of the sheet exposes the active electrical compo-
nents and especially when it happens near a junction box or edge of the module
[Novoa 2015].

Burn mark (Hot Spot): This type of fault usually originates due to the
presence of partial shading + bypass diode fault or other mismatch fault (such
as low resistance fault in c-Si). All of these causes result in power consumption
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Figure 2.26: Example of Burn mark [Omazic 2019]

in the mismatch area rather than generation, and this in turn increases the local
cell temperature and induces burn marks on the cell surface. However, similar
burn marks can be generated by arc faults. The most likely cause of this fault
permanently is the presence of an open circuit or faulty cell which produces less
current and leads to power dissipation [Schirripa Spagnolo 2012, Hu 2014].

Other causes for this type of fault are dirt and dust accumulation
[Massi Pavan 2011, Pigueiras 2014, Kalogirou 2013, Adinoyi 2013], cell degrada-
tion, incomplete edge insulation [Ndiaye 2013] due to transparent module mate-
rials or due to manufacturing tolerance and non-uniform insulation, among others
[Köntges 2014b, Schirripa Spagnolo 2012]. That is, in general it occurs when some
cells of the PV module have different I(V) curves [Massi Pavan 2014]. Depending on
the level of impact of the Burn mark, it can even generate delamination or melting
of the material. For the detection of this type of fault, methods based on infrared
images are generally used [Simon 2010].

Shunt hot spot (Hot Spot): Partial shading could cause the cell to switch
to a reverse biased voltage state and thin film cells are extremely sensitive to this
phenomenon. The module current is concentrated in the bypass path and leads to
the shunt hot spot. The behavior is quite different from the c-Si hot spot (burn
mark). In this case it is the by-pass diode that cannot limit the reserved voltage. It
is not likely to cause overheating, but it will cause the glass to break and increase
the risk of electric shock. If the cause of the shunt hot spot is temporary, on some
occasions the shunt hot spot is temporary, but generally because this phenomenon
persists, the affected solar cells are permanently affected [Yang 2010].

Dust and Soiling (Shading): This fault is caused by the deposit of snow,
dirt, dust, bird droppings and other particles that cover the surface of the pho-
tovoltaic module [Nguyen 2015, Patel 2008]. It is reported that dirt or solid
shade (permanent shading) can cause a 10% to 70% reduction in power generation
[Maghami 2016]. This solid or homogeneous shading has a balanced reduction in
irradiation in the photovoltaic panels [Pillai 2018a, Solórzano 2013, Ji 2017]. This
partial shading comes from scenarios such as passing clouds, smoke, dust, or other
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Figure 2.27: Example of Shunt hot spot [Aghaei 2015]

Figure 2.28: Example of Dust and Soiling

temporary effects. Usually this type of fault causes corrosion and hot spots.
Shading (Shading): Shading and partial shading (PS) are generally caused

by poor planning of the PV system, leaving the system under a shadow from build-
ings, chimneys, or other elements that are not taken into account [Nguyen 2015,
Patel 2008]. Depending on the object that causes the shadow, this type of fault
can be classified as hard or soft, or permanent/temporary. For permanent shading
there is a reduction in the output voltage that affects the power generation output
of the photovoltaic arrays [Triki-Lahiani 2018a]. In the case where the irradiation
is non-homogeneous, that is, resulting in unbalanced reduction of irradiance in the
panels [Pillai 2018a, Solórzano 2013], the fault covers a part of the PV module and
is named partial shading [Stettler 2005].

As demonstrated in an experimental research [Dreidy 2013], in certain con-
ditions partial shading activates the bypass diodes affecting the voltage and not
the current. That is to say, the "bypassed" cells do not have the opportunity to
contribute voltage, which is why there is generally a reduction of the panel volt-
age by 1/3, a noisy high frequency I(V) curve and, consequently, a reduction of
the output power [Triki-Lahiani 2018a]. However, it is an important mechanism
since it avoids the reduction of the current that would be had without the diodes.
When a PV cell is in shading fault it behaves like a resistor that begins to raise
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Figure 2.29: Example of Shading

its temperature resulting in hot spots and permanent degradation of the PV array
[Koutroulis 2012, Pillai 2019b, Ji 2017]. The reduction in power is directly propor-
tional to the amount of unequal shadow created.

Short circuit (SC) / Open circuit (OC) (Electrical): Corrosion and
damage to the structure are the main causes of open circuit or short circuit of
the module. These types of fault lead to different levels of power loss or system
shutdown and increase the risk of electrical shock or even electric arc. Another
factor that particularly generates the short-circuit fault is the aging of the system
[Dhanraj 2021]. In particular, the open circuit can be generated, in addition to the
causes mentioned above, by multiple connections made by manufacturers between
photovoltaic modules or PV cells. Due to the aging of low quality electrical cables,
some disconnection may occur in the circuit preventing the panel from producing
electrical energy [Dhanraj 2021].

Another reason for disconnection is due to poor soldering at cell string intercon-
nections. The short circuit current and peak power decrease due to the open circuit
fault, while the open voltage remains close to its normal value [Gokmen 2012]. An-
other reason for the appearance of the open circuit is the disconnection of the con-
nection between two current-carrying conductors. This can happen due to: cyclical
thermal stress, environmental effects, or damage during installation or maintenance,
etc., [Zhao 2015a]. These two faults cause the output power of the photovoltaic
module to drop significantly; however, the operating voltage of the PV module
remains almost identical.

PID (Electrical): The PID fault is a fault that mainly affects modules made
of silicon and thin layers where eddy currents are generated due to the lack or
degradation of the ground connection. There are 3 types of PID faults (PIDc, PID-
d and PID-s). The PID-s type is the most frequently observed. It can even lead to
total fault of the PV module. The PID-s is mainly due to the migration of Na ions.
Na ions are derived from the anti reflective coating under negative bias conditions.
These ions penetrate crystal faults and result in large cell deflection and degrade
efficiency. It should be noted that PID is more common for PV modules with EVA
(ethylene vinyl acetate) as the encapsulating material.

With a PID-resistant material, such as polyolefin, this fault has almost dis-
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Figure 2.30: Example of Short circuit (SC) / Open circuit (OC)

Figure 2.31: Example of PID [Köntges 2014b]

appeared [López-Escalante 2016]. This fault deteriorates the fill factor (ff) of the
characteristic I(V). This deformation can be modeled by a degradation of the inter-
nal parameters of the cell, decrease in resistance Rshunt (Rsh) and increase in the
ideality factor of the diode(s). It occurs primarily at negative voltage with respect
to ground potential and is accelerated by environmental conditions, system config-
uration, module design parameters, high system voltages, high temperatures, high
humidity [Pingel 2010] and even after meltdown of the anti-reflective (AR) layer
and the corrosion of the conductive layer of the cell [Köntges 2014b].

2.3.2.4 Array-level faults

For optimal energy performance, PV modules are interconnected to form a PV array
[Deshkar 2015, Rani 2013]. However, this is where connection-related problems
such as ground fault, line fault and arc fault occur. The detailed presentation of
these faults is given below.

Ground fault (GF) (Connections): This fault is caused by an uninten-
tional low impedance path between one or more current carrying conductors (CCC)
and the established ground connection [Chen 2018a, Zhao 2011a, Appiah 2019a,
Zhao 2013a, Zhao 2011b]. For a grounded PV system, this fault causes a high cur-
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Figure 2.32: Example of Ground fault (GF)

rent to flow through an intentional path [Alam 2015a]. For an ungrounded system,
this fault causes a residual magnetic field to be generated between the forward and
reverse current flow [Alam 2015a]. In both scenarios this fault causes a change in
insulation resistance and a lasting loss of power.

As a consequence of this fault, subsequent fault currents, output voltage dis-
turbance or drop, and sudden changes in the I(V) characteristics of the PV array
are observed [AbdulMawjood 2018b]. This type of fault can result in other types of
hazards such as electric shock and fire hazards [Falvo 2015, Zhao 2015a]. As a mit-
igation measure, it is common for the metal parts of the PV array to be grounded
using grounding conductors (EGC) [Pillai 2018a, Bower 1994].

Among the most known causes of this fault are the incidental short circuit
between the normal conductor and ground, cable insulation fault, GF inside the
PV module, a fault in the cable insulation due to manufacturing faults, overheating
or aged cables [Zhao 2015a, Flicker 2015]. Other causes of this fault are discussed
in [Forman 1982, Zhao 2012]. Detecting this type of fault in ungrounded systems is
really challenging because such ground faults do not provide enough leakage currents
for detection and localisation during system operation [Karmacharya 2018]. Due
to the severity of these faults, most PV systems are equipped with ground fault
detection and fault current interruption [Alam 2013b].

Line to line fault (LLF) (Connections): The LLF type fault arises from an
unintentional low resistance path between two current carrying conductors (CCC)
with different electrical potentials [Zhao 2011a, Zhao 2015a, Yi 2017d, Zhao 2013b,
Zhao 2015b]. It usually occurs due to poor insulation of the array connectors or
cables, an accidental short between the CCCs, mounting fault, or external damage
[Mellit 2018b]. This fault leads to a high reverse current (depending on the potential
difference of the location where the LLF occurs) flowing down the faulty path and
generating a loss of power. There are two types of LLF [Pillai 2018a, Cotterell 2012]:
intra-strand and cross-strand. This type of fault can occur between modules be-
longing to the same array or between two adjacent arrays (bridge fault).

Also, a line-to-line fault can occur between array cables of different potential,
without involving any grounded point. The LLF fault is expressed as a reduc-
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Figure 2.33: Example of Line to line fault (LLF) [Alam 2015a]

tion in open circuit voltage, but the short circuit current may remain the same.
This change in voltage modifies the behavior on the I(V) characteristic curve of
the photovoltaic array. Detection of this fault is also very difficult and they are
often misunderstood as short-circuit faults in grounded PV systems, since the
fault current is determined by the voltage differential between two fault points
[Pillai 2018a]. This difficulty makes this fault go unnoticed and represents signifi-
cant losses [Zhao 2012, Alam 2013b].

Arc fault (AF) (Connections): Multiple external factors could lead to dis-
continuity or insulation fault of current carrying conductors (CCC) and establish
an air path for an arc fault [Spooner 2008, Xia 2015, Chen 2018a, Johnson 2012c].
There are two types of arc faults (AF). Series AFs are typically caused by weld
separation, connection corrosion, cell damage, rodent damage, or abrasion from nu-
merous sources. Parallel AFs (intra-array, cross-array, and parallel to ground) result
from insulation faults in current-carrying conductors [Spooner 2008, Xia 2015].

In rare cases, parallel AF can also occur between two points in the same ar-
ray, as well as between ground and a point on any of the PV array’s current-
carrying conductors. In general AF faults can occur at almost any connection
point or structure in the PV array. When this fault occurs, an extremely high
transient temperature is generated that can burn the metallic coating of the
modules. In addition, it generates high-frequency components that cause seri-
ous non-linear distortions in current and voltage of the array or multiple arrays,
and sudden drops in output current and voltage [Alam 2015a]. These types of
faults have a high probability of producing serious fire threats and security risks
[Johnson 2012c, Johnson 2012a, AbdulMawjood 2018b, Alam 2013b].

Two methods are conventionally used to detect this type of fault. The first is
based on the average value of the DC current in a conductor. This method adds
a small impedance in series with the circuit and measures the resulting voltage.
The second method is based on the measured value of AC current in a conductor,
this approach is relatively easy, due to the oscillatory nature of an AC current, a
transformer can be used as the sensing element. More details of both approaches
are presented in [McCalmont 2013].
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Figure 2.34: Example of Arc fault (AF) [Alam 2015a]

2.3.2.5 Protection-level faults

At the level of the PV array protection system, there are faults linked to the diodes
and to the balance elements of the system such as fuses, ground detectors, etc.
Generally, the faults present in these elements are of a structural type. Detailed
presentation of these faults is given below.

Diode fault (Electrical): Diode faults are divided into two types: By-pass
diode and blocking diode faults. By-pass diode (BPD) fault is the most common
and is caused by excessive current level and inadequate or insufficient heat sink.
The lack of airflow in the junction box is also crucial for diode fault, particularly
in the case of fast shade-sun-shade transitions [Kato 2015]. When a BPD diode is
burnt, it can cause a short circuit or an open circuit of the diode reducing the power
produced by the PV module.

Also, it is not possible to prevent reverse bias heating of the solar cells dur-
ing shading conditions, resulting in hot spots, discoloration, burn marks and in
worst case fires. This type of fault can be easily detected in the I(V) and P(V)
characteristic curves of a photovoltaic module since the open circuit voltage and
the maximum power of the set drop significantly [AbdulMawjood 2018b]. Faults
related to blocking diodes (BKD) do not allow to protect the system against re-
verse current [Zhao 2011a]. As with the By-pass diode, the electrical faults associ-
ated with these blocking diodes are: diode short circuit and diode open circuit and
strongly accelerated when the PV module/array is partially shaded for a long period
[Rezgui 2014, Kato 2015]. Known causes of these faults include diode disconnection
or reverse mounting of the diode [Köntges 2014b].

It is interesting to mention that when the temperature rises in the diodes, it
means that diodes are working correctly [Schirripa Spagnolo 2012]. Due to its func-
tion as a protection system, it is vital to diagnose faults in the diodes of the PV
system, considering that these faults increase in environments with hot and humid
climates [Duman 2021]

Balance of system (BOS) (Structure): BOS component faults are consid-
ered the main reason behind the existence of non-producing modules in the PV
field. A BOS component fault can lead to reduced production. BOS elements in-
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Figure 2.35: Example of Diode fault [Chang 2015, Köntges 2018]

Figure 2.36: Example of Balance of system (BOS) [Flicker 2016]

clude cables/wires, switches, enclosures, fuses, ground fault detectors, fuses, etc.,
which can put an entire PV array out of order [Cristaldi 2015].

2.3.2.6 Wiring and junction box-level faults

Faults of this type directly affect the connections between the photovoltaic modules
(single-pole cables) and the junction box. As possible causes, structural insulation
problems are reported that end up generating a ground fault or short circuit or
electric discharge [Verhoeven 1998]. A detailed presentation of these faults is given
below.

Junction box fault (Connections): The faults observed in the junction box
(JB) are usually caused by poor fixing, faulty electrical wiring, broken connection,
electrical power overload, repair of the cable during installation, repair of the con-
nector, prolonged exposure to heat or poor installation practices of the connector.
In a photovoltaic system, humidity or internal arcing between contacts can cause
wear and/or melting of the solder on the junction box (JB) or PV array connections
[Chang 2015, Solórzano 2013, Köntges 2014b, Schirripa Spagnolo 2012]. Likewise,
the fretting corrosion that occurs in the JB can lead to a rapid increase in the
contact resistance [Mellit 2018b]. This would ultimately damage the modules, the
array, and even stop the production of the PV system. Some actions and suggestions
to avoid JB reliability risk are given in [Chang 2015]. In [Sánchez-Friera 2011], a
study is presented where all crystalline silicon photovoltaic modules tested after 12
years of operation in southern Europe had junction box faults.

Ribbon and Solder Bonds Degradation and Broken Interconnect (R
and SB) (Connections): Degradation of broken solder bonds and tapes and
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Figure 2.37: Example of Junction box fault [Köntges 2014b]

Figure 2.38: Example of Ribbon and Solder Bonds Degradation and Broken Inter-
connect (R and SB) [Rajput 2019]

interconnections is caused by continual thermal cycling that creates continual ex-
pansion and contraction of solder bonds. As a consequence, the solder dissoci-
ates further over time, increasing the chance that the tape and solder bonds will
crack [Munoz 2011, King 1999]. On the other hand, excessive heating of a part of
the cell can cause degradation of the solder joint, and even melting of the solder
[Kaushika 2007]. This fault is included in this section considering it as a wiring
fault, however, without loss of generality it could also be classified as a PV module
fault.

Knowing the classification and description of the most frequent faults in PV
systems is vital to be able to design and implement efficient fault detection systems.
However, when two or more faults have the same electrical or thermal signature,
knowing the frequency of appearance of the faults can add an extra factor for the
correct identification of the detected faults. For this reason, this research performs
an analysis of the possible frequency of occurrence of faults in PV systems.

2.3.3 Frequency of occurrence of faults in the PV system

To guarantee the performance of PV plants, it is essential to design effective pre-
vention and data acquisition strategies. Consequently, to design advanced systems,
the first needed information is to know the statistical frequency of occurrence of
faults in this type of system or at least an estimation. This factor makes it possible
to identify, at a given moment, the type of fault that occurs in the system. The
occurrence of faults depends mainly on three factors: i) Environmental conditions
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Figure 2.39: Percentages of objects studied in [IEC 2016b]. a) Objects studied
according to climate zones. b) Objects studied according to PV technologies.

of the PV plant; ii) PV cell technology; and iii) Age of the PV plant. A complete
study carried out with different weather conditions, and on modules with PV cells
of different technologies to identify the possible occurrence of faults over time is
carried out by the International Electrotechnical Commission (IEC) over a period
of more than 20 years [IEC 2016b]. The proportions of the objects studied in that
study are presented in Figure 2.39.

As it can be seen in Figure 2.39, photovoltaic modules from moderate climate
zones or Polycrystalline or Multicrystalline (mcSi) silicon technology constitute the
majority of the objects surveyed. In the same way as demonstrating the rela-
tionship between the appearance of faults and weather conditions, Jordan et al.
[Jordan 2017] analyze a set of faults in different weather conditions. The faults an-
alyzed are discoloration, hot spots, By-pass diode faults, cell cracks and PID. Each
of these faults is analyzed in moderate, hot and humid, and desert climates on 457,
2.718, and 1.451 panels, respectively. The results of the study are condensed in
Table 2.2.

Table 2.2: Report on the rate of faults observed in PV modules according to
the climate [Jordan 2017].

Fault
Percentage of affected PV panels (%)
Moderate Hot and humid Desert

Decoloracion 0 9.9 3.3
Hot spot 11.7 26.1 1.1
Diode Fault 0 21.7 0.1
Cell Cracks 0.5 5 1.7
PID 9.7 1.2 0

As it can be seen in Table 2.2, all faults are severely aggravated in hot and humid
climates, for example in the case of the Hot spot doubling its appearance rate and
even worse in the case of fault of the diodes where the possibility of appearance
goes from 0% in a moderate climate and 0.1% in a desert climate to 20% in a humid
and hot climate. Likewise, it is interesting to analyze the frequency of appearance
of faults in detail.
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Figure 2.40: Occurrence distribution of degradation faults

For this reason, the frequency of occurrence of faults is analyzed below. The oc-
currence of the faults presented in the following figures is adapted from the material
presented in [Köntges 2017]. Figure 2.40 shows the possible occurrence of all faults
due to internal factors such as delamination, bypass diode fault, discoloration, etc.
These types of faults are named "degradation faults". The size of the bubbles in
the following figures gives an idea of the frequency of faults.

As it can be seen in Figure 2.40 the cell crack usually occurs from the beginning,
strongly during the first 5 years and is occasionally detected after 12 years of oper-
ation of the photovoltaic array. The PID shunt (PID-s) also occurs from the first
years, however, the probability of occurrence increases during the third and fourth
years of operation of the PV array. The burn marks due to abnormal and localized
increases in temperature (hot spot), occur from the beginning of the operation of
the PV array and up to 7 years mainly.

In the same Figure 2.40, it can be seen that the disconnection (for cells or
strings) starts from year 5 and covers the entire period of operation (up to 20 years
or more). Discoloration begins after year 3 and extends over the years to the end of
the PV plant’s life, with very heavy accumulation after 18 years. Diode fault can
occur during the first 10 years of operation. Likewise, faults linked to the wiring and
the box junction must be closely supervised during the first 6 years of operation. It
is also important to note that at 12 years there is a wide set of faults, for which it
would be an interesting period to pay special attention to the behavior of the PV
array.

In a complementary way, Figure 2.41 shows only the occurrence of detected
degradation faults that cause measurable energy loss.

As it can be seen in Figure 2.41 the discoloration related to energy loss reaches
a high accumulation after 18 years of operation. It is interesting to note from
Figures 2.40 and 2.41 that junction box faults, delamination, while frequent, have
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Figure 2.41: Occurrence distribution of degradation faults that cause measurable
energy loss
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negligible impact on power output. Another important fact to note is that the
loss of energy due to faults such as delamination, although it occurs from the
first year, evolves and takes years to be truly measurable. Additionally, in Fig-
ures 2.40 and 2.41 it can be clearly seen how the first 7 years of operation are
the most critical, since a wide and severe array of faults occurs. The information
condensed in Figures 2.40 - 2.41 allows not only to take preventive measures and
identify the possibilities of occurrence, but also to indicate which photovoltaic faults
should be prioritized for the different stages of operation of the photovoltaic array.

On the other hand, Figure 2.42 shows the possible occurrence of all faults that
occur suddenly due to an external factor such as hail, snow, lightning, etc. These
faults are named sudden faults.

As shown in Figure 2.42, sudden photovoltaic faults are more related to clima-
tological causes or factors such as animal attacks. As it can be seen in the same
figure, the formation of dust soiling occurs more frequently and extends over several
years compared to the other types of faults. The behavior of the other faults in this
figure has a very high random component to be able to draw coherent conclusions.
In a complementary way, Figure 2.43 shows only the occurrence of sudden faults
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Figure 2.43: Occurrence distribution of sudden faults that cause measurable energy
loss

that cause measurable energy loss.
In Figure 2.43, it can be seen that the loss of power due to faults caused by

storms, hail or animal attacks is really difficult to measure. All this is because each
case would need to be examined individually to determine the level of impact of the
fault on the integrity of the PV array.

It is interesting to note that in any of Figures 2.40-2.43, the fault type "snails
tracks" or "snails trails" is studied. This is because this fault is generally associated
with microcracks in the cells that do not generate a significant loss of power. In
the literature it is described that this type of fault occurs after approximately 3
months to 1 year of exposure to the open air of the PV array [Li 2021c]. This
fault primarily affects crystalline silicon cells and often occurs at the edges of cells
[Fadhel 2018]. In addition, it is very likely that this type of fault is the main cause
of more complex and severe faults in PV arrays. Only the aforementioned faults are
analyzed since this research considers them to be the most widespread and studied
in the literature.

As it can be seen in the study by the International Electrotechnical Commission
(IEC) [IEC 2016b], analyzing the impact of faults in terms of power loss is of utmost
importance to guarantee the correct operation of the PV plant. For this reason, and
after observing the results of Figures 2.40-2.43, in the following section a detailed
analysis of the impact of faults in terms of power loss is carried out.

2.3.4 Impact of faults in terms of power loss and human safety

As the previous sections have shown, faults in PV systems can result in both
a human safety hazard and a loss of power [Johnson 2012c, Johnson 2012a,
AbdulMawjood 2018b, Alam 2013b].

Hazard to human safety refers to risks to personnel working in the facility or
to passersby. Kontges et al. [Köntges 2014b] proposes to classify faults into 3
categories according to the risk to human safety: (A) Faults that have no effect
on safety, (B) faults that may cause a fire, electrical shock, physical hazard, or a
second fault that poses a hazard to personnel working on the PV installation, and
finally, (C) faults that cause a direct security problem. The main difference between
category (B) and (C) is that in category (B) the PV module should be replaced
immediately to avoid a subsequent fault that directly affects the personnel working
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on the PV installation, while in category (C), the PV module can sometimes remain
in place until replaced.

Likewise, it is important to know the level of energy loss due to the occurrence
of a fault. This is vital to develop adequate strategies that establish a priority for
preventive or corrective maintenance, and therefore guarantee the optimal perfor-
mance of the photovoltaic system. However, defining the level of power loss due to
a fault in a standard way is one of the biggest challenges in the PV domain. This
challenge is due to the fact that the measured degradation, caused by the same
type of fault, varies from one photovoltaic installation to the other depending on
aspects such as: the severity and propagation of the fault, the weather conditions
of the installation site, the operating time of the PV system, photovoltaic module
technology, among others.

Different studies have proposed classifications based on the level of power loss
of the PV system due to faults. Kontges et al. [Köntges 2014b] proposes a classi-
fication of six categories of power loss based on their evolution over time, defined
as follows: (A) Power loss below detection limit < 3 %, (B) Power loss degrada-
tion exponentially over time, (C) Degradation of power loss linearly over time, (D)
Degradation by power loss saturates over time, (E) Degradation in steps over time,
and (F) Various types of degradation over time.

Alternatively, Kuitche et al. [Kuitche 2014] proposes a classification of 5 cat-
egories with values from 1 to 10. Being, 10 the fault that will cause the non-
operation of the system or non-compliance with government regulations, 8-9 the
fault will cause the non-functionality of the system, 6-7 the fault will result in the
deterioration of part of the system performance, 3-5 the fault results in a slight de-
terioration of part of the system performance, and finally 1-2 corresponds to faults
that do not cause a perceptible effect. This classification is adopted and modified
to a discrete scale in the work of Jordan et al. [Jordan 2017] for two reasons. The
first reason is that the correlation of specific degradation modes with certain energy
losses remains an active field of research. The second reason is that in this way the
classification can be used to minimize potential bias and allow better discrimination
of the various modes of degradation.

In the same way, as the previously exposed classifications, this work proposes
a new classification. It is important to clarify that the information contained in
this new classification corresponds to the common tendency of the energy loss of
the faults of Section 2.3.2. Each fault is analyzed based on three criteria: i) Main
consequence; ii) Danger to human security; and iii) Severity of power loss. These
three aspects are vital to evaluate the necessary action to take when the fault occurs
in coherence with the recommendations of the standard IEC 61730-1 [IEC 2016b].
The description of the criteria used for the classification is presented in Table 2.3.
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Table 2.3: Definition of potential risks. The risks are divided into human safety
risks and system power loss risks.

Type Label Description

Safety
L Faults that represent a very low or zero risk to humans.

Risk
M Moderate risk of fire, electric shock, physical hazard or new moderate faults.

H High risk of generating fire, electric shock, physical danger or causing new severe
faults

Power

1 Imperceptible power loss or below detection threshold < 3 %,

Loss

2 Linear power degradation over time or a slight deterioration in system performance.

3 Saturated degradation over time with constant power loss after a threshold time. It
deteriorates part of the performance of the PV system.

4 Hybrid degradation over time. Irregular evolution (difficult to establish only a pattern
of degradation). The fault causes non-functionality of the PV system.

5 Exponential power degradation over time. The fault causes the non-operation of the
system or non-compliance with government regulations.

The classification presented in Table 2.3 may not be optimal, but it is a contri-
bution to the understanding of the behavior (energy losses and human risk) of the
faults reported in Section 2.3.2. The classification is presented in the Table 2.4.

Table 2.4: Summary of the impact of common PV faults. Classification based
on the element, the main consequence, the human safety risk and the loss of
power.

PV fault Safety Risk Power Loss
Level Fault Consequences L M H 1 2 3 4 5

Cell crack

Hotspot generation,
corrosion and loss of
tightness, deteriora-
tion of cells, decrease
in shunt, decrease in
performance.

⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛

Discoloration Premature aging, hot
spot. ⊛ ⊛ ⊛

Snail Trails Localized heating (hot
spot). ⊛ ⊛ ⊛

Delamination Localized heating (hot
spot). ⊛ ⊛ ⊛ ⊛

Cell

LID Formation of recombi-
nation active faults. ⊛ ⊛ ⊛ ⊛

Frame
breakage

Delamination and pas-
sage of humidity into
the cell.

⊛ ⊛ ⊛

Module
Bubbles

Optical reflection that
reduces the output
power, thermal decom-
position, corrosion,
reduction in series
resistance.

⊛ ⊛ ⊛ ⊛

BSAL

Exposes active elec-
tronic components and
causes similar conse-
quences as delamina-
tion.

⊛ ⊛

Continued on next page
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Table 2.4 – continued from previous page
PV fault Safety Risk Power Loss Evolution

Level Fault Consequences L M H 1 2 3 4 5

Burn Mark

Power consumption in
mismatch area instead
of generation, local cell
temperature increase
and induces burn
marks on cell surface.

⊛ ⊛

Shunt hot spot

It does not generally
cause overheating, but
it will cause the glass to
break and increase the
risk of electric shock.

⊛ ⊛

Dust and
Soiling

This fault causes corro-
sion and hot spots. ⊛ ⊛ ⊛ ⊛

Module Shading

The consequences de-
pend on the level of
shading. If it is to-
tally shaded, it gener-
ates the same effects
as dust and soiling, if
it is partially shaded,
it directly activates the
by-pass diodes and can
convert an area of the
panel into a passive el-
ement that consumes
energy.

⊛ ⊛ ⊛ ⊛

SC/OC

These types of faults
lead to different levels
of power loss or sys-
tem shutdown and in-
crease the risk of elec-
trical shock or even arc
flash. Accelerates the
aging of the system.

⊛ ⊛ ⊛

PID

It can lead to total
fault of the PV system
and accelerates corro-
sion.

⊛ ⊛

GF

Depending on the type
of system, this fault
can cause a residual
magnetic field to be
generated between the
forwardand reverse
current flow or a high
current to flow through
an intentional path.

⊛ ⊛

Array

LLF

Fault is expressed as a
reduction in open cir-
cuit voltage, but the
short circuit current
may remain the same.

⊛ ⊛

Continued on next page
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Table 2.4 – continued from previous page
PV fault Safety Risk Power Loss Evolution

Level Fault Consequences L M H 1 2 3 4 5

Array AF

When this fault oc-
curs, an extremely high
transient temperature
is generated that can
burn the metallic coat-
ing of the modules. In
addition, it generates
high-frequency compo-
nents that cause seri-
ous non-linear distor-
tions in current and
voltage of the array
or multiple arrays, and
sudden drops in output
current and voltage.

⊛ ⊛

Diode

It can cause a short cir-
cuit or an open circuit
of the diode reducing
the power produced by
the PV module.

⊛ ⊛ ⊛ ⊛

Protection

BOS
This fault can put an
entire PV system out of
operation.

⊛ ⊛ ⊛ ⊛ ⊛ ⊛

JB

Junction Box

This fault can gener-
ate the disconnection
of the PV array, tem-
perature increase (hot
spot) or even short cir-
cuits or open circuits or
arc problems.

⊛ ⊛

and wiring

R and SB

As a consequence, the
solder dissociates fur-
ther over time, increas-
ing the chance that the
tape and solder bonds
will crack.

⊛ ⊛

Temperature
Abnormal
Temperature
Change (ATC)

It promotes the forma-
tion of faults due to
the interaction of the
materials and prema-
ture aging of the com-
ponents

⊛ ⊛ ⊛ ⊛ ⊛ ⊛

Material Corrosion

The corrosion phenom-
ena degrade the state
of the PV system and
favor the appearance of
delamination, and even
overheating of the cell.

⊛ ⊛ ⊛ ⊛ ⊛ ⊛

As it can be seen in Table 2.4, most faults have an impact level M for human
safety, that is, a medium security risk of fire, electric shock or physical danger or
generate new faults that end in the aforementioned phenomena. However, faults
such as open circuit, short circuit, ground fault, line-to-line fault, arc fault, among
others, can cause an impact of level H. This impact indicates that there is a high
risk for human security.
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Regarding power loss, it can be seen that some faults are not categorized into
a single category. This is because the level of power loss depends directly on the
level of impact and the propagation of the fault. The information condensed in
Table 2.4 shows that it is necessary to analyze not only its current impact but also
its evolution. Likewise, it is interesting to analyze faults such as Snail Trail/ Snail
Tracks that, although they do not generate an instantaneous power drop when they
appear, evidence is found that the isolation of the parts of the cracked cells in a
PV cell with snail trail, can speed up more than it would in a cell without the
snail tracks. Likewise, it is interesting to analyze faults such as Snail Trail/ Snail
Tracks that, although they do not generate an instantaneous power drop when they
appear, evidence is found that the isolation of cracked cell parts in a PV module
that contains snail trail, may be accelerated more than it would be without snail
tracks [Kim 2016]. That is, this type of fault can accelerate multiple faults that
could significantly reduce the production of a PV module.

During the summer and in hot climates snail tracks/trails seem to occur faster
[Kim 2016].

Intuitively, it could be concluded that faults with a significant impact on safety
and energy loss are those that must be detected in time as part of monitoring the
status of the photovoltaic system. This would make sense if the problem of fault
detection is approached from a corrective maintenance point of view. However,
behaviors such as the Snail Trail fault is extremely interesting, since detecting this
type of fault would allow the loss of power to be anticipated. These types of detec-
tions are widely studied in the literature because the electrical signal of a panel with
a snail trail is very similar to that of a panel without a fault. Despite this, detecting
these faults would really be a challenge oriented to preventive maintenance.

In this same way, to understand the limitations of detection using conventional
methods, the most relevant methods of conventional fault detection are presented
below.

2.4 Conventional Fault Detection Methods

Fault detection and diagnosis (FDD) is fundamental to guarantee the normal oper-
ation of a photovoltaic system at least during its operational life of 25 years without
significant production losses. In addition, FDD is vital to avoid human and power
loss risks such as those discussed above in section 2.3.4 that can even cause fires
[Mellit 2018b]. The main function of these FDD methods is to certify with the
greatest certainty that faults have occurred and that the system is no longer work-
ing in its optimal operating range. For this, FDD techniques are based on a priori
knowledge, estimates and field measurements [Livera 2019a].

In this research we have grouped the conventional methods into five main cate-
gories: Visual Methods, Image-Based Methods, Electrical Detection Methods, Pro-
tection device Based Technique and ARC Fault Detector (AFD) Techniques. This
classification does not take into account machine learning techniques as they are ad-
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dressed in detail later. The description of the 5 categories of conventional methods
is discussed below.

2.4.1 Visual methods

Visual inspection is a method that can be carried out before or after the com-
missioning of the PV system [Fadhel 2019b, AbdulMawjood 2018a, Madeti 2017b].
When testing before commissioning each PV module is inspected before and after
it is subjected to environmental, electrical or mechanical stress or laboratory stress
tests to predict its response and performance [Fadhel 2019b, AbdulMawjood 2018a,
Madeti 2017b]. The most common tests performed are thermal cycling, humidity
freezing cycling, moist heat exposure, UV radiation, mechanical loading, hail im-
pact, weathering and thermal stress [Köntges 2014b]. The National Renewable En-
ergy Laboratory (NREL/IEA), with the support of the US Department of Energy,
has developed a verification protocol for the visual inspection of photovoltaic mod-
ules in the field [Packard 2012]. The visual inspection must be carried out at 1000
lux and from different angles to avoid reflections as mentioned in the IEC-61215
standards [IEC 2005b, Madeti 2017b].

Faults reported in the literature as detectable using visual inspection include:
discoloration, bubbles, delamination, burn marks, shading, broken glass or cells,
dirty, missing or damaged wiring, interconnections, rust or corrosion, snail trails and
damaged or broken parts [AbdulMawjood 2018a, Kirchartz 2009]. Despite the large
number of faults detected with visual inspection, its main drawbacks are the large-
scale cost, the method’s direct dependence on human capabilities, long detection
times, and the risk exposure of electric shocks to inspectors. [Madeti 2017b]. Due
to these conditions, this method is impractical in the case of large installations
where it would be necessary to cover kilometers of panels. For this reason, Mellit et
al; [Mellit 2018b] affirms that visual inspection is more appropriate for small-scale
PV installations where it can be frequent and cost-effective.

Also, causes of reduced performance and certain faults are not always visible.
For example, Kato et al. [Kato 2011] conducted a study on 1,272 monocrystalline
photovoltaic modules during 4 years of operation to assess the impact of faulty
bypass diodes and showed that, in most cases, this type of fault, despite its sever-
ity, does not produce traces of visible burns. For this reason more sophisticated
techniques are developed.

2.4.2 Image-based methods

The most widely used image-based methods are: infrared/thermal methods, ultra-
sonic inspection, electroluminescence imaging and the lock in thermography (LIT).

2.4.2.1 Infrared/Thermal methods

Infrared (IR) or thermal imaging is an efficient and systematic diagnosis of so-
lar cell faults [Cubukcu 2020]. To do this, an IR camera is used for scanning
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the photovoltaic array while it is in operation. The objective is that the cam-
era measures the temperature differences in the cells and modules. Generally
these thermal signature faults are related to: (a) module wiring or intercon-
nect faults, (b) hot spots due to internal short circuits, faulty bypass diodes,
change in series resistance value, cell mismatch, snail tracks, and (c) cell cracks
[Madeti 2017b, AbdulMawjood 2018a, Cubukcu 2020, Hong 2022b].

According to Madeti et al. [Madeti 2017b], there are two types of IR images: (i)
reverse polarization images and (ii) forward polarization images. For the detection
of faults with thermal signatures, it is the most suitable method in large photovoltaic
plants. A cell-level fault detection and classification study using thermal imaging is
described in [Vergura 2015] and [Guerriero 2016]. These studies use an IR camera
that records the images for further identification and fault location treatment. In
[Vergura 2015], the temperature variation and the average value of each cell are
calculated, then the cells are classified according to their average temperature value
(detection criteria and classification of the level of affectation of the cells).

In the same way, fault detection works based on thermal gradient analysis, edge
recognition for faulty cell detection, photovoltaic module recognition using thermal
images to differentiate the temperature between the metal structure and nearby
solar cells are proposed [Guerriero 2016]. Cubukcu et al. [Cubukcu 2020] classify
and locate faults from heated junctions (fuses/wires/breakers), hot spots, faulty
strings, heated junction boxes, and broken modules. In [Hong 2022b], using In-
frared/Thermal Methods, the following faults are detected: module degradation,
cell cracks/microcracks/snail tracks, cell breakage, loss of cell material, potential
induced degradation, shadowing, cells in short circuit/open circuit, defective sol-
dering, system connection fault, and bypass diode fault.

Furthermore, this method is reported in the literature to be able to detect faults
in wiring, diodes, junction boxes, connectors, and other [Hong 2022b]. Another ad-
vantage is that it can be done without affecting the complete operation of the system
and it does not need extra sensor installations since it only uses the IR camera. Fi-
nally, this method can be used from small PV arrays to large PV power plants
[Cubukcu 2020, Hong 2022b] at a lower cost than other methods [Hong 2022b]. Al-
though this method is very powerful for detecting faults with thermal signatures, it
is conditioned to work under controlled conditions. In other words, the correct po-
sitioning of the IR camera, the distance from the photovoltaic array, and an overlap
between consecutive images must be guaranteed [Guerriero 2016].

2.4.2.2 Ultrasonic inspection

It is one of the main techniques for the detection of cracks, holes and detached
lamination structures in PV modules [AbdulMawjood 2018a]. The technique has
two inspection methods: the transmission method and the pulse-echo method. A
more detailed explanation of these methods is presented in [AbdulMawjood 2018a,
Hund 1995]. In general, the first method is capable of locating the faults and their
level of impact on the PV system. The second method measures the ultrasonic
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pulses reflected by the faults, which provides the fault depth value in addition to
the fault size and location information [Hund 1995].

2.4.2.3 Electroluminescence imaging

Electroluminescence imaging is used to detect faults in photovoltaic modules such
as fine cracks, and to identify solar cells with different conversion efficiency due
to an increase in series resistance of cells and/or reduction in the parallel resis-
tance of cells [Alves dos Reis Benatto 2020]. This method works on the principle
of injecting ramp voltage to the module and the electroluminescence of the product
reveals non-uniformity and faults [AbdulMawjood 2018a]. That is, the solar cells
are powered by a defined external drive current while the camera takes an image
of the emitted photons. Damaged areas of a solar module appear dark or radiate
less than healthy areas because after a certain voltage level, the glow becomes vis-
ible and reveals faults and cracks that reduce cell efficiency. The main problems
with this method are its high cost, and the need to take the system offline to do
it [Koch 2016, Madeti 2017b]. Among the advantages of the method is that it pro-
vides a diagnosis in a short period of time due to its sensitivity [Kirchartz 2009]
and that the high resolution of the images allows certain faults to be detected with
greater precision than with thermal images, especially in the case of cracks, microc-
racks and contact faults [Ebner 2010]. However, its implementation is difficult as it
requires a high resolution camera and a high pass filter, a set of calibration tests in
a dark environment and requires production interruption [Fadhel 2019b]. For these
reasons, this method is more practical at the scale of photovoltaic modules than at
a large scale.

2.4.2.4 Lock in thermography

Lock in Thermography is a non-contact, non-destructive fault detection and lo-
cation technique [Bachmann 2012]. This technique uses an excitation device with
lock-in capability bundled with a power supply to inject pulse current with different
modulation into the PV module. The injected current results in an increase in the
temperature of cells with faulty shunts. This increase of temperature is captured
using an infrared camera that produces amplitude and phase images, locating the
position and indicating the nature of the fault [AbdulMawjood 2018a, Hong 2022b].
This method is usually done with the PV system offline and in dark conditions
[AbdulMawjood 2018a]. However, this test can be performed at any time of the
day since lighting is not an issue [Hong 2022b]. This method is used mainly to
detect solder bond faults [Asadpour 2020]. Because LIT is a non-destructive char-
acterization method, LIT is very effective during pre-characterization to further
investigate the origin of physical faults in PV cells [Cao 2020].
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2.4.3 Electrical detection methods

An increasing number of diagnosis methods for fault detection in PV systems are
based on the analysis of electrical parameters. These methods require direct elec-
trical, irradiation and meteorological measurements and also make use of I(V )
characteristic curve data, signal generators, circuit and simulation model, among
others. In this section, only electrical methods are reviewed and discussed. Electri-
cal methods can be classified into four groups, discussed below.

2.4.3.1 Climatic data Independent

Climatic Data Independent (CDI) is a group that includes detection techniques
that do not involve climatic data such as solar radiation, temperature, humid-
ity, and wind speed. Among the most recognized techniques are the time domain
reflectometry (TDR), and the earth capacitance measurement (ECM). Both tech-
niques use LCR meters (to measure the parameters of the photovoltaic circuit:
inductance, capacitance and resistance) and signal generation through injection
[AbdulMawjood 2018a, Hong 2022b]. TDR is used for discontinuity, impedance
change or fault measurements [Schirone 1994, Lu 2021b, Takashima 2006]. In the
TDR method, the waveform changes, then the delay between the injected signal
and the reflected signal is used to detect the existing degradation. It is recom-
mended to perform TDR periodically to inspect for degradation of the PV array
[AbdulMawjood 2018a].

Other studies have used the ECM method. In [Takashima 2006,
Takashima 2009] it is used to estimate the disconnection position in the photovoltaic
string without the effect of irradiance change. According to [AbdulMawjood 2018a],
in the ECM method, the position of the disconnected module (n) in string of M
modules can be estimated by:

n = Cx

CD
∗M, (2.4)

where, CD represents normal string capacitance and Cx represents capacitance
of the faulty string.

2.4.3.2 I(V) characteristics analysis

The current-voltage I(V) characteristics of the PV module or PV string can be
used to evaluate the performance/health of a PV system. When the PV system is
healthy, the characteristics have a particular pattern, which changes during a fault.
Depending on the level and pattern of change, it is possible to estimate the type
and severity of a fault in a PV system [AbdulMawjood 2018a]. To increase the
accuracy of this method, it is recommended before starting the diagnosis to check
the other electrical elements such as the junction box, protection systems, etc., in
order to identify in advance possible faults such as disconnection or degradation
that can reduce output power or alter the I(V) curve of the string [Lin 2017]. This
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is the best known fault detection approach. This approach measures the healthy
current-voltage I(V) characteristics of the PV system and compares them to the
faulty current-voltage I(V) characteristics [Hong 2022b, Hu 2015]. This compari-
son approach is used to detect faults such as ground faults, short circuits, faulty
connections, partial shading, series resistance losses and potential-induced degra-
dation [Stellbogen 1993, Fadhel 2019a, Spataru 2015].

In order to improve fault diagnosis, multiple features extracted from I(V) char-
acteristic measurements are proposed. In [Miwa 2006a, Miwa 2006b], the authors
calculate the feature (−dI/dV )−V for partial shadow detection based on the peaks
found. Other authors propose fault detection based on the analysis of the shunt and
series resistances (Rsh and Rs) and the fill factor (FF) that are determined from
the I(V) characteristics [Kaplanis 2011]. The fill factor (FF) is defined as follows:

FF = Pmax

IscVoc
, (2.5)

Where Pmax is the maximum power, Isc is the short circuit current and Voc is the
open circuit voltage. In [Bressan 2016] it is shown that the calculation of the first
and second derivatives of the I(V) characteristic allows us to identify the number
of active bypass diodes to detect the shading fault. This same fault is detected by
comparing the I(V) characteristics in normal mode and in fault mode in the work
of [El Basri 2015].

In [Chao 2008] the I(V) features are combined with another PV parameter un-
der observation. [Daliento 2016] uses a correlation function and a matter element
model. That method, instead of using only the I(V) characteristics of the pho-
tovoltaic module, takes its first and second derivatives to detect By-pass diodes
and series resistance faults. The I(V) characteristics analysis (IVCA) method can
detect a wide number of faults. For example, in [Fezzani 2015], 12 types of faults
are classified among which are shorted bypass faults, reversed bypass, shorted one
cell, shorted module, reversed module, modules connected with resistance, module
shade, shade with By-pass open, shade with Inverter By-pass, shade with By-pass in
shunt and module shade with resistor in series. Five types of anomalies are identified
using IVCA in [Chine 2015]: short-circuit current reduction, open-circuit voltage
reduction, change in output current, a change in output voltage, and a change
in the number of I(V) spikes. After expert analysis, the authors in [Chine 2015]
found that the anomalies are due to 12 faults. In [Hachana 2016] they combined
a meta-heuristic technique named artificial bee colony to analyze P(V) and I(V)
curves and detect full and partial shading, By-pass diode faults, connection faults
and a shorted substring fault. Other works have detected cracks in the photovoltaic
surface using IVCA [Wang 2016a]. Likewise, some works have explored the use of
the Euclidean norm between the I(V) characteristics of a normal PV array and
the faulty PV array to detect interconnection resistance and various PV shading
conditions [Ali 2017].

Due to its simplicity, IVCA is extensively studied in different publications, how-
ever, it is a difficult method to implement without cutting the production of the
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PV system.

2.4.3.3 Power Loss Analysis Technique

This technique is based on the analysis of the energy losses of the photovoltaic
system. Generally, in this method, PV system parameters are calculated from
data acquisition together with climate information data [Hong 2022b]. All this
information is then used to simulate the behavior of the photovoltaic system in
real time. Once the simulation is complete, data monitored under real working
conditions on the DC side of the system is compared to simulated results to detect
system power losses and classify faults. In [AbdulMawjood 2018a], two indicators
are proposed to identify the variation of the DC variables with respect to their
simulated values. These indicators are the current and voltage ratios as follows:

RCpv = Ireal

Isimulated
(2.6)

RVpv = Vreal

Vsimulated
(2.7)

Some of the approaches using this method have been able to detect faults
such as faulty module or string, partial shadowing, aging and MPPT fault
[AbdulMawjood 2018a]. Another approach proposes fault detection comparing sim-
ulated and measured variables and classifying detected faults by comparing cur-
rent and voltage values with a set of error thresholds [Silvestre 2013]. Using this
same Power Loss Analysis (PLA) Technique, [Solórzano 2013] can detect faults
such as shadowing, hot spot, module degradation and power loss due to wiring
problems. In general, this method is tested multiple times showing interesting re-
sults [Stauffer 2015, Shimakage 2011, Dhimish 2016]. However, as mentioned in
[AbdulMawjood 2018a], although this detection method is easy, it has many diffi-
culties to correctly detect and classify faults, generating false alarms, when unpre-
dictable changes in irradiance or other weather conditions occur.

2.4.3.4 Comparison between Measured and Modeled PV System Out-
puts Technique

In the same way as the PLA method, the current and voltage measurement method
is proposed: the main difference with the PLA method is that simulation models
are used to predict the power outputs of photovoltaic systems for later comparison
[Drews 2007], not to compare in real time as in the case of the PLA. Generally PV
cell parameters are defined according to an electrical analogy like those presented
in [McEvoy 2013, AbdulMawjood 2018a]. These parameters are adjusted using real
world data and the output of the PV array is predicted based on the fitted model.
In order to further fit the model, weather conditions or panel surface temperature
can be added [Chouder 2010]. Alternatively, some authors have proposed models
developed in PSIM to create the PV model instead of using a conventional mathe-
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matical model and proposed an extended correlation function for fault identification
[Chao 2008].

2.4.4 Protection Device Based Technique

As a protection measure against risks to human safety, photovoltaic systems are
equipped at the string level with devices that instantly break the electrical circuit
to stop faults in progress. For example, ground fault detection and interrupting
(GFDI) devices are installed in PV systems to isolate faults that manifest by cre-
ating a path between a current-carrying conductor and earth named ground faults
[Hernández 2009, Flicker 2013]. To isolate line-to-line (L-L) and line-to-ground (L-
G) faults, residual current devices (RCD) are installed [AbdulMawjood 2018a]. This
device can detect the difference in current passing through string terminals or array
output terminals, and thus react to isolate the element.

2.4.5 ARC Fault Detector Techniques

The arc-fault detector or arc-fault circuit interrupter (AFCI) is required due to
NEC regulation 690.11 [AbdulMawjood 2018a]. These devices have two compo-
nents: i) arc fault detectors (AFDs); and ii) interrupt devices (IDs). For correct
operation, care must be taken in the location and experimental verification of the
devices [Johnson 2012b]. Most manufacturers use AC noise to determine arc flash
on the DC side of PV. Alternatively, in [Johnson 2011a], the authors investigate the
frequencies that appear in the voltage and current on the DC side of PV systems
that can be used for arc fault detection. As mentioned in [AbdulMawjood 2018a],
when performing an analysis based on frequency, to avoid false detection results, it
is necessary to take into account considerations such as: the signals generated dur-
ing partial shade and the level of irradiance that have frequencies below 1000 Hz,
frequencies above 100 kHz are low energy and include various effects from nearby
antennas and RF phenomena or switching frequencies of most inverters, DC/DC
converters and power conditioners are in the range from 10kHz to 50kHz. In the
same manner, the test study at Sandia National Laboratory (SNL) [Johnson 2011b]
shows that the best frequency band to detect noise from arc faults is 1-100 kHz,
and it is not recommended to select a single frequency band for fault detection
[Johnson 2012b].

2.5 Discussion and Conclusions

The wide set of conditions and scenarios in which a fault can occur means that
the choice of the fault detection method depends on the available knowledge about
the system (system components), sometimes its size (impact level of the fault),
its characteristics (electrical, thermal characteristics, etc.), its origin and the type
of fault to diagnose. Because of this, it is evident that challenges around fault
detection in the photovoltaic system still persist.
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Furthermore, fault detection conditions in PV systems become more difficult
when taking into account the influence of meteorological conditions [Yi 2017c] and
its continuous changes in conditions, nonlinear system outputs [Fadhel 2018], the
presence or not of maximum power point tracking (MPPT) devices [Zhao 2013a],
the occurrence of multiple simultaneous faults or primary faults that generate more
severe secondary faults. In fact, there are also huge scenarios in this field where
the electrical behavior of panels with faults is very similar to that of panels without
faults [Hariharan 2016a, Sepúlveda Oviedo 2022]. Taking all this into considera-
tion, it is evident that the approaches presented in this chapter reach their own
limits when the aforementioned conditions are present or when large amounts of
high-dimensional data (Big data) are introduced in the new data acquisition sys-
tems.

Therefore, this research considers that fault detection strategies in PV systems
can be improved to obtain more efficient systems with predictive fault detection
functions and be applied to a wide range of photovoltaic plants with various data
acquisition systems. In addition, this research pays special importance to the detec-
tion of faults with signatures similar to those of healthy panels, taking into account
the multilevel classification presented in this chapter and the relationships between
faults in the cause-effect circle. This is primarily important, since detecting a fault
that is the cause of multiple severe faults would greatly increase the level of accuracy
of fault detection systems.

This thesis considers that improvements can be strongly supported by artificial
intelligence approaches due to the ability of artificial intelligence (AI) to handle
high-dimensional multivariate data and extract hidden relationships within data in
complex and dynamic environments [Wuest 2016]. Additionally, new approaches
must be able to detect faults not only when the impact is severe but even from the
beginning or when their signatures are similar to those of a panel without fault,
as in the case of the Snail Trail. These approaches are vital to avoid destructive
consequences and hazards to personnel who come into contact with the PV system.
Taking into account the aforementioned aspects, fault diagnosis in photovoltaic
systems is discussed in detail below in Chapter 2.
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As discussed in Chapter 2, there are multiple faults susceptible to occur in a
PV plant. For many decades faults have been detected using conventional methods
presented in Section 2.4. However, these methods are focused on some faults, a
major part of faults are not previously detected before high power impact. With
the development of monitoring systems, the amount of data obtained from the in-
strumentation of a PV plant highlights the limitations of conventional diagnosis
methods with the discovery of new faults and new detection methodologies. As an
alternative to overcome these issues, the use of artificial intelligence was recently
proposed. Artificial intelligence (AI) can handle high-dimensional multivariate data
and extract hidden relationships within data in complex and dynamic environments
[Wuest 2016]. That is why this thesis dedicates an entire chapter to make a compre-
hensive state of the art that exposes the identification of methods used, promising
emerging themes and current limitations. This chapter serves as the basis for posi-
tioning the contributions of this thesis in terms of artificial intelligence.
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For the construction of the state of the art, this chapter proposes an innovative
methodology made up of different existing methods. Precisely, we choose to use
firstly a statistical method named Bibliometric used in several other domains. This
method is improved working collaboratively with a second hybrid method based on
two machine learning algorithms: i) Topic modeling; and ii) T-distributed Stochas-
tic Neighbor Embedding t-SNE, hence the name given to this smart methodology
(Smart B2TE). As a result of these two methods, a set of clusters are obtained,
which are then combined and subjected to the third method named Expert Quali-
tative Content Analysis guided by experts. This analysis allows extracting relevant
information such as: the identification of machine learning methods used, promis-
ing emerging issues, current limitations, among others. This methodology can be
extrapolated to other domains, for reducing the subjectivity existing in conven-
tional reviews and positions the reader at the forefront of understanding aspects
of effective fault diagnosis in photovoltaic systems using artificial intelligence. It is
important to mention that a conventional review of the state of the art would have
been extremely difficult to complete on this volume of documents.

3.1 Description of Methodology (Smart B2TE)

In recent years, multiple review works have tried to concentrate as much in-
formation as possible on the different fault diagnosis methods in PV sys-
tems [Hong 2022b, Berghout 2021b, Pillai 2019b, Massa 2021, Ramírez 2021,
. 2019, Abubakar 2021, Li 2021a, Mellit 2018b, Pillai 2018a, Triki-Lahiani 2018a,
Livera 2019a, Madeti 2017c, Navid 2021b, Afrasiabi 2022b]. However, these reviews
use conventional state-of-the-art review methodologies such as structured review,
model/framework review, meta-analysis, theoretical examination and systematic
reviews, among others. All these methodologies are limited by the human capacity
analysis of numerous documents. Furthermore, it is difficult to provide an accurate
and unbiased overview of the conceptual and intellectual framework of a scientific
field.

This smart B2TE methodology is a useful tool to reduce problems of subjectivity
presented in reviews done on a conventional state of the art. The contribution of
this chapter is precisely to solve the problem discussed above. For this, the new
hybrid methodology, combining Bibliometric analysis, Topic modeling, t-SNE and
an Expert qualitative content analysis, is used to make our state of the art the most
complete and objective possible. This proposed study corresponding on different
stages is illustrated in Figure 3.1.

As it can be seen in Figure 3.1, the methodology consists of five steps or stages.
First with the Document recovery stage, documents from the Scopus and WoS
databases corresponding to studied areas are retrieved. Then, in a second time,
Bibliometric analysis stage processes these documents to extract relevant in-
formation, such as keywords, among others. In parallel, Topic modeling stage
processes the documents as a single corpus using the abstract, introduction, title,
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Figure 3.1: 5-stage methodology. a) Document recovery, ; b) Bibliometrics analysis;
c) Topic modeling; d) t-SNE and e) Expert qualitative content analysis used for
construction of the global review on Fault Diagnosis in Photovoltaic Systems using
Artificial Intelligence.

keywords, and conclusion sections. After this stage, Topic modeling is carried out
using a machine learning method for text mining called the Latent Dirichlet Alloca-
tion (LDA) method . The results are used as input to the new stage named t-SNE
stage. The aim of the t-SNE stage is correct visualization of the distribution of
the documents within the topics. The last stage needs the results of Bibliometric
analysis, Topic modeling and t-SNE stages. It is named Expert qualitative
content analysis stage.

This Expert qualitative content analysis is the stage constituting the general
review on the use of artificial intelligence for diagnosis of faults in photovoltaic sys-
tems, and provides information on the main artificial intelligence methods used in
fault diagnosis in PV plants. Also, this stage provides information about Promis-
ing Research Topics, which exposes new research trends in fault diagnosis using
artificial intelligence. In turn, these results of promising research topics can be
used to once again apply the same proposed methodology. On the other hand, this
stage also gives an idea about Challenges. It expresses the hot spots that block
the development of research in this area and that are strongly linked to promising
topics. Each stage of the proposed methodology and its type of results is detailed
below.

3.1.1 Document recovery

A data corpus with sufficient accuracy and robustness is necessary to guarantee
reliable conclusions when it is used in construction of a large range of state of the
art [Lim 2021, Wang 2021a]. First a search equation is built based on keywords
with the Boolean structure presented in Figure 3.2. Building a search equation
using keywords is cataloged as the best way to start a coherent and consistent
systematic search [Almeida 2018].

The set of documents used in this article are retrieved with the search equation
on July 16, 2022 from the Scopus and WoS databases widely used for state-of-
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Figure 3.2: Steps of the document recovery stage for the construction of the data
corpus: i) To build the search equation using keywords and logical operators; ii) To
use the search equation to retrieve the documents in the Scopus and WoS databases;
iii) To filter documents by selection criteria; iv) To extend the number of retrieved
and filtered documents, adding filtered documents from other sources; and v) Con-
struction of the data corpus.

the-art review studies [Shen 2021, Zhao 2018]. 266 records of Scopus and 206 of
WoS are obtained. These results are merged and duplicates are removed using
Zotero software [Rakshikar 2015]. In the Scopus and WoS databases some of the
documents retrieved are written in languages other than English, or have thesis-
type documents. With the aim of building a data corpus homogeneous, a series of
filter criteria are applied to the retrieved documents as seen in Figure 3.2. The list
of inclusion criteria is: i) Article Published in peer Reviewed Journal; ii) English
Language; iii) Period 2010 - 2022; iv) Conference Papers; and v) Book chapter.
After applying the filter criteria, a filtered set of documents from other databases
and provided by experts are added to the filtered documents to complete a total
of 625 peer-reviewed documents that make up the final data corpus used for this
study. Figure 3.3 shows the main statistics of the 625 peer-reviewed documents.

As can be seen in Figure 3.3, research in fault diagnosis in photovoltaic systems
using artificial intelligence has grown greatly since 2015, increasing the number
of publications by 3.75 times the number of publications in 2010. This increase
may be directly related to the clean energy transition, which is of vital impor-
tance to mitigate the problems of climate change. Following the trend of recent
years, it is possible to conclude that the research of new artificial intelligence al-
gorithms applied to renewable energies and especially to PV energy will continue
with an exponential growth during the next decades. This reinforces the idea of
continuing to investigate in depth artificial intelligence issues to detect faults in PV
systems. On the other hand, another interesting aspect to analyze in Figure 3.3 is
the publication category. It is evident that most of the publications belong to doc-
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Figure 3.3: Statistics of the retrieved documents. Distribution of retrieved docu-
ments by type. Number of leaked documents published per year between 2010 and
2022.

uments in the categories of conference papers and journal articles. Once the data
corpus is complete, bibliometric analysis and topic modeling methods are applied.
Carrying out the Bibliometric analysis and the topic modeling on this data cor-
pus guarantees a structured, replicable, transparent and iterative study, preserving
only the relevant documents and reducing the subjectivity present in traditional
reviews [Tranfield 2003]. Bibliometric analysis, topic modeling and t-SNE stages
are explained below in a generic way and their final results are analyzed in Expert
qualitative content analysis stage.

3.1.2 Bibliometric analysis

Bibliometric analysis of the information allows an objective and replicable re-
view of the data corpus. This method is applied to the analysis of indica-
tors (authors, countries, citations, keywords, etc.) and allows to measure the
quantitative contribution of different aspects within a given area of knowledge
[Keiser 2005, Zhang 2010, Bjurström 2011]. This means that Bibliometric facili-
tates the process of identifying popular topics in present, past or future [Zhou 2007].
Therefore, it is a crucial tool to review the state of the art of a research field
from micro level (scientist and institute) to macro level (national and global)
[Mao 2015, Calderón 2020].

The results of treatment of big data using Bibliometric follow an established pro-
tocol, that is, translate the analysis through nodes, creating links between nodes and
networks with less or more great potential. This type of graphic representation is
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especially adapted for engineering and research applications [Reyes-Belmonte 2020].
The principle of nodes and networks used to visualize results of Bibliometric analy-
ses is named map or Bibliometric network. To illustrate how a result of an analysis
can be done by a Bibliometric map, an example of scheme is shown in Figure 3.4.

To illustrate what can be a graphical representation of a Bibliometric network,
Figure 3.4 is an example of a network of 10 nodes. Each node has its own size rep-
resented in the form of circles, proportional to the number of entities with similar
attributes noted by the value inside the node. Each color represents a cluster. The
thickness of the lines is proportional to the value on the line and spacing (distance) of
the circles represent intensity of collaboration. As mentioned in [Du 2014], this type
of Bibliometric analysis and visualization has become an indispensable instrument
to measure scientific progress in a scientific field in different application domains
and intensities of collaborations [Zupic 2015, Al Mamun 2022, Akinlolu 2020].
Specifically, in our case dedicated to the field of solar energy, Bibliometric is
widely used in areas such as organic solar cells [Dong 2012, Qadir 2019], en-
ergy transition [Zhang 2021d], rooftop photovoltaic fields [Shen 2021], analysis of
different Maximum Power Point Tracking methods [Hadke 2021] or more glob-
ally [Garg 1993, Du 2014, Dong 2012, Qadir 2019, Azad 2022, Dominković 2022,
Zhang 2015, Calderón 2020, Yu 2020, Mao 2018]. In all these studies, the great
potential of Bibliometric to identify emerging research fields through statistical
analysis of keywords of articles is demonstrated. These bibliometric approaches
can determine the main topics in an area of knowledge by analyzing the keywords
of the articles and significantly reducing the subjectivity of conventional reviews.

For the realization of Bibliometric maps, distance-based and graphic-based
methods can be distinguished. Different distance-based map construction tech-
niques are found in literature. In [van Eck 2010a] which is one of the most popular
techniques in the field of Bibliometric, it is proposed to use entities called multi-
dimensional scaling to represent within a geometric space of few dimensions, prox-
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imities between a set of objects [Borg 2005]. As an alternative, techniques such
as VOS mapping [van Eck 2007b, Van Eck 2007a, van Eck 2006] are also proposed.
These last techniques show better results than those presented by multidimensional
scaling [van Eck 2010b]. Another technique based on distance called V xOrd is pro-
posed in [Davidson 2001, Klavans 2006], this technique shows a high performance
for construction of maps with large numbers of elements (7000 or more). Finally,
in [Kopcsa 1998] a new method implemented in a software called BibTechMon is
proposed.

Similarly, several works on elaboration of graph-based maps are published. In
[Kamada 1989], it is proposed to construct graphs using the Euclidean distance
between two nodes or vertices in the drawing as the “graph-theoretical" distance.
Then two vertices are connected by a “spring" of the calculated distance. The
arrangement of vertices is calculated based on the total elastic energy of the sys-
tem. As an alternative technique, in [Fruchterman 1991] it is proposed a heuristic
aimed at achieving uniform edge lengths. They propose this technique by mod-
ifying the spring embedding model using an analogy with forces in natural sys-
tems. Other authors [Moya-Anegón 2007, Vargas-Quesada 2007] propose combina-
tions of the work presented by [Kamada 1989] with the pathfinder network tech-
nique [Schvaneveldt 1988]. There are also some versions of software like CiteSpace
[Chen 2003] specialized in this type of maps, or some like Pajek from [De Nooy 2018]
that combine distance-based and graph-based approaches.

For the Bibliometric analysis carried out in the PV research area a distance-
based Bibliometric mapping is performed using Bibliometric visualization and map-
ping software developed by Nees Jan van Eck and Ludo Waltman called VOSviewer1

due to its interesting distance-based Bibliometric results [van Eck 2010b] and its
widely known and used in the field of Bibliometric [Wang 2018b, Wang 2021b,
Pan 2019, Bai 2020]. This induces not only an analysis of relationships but also of
relationship level between different entities. Construction of Bibliometric maps us-
ing VOSviewer is based on the co-occurrence matrix. Co-occurrence matrix analyzes
counts of concurrent entities within a collection of units. In the co-occurrence ma-
trix the items (authors, institutions, countries, etc.) form row and column headings
and the intersection of the row and column represent the co-occurrence [Zhou 2022].

To carry out the Bibliometric analysis three times steps are needed. In the first
step, the similarity matrix based on the co-occurrence matrix is computed. In the
second step, a map applying the VOS mapping technique to the similarity matrix is
performed. Finally, the map is translated, rotated and reflected to find consistent
results.

As mentioned above the similarity matrix is calculated from the normalization
of the co-occurrence matrix. This normalization depends on the total number of
occurrences or co-occurrences of elements. This means to obtain a correct normal-
ization a similarity metric must be selected. Among the most common normal-
ization metrics are the cosine [Huang 2008] and the Jaccard index [Shtovba 2020].

1See Vosviewer

https://www.vosviewer.com
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However, VOSviewer uses a measure of similarity known as the strength of asso-
ciation [Van Eck 2007a, van Eck 2006], proximity index [Peters 1993, Rip 1984], or
probabilistic affinity index [Zitt 2000] due to the advantages over other measures of
similarity [Eck 2009]. In these cases, this index defines the similarity sij between
two elements i and j as:

sij = cij

wiwj
(3.1)

where cij corresponds to the number of co-occurrences of items i and j. wi and
wj denote either the total number of occurrences or the total number of simulta-
neous occurrences, under the assumption that the occurrences of items i and j are
statistically independent.

Once this similarity matrix is built, VOS mapping technique is applied. It is
important to mention that VOS technique can have one or more solutions of global
optimum. In cases of multiple solutions, it is important to apply translation, rota-
tion, or reflection operations to ensure that VOSviewer produces consistent results.
More detailed information about this method is presented in [van Eck 2010a]. For
this chapter, the Bibliometric analysis has been carried out only taking into ac-
count the keywords. However, the analysis carried out by bibliometric approaches
continue to be merely quantitative and are limited to the list of keywords provided
by the authors and they do not consider the context in which the keywords are
found. For this reason, in this thesis the complementary use of topical modeling is
proposed.

3.1.3 Topic Modeling

In an alternative way to analyze keywords in context, some authors propose the use
of machine learning tools for text mining such as topic modeling and more specif-
ically such as Latent Dirichlet Allocation (LDA) [Delgosha 2021, Mustak 2021].
These tools are vital to achieve a more accurate and unbiased general understand-
ing of the current state of a scientific field. Moreover, these tools are of great
help to discover hidden topics in large amounts of text. [Nielsen 2019, Jiang 2016].
In addition, they allow analyzing not only keywords defined by the author, but
also keywords extracted from full texts or fragments. Topic modeling is considered
more flexible and efficient than alternative approaches such as document clustering
[Kuhn 2018] and is widely used in different areas of knowledge to verify the scien-
tific trajectory [Jelodar 2019, Bastani 2019, Chen 2020b, Jiang 2016]. However, the
use of topic modeling for the exploration of research topics in energy has recently
started to be explored [Saheb 2022a].

In this study, topic modeling is used to generate so-called "topics" that can
be compared in an analogous way with the clusters obtained through bibliometric
[Lu 2012, Yau 2014]. This research considers the term "topic" as a fundamental
object to describe the intellectual structure of an area of knowledge. Topic modeling
is a quantitative statistical-based method that extracts semantic information and
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evaluates substantial data from large collections of texts [Jiang 2016]. In addition,
topic modeling has proven to be a productive approach to find hidden (semantic)
structures in BIG DATA [Jelodar 2019].

The first topic modeling is proposed by Hofman [Hofmann 1999] in 1999 with
the model named probabilistic latent semantic indexing (pLSI). In this model, each
word in a document is a sample of a mixture model, where the components of
the mixture are random variables that can be seen as representation topics. Years
later, in [Blei 2003] a method based on the three-layer Bayesian model named Latent
Dirichlet Assignment (LDA) is proposed. This method is based on a one-parameter
reduced model of the Dirichlet distribution. The LDA method is widely used and
extensions are proposed, such as the Correlated Topic Models (CTM) [Blei 2007] or
the Hierarchical Dirichlet Process (HDP) [Teh 2006], to reduce computation time
and required memory.

There are multiple approaches to perform topic modeling from employing such as
Latent Dirichlet Allocation (LDA) [Mustak 2021], Latent Semantic Analysis (LSA)
[Foltz 1996] or clustering with the k means algorithm [Tijare 2022]. For the topic
modeling carried out in this research, the unsupervised generative probabilistic
method LDA is selected. LDA method is widely used in natural language pro-
cessing, text mining and social network analysis, information retrieval in various
fields including medical sciences [Zhang 2017], software engineering [Gethers 2010],
political science [Chen 2010, Greene 2015], among others [Blei 2003, Jelodar 2019].

3.1.3.1 Latent Dirichlet Allocation

The LDA approach works on the premise that documents are made up of random
mixes of a number of latent topics K. In turn, each topic kp, p = 1, . . . ,K is
characterized by a specific probability distribution of words [Xie 2020, Daud 2010].
The formal description of the LDA approach mentions that given a data corpus
D constituted by M documents, where a document mi, i = 1, . . . ,M contains a
number of words or size of the vocabulary Nmi , LDA models D according to the
following generative process [Blei 2001]:

• Choose a multinomial distribution φk for a topic kj, j = 1, . . . ,K from a
Dirichlet distribution with parameter β.

• Choose a multinomial distribution θmi, for document mi, i = 1, . . . ,M from
a Dirichlet distribution with parameter α.

• For each of word wn, n = 1, . . . , Nmi in a document mi, i = 1, . . . ,M :

– Sample a topic kj,n from θmi .
– Sample a word wj,n from φk conditioned on the zn topic selected.

Therefore, the probability of observed data p(D | α, β) is calculated and obtained
from a corpus as follows:
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a(θmi) =
M∏

mi=1

∫
θ
p(θmi | α),

b(θmi) =
Nmi∏
n=1

∑
kj,n

p(kj,n | θmi)p(wj,n | kj,n, β),

p(D | α, β) = a(θmi) ∗ b(θmi) dθmi , (3.2)

Where, β and α are the Dirichlet-multinomial pair for topic-word distributions
(hyperparameters) previously defined for topic and document respectively. φ and
θ are the Dirichlet-multinomial pair for the corpus-level topic distributions. The
variables θmi are document-level variables, sampled when per document. kj,n, wj,n

variables are word-level variables and are sampled when for each word in each text-
document. This topic modeling method is applied to the 625 retrieved documents.
A pre-processing described below is necessary before using the LDA model.

3.1.3.2 Document pre-processing

The processing of the information must be carried out on the corpus of the doc-
uments. In this paper, the corpus contains information of the abstract, keywords,
title, conclusions and introduction sections of the 625 retrieved documents. The
sections are considered because they contain the most succinct summary of the
key ideas [Delgosha 2021]. Once this corpus is selected, a 6-stage preprocessing
is performed. First, a Tokenization that breaks the text into sentences and the
sentences into words. Second, all words are lowercase and punctuation is removed.
Third, the stopwords and emails are removed. Stopwords are those words that you
want to filter so that they are not taken into account in natural language process-
ing. The list of stopwords is carefully made by experts in the domain of interest.
Fourth, the remaining words are lemmatized, turning third person words into
first person and past and future verbs into present. Fifth, words are stemmed,
reducing the words to their root. Finally, bigrams and trigrams are built. Bi-
grams are two words that appear together frequently in the document. Trigrams
are three words that occur frequently. For example, "battery_energy_storage",
"renewable_energy", "grid_connected", "standalone_system" etc.

For topic modeling there are programming languages like R, Julia, java and
Python. For this investigation Python 3.7.9 is used, due to its large number
of specialized word processing libraries, accelerated computation time and simple
[Saheb 2022b] implementation. For pre-processing, the Natural Language Toolkit
(NLTK), Scikit-learn, Pandas, Mallet, Seaborn, Matplotlib and Numpy packages
are used.
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3.1.3.3 Implementation of the LDA method

Topical modeling in Python can be done using the Gensim or Mallet libraries. For
this study, the LDA model is obtained using the Mallet package, due to its high per-
formance compared to Gensim [Ebeid 2016]. This Mallet library contains efficient
sample-based implementations of latent Dirichlet mapping, Pachinko mapping, hier-
archical LDA, and memory usage optimizations [McCallum 2002]. Topic modeling
using LDA is an unsupervised technique, which means that it is not known before
running the model how many topics exist in the corpus. In addition, it is not pos-
sible to rely on previous studies to determine the appropriate number of topics for
our investigation since it is the first time that this method is used for the analysis of
the literature on fault diagnosis using artificial intelligence in photovoltaic systems.
For this reason, it is necessary to build multiple LDA models with different values
of the number of topics (K) and choose the model that offers significant and inter-
pretable topics. It is necessary to clarify that selecting a very high number of topics
can sometimes provide more granular subtopics, and even topics in which the same
keywords are repeated, which means that (K) is probably too large. That is why
in this article the use of the topic coherence technique to estimate the appropriate
number of topics is proposed.

3.1.3.4 Topic Coherence Measurement

Coherence can be defined as the quality or consistency of the relationships between
the words in a topic [Morstatter 2018]. Topic coherence measures take the set of
top words Nmi , i = 1, . . . ,M in a topic kp, p = 1, . . . ,K and add a confirmation
measure over all pairs of words. Multiple techniques to measure the coherence of
topics are proposed. In coherence based on point mutual information (PMI) the
probability of a word belonging to a topic is estimated based on word co-occurrence
counts using a sliding window that moves over the corpus [Church 1990]. Mimno
et al [Mimno 2011] uses an asymmetric confirmation measure between headword
pairs or smoothed conditional probability. In [Aletras 2013], context vector-based
topic coherence named Pointwise Mutual Information (PMI) is introduced. This
method creates a context vector of a word w using word co-occurrence counts de-
termined by context windows containing all words placed ±5 tokens around oc-
currences of the word w. An extension of this method named NPMI defines the
elements of these normalized context vectors improving coherence of topics with
human topics [Bouma 2009]. In the same work, the authors proposed to restrict
the co-occurrences of words to those words that are part of the same topic (top
word space).

Other metrics for evaluating coherence are evaluated in [Röder 2015]. In that
same study, it is shown that the metric (CV ), which is a combination of the indirect
cosine measurement with the NPMI and the Boolean sliding window, presents the
best results compared to various metrics. In [Syed 2017], the metric (CV ) is shown
to achieve the highest correlation with all available human subject classification
data in that study. In the same study they explain that the metric (CV ) is based
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Figure 3.5: Topic coherence analysis based on the coherence score using the metric
(CV ). The optimal number of topics is 4.

on four parts: i) segmentation of the data into pairs of words; ii) calculation of
probabilities of words or pairs of words; iii) calculation of a confirmation measure
that quantifies how strongly one set of words supports another set of words; and
finally iv) aggregation of individual confirmation measures into an overall coherence
score. A formal presentation of the metric (CV ) is described in the same document
[Syed 2017]. Figure 3.5 shows the topic coherence values using the metric (CV ) for
the LDA models as a function of their number of topics.

As seen in Figure 3.5, the coherence score increases with the number of topics,
with a decrease between 4 and 8. This coherence analysis provides a good picture
for the selection of the appropriate number of topics. As mentioned above, choosing
the right number of topics also depends on expert analysis to avoid selecting topics
that may have repeated keywords in the topic. The result in Figure 3.5 suggests
that the data is better explained with a model that incorporates k = 4 topics with
a value of CV = 0.42. Manual checks are used to ensure the validity and robustness
of the model. From now on, this model is named Optimal LDA Model. A more
detailed analysis of the content of each topic is carried out below.

3.1.3.5 Analysis of words per topic

Table 3.1 shows the 20 examples of representative words for the 4 topics in the
Optimal LDA Model, along with the number of documents on each topic.

As can be seen in Table 3.1, the number of documents in topic 2 is substantially
higher than in the other topics. Intuitively, it would be thought that each document
contained in each topic kp, p = 1, . . . ,K belongs only to that topic. However, the
fact that the document is classified in a topic does not mean that within the doc-
ument only words related to that topic are identified. That is, the same document
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Topic (# Documents) Examples of representative words per topic

1 (238) supervised, classification, diagnosis, feature extraction, feature selection,
datum, neural, network, training, tree, kernel, segmentation, label, pat-
tern, transfer, extreme, bayesian, fusion, statistical

2 (150) semi_supervised, graph_based, optimization, identification, online, hy-
brid, behavior, network, dynamic, wavelet, threshold, smart, modeling,
scenario, transmission, noise, optimize, management, minimum, signa-
ture

3 (102) reinforcement, monitoring,time, operation, production, predic-
tion, cost, maintenance, lifetime, camera, thermal, topology,
dynamic_programming, estimation, expect, signal_processing, su-
pervision, platform, timely, forecast

4 (190) unsupervised, shade, location, clustering, forecasting, irradiance, volt-
age, current, wind, temperature, characteristic, impedance, arc, cir-
cuit, point_tracking_mppt, mismatch, partial, dimensionality, abnormal,
anomaly

Table 3.1: 20 examples of representative words for the 4 topics in the Optimal LDA
Model, as well as the number of documents in each topic

can contain terms from different topics, but it is assigned based on the topic that
groups the largest number of terms of the document.

Once an initial understanding of the content of the topics is established, it is
necessary to visualize what the intra and inter-topic relationships are. For this,
the t-distributed stochastic neighbor embedding (t-SNE) method is proposed as a
high-dimensional data visualization tool [van der Maaten 2008a].

3.1.4 T-distributed stochastic neighbor embedding

This method T-distributed stochastic neighbor embedding (t-SNE) is a variation
of the Stochastic Neighbor Embedding method (SNE) introduced in [Hinton 2002].
The SNE converts the distance between two points in high-dimensional space to
a conditional probability that represents the similarity of the two points in high-
dimensional space. Then the SNE matches the conditional probability between two
data points in high-dimensional space to the conditional probability between two
map points in low-dimensional space.

The conditional probability between two points xi and xj is denoted pj|i and
represents the probability that xi would pick xj as its neighbor. Since this research is
only interested in modeling pairwise similarities, the value pi|i = 0 is set [Liu 2021a].
The conditional probability pj|i can be defined using a Gaussian kernel as follows:

pj|i = exp(−∥xi − xj∥2/2σ2
i )∑

k ̸=i exp(−∥xi − xk∥2/2σ2
i ) , (3.3)

where ∥xi − xj∥ is the Euclidean distance between data points xi and xj and σ2
i is

the variance of the Gaussian that is centered on xi. Taking into account that the
data density is likely to vary, it is likely that there is no single value of σ2

i that is
optimal for all data points in the data set [Zhang 2021b]. For example, in dense
regions, a smaller value of σ2

i is often more appropriate than in more sparse regions.
Any particular value of σ2

i induces a probability distribution, Pi, over all of the other
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data points that has an entropy which increases as σ2
i increases. Taking this into

account, the SNE performs a binary search for the value of σ2
i that produces a Pi

with a fixed Perplexity that is specified by the user. As mentioned in [Zhang 2021b]
perplexity can be understood as a measure of the effective number of neighbors.
The Perplexity is typically set to a value between 5 and 50 [Zhang 2021b] and is
calculated as follows:

Perp(Pi) = 2H(Pi), (3.4)

where H(Pi) is the Shannon entropy of Pi measured in bits. H(Pi) is calculated
using Equation (3.5) [Liu 2021a].

H(Pi) = −
∑

j

pj|ilog2(pj|i), (3.5)

For low-dimensional counterparts the SNE computes a conditional probability
for the map points yi and yj . These two points yi and yj are the equivalent or corre-
sponding representation of the data points xi and xj respectively. This conditional
probability is denoted as qj|i, with variance 1/

√
2 and calculated as follows:

qj|i = exp(−∥yi − yj∥2)∑
i ̸=k exp(−∥yi − yk∥2) , (3.6)

As for the probability pi|i, qi|i = 0 is set. If the points yi and yj correctly model
the similarity between the high-dimensional data points xi and xj the conditional
probabilities, pj|i and qj|i, should be equal. In this way, SNE tries to find a low-
dimensional data representation that minimizes the discrepancy between pi|i and
qi|i. This discrepancy can be measured by the Kullback-Leibler divergence consid-
ering all data points using a gradient descent method. The cost function CPi∥Qi

to
be minimized is given as follows:

CPi∥Qi
=
∑

i

KL (Pi ∥ Qi) =
∑

i

∑
j

pj|i log
pj|i
qj|i

, (3.7)

where Pi y Qi represent the conditional probability distribution over all given data
points xi and map yi respectively. It is important to mention that the Kullback-
Leibler divergence is not symmetric, so the different error types in the pairwise
distances in the low-dimensional map are not weighted equally [Zhang 2021b]. This
translates to a large cost of using widely spaced map points to represent closely
spaced data points and a small cost of using closely spaced map points to represent
widely spaced data points. Taking this cost function problem into account, Van der
Maaten and Hinton [van der Maaten 2008a] present a modification of SNE named
t-SNE. Also, this variation is born to solve the problems of the cost function that is
difficult to optimize in the SNE [van der Maaten 2008a]. t-SNE uses a symmetric
version of SNE to estimate pairwise similarities in low- and high-dimensional spaces.
t-SNE introduces the Equation (3.8).
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pij =
pj|i + pi|j

2n , (3.8)

where pij is the probability that xi chooses xj as its neighbor such that pij = pji

for ∀i, j (symmetry) and n is the number of data points. Equation (3.8) ensures
that the condition of Equation (3.9) is met for all data points xi.

∑
j

pij >
1

2n, (3.9)

Equation (3.9) ensures that each data point xi makes a significant contribu-
tion to the cost function. Also, t-SNE uses a Student-t distribution rather than
a Gaussian to compute the similarity between two points in the low-dimensional
space. That is, for map points yi and yj t-SNE uses a Student-t distribution with
one degree of freedom to compute the Equation (3.10) [Zhang 2021b].

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1 , (3.10)

which is the probability that yi chooses yj as its neighbor. As in the case of
pij and pji, qij = qji for ∀i, j conserving the property of symmetry. These new
conditions transform cost function CPi∥Qi

from Equation (3.7) into function CP ∥Q

from Equation Equation (3.11).

CP ∥Q = KL (P ∥ Q) =
∑

i

∑
j

pij log pij

qij
, (3.11)

where P and Q are the joint probability distributions in high- and low-dimensional
spaces, respectively. Equation (3.11) can be seen as an alternative to minimize a
single Kullback-Leibler divergence between a joint probability distribution, P , in
high-dimensional space and a joint probability distribution, Q, in low-dimensional
space.

Using Equations (3.8), (3.10) and (3.11) the probability that a document belongs
to a topic is calculated. The grouping results of the clusters are measured in terms
of how compact and clearly separable the classes are using a metric such as the
silhouette coefficient[Rousseeuw 1987]. The silhouette coefficient φ is a measure of
how similar a sample is to the samples of its own cluster compared to the samples
of other clusters [Xiang 2021]. The value of the silhouette coefficient ranges from
−1 ≤ φ ≤ 1. A value of 1 indicates that the sample is well assigned to the cluster
i.e far from its neighboring clusters, a value of 0 indicates that the sample can also
be assigned to another cluster and finally, a value of -1 indicates that the sample
is not correctly assigned i.e it is far from the other samples of its own cluster or
somewhere in between the clusters. The average value of silhouette coefficient of
all the samples ne of a cluster g is represented by φ̄g and is defined according to
[Eler 2015] as:
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φ̄g = 1
ne

ne∑
i=1

b(i) − a(i)
max{a(i), b(i)} , (3.12)

where a(i) is the average distance between the sample ei, i = 1, . . . , ne, and the rest
of the sample in cluster g and b(i) is the minimum distance between object ei and
the rest of the objects in all other clusters except g. A low value of a(i) indicates
a good compactness of the cluster (low intra-cluster distance). A high value of
b(i) indicates a good cluster separability (high inter-cluster distance). Once the
methods are fully explained, their final results are analyzed in the next stage.

3.1.5 Expert qualitative content analysis

In this section the results of the bibliometric analysis, topical modeling and t-SNE
are examined in order to extract as much information as possible to build the state
of the art on Fault Diagnosis in Photovoltaic Systems using Artificial Intelligence.
First, the result of the bibliometric analysis of the keywords is presented in Fig-
ure 3.6. Figure 3.6 presents a cluster Visualization Map of keywords with the 6
keyword clusters labeled according to the approach to which they belong.

This bibliometric analysis showed that all the clusters identified coincide with
the classification presented by Rodrigues et al. [Rodrigues 2017]. This previous
classification is supported by the main contribution of the algorithms contained in
each group extracted with the “master algorithm" tool. The concept of “master
algorithm" is introduced by Domingos [Domingos 2015] in his book entitled “The
Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake
Our World". The author considers the “master algorithm" as the unifier of ma-
chine learning, and then as, hypothetically, a machine learning algorithm capable
of perfectly understanding the behavior of any system. Taking into consideration
these two previous authors approaches, the names of each cluster are assigned as
respectively Symbolic approach, Regression approach, Bayesian approach, Analogy-
based approach, Connectionist approach and Evolutionary approach. Our approach
confirms that each of these clusters has its own master algorithm with its properties
and drawbacks.

3.1.5.1 Cluster 1 - Symbolic approach

This cluster groups algorithms whose master algorithm is identified as inverse de-
duction, also called induction. The approaches of this cluster try to reach a specific
conclusion based on pre-existing knowledge previously learned [Domingos 2015].
For this reason, these machine learning approaches cannot start “from scratch".
Because the inverse deduction is very expensive from the computational point of
view, the application of these algorithms in massive data sets until now rests very
difficult to generalize. Some of the most recognized algorithms in this cluster are
well-known as Decision tree, Random Forests and Fuzzy Logic [Antonanzas 2016].
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Figure 3.6: Visualization Map of co-occurring keywords identifying 6 main clusters.
Each cluster corresponds to a type of approach.



108
Chapter 3. Fault Diagnosis in Photovoltaic Systems using Artificial

Intelligence

3.1.5.2 Cluster 2 - Regression approach

This cluster groups algorithms based on data that are not learning algorithms but
regressive algorithms and depend on historical data according to [Domingos 2015].
Some of the most recognized algorithms in this group are ARIMA (Auto-Regressive
Integrated Moving Average), Linear Regression models, Principal Component Anal-
ysis (PCA) and statistical machine learning approaches [Antonanzas 2016].

3.1.5.3 Cluster 3 - Bayesian approach

This cluster groups algorithms identified by the master algorithm tool as the proba-
bilistic Inference. These algorithms have common properties with their capacity to
reduce the uncertainty of the new knowledge using the probabilistic event inference
algorithm [Rodrigues 2017]. These types of algorithms recognize the inherent un-
certainty and incompleteness of all types of knowledge. In these algorithms, at each
known event a probability is assigned. Then if the data supports a hypothesis, the
hypothesis becomes more weight. If the data contradicts it, less weight is assigned
to the hypothesis as in [Domingos 2015]. Some of the best known methods used in
this cluster are Naïve Bayes and Monte Carlo [Antonanzas 2016].

3.1.5.4 Cluster 4 - Analogy-based approach

This cluster groups algorithms which are called by master algorithms, kernel ma-
chines. These algorithms analyze similarities between old and new data by using
the nearest neighbor kernel machine algorithms capable of doing analysis of their
environment and try to generalize by help of similarity. This group of algorithms
presents similar results to neural networks [Domingos 2015]. One of the main draw-
backs that exists with these algorithms is the high dependence on the size of the
data set, the calculation time and the complexity of the programming that can
quickly become important. Among the best known algorithms in this group, the
support vector machines and the K-Nearest Neighbor algorithms are the most used
as mentioned on [Antonanzas 2016].

3.1.5.5 Cluster 5 - Connectionist approach

This cluster groups algorithms whose master algorithm is called the backpropaga-
tion. These algorithms are able to emulate the functions of the brain by creating
artificial neurons and connecting them in a neural network using an input layer,
one or more hidden layers, and an output layer. Input neurons are taken by the
hidden neurons which generate an output able to be read by other neurons which
are performed with the same function [Domingos 2015]. Artificial neural networks
and extreme learning machines are some of the most recognized algorithms in this
cluster [Antonanzas 2016].
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Figure 3.7: Distribution of Document Word Counts by Dominant Topic. In the
center the 2D visualization t-SNE of the 4 topics is presented. On the sides,
word clouds for each topic are presented. Each of the average values of silhouette
coefficients φ̄g, g = 1, . . . , 4 is presented above each topic.

3.1.5.6 Cluster 6 - Evolutionary approach

These algorithms work on imitation of the evolutionary process of real genomes and
DNA based on Darwin’s principles, where performance is measured by the fitness
of offspring [Rodrigues 2017]. These algorithms have a set of individuals which
each one competes with each other, mix, mutate and then only the fittest are not
discarded as best genes with evolutionary biology [Domingos 2015]. Among the
most popular algorithms belonging to this cluster are the genetic algorithm and
genetic programming [Antonanzas 2016].

Then the results obtained with topic modeling and t-SNE are analyzed. The
cluster of documents in a 2D space using the t-SNE algorithm, the silhouette coef-
ficient of the clusters and the word clouds obtained by topic modeling are presented
in Figure 3.7. This figure helps to explore the inter-topic distance and therefore as
well as how the topics are related to each other, including the most relevant words
to infer the topic from Keywords.

As can be seen in Figure 3.7, all the clusters or topics obtained average values of
silhouette coefficients close to 1. This indicates that the method effectively grouped
the documents correctly. After analyzing the words contained in each theme, it is
identified that the work carried out in fault diagnosis in PV plants can be classified
into 4 types of machine learning (see 3.7) and the 6 families of algorithms (see Figure
3.6). A recapitulative diagram that contains the two classifications, the physical
variables and algorithms most used for fault diagnosis is presented in the following
section.

3.1.6 Summary of the relevant information retrieved.

After an in-depth study, 11 different variables are identified that are used to train
machine learning models. The variables are: Irradiance, ambient temperature,
wind speed, module temperature, current, voltage, power, energy, humidity, cell
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Figure 3.8: Summary scheme of the information found with the Smart B2TE
methodology. a) Typical faults studied in the literature; b) typical variables used
for fault diagnosis; c) types of machine learning found with bibliometric analysis;
and e) types of machine learning found with topical modeling and t-SNE.

temperature and images. Similarly, the 12 most studied faults are identified: arc
faults (ARC), short circuit (SC), degradation (Degrad), Line to Line (LL), Soiling,
Open Circuit (OC), Snail Trail, Hot spot , Mismatch and other fault conditions. All
this information together with the two proposed classifications are shown in Figure
3.8.

As seen in Figure 3.8, multiple faults are diagnosed using multiple physical
variables and machine learning approaches. To give a more specific view of the
work developed in the field, Section 3.2 exposes multiple articles on each of the
4 types of Machine learning. This classification has been adopted in this thesis
because it is widely known in the field of artificial intelligence.

3.2 Methods based on artificial intelligence techniques

Artificial intelligence (AI) methods or techniques are gaining strength as a new re-
search direction in the energy sector, mainly due to the ability to manage a large
amount of data without the need for a physical model of the system [Massa 2021].
Without loss of generality, AI can be defined as an area of computer science whose
goal is to create and train intelligent machines that simulate human behavior
based on available data [IRENA 2019, Licciardo 2018, Shobha 2018]. More specifi-
cally, Machine Learning (ML) is considered part of AI [Gupta 2020, Ibrahim 2020],
which is classified in the literature by subgroups as Supervised Learning (SL)
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[Massa 2021], Semi-Supervised Learning (SSL) ) [Pise 2008], Reinforcement Learn-
ing (RL) [Massa 2021, Barja-Martinez 2021] and Unsupervised Learning (UL)
[Massa 2021]. Among them, SL and UL are widely researched to be used in fault di-
agnosis problems, while RL is mainly applied to plant control problems and control
faults [Massa 2021]. In general, in fault diagnosis using machine learning, algo-
rithms are designed and trained to learn and improve the relationship between the
input and output parameters of a photovoltaic system and thus use them to dis-
criminate between healthy and faulty behavior [Pillai 2018b]. Training data can be
constituted from experimental collections or with the help of accurate PV models
even in few cases the both of them. However, outliers to be detected when faults
occur require high accuracy from training and prediction. As mentioned in the
literature [Pillai 2018b], although MLT-based fault diagnosis helps to overcome the
difficulty of defining thresholds to achieve a more accurate fault detection and im-
prove fault classification, it persists the following disadvantages. First, accuracy
depends on the quality of the training data used. Second, specific training data
including faults are needed, especially for fault occurrences. But, it is extremely
difficult to collect. Third, machine learning algorithms that use PV models are in
major part linked to the fact that the precision depends entirely on the photovoltaic
model used. Finally, on PV plants, training data are not easy to obtain linked to
the difficulty of access and then can be considered non available globally. In addi-
tion, how to obtain training data varies from one PV plant to another depending
on the type, size, and geographic location.

Despite all these limitations, as mentioned in [Livera 2019b], ML techniques
have shown multiple advantages such as symbolic reasoning, flexibility and the
ability to explain the results and are able to analyze and identify patterns in non-
linear, large, complex, and even incomplete data. In addition, compared to the
standard linear models for optimization methods, ML methods have compact solu-
tions for multivariable problems without the need to know the internal parameters
of the system [. 2019]. For these methods, only one training process is required to
directly determine the output parameters. These solutions are obtained without
solving any nonlinear mathematical equations or making statistical assumptions as
in conventional optimization methods.

In order to give an overview of the current methods used for fault diagnosis
in PV plants, articles detected with the process described in the previous section
as the more interesting in the PV diagnosis and grouped into different clusters
shown in Figures 3.6 and 3.7 are studied below, with various methods of machine
learning with distinctive principles and structures, belonging to each of the 4 types
of machine learning (SL, SSl, RL and UL), depending on the selected algorithm,
the type of fault detected, the input variables between other relevant aspects for
fault diagnosis. In each type of machine learning, priority is given to the documents
with the highest number of citations.
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3.2.1 Supervised Learning

Supervised learning models are the most widely used in machine learning
[Baharin 2014]. In the photovoltaic domain, one of the main drawbacks of these
models and consequently one of the main challenges is to make the model work
correctly in different seasons of the year, taking into account that the amount of
data needed for training is large and the model is built on a case-by-case basis
[Youssef 2017].

In the supervised learning scheme it is necessary to have a database with inputs
(predictors) and outputs (labels or targets) [Berry 2019]. Then, the documents
found in this topic try to discover the relationship between inputs and outputs in
the formation process [alias Balamurugan 2011]. These algorithms first produce a
function that assigns data to labels. And this function is used to predict the label
of unlabeled data. Among the best known algorithms are Naïve Bayes (NB), Deci-
sion tree (DT), Random forest (RF), Artificial neural network (ANN), Probabilis-
tic Neural Network (PNN), Extreme Learning Machine (ELM), Ensemble learning
(EL), Deep learning (DL), Support vector machine (SVM) and K-nearest neighbor
(KNN). Articles with the best known algorithms are presented below.

3.2.1.1 Naïve Bayes

Naïve Bayes (NB) corresponds to a probabilistic machine learning classifier, built
based on Bayesian theory. The main disadvantages of a Naïve Bayes model are: 1)
all features are considered independently and then if correlation between features
is not considered; 2) performance can be negatively affected when the difference
between the training and test data is slightly different. Despite these limitations,
NB is used in [Eskandari 2021] to classify line-to-line faults, line-to-ground faults,
and normal conditions. In [Maaløe 2020], simulated training data from 10 shad-
owing fault modes is used to train a NB model to accurately differentiate between
different operating behaviors using the characteristics of conventional I-V curves.
In [Niazi 2019], a NB model is used for the identification of faults and degradation
in photovoltaic modules in a stand-alone photovoltaic plant. In [He 2021], a dis-
tributed PV array fault diagnosis method is proposed based on Naive Bayes model
fine tuning for PV array fault conditions such as open circuit, short circuit, shad-
ing, abnormal degradation and diode abnormal shunt. The data of the maximum
power point of the PV inverter and the weather data are used as training data. The
approach proposed in [He 2021] is validated by simulation.

3.2.1.2 Decision tree

In Decision Tree (DT), the learning process is carried out by transforming the input
data into a tree form. DT is considered a non-parametric model. DT does not need
scaling or normalization in the PV fault identification process. Furthermore, DT
is considered an interpretable machine learning structure. What does not happen
with the ANNs or the DL that are a black box. Among the drawbacks of DT are:
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1) a small change in the data set can cause a significant change in the structure
of DT; and 2) DT training is complicated and requires more computing time than
other methods. Despite this, DT is widely used. In [Benkercha 2018], DT is used
to detect line-to-line faults and short-circuit faults in PV arrays. In [Zhao 2012], a
DT model is trained to detect faults at the matrix level, showing 99% accuracy in
detecting line-to-line faults, shadow faults, and ground faults.

3.2.1.3 Random Forest

Random Forest (RF) is one of the strongest shallow-based classifiers. RF is an
extended version of DT and consists of several DTs. The RF output is determined
by the class label with the largest number of trees. Unlike other shallow builds, the
RF cannot be easily overturned with a large number of features. However, each DT
in an RF requires additional memory space, which increases the required memory
space. It is important to mention that each DT in RF works independently. In
[Chen 2018b, Dhibi 2020], RF is used to detect mismatch faults and line-to-line
faults. In [Hajji 2021], a PCA-based multivariate time series feature selection and
extraction technique is developed. The data represents 5 fault modes belonging
to the line-to-line and shaded categories in various components of a photovoltaic
system. Several classifiers are used in that study, but the results showed that RF
has the ability to provide the best results. In [Han 2019], the use of RF to detect
AC and DC faults at an early stage in grid-connected PV systems is proposed.

3.2.1.4 Artificial Neural Network

The Artificial Neural Network (ANN) is one of the most widely used machine learn-
ing methods. In principle, the ANNs are made up of input, hidden, and output lay-
ers, and generate a function based on the relationship between the inputs and the
learning weights. The relationship of the outputs as a function of the inputs of an
ANN network is defined by the activation function. In the field of fault diagnosis in
PV plants, ANNs such as the multilayer perceptron (MLP) are used to detect and
locate DC arc faults in shading faults in [Mekki 2016]. In [Haykin 1999] the superior
performance of MLP against approximation problems is validated. In that study
the MLP is trained with data from faulty conditions in real time in a PV system
and they are trained using a robust reverse propagation (RP) algorithm. The radial
basis function (RBF) to detect faults in the photovoltaic array [Benkercha 2018].
In [Chine 2016a], an experimental study of 775 patterns from various data sets is
performed. For the training of the ANNs model a comparison between the MLP
and RBF architectures is performed.

The artificial neural network (ANN) to classify different faults in the photo-
voltaic array [Li 2012]. In [Jiang 2015], an ANN is used whose training data is
collected using simulation analysis of a Single diode PV model (SD PV) model. In
[Leva 2019], the prediction error of an ANN model is compared to a threshold for
fault detection. In [Syafaruddin 2011] an ANN is used to identify fault locations in
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a single PV string. In [Syafaruddin 2009], it is used as a three-layer artificial neural
network (ANN) to detect short-circuit faults in a photovoltaic system. Compared
with the RBF radial-based neural network, the proposed structure has a simple
structure and better precision [Syafaruddin 2009]. In addition, the proposed algo-
rithm also has the ability to locate faults. Other studies such as [Li 2012], it trains
the ANN model with temperature data, the MPP voltage and the current of the PV
modules to identify 4 different health states labeled as: normal, degraded, short-
circuit fault and shading. In [Chine 2016b], under established conditions of solar
irradiation and temperature of the photovoltaic (PV) module, a series of attributes
such as current, voltage and number of peaks in the current-voltage (I–V) char-
acteristics of the strings are calculated using a simulation model. Next, an ANN
model is used to isolate and identify eight different types of faults. This work also
shows the implementation of the developed method on a field-programmable gate
array (FPGA) using a Xilinx System Generator (XSG) and an Integrated Software
Environment (ISE). In [Syafaruddin 2011], it is stated that a single artificial neural
network (ANN) is not adequate to provide an accurate solution for fault diagnosis
in PV plants. Therefore, in that work several ANNs are proposed, then the voltage
terminal of the module based on automatic control is established. The method pro-
posed in this work is able to detect the exact location of the short-circuit condition
of the photovoltaic modules in the array.

Other ANN adaptations are proposed. A physics artificial neural red (PHANN)
to predict the power output of normal photovoltaic systems [Leva 2019]. In
[Jones 2015], the Laterally Primed Adaptive Reference Theory (LAPART) based
on ANN is introduced. In that work [Jones 2015], LAPART is used to identify
faulty general conditions in a photovoltaic system. Real and simulated data are
used for both training and validation of the model.

As can be seen, ANNs are widely used for fault diagnosis in PV plants. However,
as demonstrated in [Afrasiabi 2022b], ANNs have serious difficulties in working with
correlated signals, such as output voltage and current in a photovoltaic system.
Other disadvantages of ANNs, described in [Liu 2022], are: 1) The neural network
requires a large number of data samples to train, and the generalization of the
networks is difficult to guarantee; 2) the computation cost increases due to the
iterative learning process of the neural network; and 3) The network structure and
hyperparameters are difficult to determine, which is mainly based on the experience
of experts and extensive experiments.

Probabilistic Neural Network: The Probabilistic Neural Network (PNN)
is a type of ANN that uses a sigmoid activation function instead of a linear or
exponential activation function. The main advantage of the PNN is to use a prob-
abilistic procedure and improve accuracy compared to conventional ANNs. The
main disadvantage is that a PNN model works slower than an ANN model, and
requires additional memory space compared to other machine learning methods. In
[Garoudja 2017b], PNN is used to detect line-to-line faults on the DC side of PV
systems. As input to the PNN model, common I(V) signals on the DC converter
side are used in En [Garoudja 2017b]. The training data is obtained by simulation.
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On the other hand, in [Akram 2015], a probabilistic neural network (PNN) is used
to detect open-circuit faults and line-to-line faults in a PV array.

In [Akram 2015], a health monitoring method for photovoltaic (PV) systems
based on probabilistic neural networks (PNN) is proposed that detects and clas-
sifies open and short circuit faults in real time. That approach proposes a model
of PV systems that only requires data sheet information from manufacturers re-
ported under normal operating cell temperature (NOCT) and standard operating
test (STC) conditions. The proposed model considers variables such as the ideality
factor, the series resistance and the thermal voltage.

Extreme Learning Machine: An ELM is constructed based on a single-
layer feed-forward neural network. In ELM, two main steps need to be performed,
including random initialization and linear parameter solving. In the first stage, the
weights and biases of the single-layer feedforward neural networks are initialized
randomly. In this type of neural networks, a non-linear activation function is needed.
In [Chen 2017], it is proposed to use ELM for PV parameter identification and PV
array fault detection. The four different fault types considered include degradation,
short circuit, open circuit, and partial shadowing. In [Wu 2017] an optimal ELM
is presented to detect short-circuit faults and aging of photovoltaic energy. In
[Huang 2020], a semi-supervised ELM is developed to detect faults in photovoltaic
panels taking into account the impact of dust. As mentioned in [Huang 2020],
detecting dust can increase the aging process and the temperature of photovoltaics
during operation. The disadvantages of the ELM are its high sensitivity to noise.
On the other hand, ELM might fail in a multi-class classification problem where
the difference between the classes is low.

3.2.1.5 Ensemble learning

In EL, multiple machine learning methods are combined instead of using just one.
EL can be performed with a high level of accuracy in case the combination of
machine learning structures is organized in a proper way. However, training and
blending can be difficult and EL can take a long time during the training process.
In [Dhibi 2021] , an EL consisting of the kNN, DT and SVM algorithms is proposed.
In [Yang 2022], a voting-based ensemble learning algorithm with linear regression,
a DT and an SVM called (EL−VLR−DT −SV M ) are proposed for fault diagnosis on
PV plants. Normalized training data (voltage-current characteristics) are captured
under different weather conditions. In [Badr 2021], an EL composed of a DT, kNN,
and SVM is proposed to detect permanent faults (Arc Fault, Line-to-Line, Max-
imum Power Point Tracking unit fault, and Open-Circuit faults), and temporary
(Shading) under a wide range of climate datasets, fault impedances, and shad-
ing scenarios. In that same research, Bayesian Optimization is proposed to assign
optimal hyperparameters to fault classifiers. This approach is evaluated with ex-
perimental and simulation cases; showing interesting results. In [Eskandari 2020a],
a methodology similar to that exposed in [Huang 2020] is proposed for PV-based
fault detection. In this study, an EL model consisting of the KNN, SVM and Naive
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Bayes (NB) algorithms is proposed. The final decision is established by a voting
process as in [Yang 2022], in unique training environments, which are concluded by
a voting process to pass a final decision. This approach is used to detect line-to-
line faults. In the same way, in [Eskandari 2021], using the SVM, NB and Logistic
Regression (LR) classifiers for line-to-line fault detection.

In [Kapucu 2021] it is proposed a fault diagnosis method based on ensemble
learning (EL). This method uses the grid-search with cross-validation method to
extract features from signals such as: the voltage, current and power of the pho-
tovoltaic string, solar radiation, the temperatures of the rear surface of the pho-
tovoltaic module read from four DS18B20 temperature sensors, the average value
of these four temperatures, the ambient temperature, the humidity and the cell
temperature. Optimization methods are used to define the parameters of each
individual learning algorithm used. This approach presents interesting results in
terms of classification performance and generalization capacity. In [Guo 2020], it
is proposed a diagnosis approach based on EL. This model uses SVM, LR and RF
algorithms. The parameters of the algorithms are iteratively modified by analyzing
the history of the PV plant at the end of each diagnosis cycle. The results obtained
in [Guo 2020] show that using a set of algorithms increases the accuracy of the
classification.

3.2.1.6 Deep learning

In the 1980s, John Hopfield and David Rumelhart popularized deep learning (DL)
in training brain-inspired algorithms [Rao 2021]. The DL focuses mainly on feature
representations and mappings [Berghout 2021a]. As a result, the larger the fea-
ture space, the more meaningful the representations are. Among the proposed
DL technologies are Deep Belief Networks (DBN) [Hinton 2006], Convolutional
Neural Networks (CNN) [Lecun 1998], Deep encoders (DA) [Afrasiabi 2021], Deep
Boltzmann machine (DBM) [Afrasiabi 2021] and recurrent neural network (RNN)
[Afrasiabi 2021]. As mentioned in [Berghout 2021a], in general, DL models are not
well suited to sensor-based condition monitoring of PV plants. However, despite
this serious limitation, multiple works are carried out on fault diagnosis in PV
plants.

Convolutional Neural Networks: The main disadvantage of CNN is that it
cannot fully understand the temporal characteristics [Afrasiabi 2022a]. However,
it is widely used for fault detection in PV plants. In 9180283, a CNN is proposed
on a set of recorded features (ie, I(V), solar radiation, and temperature). This ap-
proach is capable of classifying 10 different types of faults. The CNN algorithm is
consolidated with a Residual Activated Recurring Unit (Res-GRU) to provide dy-
namic online training capability. In [Aziz 2020], a CNN is also proposed to classify
multiple faults in photovoltaic arrays. In [Pierdicca 2020], thermal images recorded
through infrared sensors installed on unmanned aerial vehicles (UAVs) are used to
train a hybrid mask region-based CNN model for fault classification of a photo-
voltaic system. Three fault modes are studied (i.e., one anomaly, non-contiguous
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cells with anomalies, and contiguous cells with anomalies). In [?], a retrained CNN
algorithm for image classification (ie VGG16) is used to extract features from ther-
mal images obtained from UAVs. After extracting the appropriate features based on
a generative model, the assignments are passed through a discriminative CNN algo-
rithm to achieve the approximation process. Five different degradation fault modes
(i.e., burn marks, delamination, discoloration, glass breakage, and snail trails) are
studied.

In [Moradi Sizkouhi 2021], an encoder-decoder architecture is implemented to
train a fully connected CNN to detect shadows caused by bird droppings. The
CNN is trained with aerial images necessary to train, test and validate the proposed
network. The labeling of the collected images depended on the analysis of the output
current of the PV system. In [Manno 2021], thermographic images obtained from
ground facilities and UAVs are used. These images are used to train a CNN to locate
and identify Hot Spot faults. In [Hong 2022a], CNN is used to detect line-to-line,
open-circuit, and short-circuit faults in PV arrays. In [Aziz 2020], a CNN network
trained with 2D scalograms of photovoltaic system data is proposed. This CNN
is proposed in two configurations: one derived from a pretrained AlexNet CNN in
which the last three layers are tuned to provide a six-way classifier, and another
where the results of a pretrained AlexNet layer (fc7) are used with a classifier classic
(RF and SVM). The faults considered detectable with the proposed approach are
Partial Shading, Line to Line, Open Circuit, Arc fault and faults (Line to Line
and Open Circuit) in Partial Shading. That study mentions the importance of
aggregating the MPPT data (Imax and Vmax) to obtain good precision. The two
approaches presented demonstrated high levels of performance.

The FCNN mask is used by [Mehta 2017] to predict dirt category and location in
solar modules. It also predicts power losses in the module. In [Akram 2019], a CNN
architecture is used, along with various data augmentation strategies as suggested
in [Chen 2019] to deal with data scarcity. This approach kept up the prediction
speed in real time. This approach is used to detect faults in Electroluminescence
(EL) images of PV cells. Isolated and transfer deep learning both can be used for
successful detection of faults in infrared images of PV modules [Akram 2020]. The
study [Akram 2020] collected IR images dataset after performing experiments on
normal and faulty modules. For isolated learning, they used a light CNN network
that is trained from scratch. For transfer learning, they developed model techniques.
Therein, a base model is pre-developed on another dataset of EL images, whose
knowledge is transferred to target model trained on IR image dataset. The transfer
learning scheme with model development approach performs relatively better. They
also discussed different types of faults appearing in IR images of solar panels.

YOLO CNN network [Redmon 2015] is used by [Greco 2020] for detection of
hotspots in infrared images of PV modules. Skip connections are employed for
concatenation of features extracted from initial layers with refined features from
following (last) layers. The developed approach can segment the PV modules from
images and detect hotspots. Therein, first the single (separate) modules are de-
tected from images and then an ID number is given to each panel according to
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the original frame. Following this, hotspots are identified in each single module.
The experimental results indicate the robustness of the proposed method. More-
over, this approach does not require heavy fine tuning and also achieves real time
speed. Faster R-CNN [Ren 2015] is used by [Wei 2019] for detection of hotspots in
thermal infrared images of PV modules. The pre-trained model weights are used
and fine-tuned on infrared images dataset for subject task. In addition, they also
used an image processing based scheme containing Hough line transformation and
canny edge detection processes for hotspots detection. The Faster R-CNN approach
achieved excellent results; however, it has relatively very high computational cost.

Faster R-CNN [Ren 2015] is used by [Wei 2019] for hot spot detection in thermal
infrared images of photovoltaic modules. The pre-trained model weights are used
and fitted on the infrared imaging data set for the subject task. In addition, they
also used an image-processing-based scheme containing Hough line transform and
clever edge detection processes for hotspot detection. The Faster R-CNN approach
achieved excellent results; however, it has a relatively very high computational cost.

Deep encoders: In [Liu 2021b], DA is used to detect short-circuit faults,
partial shading, and degradation faults. In [Lu 2019a], domain adaptation com-
bined with deep convolutional generative antagonistic network (DA-DCGAN)-based
methodology is proposed, where DA-DCGAN first learns an intelligent normal-to-
arc transformation from the domain data. source domain. Then, by generating
fictitious arc fault data with the learned transformation using the normal data of
the target domain and employing domain adaptation, a robust and reliable fault
diagnosis scheme for the target domain can be achieved. The proposed method
is implemented in an embedded system and tested in real time according to the
UL-1699B standard [UL 2018]. The experimental results demonstrate the high per-
formance of the DA-DCGAN approach.

Deep Boltzmann machine: In [Tao 2020], DBM is used to diagnose open
circuit faults, short circuit faults and partial shading

Recurrent neural network: RNN-based networks include long-term mem-
ory (LSTM) [Alrifaey 2022, Schmidhuber 2015] and closed recurrent neural net-
work (GNN) [Van Gompel 2022], they can realize temporal features from time-
varying parameters and can be used in photovoltaic fault detection problems.
However, RNNs have serious problems in fully understanding the spatial features
[Afrasiabi 2019]. Despite these different RNN networks are used for fault detection
in PV plants. In [Appiah 2019b], automatic LSTM capable of extracting signifi-
cant features with greater learning capacity over time is developed. In this study,
the authors used I(V) signal analysis to address the condition monitoring problem
of photovoltaic systems. In [Veerasamy 2021], an LSTM combined with Discrete
Wavelet Transform (DWT) is used as a feature extraction step, to detect high
impedance faults (HIF). The results of the LSTM are compared with other based
methods such as: SVM, Naïve Bayes, Decision Tree, showing a better performance.
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3.2.1.7 Support Vector Machine

SVM-based machine learning is considered very efficient in terms of classification
accuracy and memory consumption [Afrasiabi 2022b]. For this reason, like neural
networks, ANNs are widely used. In [Harrou 2021], an improved kernel function
for the SVM model is proposed. That SVM model is used to detect string fault,
partial shading, short-circuit fault, line-to-line fault, and module degradation for PV
systems. In [Baghaee 2020] an SVM is developed to detect grid anomalies, including
islanding conditions and grid faults for photovoltaic systems. In that work, the
detection of islands and faults in the network are considered abnormal conditions
and binary SVM is used to detect them. In that same work [Baghaee 2020], it is
stated that with an increasing number of data and a reduced margin of separation
between classes, the precision of SVM is significantly reduced. In [Ali 2020] an SVM
model trained with infrared thermography (IRT) images is proposed. This model
is capable of classifying panels into three categories: healthy, non-faulty hotspot,
and faulty. This work centered his efforts on proposing a novel preprocessing phase
for infrared thermography (IRT) images. This image feature extraction results
in 41 features: 3 RGB, 12 contrast, 12 correlation, 3 energy, 1 oriented gradient
histogram, and 10 local binary patterns. [Ali 2020] is able to demonstrate that the
proposed feature extraction significantly improved the precision results compared
to classification algorithms such as: such as quadratic discriminant analysis (QDA),
naïve-Bayes (n-Bayes), k nearest neighbor ( KNN), bagging ensemble (BE).

In [Eskandari 2020b] an SVM model is used to detect line-to-line (LL) faults.
The hyperparameters of the SVM model are selected using a Genetic algorithm
(GA). This model uses characteristics extracted from the IV curve data resulting
from a simulation model of a photovoltaic plant. The results show that the Gaussian
kernel is optimal for the SVM model. In [Demant 2014], photoluminescence images
having cracks and normal images are classified using an SVM model. There, the
shapes of the cracks are defined by the location of the gradient and the orientation
histogram (GLOH) [Mikolajczyk 2005].

In [Phua 2019], an SVM classifier on image features is used to perform an au-
tomatic classification of fault modes in screen printed and plated PV cell’ RGB
images resulting from stylus impact with metallic conductors and different forces.
In that approach the feature histogram of oriented gradients (HOG) [Dalal 2005]
and robust accelerated features (SURF) [Bay 2008] are used to extract features from
the images which are then used to train the SVM classifier. In the same way, in
[Demant 2016] the diagnosis of cracks in photoluminescent and infrared images of
photovoltaic modules is carried out using local descriptors to train the SVM model
with the radial-based kernel.

In [Chouay 2021] the diagnosis of 8 types of common faults that occur in the
photovoltaic generator is proposed using a multi-stage approach. They first use
the energy loss analysis approach to identify the presence of potential faults by
comparing measured and expected generated energy. The second part compares
the extracted PV characteristic and the reference one to identify the type of fault.
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Finally, the last part uses an SVM model that classifies the faults. The simulation
results show that the method is able to identify and distinguish faults with 100%
accuracy.

3.2.1.8 k-Nearest Neighbor

The kNN is a non-parametric supervised machine learning model. In the kNN
model, multiple classes are classified according to k neighbors and distance metrics.
The kNN model is trained based on the distance metric as the loss function and k

as the threshold to determine neighbors. In [Harrou 2019a], kNN is improved based
on a set of moving average thresholds and is applied to detect short-circuit faults,
open-circuit faults, and partial shading. The main advantage of the kNN model
is its easy implementation, since it only requires determining the k neighbors and
the distance function. On the other hand, the kNN depends to a great extent on
the preprocessing of the data (scaling, normalization, etc). Furthermore, kNN is
very sensitive to noisy values and with an increasing number and variety of inputs,
computing the distance function can be computationally difficult.

3.2.2 Semi-Supervised Learning

This learning scheme typically uses a small amount of labeled data and a large set
of unlabeled data for the learning process. The articles dealing with this approach
first use a supervised learning algorithm trained on the labeled training set. Then,
to deal with the unlabeled data these articles consider two options: i) use the super-
vised algorithm to predict the unlabeled data and its most reliable predictions are
added to the training set or ii) use an unsupervised learning algorithm to produce
data samples with new labels [Zhang 2021c] and add these labels to the labeled
training set for the supervised learning algorithm. Some articles of the best known
algorithms (Graph-Based Algorithms, Semi-supervised method based on probabilis-
tic models, Positive unlabeled learning and N-semi-regular Fuzzy Semi-Supervised
Learning) are presented below in detail.

3.2.2.1 Graph-Based Learning

In [Momeni 2020], a fault diagnosis approach in PV plants based on a semi-
supervised learning process called graph-based learning (GBSSL) is proposed to
extract hypotheses about the labels of unseen samples following a type of analysis,
based on in a previously labeled data set. Two types of PV faults related to different
cases of line-to-line faults are investigated using the same methodology to analyze
the measured I(V) signals.

In [Zhao 2015b] it is proposed a graph-based semi-supervised learning model.
That method uses a few training data that is labeled and normalized for better
visualization. The model proposed in this approach not only detects the fault, but
also identifies the possible type of fault to speed up system recovery. This model
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presents one of the most interesting results in terms of fault detection in PV systems
with high detection accuracy and fault classification.

In [Momeni 2020], it is presented as a method for identifying, classifying, locat-
ing, and correcting faults. The proposed method is an expansion of the diagnosis
space of the graph-based semi-supervised learning algorithm with a larger number
of class labels. This approach temporarily isolates the fault as soon as it is iden-
tified and located to keep the system running without interruption. A large set of
data over a wide range of environmental conditions is collected to train the system.
The proposed method demonstrates a high performance in fault detection under
different weather conditions.

3.2.2.2 Based on probabilistic models

In [Maaløe 2020], it is proposed a semi-supervised learning based on probabilistic
models (SSLPM), which performs condition monitoring in a photovoltaic system
with high precision and only a small fraction of labeled data. The modeling ap-
proach utilizes all the unsupervised data by jointly learning a low-dimensional fea-
ture representation and a classification model in an end-to-end fashion. The feature
representation detects new internal condition monitoring states, demonstrating a
practical way to update the model for better monitoring and fault detection. The
results of the proposed approach are compared with purely supervised approaches,
and significant improvements in detection are achieved.

3.2.2.3 Positive unlabeled learning

In [Jaskie 2021], it is exposed as an approach based on a little-known area of semi-
supervised machine learning named positive unlabeled learning (PUL) that can
effectively learn solar fault detection models using only a fraction of labeled data.
Based on this area, they propose a new feedback enhanced positive unlabeled learn-
ing algorithm that increases the accuracy and performance of the model in situations
such as solar fault detection when few sensor functions are available. Likewise, the
results are compared with supervised approaches and important improvements in
classification accuracy are obtained.

3.2.2.4 N-semi-regular Fuzzy Semi-Supervised Learning

In [Murugesan 2020], it is proposed an N-semi-regular Fuzzy Semi-Supervised
Learning (SRFSSL) System based on an N-semi graph with a few labeled, normal-
ized training data for improved visualization. This model not only detects faults but
also provides insights into the probable fault structure to facilitate corrective main-
tenance of the network. With this model, PV systems can learn to independently
monitor and identify PV faults under environmental changes over time. Efficient
detection and classification results on experimental and real data are obtained.
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3.2.3 Reinforcement Learning

In this scheme of learning there are 4 essential elements: agent, environment, ac-
tion and reward. The agent is the algorithm that is trained to do a task. The
environment is the ecosystem in which the agent performs the tasks. The action is
the movement made by the agent. Finally, the reward is the evaluation of an ac-
tion that can be negative or positive. In the documents found in this topic, agents
learn their ideal behavior in a particular situation based on previous experience
[Coronato 2020]. Learning in this model is continuous through interactions with the
environment and collecting of information to carry out the agent activity [Xu 2014].
Among the best known algorithms are dynamic programming (DP), Monte Carlo
(MC) methods, Q-Learning, State-action-reward-state-action (SARSA) and Deep
reinforcement learning (DRL). The reinforcement learning is used to train agents
to complete tasks such as robots. The reinforcement learning problems include
complex training, optimal weight initialization learned.

3.2.3.1 Deep reinforcement learning

In [Dai 2021], a fault diagnosis method in deep reinforcement learning (DRL) is
proposed. In this approach first the compressed detection algorithm is used to fill
in the missing PV data. Then state, action, strategy, and return functions from the
environment are obtained. Using the interaction rules and other factors, the fault
diagnosis model is established and the deep neural network is used to approximate
the decision network to find the optimal strategy. The efficiency and precision of
the method are verified by simulation. The results found in simulation show that
this approach is an interesting alternative for fault detection in PV systems.

3.2.3.2 Other methods

In [Chen 2018a], it is presented as a fault detection algorithm that uses multiple
meters to measure different PV system output signals. The time correlation of the
faulty signal and the signal correlation between different meters in a vector autore-
gressive model in the modeling of the signal after the change. This article proposes
an interesting approach to detect faults whose behavior is not previously known.
For this, it uses a change detection algorithm based on the generalized local likeli-
hood ratio test. The approach is validated in simulation and the results obtained
demonstrate high adaptability and rapid detection when dealing with various types
of faults in photovoltaic systems.

In [A.h.mohamed 2015], a new approach is proposed that uses a genetic algo-
rithm that optimizes the topology of artificial neural networks (ANN). The method
is used for the diagnosis and repair of photovoltaic (PV) energy systems dynami-
cally online as a case study. The results obtained are compared with photovoltaic
diagnosis systems based on traditional and fuzzy neural networks. These results
demonstrated interesting study improvements for applications in PV systems.
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In [Lin 2015], a monitoring system is presented that collects the output current
and voltage of each photovoltaic module, and the temperature and irradiation of the
place of installation of the PV system. With this data, a photovoltaic model with
healthy and fault cases is built. This data is used for fault detection by training a
back propagation neural network (BP) fault diagnosis model optimized by a genetic
algorithm. As in [A.h.mohamed 2015], using a genetic algorithm together with
another algorithm improves the detection results of common PV array faults with
high accuracy.

In [Zheng 2017] it is proposed a hidden Markov model (HMM). In this approach
the initial value of the HMM has a great influence on the model. The final results
depend on the value of this parameter to achieve a local or global minimum in the
training process. For this reason, Zheng et al. [Zheng 2017] propose to combine the
hidden Markov model (HMM) with a genetic algorithm to optimize the initial value
of the HMM. This approach is used in photovoltaic inverter fault diagnosis. First,
the genetic algorithm implemented in Matlab determines the optimal initial value
of HMM. Second, iterative training is done using a Baum-Welch algorithm. Finally,
a Viterbi algorithm is used for fault identification. The results are compared with
conventional methods and an increase of 13% is obtained.

As can be seen in the articles exposed in Section 3.2.3.2, due to the little scientific
production that exists around reinforcement learning for fault diagnosis, many of
the articles are grouped automatically by the proposed methodology (Smart B2TE),
although they do not deal directly with the implementation of reinforcement learn-
ing, they do deal with methodologies that have already been explored as direct im-
provements of reinforcement learning [Abbas 2022, Yoon 2019, Bakker 2007]. This
further reinforces our hypothesis that this methodology is not only capable of find-
ing obvious relationships, but also hidden ones.

3.2.4 Unsupervised Learning

This learning scheme contains only one unlabeled dataset, i.e. whose relevant result
is not clear [Seaton 2021]. Articles using this approach attempt to discover data pat-
terns and relationships in the data. In this approach the data are compared based
on their similarity scale to classify them into groups. Among the best known algo-
rithms are K-means clustering, Hierarchical clustering and Fuzzy-c-means, among
others.

The unsupervised machine learning is more used in the complex system that
is required to handle complex patterns or processes reference data training, the
algorithms learn inherent structure from the input data. There are many drawbacks
in the unsupervised learning models such as clustering problem, and association
problem. Some based on clustering methods such as Fuzzy C-means [Tsai 2015] at
the solar cell level or hierarchical clustering at the solar panel level are proposed
[Sepúlveda Oviedo 2021, Tsai 2015]. Some articles of the best known algorithms
are presented below.
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3.2.4.1 Based on clustering

In [Liu 2021b], a fault diagnosis method for PV arrays based on a stacked auto
encoder and clustering algorithm is proposed, which can automatically extract fea-
tures and use a small number of labeled data samples to extract features for fault
diagnosis. In this approach the stacked auto encoder first extracts the features
from the current-voltage curves. Then t-distributed stochastic neighbor embed-
ding is used to perform dimensionality reduction, improving the performance of
the clustering algorithm. Finally, the cluster centers and clusters are obtained by
the clustering algorithm and the membership function is used for fault diagnosis.
Experimental and simulated data are used to validate the model and classification
accuracies of 97.3% and 98.3%, respectively, are obtained.

3.2.4.2 Based on weighted K nearest neighbor

In [Reddy 2021], it is presented as a two-layer machine learning scheme based on
weighted K nearest neighbor (WKNN) and decision tree (DT). The WKNN method
detects the fault in the line and then the DT classifies it as pole to pole (PP) or
pole to ground (PG) improving preventive and corrective maintenance. The features
used are the network voltage and current. This approach presents precision results
of up to 100%.

3.2.4.3 Unsupervised cascading algorithm

In [Zhao 2019b], it is presented as a two-methods pronostic, composite approach
based on data extracted from a SCADA supervision platform. The first method
is a hierarchical context-aware anomaly detection algorithm using unsupervised
learning. The second method is a multimodal anomaly classification algorithm.
The proposed solution is validated in two solar parks of sizes 39.36 and 21.62 MWp.
The results of fault detection in the field demonstrate the effectiveness, robustness,
and cost and computing efficiency of the proposed approach.

3.2.4.4 Sparse autocoding

In [Manohar 2019], it is proposed a protection scheme based on sparse autocoding
(SAE) and deep neural network that discriminates between matrix faults and sym-
metrical line faults. The features used are the voltage-current signals recovered from
the retransmission buses which are then converted to grayscale images. These im-
ages are used as input to the SAE to perform unsupervised function learning. The
proposed method is compared with techniques based on artificial neural networks,
support vector machines and decision trees in islanding mode and connected to the
microgrid network. Furthermore, the approach is validated using simulation data
in real time with the OPAL-RT digital simulator. In all scenarios, this approach
presents great accuracy in fault detection.
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3.2.4.5 Self-organizing map neural network

In [Vyas 2016], it works on the formation of unintentional islanding in the integra-
tion of distributed photovoltaic solar generation with a distribution network. To
this end, the application of a self-organizing map neural network for the preemptive
detection of unintentional islanding by classifying the discovered islanding precur-
sor from other power system events is proposed. The approach is validated for
classification of a three-phase short-circuit fault at the point of common coupling.
Under other scenarios tested, a high detection accuracy is also obtained.

3.3 Promising Research Topics and Challenges

In this section, a synthesis of the main promising research topics is provided. First,
as an evidence mentioned in several parts of the articles, in particular the ones
described in Section 3.1.5, the use of hybrid machine learning techniques becomes
more essential each day to increase the level of accuracy in fault diagnosis meth-
ods in PV systems. In some cases, authors propose to mix two or more algorithms
from different clusters to obtain joint benefits. These types of approaches called hy-
brid machine learning techniques [Rodrigues 2017] show that combining several ap-
proaches improves the precision on results both in diagnosis and prognostic systems
[Sepúlveda Oviedo 2022, Antonanzas 2016]. The most cited articles using hybrid
techniques is [Dhimish 2018b] with 131 citations, it proposes a new fault diagnosis
algorithm for photovoltaic (PV) systems with an innovative approach combining
radial basis function (RBF) ANN network and both Mamdani, Sugeno fuzzy logic
systems through a new interface. [Lu 2019a] with 42 citations makes a choice to
orient its work to detect DC arc faults. It proposes a domain adaptation com-
bined with deep convolutional generative adversarial network (DA-DCGAN)-based
methodology. This method is implemented in an embedded system and tested in
real time according to the UL-1699B standard. A real 1.5 kW rooftop photovoltaic
grid-connected system is used to validate this approach.

In general, these hybrid techniques show a significant increase in the accuracy
and robustness of fault diagnosis algorithms. For this reason, it seems one of the
most interesting ways to be supported by researchers to continue the development of
this type of new hybrid techniques taking combined advantages and obtaining better
diagnosis results. This is especially relevant with the recent important progresses
of both software and hardware technologies capacities. Today, it is realistic that
researchers imagine to develop methodologies even complex that can be embedded
in real systems pushing back actual limits of these systems on sampled measures and
real execution conditions. Likewise, the authors are encouraged to develop hardware
works for the acquisition of quality data oriented to fault diagnosis [Spanias 2017].

Analyzing the algorithms of Subsection 3.1.5.1, it can be seen that random forest
and decision tree algorithms are the most used. In general, the Symbolic approach
presents good results. There exist few experiments using other less explored algo-
rithms from the same cluster, for this reason we recommend increasing research on
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other algorithms such as the C4.5 Decision Tree or the binary Tree Bagging.
In Subsection 3.1.5.2, most of the works are oriented to use the PCA algorithm

as a dimensionality reducer for a subsequent data treatment with a classifier. How-
ever, there are other options such as signal processing using ARIMA models or
regression models that allow fault diagnosis based on prediction. Prediction-based
fault diagnosis compares the predicted values with the real values and, based on a
set of limit parameters establishing a priori, the existence of a fault is determined,
including the level of fault done in these systems or the type of fault.

In Subsection 3.1.5.3, the results of these algorithms are really very interest-
ing, especially on the advantages obtained with methods based on Semi-Supervised
Learning based on Graphs. Moreover, the authors are encouraged to further inves-
tigate and apply this type of algorithm in combination with the data normalizations
proposed in those articles. Data normalization can open a window to increase the
size of databases and to the generalization of fault diagnosis models applied on PV
systems.

Analyzing the results of Subsection 3.1.5.4, a conclusion can be that both kNN
and SVM are interestingly applied. It is recommended to continue working with
these algorithms due to their results, but it is also recommended to investigate other
methods of this cluster such as the local outlier factor or some kernel modifications
for the SVM.

In general the algorithms of the section 3.1.5.5 require large amounts of data
and therefore a high computational potential. However, with the accelerated tech-
nological evolution which is no longer a limitation. The authors are strongly en-
couraged to further investigate these algorithms and explore algorithms such as
“Extreme Learning Machine" that show very accurate results, or methods based on
pre-trained neural networks to reduce the calculation time of training.

In Subsection 3.1.5.6 it is confirmed that there are very few articles using these
algorithms. The authors are encouraged to explore more generally metaheuristic
algorithms that allow estimating parameters of the models and thus adjust the
fault diagnosis models. The most used algorithms in this area of fault diagnosis in
PV systems are related to genetic algorithms, however there are multiple algorithms
that show more accurate results and with less calculation time for the same purposes
[Banerjee 2022].

If an analysis is carried out regarding the 4 types of machine learning, it is
possible to notice that the results of supervised learning (topic 1), it can be seen
that classic algorithms such as random forest, decision trees, support vector ma-
chine (SVM) or neural networks are widely used. For this reason, researchers are
invited to explore the use of other algorithms from this broad family of algorithms
belonging to this topic such as; K-nearest neighbors, Adaptive Boosting, Discrim-
inant Analysis, Naive Bayes, Kernel SVM, Linear Support Vector Classification,
stochastic gradient descent, binary decision tree, deep neural networks, recurrent
neural networks, generative adversarial networks, Generalized linear model, Gaus-
sian Process Regression, elasticNet lasso, ridge regression SVR, Ordinary Least
Squares regression, among others, which are scarcely used in fault diagnosis in PV
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systems.
With the results of Semi-Supervised Learning (topic 2), it can be seen that there

are very few documents that deal with this approach. The few works that use this
approach demonstrate important contributions to fault diagnosis in PV systems and
also demonstrate that they are easily implementable in real life. In addition, they
do not need large amounts of labeled data, so their real applications are greater.
Researchers are strongly encouraged to continue exploring the algorithms mentioned
in the section 3.2.2, as well as to propose new approaches based on co-training, re-
Weighting, deep belief network, restricted Bolzmann Machine or to propose new
semi algorithms. In topic 3 of reinforcement learning, all the articles published
are very recent. This means that it is a hot topic in research on fault diagnosis
in PV systems. For this reason, researchers are invited to continue exploring the
algorithms mentioned in the section 3.2.3 and explore the use of other algorithms
such as agent based systems, heuristic methods, dynamic programming, thompson
sampling, upper Confidence bound, temporal difference methods, Markov decision
process, Q-Learning, policy optimization, collaborative adaptive and fuzzy-Q.

In topic 4 of unsupervised Learning, the great difficulty to detect that unsuper-
vised algorithms have to detect and classify faults in PV systems can be observed.
This difficulty has given rise to the creation of well elaborated algorithms such as
DyD2 used in satellite fault diagnosis but that could be extrapolated to the energy
domain [Dorise 2022]. Additionally, this work proposes researchers to explore al-
gorithms such as DBScan, Hierarchical Cluster Analysis [Sepúlveda Oviedo 2021],
K-medoids, Fuzzy C-Means, Gaussian Mixture, meanShift VBGMM, miniBatch
Kmeans, spectral clustering GMM, one-Class -SVM, isolation forest, principal com-
ponent analysis, locally linear embedding, t-SNE, autoencoders, isomap, spectral
embedding, auto-associative NN, Manifold, boltzmann machine, kernel density,
gaussian mixtures, among others.

Another interesting aspect to work on is data normalization. This normalization
allows comparison of data from different PV plants. Consequently, standardization
allows the fault databases to be increased more quickly. Taking into account that,
among the challenges is building a labeled database of all types of faults in order
to effectively train PV systems. Likewise, the construction of a fault dictionary
is proposed where the characteristics that allow differentiating between faults are
recorded. On the other hand, the fault diagnosis results are closely linked to the
quality of the data acquired in the PV plant. For this reason, one of the greatest
challenges is linked to the construction of data capture systems aimed at fault
diagnosis, that is, that guarantee the quality of the data and the richness of the
signals. This allows comparing fault diagnosis using different sampling times and
determining the influence of this on the accuracy of fault diagnosis and classification,
especially in cases of faults with similar signatures.

Similarly, the accuracy of all error diagnosis algorithms is directly linked to
the quality of the data which is trained. This is why authors are encouraged to
pay more attention to signature extraction and selection processes as in the papers
[Sepúlveda Oviedo 2022, Dhibi 2020]. Due to the complexity of generating labels
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to train systems with all types of faults, it is possible to identify that an interest-
ing possibility is to work on the diagnosis of anomalies where no fault labels are
needed. In this approach, also called outlier diagnosis or novelty diagnosis, the aim
is to identify rare items, events, or observations that deviate significantly from the
majority or appear inconsistent with "healthy" or baseline data. In anomaly diagno-
sis on photovoltaic systems there are already some important and well-cited records
about it [Pereira 2018, Hu 2017b, Zhao 2019b, Liu 2017, Benninger 2020]. For this
reason, we also believe that it would be interesting to strongly initiate research into
the diagnosis of anomalies in the PV domain.

Research on fault diagnosis in photovoltaic systems must evolve towards the
acquisition of relevant data for monitoring and fault diagnosis in real conditions.
This means that model-based training of mathematical analogies of systems should
be increasingly avoided, in favor of training systems based on data, models built
from data, or mathematical models that are fitted to real data. This ensures a more
adequate representation of the system and therefore a better and more adapted
response from machine learning systems.

Finally, some new algorithms present interesting results for fault diagnosis in PV
systems, such as the one entitled “Online Fault Diagnosis for Photovoltaic Arrays
Based on Fisher Discrimination Dictionary Learning for Sparse Representation"
[Xi 2021]. A set of challenges linked to these promising research topics are identified
and are presented below.

3.4 Discussion and conclusions

The art review methodology presented in this chapter, and supported by the visual
representation of Figures 3.6 and 3.7, takes advantage of the latest advances in nat-
ural language processing and statistics to provide details about research behavior
in an area of knowledge. With this methodology, 625 articles on fault diagno-
sis in photovoltaic systems using artificial intelligence are analyzed for the first
time. These articles are classified into 6 families of algorithms (Symbolic approach,
Regression approach, Bayesian approach, Analogy-based approach, Connectionist
approach and Evolutionary approach), grouped in turn into 4 types of machine
learning (Supervised Learning, Semi-Supervised Learning, Reinforcement Learning
and Unsupervised Learning).

Multiple articles from these classifications are studied to demonstrate their re-
spective advantages, limitations, and possible future research. This methodology is
a tool that can be easily extrapolated to any scientific area from the perspective of
Big Data. It is important to mention that this research did not take into account
articles that only present the general framework of the subject without experimental
research. The main objective of this research is to promote the development of ap-
proaches and tools for fault diagnosis in photovoltaic systems. For this reason, this
research focuses its efforts on providing an objective, coherent and meta-analytic
vision of current research on sustainable artificial intelligence applied to the energy
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domain.
On the other hand, the results of this chapter encourage researchers to work on

hybrid machine learning and comparison studies of these methods in fault diagnosis
in photovoltaic systems. Similarly, research into photovoltaic system forecasts must
be encouraged to provide condition-based preventive maintenance and to reduce
investment payback times. Even though industrial demands tend to be directly
oriented to complete PV arrays, monitoring at the photovoltaic panel level still has
a long way to go and must be built in parallel with machine learning algorithms. In
addition, not only should research be carried out to improve monitoring systems, but
also work hard on feature engineering that can extract the necessary characteristics
to differentiate multiple types of faults in PV plants.

The results of the innovative approach presented in this chapter confirm, as
expected, that researchers should continue on the path of developing new algorithms
and tools for fault diagnosis in PV systems using artificial intelligence and provide
a highly objective, consistent approach. and above. and meta-analytic view of
current research on sustainable AI in energy.

Taking into account all the aforementioned aspects, in the next chapters 4-6
vital issues of data acquisition and feature engineering are addressed, aimed at
improving the accuracy of fault diagnosis in PV plants.
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As it was exposed in Chapter 3, the performance of machine learning algorithms
depends directly on the quality of the data with which they are trained. For this
reason, this chapter focuses on the analysis of the characteristics that a data ac-
quisition system for photovoltaic systems must have, thinking of a subsequent fault
diagnosis. In this way, Chapter 4 presents a review of current data acquisition
systems in photovoltaic systems, their limitations, advantages, disadvantages and
development challenges. In addition, an industrial and commercial Tigo platform
used in this thesis is presented to test the limitations of fault detection in PV plants
using widely commercialized data acquisition systems. The components of the Tigo
data acquisition system and the instrumented PV plant are also described in this
chapter.

4.1 Characteristics of a data acquisition system

Due to the intermittent nature of solar energy, the power output of a photovoltaic
system can increase or decrease dramatically causing increased stress on the grid
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Figure 4.1: A typical data acquisition system aimed at the detection and classifi-
cation of faults in PV plants. PV plant composed of PV strings, junction box, and
inverter. Detection and classification system fed by directly preprocessed data or
preprocessed data stored in a database.

or even outage [IEEE 2003]. In addition, the existence of faults in these systems
makes continuous data acquisition of PV plants vital to monitor performance and
be able to act in case of production losses. An important aspect of a reliable, robust
and usable data acquisition system for fault detection is the inclusion of simulta-
neous, high-quality and relevant measurements of environmental conditions (solar
irradiation, ambient temperature, wind speed, humidity, etc.) and the electrical
operating data of the photovoltaic system [IFC 2015, Triki-Lahiani 2018a]. Other
documents have reported that another important aspect is the relationship between
the accuracy of fault detection and the data sampling rate [Cross 2018].

Generally, a typical data acquisition systems aimed at the detection and classifi-
cation of faults in PV plants is composed of two parts: i) instrumentation installed
in the PV plant (sensors); and ii) a set of elements responsible for the data acquisi-
tion and transmission, storage and preprocessing of data and storing the algorithms
for detection and classification of faults as shown in Figure 4.1.

To carry out the instrumentation of a PV plant, it must be taken into account
that, as shown in Figure 4.1, the locations of the sensors can vary, depending on
the parameters and the type of faults that are being considered. As mentioned in
[Hong 2022b], sensors can be located in PV modules, PV arrays, between PV array
and DC/DC converter, between DC/DC converter and DC/AC inverter, or after
the DC/AC inverter. Regarding the meteorological sensors, these can be located
based on factors such as the inclination of the PV string, the temperature of interest
(ambient or surface), etc.

In the same Figure 4.1, it can be seen that the transmission of the data measured
by the sensors is coupled to the data acquisition device that can take two actions:
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1) To send the data directly to pre-processing; or 2) To send it to storage for further
processing. In either case, once the preprocessing is done, the data is sent to the
detection and fault classification stages consecutively. Finally, once the fault is
detected and classified, a notification is sent allowing for a corrective action to be
taken.

However, in order to monitor all these electrical and meteorological variables
of the PV plant, dedicated components are used, such as sensors, data acquisition
systems, data communication systems, and dedicated algorithms for data analy-
sis. The appropriate size of the data acquisition system depends directly on the
size of the plant, the criticality of the system and the operation and maintenance
costs [Cristaldi 2015]. Likewise, it is necessary to pay attention to the signal com-
munication mode of the sensors [Triki-Lahiani 2018a]. Adopting wired sensors in
small plants is inexpensive and less complex. However, wireless networks are more
suitable for medium and large plants.

The architecture of the data acquisition systems aimed at the detection and
classification of faults in PV plants can be divided into three levels. At the first
level are the sensors. The quality of the data sent by these sensors must be guar-
anteed for the construction of an accurate and reliable database. At the second
level is data treatment, which includes measurements and pre-processing of data
(for example, filling in missing data or removing outliers) using specific hardware
and communication networks. The final level is the most flexible and adapted de-
pending on the measured variables of the PV plant. This final level consists of the
implementation of analytical techniques that lead to evaluating and estimating the
performance of photovoltaic systems, that is, to the detection and classification of
faults [Cristaldi 2016].

Below is an in-depth analysis of the main aspects of data acquisition systems,
including sensors, data acquisition and controllers, data transmission and data stor-
age, as discussed in [Madeti 2017d]. In general, it presents a brief description of
the key aspects of the architecture of typical data acquisition systems aimed at the
detection and classification of faults in PV plants.

4.1.1 Measured parameters

Knowing the layout of the measurement elements (sensors) and the information
processing (pre-processing and fault detection and classification) does not guaran-
tee the correct operation of the PV plant. It is necessary to carry out a rigorous
study of the parameters to be monitored. There are international standards that
establish those parameters for monitoring PV plants. For example, the British stan-
dard BS IEC 61724 [IEC 1998] provides guidelines for analyzing the performance of
photovoltaic systems. The list of variables proposed in the British standard BS IEC
61724, the guidelines of the European Joint Research Center [Blaesser 1995] and
the guidelines of the National Renewable Energy Laboratory (NREL) [Kurtz 2013]
are shown in Table 4.1. In the same table the precision and units of each variable
are presented.
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Table 4.1: Parameters to be measured according to BS IEC 61724 [IEC 1998].

General parameter Specific parameter Notation Unit Accuracy
In-plane irradiance GI W m2 ±3%
Ambient temperature Tam

◦C ±1◦C
Wind speed Sw ms−1 ±0.5 ms−1Meteorology

Wind direction Dw degrees ±5◦

Photovoltaic array

Output voltage VA V ±2%
Output current IA I ±2%
Output power PA P ±2%
Module temperature Tm

◦C ±1◦C
Operating voltage VS V ±2%
Current to storage Irs I ±2%
Current from storage IF S I ±2%
Power to storage Prs kW ±2%

Energy storage

Power from storage PF S kW ±2%

Load
Load voltage VL V ±2%
Load current IL I ±2%
Load power PL kW ±2%
Utility voltage VU V ±2%
Current to utility grid Iru I ±2%
Current from utility grid IF U I ±2%
Power to utility grid Pru kW ±2%

Utility grid

Power from utility grid PF U kW ±2%

Back up sources
Output voltage VBU V ±2%
Output current IBU I ±2%
Output power PBU kW ±2%

It is important to note that of all the parameters listed in Table 4.1, the most
prominent and generic parameters are solar radiation, wind speed, temperature,
voltage, current and consequently photovoltaic power, while the other parameters
depend on the configuration. An illustration of the correspondence of the electrical
and environmental data to be measured according to the British standard BS IEC
61724 [IEC 1998] is presented in Figure 4.2.

Other authors have proposed the acquisition of additional variables such as
rainfall and humidity for evaluating the performance of a PV plant [Livera 2019b].
Rainfall measurements can also be used to estimate module cleanliness and thus for
estimation of soiling losses. Humidity measurements may be more useful in research
related to the degradation of photovoltaic materials. The following sections present
the most outstanding and generic parameters mentioned in Table 4.1.

4.1.1.1 In-plane irradiance or Total irradiance

Irradiation is recognized as the main component that affects the power output of PV
plants [Li 2021c]. In-plane irradiance (GI), recorded in the same plane as the PV
array. The most used devices to measure irradiation are thermopile pyranometers,
photovoltaic reference devices (reference cells and modules) and photodiode sensors
[Livera 2019b, Friesen 2018]. There are two types of pyranometer: thermopile and
photodiode pyranometer. A thermopile pyranometer measures the irradiance in the
range of 300 to 2800 nm with a flat spectral sensitivity, while the photodiode mea-
sures a portion of the solar spectrum between 400 nm and 1100 nm [Stoffel 2012].
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Figure 4.2: Diagram of the most relevant parameters to be measured in real time,
according to the IEC 61724 standard [IEC 1998].

If reference cells or modules are used, they must be calibrated and maintained
in accordance with the IEC 60904-2 [IEC 2015] or IEC 60904-6 [IEC 1994b] stan-
dards. In addition, it must be ensured that the reference cell is made of the same
material as the PV module [Dunn 2012]. Likewise, it must be taken into account
that the location of the sensors must be representative of the irradiance conditions
of the PV plant [IEC 1998]. It is recommended that the accuracy of irradiation
sensors, including signal conditioning, should be between 3% and 5%. For perfor-
mance analysis or health monitoring of PV modules, the In-plane irradiance (GI)
of a PV module is commonly adopted [Friesen 2018]. In [Polo 2017] a performance
analysis of a small-scale plant is presented. In that study, a pyranometer and mod-
ules in short-circuit conditions are used as irradiance sensors. The results show a
higher precision when using short-circuited cadmium telluride "CdtTe" modules as
irradiation sensor, which can be an interesting option for small-scale photovoltaic
arrays.

4.1.1.2 Ambient and module temperature

Temperature is defined as the second most influential parameter in the power output
of PV plants especially when the temperature is above the value of 25 ◦C defined in
the Standard Test Condition (STC) [Li 2021c]. The problem in measuring these two
variables is the location of the sensors. To capture this data, it must be ensured
that the sensors are able to represent the conditions of the panel. The ambient
temperature (Tam) data is measured by outdoor protected temperature sensors,
located away from direct solar radiation. According to the IEC 61724 standard,
the accuracy of these temperature sensors, including signal conditioning, must be
better than 1 K or ± 0.5 ◦C.
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It is also possible to measure temperature using thermistors, thermocouples, and
resistance temperature devices (RTDs). If the aim is to measure the module tem-
perature (Tm), there are generally two methods. The first method is contact based;
in this method a sensor is attached to the back sheet of the module [Livera 2019a].
The second method is non-contact or indirect measurement. In this method the
temperature (Tm) is estimated from ambient temperature (Tam) and irradiance (GI)
[Kratochvil 2004], or extracted from the relationship between open circuit voltage
(Voc) and (Tm) [IEC 2011]. The last method relies on the use of calibrated infrared
cameras [IEC 2017b].

4.1.1.3 Wind speed and direction

Wind speed (Sw) should be measured at the same array conditions, that is, ideally
at the same height of the PV plant and avoiding obstacles that introduce noise into
the measurements [IEC 1998]. Wind speed sensors accuracy should be such that
the error is no higher than 0.5ms−1 for values measured for less than 5ms−1, and
no higher than 10% of reading for wind speed values greater than 5ms−1. The
wind direction of the wind should be measured under the same array conditions
[IEC 1998]. The accuracy of the wind direction (Dw) sensors should be ±5◦ degrees.

4.1.1.4 Voltage and current

The values of voltage (VA, VS , VU and VBU ) and current (IA, Irs, IF S , IL, Iru, IF U

and IBU ) are some of the main electrical measurements related to a PV plant both
on the DC and AC side [Madeti 2017d]. According to the IEC 61724 standard
[IEC 1998] the accuracy of current and voltage sensors, including signal condition-
ing, must be better than 1% of reading. Conventionally the capture of this data
is done using shunts or current transducers or voltage transducers [Livera 2019a].
The advantage of shunts is that they do not require an additional power supply,
unlike current transducers. However, on the other hand, shunts require significant
sampling frequency control to measure alternating current [Triki-Lahiani 2018a].
Current transducers have excellent accuracy, low temperature drift, good linearity,
optimized response time, good immunity to external interference, no insertion loss,
and no current overload loss [Shariff 2015]. The voltage transducers also have excel-
lent accuracy, low thermal drift, low common mode disturbance, good linearity, and
good immunity to external interference. Transducers are the most suitable solution
to capture high precision measurements. But, it is necessary to find a balance be-
tween the quality of the data and the cost of the transducers, which, depending on
the case, can be very high.

4.1.1.5 Power

Like current and voltage, power is a vital variable to describe the behavior of a
PV plant [Madeti 2017d]. The power data (PA, Prs, PF S , Pru, PF U , PBU ) can be
measured on the DC or AC side or on both sides. It can be measured directly
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by power sensors or calculated in real time as sampled voltage and current values
[IEC 1998, Fuentes 2014]. Power sensors on the AC side take into account power
factor and harmonic distortion. DC input power on stand-alone systems can have
considerable AC ripple, so a DC wattmeter is more suitable for measuring DC
power. Accuracy of power sensors, including signal conditioning, must be better
than 2% of reading. Another conventional way of obtaining the power measure-
ment is calculating it in real time with the sampled voltage and current values
[Livera 2019b]. Power is typically measured on both the DC and AC sides of the
PV plant.

4.1.2 Data acquisition system

The elements of the data acquisition system are responsible for collecting and storing
data for fault analysis. In PV plants, the elements of the data acquisition system
are used to monitor performance and control operations. According to Livera et al.
[Livera 2019b], the elements of the data acquisition system are generally composed
of five parameters: data transfer mechanism, monitored data, controllers, sampling
intervals, and program development software. Examples of the elements of the data
acquisition system are discussed in [Madeti 2017d] and [Shariff 2015] including data
transfer mechanisms, wired, wireless and power line communication systems.

Data may be transmitted using wireless or wired technologies [Ansari 2021].
The choice of the best transmission medium is subject to the configuration of the
equipment, the location, the data traffic, the cost of maintenance and the type
of control system (centralized or decentralized) [Heilscher 2020]. As criteria for
identifying the best data transmission medium, the following must be taken into
account: latency, data speed, reliability, security, interoperability and scalability
[Michael Mills-Price 2014]. The explanation of the two communication technologies
(wired and wireless) is given below.

4.1.3 Wired communication

Several types of wire connection are available for transmitting digital data. First
is a coaxial cable as one of the most well-known transmission media. This
kind of cable has low resistance, low error rate and good data transmission
rate of 10 Gbps. Its limitations are the distance covered and the display
[Madeti 2017d]. Second, the MODBUS rtu RS 232 or RS 485 protocol can be
used [Cristaldi 2010, Ben Belghith 2014, Tejwani 2014, Shariff 2013]. This proto-
col has some limitations, such as the distance covered, and is less favorable than
wireless systems for monitoring large photovoltaic plants. In third place, the fiber
optic cables are positioned. These cables can be used for long distances and offer a
high data transmission rate of 100 Mbps to 200 Mbps [Madeti 2017d]. However, it
should be clarified that it is an expensive solution. Finally, the Power Line Com-
munication (PLC) is positioned. The PLC is considered a better option for data
transmission compared to Zigbee, WiFi, Bluetooth and RS 485 [Han 2014]. The
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PLC has a data transmission speed of around 200 Mbps.

4.1.4 Wireless communication

Unlike wired communication, there are multiple wireless data transmission options
presented in the literature.

The first is satellite transfer. This means of data transmission is described as a
slow and expensive mechanism [Drews 2007, Drews 2004].

Second is the widely known Global System for Mobile (GSM). This mechanism is
described as reliable and accurate [Ben Belghith 2014, Tejwani 2014, Shariff 2013].
In the GSM mechanism, data is transmitted through Short Message Service (SMS)
or General Packet Radio Service (GPRS). This type of transmission allows the
sending of data at high speed and large volumes of data. Furthermore, this protocol
features low retransmission and low data loss rates. The main drawback of this
protocol is that it has a high cost of operation, since users must pay for this service
[Triki-Lahiani 2018a].

The third is the transmission of data by radio frequency that allows sending
and receiving information at very large distances. This mechanism is an interesting
alternative in areas without telephone lines. However, it must be taken into account
that the implementation can be complicated due to the authorisation of use of a
given transmission frequency and its cost [Triki-Lahiani 2018a].

The fourth is the wireless local area network (WLAN) [Madeti 2017d]. The
advantage of the WLAN network is that it covers a large area; it is flexible in data
transmission and can communicate without future restrictions. The difficulty with
this transmission mechanism is that it has lower bandwidth and lower quality of
service due to interference.

The fifth corresponds to the File Transfer Protocol (FTP) server. This mecha-
nism is an option for data transmission via GSM-GPRS. Conventionally, this mech-
anism is embedded in a kind of PC board that can be connected via USB or serial
cable [Triki-Lahiani 2018a].

A sixth mechanism found in the literature is Bluetooth [Hua 2009] is a simple
network but does not cover long distances, at most 100m.

A seventh mechanism explored is the Zigbee device. This device is considered as
the best solution and the most economical alternative for data acquisition systems.
This mechanism allocates a special time slot to avoid data collision, and its topology
allows the integration of other wireless nodes, making it upgradable to support large
network capacity.

An eighth mechanism is Wi-Fi and WiMax, which have also been used for data
transmission [Triki-Lahiani 2018a, Michael Mills-Price 2014] and which have a high
data transmission speed, but are more expensive than other technologies such as
Bluetooth or Zigbee [Triki-Lahiani 2018a].

A ninth is the Internet/Ethernet protocol commonly known as TCP/IP is
considered the most convenient, especially for real-time data acquisition systems
[Bressan 2013].
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Finally, IEEE 2030.5-2018 (Intelligent Power Profile Application Proto-
col) has also been proposed as an effective mechanism for data transmission
[Michael Mills-Price 2014].

Apart from the aforementioned aspects, for a correct data acquisition, special
attention must be paid to the controller.

4.1.5 Controller

This device is the interface between the sensors and the end users. As a con-
troller, some systems propose the use of microcontrollers or data acquisition boards
or modules [Cristaldi 2010, Bayrak 2013]. The advantage of boards and modules
is that they are easier to program, however, their price is higher than that of
a [Triki-Lahiani 2018a] microcontroller. On the other hand, a microcontroller is
characterized by the resolution of the analog digital converter (ADC), which repre-
sents the most important factor for the accuracy of the monitored data. However,
it is important to note that the quality of the data captured in the microcon-
troller is directly related to the resolution of the ADC [Triki-Lahiani 2018a]. In
addition to the controller, attention should be paid to the development program-
ming language of the data capture and processing software. For the programming
of microcontrollers and acquisition systems in general, languages such as C and
MATLAB [Triki-Lahiani 2018a] are used. One of the most popular options is LAB-
VIEW, mostly in academic research, but not only, due to its high licensing costs.
LABVIEW is generally used as system design software providing comprehensive
measurement and control tools [Cristaldi 2010, Bayrak 2013].

4.1.6 Sample rate

Attention should be paid to the selection of sensor technology, resolution and data
aggregation. According to [Hong 2022b], the most important requirements to con-
sider for sensors are their accuracy, reliability, stability, calibration, maintenance,
design simplicity and sensor cost, as well as installation conditions. Another im-
portant aspect for data acquisition aimed at fault diagnosis and data acquisition is
the data sampling frequency.

In the literature, various sampling intervals from seconds to one hour are pro-
posed. But, according to IEC 61724 [IEC 1998], the sampling interval should be
selected based on the types of parameters, depending on the measured variables (see
Table 4.1) and on whether the photovoltaic system is connected to the network or
not. According to the IEC 61724 standard [IEC 1998] for the irradiation, tempera-
ture, wind and electrical output parameters, the data sampling period must ideally
be less than 3 seconds (s) and in cases of hardware limitations priority should be
given to more than 1 minute (m). It is also mentioned that for the parameters of
dirt, rain and humidity the maximum sampling interval is 1 minute (min). Lastly,
it mentions that, for parameters with a long sampling time, they must have a sam-
pling frequency between 1 and 5 minutes [IEC 1998]. Despite the recommendations
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proposed in the IEC 61724 [IEC 1998] standard, it is also mentioned that the data
acquisition period should be sufficient to provide representative PV operating data
and environmental conditions for fault diagnosis routines.

Other technical reports such as the International Energy Agency (IEA) technical
report [Woyte 2014] suggest that the data should be sampled every second or faster
and the averaged values should be stored every 5-15 min. Also, tracking data
availability must be 99% or higher. Data availability of less than 95% indicates a
poor quality data acquisition system.

Another recommendation is provided by SolarPower Europe [Europe 2016] in
their report entitled best O&M practices, where they mention that irradiance should
be stored at maximum average intervals of 15 minutes, and a fine resolution is
achieved with averages of 1 minute. For this reason, it is mentioned that satellite-
based irradiation measurements should have a sampling time of at least 15 minutes
min. It is also mentioned that the electrical measurements of the input DC voltage
and current must be sampled with a resolution of less than 1s and also averaged
over a range of less than 1 min. Along the same lines, in the Australian PV
data acquisition guidelines [Copper 2013b], the maximum recommended sampling
interval for all averaged parameters should be set to 1 s. The data can then be
averaged and logged over the logging interval. Also, it is recommended in the
same guidelines that in case power is calculated from sampled current and voltage
measurements, the sampling interval should be significantly less than 1 s. The
World Meteorological Office (WMO) recommends that irradiation observations be
made at a sampling interval less than 1/e = 0.368 of the time constant of the
measuring instrument. The time constant of a sensor can be understood as the time
it takes, after a step change in the measured variable, for the instrument to register
63.2% of the step change in the measured parameter. Lastly, it is recommended
that the sampled data for each measured parameter should be processed into time-
weighted averages.

All these reports agree that the recording interval depends on the final use of
the measured data of the photovoltaic system. The data acquisition period must
be sufficient to provide operational data that is representative of PV performance
and environmental conditions. The minimum continuous data acquisition period
should be chosen according to the collected data (see Table 4.1).

The availability of high-quality data along with the use of proper algorithms for
fault diagnosis will ensure reliable and stable operation of the photovoltaic system,
which is crucial for the reduction of costs associated with operation and mainte-
nance and time of system inactivity. In addition to ensuring all the aforementioned
aspects, it is necessary to take into account a stage of processing the captured data.

4.1.7 Data preprocessing

The data captured by the sensors in a PV plant may or may not be pre-processed.
That depends on the requirements of the applied PV fault detection and classifica-
tion method. Data pre-processing is crucial in detection and classification problems.
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The main objective of this pre-processing is to guarantee the constitution of a robust
and complete database [Hong 2022b]. For this, the pre-processing must be designed
to remove noise, extract features, remove or minimize outliers, deal with missing
attributes/values, repair broken data, among others, [Famili 1997]. The main data
pre-processing methods are classified as data transformation, data unification, data
cleaning, information gathering, and data augmentation [Famili 1997, Li 2021c]. An
explanation in detail and applied to the cases of interest of this thesis is presented
in Chapter 6.

4.1.7.1 Data Transformation

Data transformation can involve filtering, sorting, editing, and denoising. These
transformations are performed mainly for two reasons: 1) to find a more suitable
representation for fault detection and classification analysis; 2) to combine different
PV data formats into an identical one.

4.1.7.2 Format unification

This process is carried out because in the photovoltaic system they are obtained
through different sensors and acquisition systems. Therefore, in some cases it is
possible to have very different formats in terms of variation intervals, duration,
sampling periods, etc., [Li 2021c]. This is why it is recommended to standardize the
data. Multiple proposals are found in the literature for this. For electrical signals in
the time or frequency domain, common operations are resampling or window slicing
[Lu 2019b]. For the analysis of the characteristic curves I(V ) resampling with a
different number of points or current-voltage distribution [Chen 2017] is required.
Another recommendation for the correct detection and classification of faults, when
several variables of the photovoltaic system are used, is to perform the normalization
[PATRO 2015] to standardize the range of variation of the characteristics in [0, 1]
or [-1, 1]. If the detection and classification of errors is performed on images, the
operations of resizing [Karimi 2020], RGB separation [Aghaei 2016] and dimming
[Meng 2018] are recommended.

Some acquisition platforms may contain interference or invalid information that
is removed by filters [IEC 1998]. Along the same lines, advanced signal process-
ing methods are proposed, such as wavelet denoising [Chikh 2015] or smoothing
[Juxing 2020], to remove unwanted noise, interpolation, Kalman filtering, auto-
regression or moving averages [Turrado 2014, Demirhan 2018]. For images, de-
noising is applied which removes external interference and restores the real image
[Fan 2019].

4.1.7.3 Data augmentation

Taking into account that statistical and machine learning techniques are more ef-
fective when they have a large amount of data that is sufficiently representative of
all operating modes, data augmentation is proposed. This process is really a great
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challenge because the conditions must be guaranteed to increase the data that do
not hide faults and that are consistent with real scenarios of the PV plant. There are
two major drawbacks to data augmentation. The first is an insufficient amount of
electrical signals, images or in general data captured from the plant PV, due to the
limited number of PV modules. The second is the appearance of unbalanced data,
that is, the amount of electrical signals, images, etc., of healthy modules and faulty
modules is different [Perez 2017]. These two obstacles can significantly hinder the
learning performance of machine learning models. Therefore, data augmentation is
widely used and studied [Shorten 2019, Karimi 2019].

Fault detection analysis can be performed directly on the raw signals captured
by the system, however sometimes in order to extract small details that allow to
differentiate the classes, a signal transformation that transforms the signal can be
useful.

4.1.8 Signal treatment methods

There are two main types of Signal treatment or processing methods: 1) Signal
transformation methods and 2) feature extraction methods.

4.1.8.1 Signal transformation methods

The signal transformations can be used to extract information from time series data
in the frequency domain for further analysis. Some of the most well-known methods
of signal transformation are presented below.

Fourier transform: The Fourier transform (FT) is used to extract the fre-
quency components of a signal from its original domain to the frequency domain
[Bracewell 1986]. Among the best known variants of the Fourier transform are
the continuous Fourier transform, the Fourier series, the discrete Fourier trans-
form and the fast Fourier transform (FFT) [Nussbaumer 1981]. The FFT algo-
rithm is published in 1965 [Duhamel 1990] and is conceived to reduce the order
of complexity of computational tasks such as the Fourier transform from N2 to
Nlog2, where N is the size of the problem. In the photovoltaic domain, the FFT
is widely used [Riza Alvy Syafi’i 2018]. In some of these works, it is used to ex-
tract the frequency content of the current to detect arc faults (AF) in a photo-
voltaic array [Riza Alvy Syafi’i 2018, Sudiharto 2017, Fitrianto 2019b]. It is im-
portant to mention that this type of fault is very difficult to detect in the time do-
main [Mukherjee 2017]. This type of fault is characterized by a sudden dip and thus
a rapid change in system current, therefore frequency domain analysis is proposed
as a solution [Mukherjee 2017]. This fault is widely studied because it has caused
various fire hazards in photovoltaic systems worldwide [Haeberlin 2007]. For this
reason, arc fault oriented detection systems focus mainly on this type of transfor-
mation [Murtadho 2020, Fitrianto 2019a]. This type of method has also been used
in the identification of harmonic loads in power quality problems [Sudiharto 2017].

Additive and multiplicative decomposition: The additive and multi-
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plicative decomposition attempts to extract the trend and seasonal factors from
the time series. This approach is widely used for prediction of future val-
ues [Mbuli 2020, Saxena 2017, Patidar 2019, Prema 2015]. The seasonal effects
obtained can be used to create and present fitted values of the original data. At
present, we are not aware of fault detection methods that use this type of decom-
position. However, taking advantage of its interesting features for prediction pro-
cesses, it could be inferred that there is ample potential to develop prediction-based
detection algorithms.

Wavelet transform: The principle of the wavelet transform is to decompose
an input signal into subsets. Each subset is made up of a time series of coeffi-
cients that characterize the evolution of the signal in the corresponding frequency
band [Heil 1989]. That is, the wavelet transformation uses a function named the
mother wavelet that decomposes the signal into different frequency components that
make up a family of functions that are translations and dilations of a mother func-
tion [Gómez-Luna 2013]. Therefore, the wavelet transform decomposes the signal
into a series of wavelet components where each one is a time-domain signal covering
a specific frequency band [Zhao 2000, Karimi 2000, Pang 2010].

In [Wang 2013] it is mentioned that wavelets are especially effective in func-
tions with discontinuous or abrupt changes such as power system fault signals. But
they also mention that the challenge lies in the correct choice of the mother wavelet
since the performance of the transformation depends on the choice of the mother
wavelet function and the translation and expansion coefficients to adjust the time
and frequency resolutions [Li 2021c]. Wavelet transform can be classified into two
types: i) Continuous Wavelet Transform (CWT); and ii) Discrete Wavelet Trans-
form (DWT). CWT uses an infinite number of scales and locations, and DWT uses
a finite set of wavelets [Graps 1995].

Like the Fourier transform, the wavelet transform is a linear transform
by [Faziludeen 2013]. The difference with FFT is that it allows the temporal loca-
tion of different frequency components of a given signal [Karimi 2000].

The DWT transform is widely used in the fault detection domain [Fong 2015,
Qibin Zhao 2005, Faziludeen 2013, Wang 2018a]. Specifically in the photovoltaic
domain, the DWT transform is adopted to extract features from AC current (IAC)
to identify AF (Arc Fault) [Wang 2016b], over AC voltage (VAC) and AC current
(IAC) to classify Line to Line Fault (LLF) and Ground Fault (GF) [Manohar 2017].
In [Wang 2018a] it is used together with a Long short-term memory (LSTM) al-
gorithm to forecast solar irradiance models. In [Wang 2013] the detection of arc
faults in photovoltaic systems is carried out and it is concluded that the conven-
tional methods that are based on the recognition of patterns in the time domain, or
the detection of amplitude in the domain of frequency by using a Fourier transform
do not work effectively for arcs because the signal to noise ratio is low and the arc
signal is not periodic.



144 Chapter 4. Conventional Data Acquisition in PV plants

4.1.8.2 Feature extraction methods

Feature extraction methods are used to extract local features from raw time-domain
measurements. Some of the measures that can be extracted as features for detection
and classification are peak curvature, crest factor, signal-to-noise ratio (SNR), root
mean square (RMS) level [Scharf 1991]. Other measures are proposed for cases
where the signal is the I(V) curve. In these cases, parameters such as the open circuit
voltage (Voc, the short-circuit current (Isc, voltage and current at the maximum
power point (VMP P , (IMP P ), fill factor (FF ), equivalent series resistance Rs, shunt
resistance (Rsh) [Garrido-Alzar 1997]. Other widely extracted features for fault
detection are presented below.

Power spectral density: Power Spectral Density (PSD) describes
the power of the signal as a function of its frequency in units of
W/Hz [Maral 2004]. This measurement is widely used in the detection of dif-
ferent types of faults [Ahmadi 2011, Li 2015, Al Ahmar 2010, El Bouchikhi 2013,
Ayaz 2014, Heidarbeigi 2008, Gritli 2012, Martinez 2017, Gritli 2013, Oviedo 2011,
Bellini 2006, d. J. Rangel-Magdaleno 2009, Anil Kumar 2016]. Some works use
a mix of PSD with the FFT [Wescoat 2020] or with the Wavelet decom-
position [Cusido 2008]. However, in the domain of fault detection in pho-
tovoltaic systems there are very few articles, among which the one by
[Bharath KurukuruF 2020] stands out. In that article they use the Wavelet com-
position, and from it they extract a series of characteristics, among which is the
PSD. That information is used as input to the neural network-based classifier.

Autocorrelation: Autocorrelation is a statistical tool that expresses the
correlation of a signal with a delayed copy of it as a function of the de-
lay [Yang 1998]. This type of statistical tool has been used before in different
fields. In [Fucheng 2015] it is used in vibration signals for gearbox fault detection.
Similarly, vibration signal analysis is used to detect faults in reciprocating compres-
sors [Pichler 2016]. In [Zhang 2013], they present a bearing fault detection method
based on kurtosis-based adaptive band-stop filtering (KABS) and iterative auto-
correlation. Some articles, such as those written by [Dey 2019] and [Xu 2021],
use this tool to perform bearing fault detection. Other works, such as the one pre-
sented in [Rafiee 2009], perform fault detection by autocorrelation on the wavelet
decomposition coefficients. Specifically, in the photovoltaic field, it is used to de-
tect ground faults using time domain spread spectrum reflectometry [Alam 2013a].
In this article, they set a threshold for the difference between the autocorrelation
peaks and examine the peaks before and after the fault.

Finally, a comparative chart of some existing data acquisition systems in the
PV domain is presented below.

4.1.9 Existing data acquisition systems

Considering that the costs of renewable energy technologies have not yet come
down enough for grid parity to be universally achieved without subsidies, there is
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still room for technological improvement and cost reduction. In this way of building
new technologies mainly focused on data acquisition PV plants, multiple approaches
have been proposed in recent years. One of the first PV plant data acquisitions
was introduced by Blaesser [Blaesser 1997]. This on-site data acquisition system
performed the measurement of the characteristics of the PV plants and allowed the
collection, analysis and presentation of operational data. The main drawback of
that system is that it is extremely expensive, more than 10% of the cost of the PV
plant.

Then, with the decline in prices in data acquisition hardware, PV plant data
acquisition is heavily applied to small PV installations. One of the first papers in
this area is presented in [Mukaro 1998, Mukaro 1999]. Those low-cost systems mon-
itored solar radiation and general environmental conditions of the PV plant. That
system is built using an 8-bit microcontroller that drives an analog-to-digital con-
verter (ADC) and stores data in a serial EEPROM until it is loaded into a laptop.
In this data acquisition system, the data is sampled and stored at intervals of 10
min. They considered low power consumption as they minimized power consump-
tion by keeping the microcontroller in a low-power mode between measurement
intervals. This stage is necessary since the data acquisition system is powered by a
rechargeable battery. The great advantage of this data acquisition system is that
it is very suitable for data acquisition meteorological or environmental parameters
in remote stations, particularly in developing countries. Due to its versatility, that
work is adopted in [Mukaro 2008], where it is shown that an operator with a laptop
is all that is required to collect data acquired from systems scattered around an
area of interest.

Another effort to build data acquisition systems is presented by Koutroulis and
Kalaitzakis [Koutroulis 2003]. The main disadvantage of the work presented by
them is the dependency on a PC, the use of commercial software (Labview™)
and the requirement of mains power supply. These parameters strongly limit
the development of a data acquisition system for PV plants since it makes the
system more expensive and, therefore, limits its diffusion and use. In the liter-
ature it is possible to find other data acquisition efforts that are based on mi-
crocontrollers. Some of the drawbacks with these systems is that they use a
low resolution ADC connected to an amplifier stage, which defines each input to
a specific sensor [Kamunda 2007, Benghanem 2009a], or others depend on a PC
[Benghanem 2009a, Demirtas 2008, Benghanem 1998b, Mahjoubi 2012], commer-
cial software [Benghanem 2009b, Benghanem 2010], or do not follow IEC standards
for managing accuracy or obtaining data. Not following the standards counter-
acts the achievement of low cost, portability and low power consumption, among
other advantages [Purwadi 2011, Ikhsan 2013]. Table 4.2 presents some examples
of existing data acquisition systems with their main features.
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Table 4.2: Conventional PV data acquisition system developed

Year Ref Applications Measurements Platform Software
ADC Sampling Data Data
resolution interval transmision storage

1998 [Mukaro 1998] Solar radia-
tion

Irradiance ST62E20 Turbo C++ 8−−bit 10 min Wired RS232 EEPROM

1998 [Benghanem 1998a] PV plant Irradiance, ambient tempera-
ture, PV module voltage and
currents, battery voltage, bat-
tery charge current, load cur-
rent

Processor MC
68B09

−− −− −− Wired
RS232C

−−

2001 [Wichert 2001] RES System Ambient temperature, irradi-
ance, voltage, current and
power

DataTaker DT50 Labview −− 5 min Wired RS232 PC

2003 [Koutroulis 2003] RES System Ambient temperature, irradi-
ance, voltage, current and
power

PCI−−6024E Labview 12−−bit 1 min Wired RS232 PC

2005 [Papadakis 2005] RES System Ambient temperature, irradi-
ance, wind, humidity, voltage,
current and power

Commercial DAQ
unit

VB, SQL
Server 2000

−− 1 min RF PC

2005 [Forero 2006] Grid con-
nected PV
plant

DC current, DC voltage, AC
current, AC voltage, energy,
power, ambient temperature,
solar radiation, IeV curve

FP DAQ board Labview 16−−bit 30s Wired RS232 PC

2008 [Demirtas 2008] RES System Wind speed, the panel posi-
tions of the solar module, the
currents and the voltages of the
solar and the wind systems

PIC 18F452 and
PIC 18F2550

C# 10−−bit −− Wired RS485 PC

2011 [Purwadi 2011] PV LED
Street Light-
ing

Daily energy, total energy used,
charging or discharging status
and fault condition

Atmel Atmega8 −− −− −− −− EEPROM

2011 [Anwari 2011] Small PV in-
stallation

PV array voltage, PV array
current, ambient temperature,
solar irradiance

PIC16F877a Mi-
crocontroller

Labview 8−−bit −− Wired RS232 −−

2012 [Mahjoubi 2012] PV Water
Pump

water flow rate, ambient tem-
perature, global irradiation (in-
clined and horizontal), volt-
ages, Currents

HOBO HOBO −− −− −− −−

2012 [Eke 2012] PV module
temperature

PV module temperature PC Qbasic rou-
tine on PC

12−−bit 1 min Wired RS232 PC

2012 [Andreoni-López 2012] Grid con-
nected PV
plant

Solar radiation, wind speed,
voltage and current of PV mod-
ules

DSP Labview, C 16−−bit −− ZigBee PC

2014 [Tina 2014] SAPV sys-
tem (fridge
application)

Currents, voltages, tempera-
tures of the fridge (internal
and external), Temperatures of
PV plant, ambient tempera-
ture, humidity, irradiance

ET−−7017
produced by
ICPDAS

Matlab −− −− Wired (Mod-
bus Protocol)

Database

Continued on next page
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Table 4.2 – continued from previous page

Year Ref Applications Measurements Platform Software
ADC Sampling Data Data
resolution interval transmision storage

2015 [Devaraju 2015] Weather sta-
tion

Humidity, atmospheric tem-
perature, wind speed, wind
direction, rainfall, solar ra-
diation, surface temperature,
ambient temperature, atmo-
spheric Pressure

PIC16F887 Mi-
crocontroller

Weather
Monitoring
Station
(Embedded
C Langage)

14 bit 30 s ZigBee MySQL
server

2015 [Shariff 2015] Grid con-
nected PV
plant

Solar radiation, ambient tem-
perature, module temperature,
PV voltage, PV current, grid
voltage and grid current

PIC18F8720 C/Netbeans 12−−bit 1min Zigbee EEPROM

2017 [Villagrán 2017] Enviroment
parameters

Temperature, humidity, wind LP3500 Dynamic C 1min GSM SD

2017 [Chao 2017] Fault diagno-
sis

Temperatures, irradiance,
voltages, currents and curves
I−−V/P−−V

PIC18F8720 Solar Pro
Software

12−−bit −− ZigBee PC

2017 [Rezk 2017] SAPV sys-
tem (fridge
application)

Temperatures, irradiance,
voltages, currents and curves
I(V )/P (V )

DAQ board NI
USB−−6009

Labview 12 bits −− −− −−
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In order to demonstrate the direct relationship between the quality of the data,
the quantity of variables measured and the sampling frequency, an industrial and
commercial data acquisition system is selected. The characteristics of Tigo’s in-
dustrial and commercial system are explained below together with the PV plant
instrumented with said platform.

4.2 Tigo industrial and commercial data acquisition
system

The Tigo data acquisition system used in this thesis is part of a more complex data
acquisition and optimization platform for PV plants. Tigo platform is designed and
built by the Tigo company born in 2007 in Silicon Valley, California. The Tigo
company is one of the world leaders in power electronics at the module level aimed
at increasing energy production, improving safety and reducing the operating costs
of solar installations. The Tigo platform proposes the solution named Plate-forme
TS4 that offers three main functionalities. First, they offer an optimization ser-
vice to increase energy performance by reducing impact and shading compensation.
Second, it provides a data acquisition service aimed at reducing operational ex-
penses with module-level performance visibility. This service is the one that is used
as a data acquisition system of the PV plants for fault detection. Among all the
data acquisition systems on the market, this solution is selected for this research
for its independence of the inverter brand and the availability of access to data via
API. Finally, the Tigo platform has a safety system that reduces the voltage in the
module if necessary, increasing safety and complying with electrical codes.1.

The components of the Tigo data acquisition system are briefly described below.

4.2.1 Components and Connection Scheme

In this thesis, Tigo data acquisition system is used mainly to capture the current
signal of each PV panel separately. This is possible because each module is con-
nected in parallel with an optimizer and then all the optimizers are connected in
series. The signals obtained with this method can be analyzed for fault detection
and for obtaining conclusions that can be extrapolated to the string level. This is
possible if it is taken into consideration that the current of each of the panels can
be represented, without loss of generality, as the current of a string that contains a
single panel. Figure 4.3 shows a representative diagram of the connection between
a panel and a Tigo optimizer.

In Figure 4.3, it can be seen the current IP that corresponds to the PV panel
electric current and the current Istring that corresponds to the current shared by
all the sets (panel + optimizer). The current of each panel PVi is captured with
the Tigo data acquisition system in the form of a time series denoted by Ii{1:nI} =
{ii,t1 , . . . , ii,tnI

}, where nI is the number of samples (12 panels) of the i − th time
1For more details about Tigo, click here

https://fr.Tigoenergy.com/
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Figure 4.4: Tigo platform connection diagram

series that has a sampling period of one minute and ti, i = 1, . . . , nI , is the date of
the sample.

As can be seen in the same Figure 4.3, each panel is equipped with a reference
Tigo optimizer TS4-R-O (R is for Retrofit and O is for Optimizer) on its back
sheet. Tigo PV panel Optimizer is an MPPT device that individually controls each
PV panel, to achieve maximum performance. To do this, the optimizer constantly
monitors the maximum power point. The values are then sent to the Tigo server
where they are stored. A connection diagram of the Tigo data acquisition system
with all the constituent elements is presented in Figure 4.4.

The database stored in the cloud can be accessed through the Tigo Web platform
presented in Figure 4.5.

This Tigo data acquisition system is used to instrument 12 PV panels from a
single PV string. The characteristics of the PV plant implemented with this data
acquisition system are presented below.

4.2.2 Instrumented PV plant

The photovoltaic system (experimental platform) is located in Toulouse in the de-
partment of Haute Garonne (31), in the region of Occitanie, at the address 5 Avenue
du Colonel Roche, 31400, Toulouse in the LAAS-CNRS laboratory in the building
named ADREAM. The geographical location at the level of France, Toulouse and



150 Chapter 4. Conventional Data Acquisition in PV plants

Figure 4.5: Tigo supervision website

AD
RE

AM

Figure 4.6: Geographical location in France

LAAS is shown in Figure 4.6.
Figure 4.7, shows the location of the experimental platform on the terrace of

the ADREAM building.
This PV plant is constituted of n = 12 PV panels with reference SLK60P6L

from Siliken California with a nominal power of 250Wp connected in series forming
a PV string. The main parameters of these PV panels are given in Table 4.3 under
standard test conditions (STC) (1000 W/m2, 25◦C). Each PV panel is composed
of 60 poly-crystalline silicon cells grouped into 3 sub-strings of 20 cells.

The 12 PV panels are used to represent three different health status. In addi-
tion, the PV panels are located spatially close, and therefore subjected to similar
meteorological conditions to guarantee the possibility of comparing their electrical
conditions with each other. Figure 4.8 represents the spatial location of the three

Experimental platform

Figure 4.7: Experimental platform in the LAAS - CNRS, Toulouse - France
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Symbol Quantity Value
PMP P Maximum Power (W ) 250
IMP P Current at PMP P (A) 8.21
VMP P Voltage at PMP P (V ) 30.52

ISC Short-circuit Current (A) 8.64
VOC Open-circuit Current (A) 37.67

S Area of the module (m2) 1.64

Table 4.3: PV module specifications at STC.

M1.1-1 M1.1-2 M1.1-3 M1.1-4 M1.1-5 M1.1-6 M1.1-7 M1.1-8 M1.1-9 M1.1-10 M1.2-1

M2.1-1 M2.1-2 M2.1-3 M2.1-4 M2.1-5 M2.1-6 M2.1-7 M2.1-8 M2.1-9 M2.1-10 M2.1-11

M2.1-12

M4.1-10 M4.1-9 M4.1-8 M4.1-7 M4.1-6 M4.1-5 M4.1-4 M4.1-3 M4.1-2 M4.1-1

M4.1-11 M5.1-1 M5.1-2 M5.1-3 M5.1-4 M5.1-5 M5.1-6 M5.1-7

+ - + - + - + - + - + - + - + - + - + - + -
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- +
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Access door to the terraceEmergency door

Big snail trails
Healthy
Broken Glass

Figure 4.8: Distribution of the panels of the string PV used (experimental platform)
with different health statuses: healthy (yellow), broken glass (blue), and big snail
trails (red).

types of health status of the 12 PV panels.
As can be seen in Figure 4.8, the first health status are the panels with broken

glass indicated in blue, followed by the red panels that correspond to the panels
with Snail Trails. Finally, the orange panels correspond to the healthy panels.
The location of the healthy panels is conceived with the aim of having at least
one healthy individual in the same or similar conditions as the panels with faults.
All panels have the same inclination and they are instrumented with a Tigo data
acquisition system.

In the Tigo supervision website it is also possible to see the PV panels in the
same position in which they are installed on the terrace of the ADREAM building
as can be seen in Figure 4.9. Also, this representation allows to verify in real time
the production of the panels.

As can be seen in Figure 4.9, the magnitude in the reduction of the current
between the panels with Snail Trail (red color) and the healthy panels (orange color)
is minimal, even the panel with the highest current is a panel with a Snail Trail.
Due to this type of behavior, this fault is little studied, and even less, studied as an
objective of early detection. Although the Tigo data acquisition system captures
data every minute, its design is not aimed at fault detection, so it does not pay
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Figure 4.9: Physical location of the panels on the Tigo supervision website.
Date, time and

panels label

Date

Time

Missing data

Data

Figure 4.10: Example of problems found in the database generated by the Tigo
data acquisition system.

special attention to the quality of the stored data. For this reason, it is necessary to
perform a data processing step to return the relevant data for fault detection. To
correctly process and clean the data, it must be taken into account that the Tigo
platform begins to capture electrical current data only as soon as the panel begins
to produce, which brings some associated issues. First, the Tigo platform does
not record current and voltage 24 hours a day. Second, due to different weather
conditions, the time at which the Tigo platform starts recording electrical current
changes from day to day. Third, the Tigo platform begins to record voltage data
before the plant begins to generate actual production. This is a serious problem
since in case of performing a fault detection on the voltage variable, the probability
of obtaining false results is very high. In Figure 4.10 it is possible to observe the
behavior of the voltage database at the beginning of the day.

The same behavior illustrated in Figure 4.10 occurs at the end of the day.
Taking into account these limitations of commercial and industrial platforms,

and following the parameters recommended in Section 4.1 of this thesis, a new
photovoltaic data acquisition system, named Solar Vitality, is proposed in Chapter
5, and a weather station is also attached to that Solar Vitality system.

4.3 Discussion and Conclusions

In this chapter, a comprehensive review of existing photovoltaic data acquisition
systems reported in the literature is presented in terms of the sensors and acquisi-
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tion systems used. In addition, the most used parameters in the data acquisition of
PV plants are analyzed, among which are: voltage, current, solar radiation, tem-
perature and wind speed. In the field of data acquisition systems, this chapter
covers the controllers that are used for the data acquisition system, types of data
transmission methods, data storage, and data analysis. In this same way, it is iden-
tified that an effective data transmission system is essential to ensure data quality,
especially considering the particular operating conditions to which these data ac-
quisition systems are subjected. Different means of data transmission are discussed
(wired, wireless and powerline, etc).

The choice of the best transmission medium is completely linked to the operating
conditions of the data acquisition system. Multiple parameters can be evaluated to
determine the best data transmission medium. First, the coverage area and length of
the distance between the sensors and the data acquisition system must be taken into
account. For example, coaxial cables cannot operate over long distances compared
to fiber optic cable. However, for short distances it is shown that many studies
prefer coaxial cables that show great performance. On the other hand, the WLAN
protocol can cover only a small area of about 20 km2, compared to GPRS-GSM,
but can transmit data over distances of hundreds or thousands of kilometers over
the Internet. The power line communication (PLC) protocol transmits information
over hundreds or thousands of meters using the existing wired infrastructure without
any additional installation. However, there are problems of aging of the wiring and
external causes that can affect the sending of data over scenarios of hundreds of
meters. In addition, when the wiring is extensive and the sensor output signal is
in voltage, significant signal losses can occur, so it is recommended that the system
be designed for current sensor output when the signal must travel long distances
by cable.

Another aspect to take into account is the speed of sending data. For example,
the maximum speed at which data can be transmitted using a coaxial cable is
around 10 Gbps. Fiber optic cable is only capable of transmitting data from 100
Mbps to 2000 Mbps. On the other hand, the WLAN protocol is much faster than
coaxial cable or fiber optics, but it has strong limitations when there are physical
obstructions between devices, radio interference, simultaneous communication of
multiple devices on a network, and distance between devices. The PLC has a
maximum sending capacity of 200 Mbps and the slowest protocol is GPRS-GSM
with approximately 40 to 50 Kbps.

Regarding the signal decomposition and signature extraction methods, these
methods must be tested individually depending on the faults to be detected. Some
faults may be widely visible with Fourier transforms while others will go unnoticed.
It is evidenced that the wavelet-based transform is the most used and versatile due
to the large number of faults that are detected in the literature.
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As explained in Chapter 4, current PV plant monitoring systems are not de-
signed for fault diagnosis, much less, they are aimed at detecting faults whose
occurrence is very fast, which requires high speeds of data sampling. As a pro-
posal to solve that problem, this Chapter 5 presents a new diagnosis-oriented data
acquisition system named Solar Vitality. Solar Vitality is designed with special em-
phasis on its precision or uncertainties under the IEC 61724 standard [IEC 1998].
Solar Vitality uses the Arduino open source electronic development board to solve
the current problem of data acquisition photovoltaic (PV) systems together with a
Raspberry PI4. Solar Vitality can be used to monitor faults in PV systems from
residential to utility power PV plants, in developed countries and especially in re-
mote areas or regions in developing countries. Solar Vitality meets all the relevant
requirements in terms of accuracy included in the International Electrotechnical
Commission (IEC) standards for photovoltaic systems, with measurements every
15 milliseconds, including 11 analog inputs to measure up to 4 independent photo-
voltaic strings and the meteorological parameters of irradiation, ambient tempera-
ture and wind speed. Solar Vitality is completely autonomous in terms of power
supply, portable and easily coupled to different topologies of photovoltaic systems.
Solar Vitality is tested in different scenarios and with different topologies of photo-
voltaic systems in real production conditions. Solar Vitality is tested in continuous
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operation for more than 6 months, presenting a robust operation even in the harsh
environmental conditions of summer and winter in France.

Solar Vitality is capable of capturing the electrical behavior of the photovoltaic
system with a high sampling frequency (every 15 milliseconds) and meteorological
variables such as ambient temperature, irradiation and wind speed. The design
and construction of Solar Vitality is aimed at meeting two objectives. The first
is to demonstrate the influence of the sampling frequency in the detection and
classification of faults in photovoltaic systems. The second is to demonstrate and
quantify the effect of meteorological variables on the photovoltaic system. Next, the
explanation of Solar Vitality is presented. The results of the data collected from
the meteorological and electrical sensors indicate that the new system is reliable
and exhibits performance comparable to that of commercial systems. Solar Vitality
is of special interest for both research and industry. Finally, Solar Vitality is easily
customizable for the specific needs of each project and photovoltaic system and can
even be extended to other domains.

5.1 Motivation

Solar Vitality captures the electrical and meteorological behavior of the PV plant.
Capturing these two behaviors is vital to improving the accuracy and the number
of different faults detected in PV systems [Blaesser 1997]. Most data acquisition
systems have focused on capturing the electrical behavior of the system, since for
meteorological behavior they use data compiled by national or European institutions
[NAS 2022, Atl 2022, PVG 2022]. This information is useful to know in a general
way the meteorological conditions of operation of a region or zone. However, when
thinking about fault detection in PV systems, the use of these satellite data has
several drawbacks. First, this data cannot replace the specific data taken on the
site. Second, there are many places where these databases are not available or
are in the process of being compiled. Third, although a wide range of weather
databases are available, they are generally expensive, highly sophisticated, and not
easily manageable [Fuentes 2014].

As a result, further development of data acquisition systems is required to collect
and process electrical data and meteorological data in operation, under the premise
of obtaining measured values using accurate and easy-to-handle. Taking these as-
pects into account, this research presents a new diagnosis-oriented data acquisition
system (Solar Vitality) that can be used to instrument PV plants of any size, on a
PV panel, PV string or PV array level. It can also be used to capture data from
PV plants with different configurations. These characteristics are vital to ensure
and facilitate rapid and continuous development. In addition, Solar Vitality has a
wide flexibility and can be adapted to each specific case (both research and indus-
trial applications in developed and developing regions). Solar Vitality will allow
the PV community to move faster in some of the research areas that have required
comprehensive PV data acquisition but are limited by cost and technology issues.
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5.2 Characteristics of Solar Vitality

Solar Vitality is based on the hypothesis that the capture of a set of variables such
as voltage, current, irradiation, ambient temperature and wind speed, increases
the number of detected faults and also the detection accuracy under different en-
vironmental conditions and with panels of different technologies. This hypothesis
is based on the causal relationships, presented in Section 2.3.2, for different faults.
In addition, Solar Vitality is built following the recommendations of the British
standard BS IEC 61724 [IEC 1998], the guidelines of the European Joint Research
Center [Blaesser 1995] and the guidelines of the National Renewable Energy Lab-
oratory (NREL) [Kurtz 2013]. Also, Solar Vitality is designed to be portable and
energy autonomous.

The design of Solar Vitality is detailed below, including the following parts: i)
Portable data acquisition requirements; ii) Measured parameters; iii) Hardware;
iv) Software; v) Electrical power supply; vi) Assembled prototype and electrical
connection diagram to the PV system; and finally vii) Product evolution cycle and
Test scenarios.

5.2.1 Portable data acquisition requirements

Portable data acquisition systems must meet a number of stringent requirements
that are not necessarily present in traditional laboratory systems [Fuentes 2014].
For example, the portable systems are generally intended to be connected in harsh
environments that must be taken into account when designing the data acquisition
system. Some of the conditions that must be taken into account are: extreme
temperatures, humidity, dust, shock and vibration. In the photovoltaic domain,
according to the IEC 61215 standard [IEC 2005a], the equipment must withstand
temperature ranges that vary between -40◦C and 85◦C in the worst of the cases
[IEC 2005a].

Another difficulty that this type of system must face is the need to admit a
combination of particular sensors, and adequate memory/storage capacities to ad-
equately record the behavior for considerable times for the diagnosis of a fault or
to obtain relevant conclusions of the behavior of the system. In addition, these
portable data acquisition systems face major challenges in integrated signal condi-
tioning issues, such as gain and filtering, and data acquisition sampling rate that
determine system accuracy.

The main purpose of portable data acquisition systems is that, once set up, they
can measure, record and display data without the intervention of an operator or a
computer. Therefore, these systems must be compact, lightweight units that can
be powered using two different configurations. The first configuration is based on
one or several batteries and the second is to connect an external cable to a DC or
AC power source (taking into account the voltage passed to DC).

To size the battery or battery bank it is necessary to identify the necessary
processor. A low power consumption processor should be preferred and combined
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with a suitable storage system to avoid selecting a processor with capacities beyond
what is necessary.

As these portable data acquisition systems are left to run unattended for days
or possibly years at a time (depending on system requirements), they must be able
to have the option of storing the data on-site, with large memory sticks, or send
them to the cloud to be downloaded by remote computers. In addition, they must
have an intuitive user interface for remote configuration and control of the device.

All of these complexities make the design of these systems a real challenge, but
just as powerful yet compact data acquisition devices that play an important role
in verification testing and data acquisition of critical systems. In the design of Solar
Vitality, a design supported by a low-cost processor is favored, whose limitations
are overcome by different devices that meet the aforementioned objectives, as well
as the IEC requirements [IEC 1998], without significantly increasing the cost.

5.2.2 Measured parameters

As observed in Figure 4.2, a photovoltaic system is constituted of different elements
such as solar modules, batteries and regulators in the case of autonomous systems,
inverters in the case of grid connection, AC and DC wiring, electrical safety devices
and protection devices. The relevant variables to be measured associated to these
elements, proposed in the British standard BS IEC 61724 [IEC 1998], the guidelines
of the European Joint Research Center [Blaesser 1995] and the guidelines of the Na-
tional Renewable Energy Laboratory (NREL) [Kurtz 2013], are shown in Table 4.1.
However, the number of variables can be reduced if it is decided to calculate the
power as a function of voltage and current and current sensors that can distinguish
the direction of electron flow are also used. Under these conditions the number of
variables can be reduced from 24 to 14: 2 temperatures (Tam, Tm), 1 irradiance
(GI), 4 voltages (VA, VL, VBU , VS), 3 directional currents (IA, IL, IBU ) and 2
bidirectional currents (Irs, IF S). It is also important to note that, as mentioned
in the British standard BS IEC 61724 [IEC 1998], the number of variables can be
increased or reduced depending on the primary objective of the data acquisition
system. For our case, focused on fault detection of PV strings, the number of vari-
ables is reduced to only 5 (Tam, GI , Sw, VA, and IA). The variables measured with
Solar Vitality are divided into electrical and meteorological.

5.2.3 Hardware

The description of the different PV measurements, according to the type, range,
and precision requirements for each one of them according to, in coherence with the
IEC standards [IEC 1998], is given below.

5.2.3.1 Sensors

To comply with the recommendations of the British standard BS IEC 61724
[IEC 1998], the accuracy of current and voltage sensors, including signal condi-
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Figure 5.1: Recommended locations to properly measure the temperature of a PV
module according to the ISO 16077 standard [ISO 2013]

tioning, must be better than 1% of reading. Measuring the current (IA) can be
achieved using shunts or current transducers. The transducers are selected due to
their high accuracy even if this drives up the cost of Solar Vitality. This decision is
made due to the fact that Solar Vitality is oriented to the detection of faults and
therefore the high quality of the data must be guaranteed, and more so considering
that data with behaviors very similar to those of a healthy panel are explored in
this thesis.

For temperature measurement, only the ambient temperature Tam is selected.
The module temperature Tm has two major difficulties that can introduce a high
level of noise to the diagnosis system. First, it is necessary to determine the best
location for the temperature sensor on the back face of the module, that is, it is nec-
essary to determine which section of the module is the most representative in terms
of temperature. To our knowledge, there is no consensus on the ideal placement
of one single sensor. However, the ISO 16077 standard [ISO 2013] recommends 4
sensors located in the locations presented in Figure 5.1.

Despite the recommendation of the ISO 16077 standard [ISO 2013] presented
in Figure 5.1, it is not easy to guarantee that this positioning captures the overall
temperature of the PV module. Second, it is possible that during the installation of
the data acquisition system, the module temperature sensor is not accurately placed
within the back face of the module by the installer, generating a bias. In other
words, the repeatability of the instrumentation setup may be difficult to achieve
under real operating conditions. Due to the fact that the level of uncertainty is
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very high, the variable module temperature Tm has not been integrated in Solar
Vitality. Instead, the ambient temperature Tam is chosen for measurement, with
the aim to use these measurements along with irradiance and wind measurements
to explain the combined temperature effect on module electrical parameters. The
premise behind the choice is that ambient temperature is more uniform across the
PV plant, allowing for the use of fewer sensors, and that it allows for a more
repeatable instrumentation, reducing uncertainty. For the selection of the ambient
temperature sensor, it is taken into account that, according to the British standard
BS IEC 61724 [IEC 1998], the accuracy of these temperature sensors, including
signal conditioning, must be greater than 1 K or 0.5 ◦C. Based on this a PT 1000
temperature probe is selected.

For the irradiation measurement, it must be taken into account that the sensor
is located with the same inclination of the PV string [IEC 2005a]. With this, it is
possible to guarantee that a representative sample of the irradiation that is affecting
the string panels is really being collected. In addition, special attention must be paid
to locating the sensor in a representative place in the PV system, avoiding shading
problems that lead to false fault alerts. As a sensor, a reference cell made of the
same material as the PV system being analyzed is selected. This guarantees that
the reaction of the material to the incidence of sunlight is very similar (taking into
account that there may be internal problems of the material, or problems related
to external causes). This reference cell also follows the guidelines of the IEC60904
[IEC 1994a] standard. Its accuracy, including signal conditioning, has also been
verified to be better than 5% of reading.

Finally, for the measurement of wind speed, two main aspects must be guaran-
teed [IEC 1998]. First, that the sensor will always be in a representative place in
the PV system. Second, the sensor must always be vertical to guarantee the correct
measurement of the wind speed. In addition, the selected sensor has superior accu-
racy between the ranges of 0.5ms−1 for values measured for less than 5ms−1 and
10% of reading for wind speed values greater than 5ms−1. Taking these aspects
into account an anemometer is selected.

Once the meteorological sensors are selected, two extra conditions must be guar-
anteed. The first is that they must be easily coupled to the PV system from a small
scale such as a residential installation to a large scale installation such as a utility
PV plant. The second condition is that the irradiation sensor must be adaptable to
adjust to the inclination of the PV system to be measured. To fulfill these two con-
ditions, the 3 meteorological sensors are coupled in a meteorological station whose
structure is delicately thought out and modular to be adaptable to different PV
system conditions. The weather station is presented in Figure 5.2.

As can be seen in Figure 5.2, the station allows the movement of only the irradi-
ation sensor to coincide with the inclination of the PV plant. It also guarantees the
verticality of the wind speed sensor, and the shading conditions for the temperature
sensor, complying with the norms of the IEC 61724 standard [IEC 1998]. Finally,
the weather station is equipped with an electrical box. In this way, it is much
more efficient to replace the sensors without having to affect the data acquisition
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and fault detection system. The detailed description of the components and the
evaluation of the sensors are presented in Annex A.

5.2.3.2 Electronic boards

This section presents the hardware of Solar Vitality proposed in this research. The
characteristics of the hardware used for signal capture and processing are presented
below.

The first premise of Solar Vitality is the use of open source hardware. This
premise allows the development of a system suitable for developing countries or
research applications that must use these high-power industrial devices or systems.
Among the many microcontroller-based platforms that are available on the market,
MSP430 launchPad, STM8L Discovery, Libelium’s Waspmote, and Arduino Mega
are well known among developers [STM 2022, Was 2022, Meg 2022, Tex 2022].

In general, the prices of microcontrollers are below 10e for Texas Instruments
and STMicroelectronics. On the other hand, the most expensive is the Waspmote
with prices around 135e, which makes it not viable for this project. Among all
the options, Arduino stands out for the simplicity of its hardware, that is, easy
to duplicate without expensive means, and its software based on C/C++ and with
numerous already developed and highly advanced libraries for data acquisition in
comparison with the other three. It is also ideal for the growth and continuous
improvement of the prototype because Arduino is conceived in a modular way. That
is, you can find a wide range of modules to interconnect to adapt Solar Vitality to
any design, such as Bluetooth, Wi-Fi, LAN, GPS, GPRS, etc., or have the possibility
of developing new modules with a specific purpose [Hac 2022]. It is important to
note that this characteristic is not easy to find on all data acquisition platforms or
systems. Although it is true that there are other cheaper data acquisition platforms
or systems, it is very difficult to find support, libraries or modules for such systems
or platforms. For this reason, it is necessary to develop all programs and libraries
from scratch. These developments from scratch take long development and testing
times to verify their robustness.

An Arduino is a small programmable electronic board in which there is a micro-
controller. This board is used to capture data from sensors and/or control different
electrical components. The name “Arduino” is, in fact, the trade name for the
open source prototyping platform. This type of Arduino platform is widely used in
tasks such as home automation, robot control, on-board computing, etc. One of the
biggest advantages of this board is the high level of the microcontroller program-
ming language. The Arduino language is a C/C++ based language. A comparison
of the 3 best known Arduinos is exposed in Table 5.1.
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Table 5.1: Comparative table of characteristics of different Arduino models

Characteristics Arduino Uno Arduino Mega Arduino Due
microcontroller 8-bit ATmega328P 16

MHz
8-bit ATmega2560 16
MHz

32-bit AT91SAM3X8E 84
MHz

Flash Memory 32 KB 256 KB 512 KB
RAM Memory 2 KB 8 KB 96 KB
EEPROM 1 KB 4 KB –
Analog Inputs 6 16 12
Digital Inputs 14 54 54
Power Supply 7-12 V 6-20 V 7-12 V
Pin input voltage 5 V 5 V 0-3.3 V
Pin output voltage 0-5 V 0-5 V 0-3.3V

As can be seen in Table 5.1, the Arduino Due is superior for the majority of the
characteristics. However, Solar Vitality is designed to perform the reading of multi-
ple PV strings (6 string or more) and also the climatological sensors. Therefore, the
selection criteria is the number of analog pins available on the board. Another dif-
ference between the Arduino Mega and the Arduino Due is the EEPROM memory
capacity. The Arduino Mega has 4KB while the Arduino Due has none. Although
the Arduino Mega is limited to 4 kilobytes (KB), it is more than enough to store
data for a short data acquisition period (a few hundred seconds). These short times
are enough to perform sliding window calculations on the data, or filters. However,
if the objective is to store the data, it is an insufficient capacity since 12 parameters
stored every minute would exceed 1 kB in approximately 6 min or a little less. To
solve this storage problem there are mainly two options. The first is to use memory
board expansion modules, each with a capacity of up to 2 gigabytes (GB). The
second option, which is adopted in Solar Vitality, is to send data by serial means to
another board that will store, pre-process and detect PV system faults. With this in
mind, the Arduino Mega [Arduino 2020] data acquisition board is selected together
with another external data processing board that works as a central computer.

The aforementioned conditions added to the low cost of the Arduino Mega make
this development board interesting, both for research and for industrial application
in developing and developed countries. In addition, the software to program this
board is free to download and the hardware reference designs are available under an
open source license and users are free to adapt them to their needs. Although as can
be seen in Table 5.1, the board can work with external power (USB cable, AC/DC
adapter or battery) from 6 V to 20 V. However, it is recommended to operate the
board in a range of 7 V to 14 V to prevent the board from becoming unstable or the
voltage regulator from overheating and damaging the board [Meg 2022]. Finally,
another interesting feature of these development boards is their sleep mode function
that significantly reduces power consumption [Ard 2022].

Arduino MEGA has 16 analog inputs with an 8 bit resolution Analog Digital
Converter (ADC). The ADC has an input range of 5 V. For this reason, in Solar
Vitality it is necessary to add a signal adaptation stage to decrease the output
voltage of the sensors (0 − 10V ) to (0 − 5V ). This adaptation allows Solar Vitality
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to continue within the recommendations of the IEC61724 standard [IEC 1998].
In the same way of developing data acquisition platforms or data acquisition sys-

tems, some works have proposed the use of the Raspberry Pi board [Ferencz 2018].
In this work, the Raspberry Pi board demonstrated great performance results and
storage of large amounts of data on low-cost local servers. That same principle is
adopted in this research: a Raspberry Pi 4 board, with 8Gb of RAM memory, is
selected to receive the data sent by the Arduino Mega and then store them in a
MySQL database with the phpMyAdmin database manager. The Raspberry Pi 4
can be defined as a computer stripped down to its simplest form with an ARM pro-
cessor board almost the size of a credit card. The Raspberry Pi supports running
several variants of the free GNU/Linux operating system and compatible software.

This type of interaction between the Arduino Mega and the Raspberry Pi has
already been studied before showing a high performance [Wali 2018]. However, as
mentioned in [Moreno 2020] the serial communication between the Arduino Mega
and the Raspberry Pi can have transmission errors that should be monitored. To
control these errors, a python script is integrated into the Raspberry Pi that tracks
these errors online and corrects them based on the history of the stored data. No
displays are taken into account in the design for three reasons: reduce costs, reduce
power consumption, and simplify the software and hardware design.

5.2.4 Software

The software developed in Arduino is based on time slices on which a Kalman
filter is carried out to avoid data acquisition noise. This software is based on the
Arduino base language which is an open source language based on C/C++. This
developed software prohibits interaction with the user to guarantee its robustness
and avoid unauthorized modifications. Then this filtered data is sent via serial to
the Raspberry Pi which processes it. The code developed inside the Raspberry Pi
is made up of two scripts that are running in parallel. The first is in charge of
receiving the data, and storing it.

Data storage can be done under three options. The first option is to build the
database and tables automatically if they do not exist and store the data contin-
uously inside a MySQL database. The second option is to generate a file with all
the SQL statements that is stored in a removable memory. Once this memory is
extracted, the data can be loaded into any database for further analysis. The last
option is to generate the data in a comma-separated CSV file. To define the option
to use and the system configuration parameters, it is only necessary to modify a
json.config file including the particular information of the analyzed PV system. In
this file one can find the site information, the topology of the PV system and the
data storage conditions.

In that same json.config file is the configuration for the fault detection algorithm.
That script containing the fault detection algorithm is automatically executed in
parallel with the data storage code. This fault detection script is in charge of
executing the code by time slices and of sending the alerts in case of detecting a
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fault.
In accordance with the IEC61724 standard, filtered data from the Arduino Mega

is captured at 15 millisecond sampling intervals. This high sampling rate is selected
well above the speeds recommended by the standard with the aim of increasing
the richness of the signals and under the hypothesis that increasing the sampling
frequency can increase the ability of the system to differentiate the states of the
strings, even if the behaviors are similar to those of a healthy string.

In addition, thanks to the json configuration file, this developed software is easily
adaptable to new variables when the hardware, the channels or the topology of the
PV system change. Following the same IEC61724 standard, both the files with the
SQL statements and the CSV files and the storage in the MySQL database generate
a database with the same structure. They are databases in single-byte ASCII code.

The goal of making the files in this format is to make the files largely immune
to computer architecture incompatibilities and to facilitate data exchange between
organizations. Therefore, Solar Vitality can be linked online with many others for
centralized remote control. In this prototype presented, the structure of the files first
includes the date and time in the first column in Datetime format, that is, year,
month, day, hour, minutes, seconds, milliseconds. The following eight columns
represent the eight differential inputs of the ADC expressed in their respective
physical variables (irradiation, temperature, wind speed, string, current, etc). The
order of the variables will depend on the structure described in the configuration
json file. The temperature is expressed in degrees Celsius ◦C, the irradiation in
Wm2, the wind speed in m−1, the voltage in Volts (V ) and the current in Amps
(A).

5.2.5 Electrical power supply

Solar Vitality is portable and autonomous in terms of energy since it can be installed
even in large PV plants where there is no connection to the electrical network.
First it is necessary to know the total consumption of the system. Table 5.2 shows
the list of elements that make up Solar Vitality together with their uncertainty,
consumption current and supply voltage.

Table 5.2: Energy consumption and uncertainty of the elements of
Solar Vitality.

Task Model Power Current UncertainlySupply consumption
Data Acquisition Arduino Mega 5V (Serial Port) 500 mA max –
Data Processing Raspberry PI 4 5.1V ∼ 3.0 A –
Wind Speed Thies Clima 24 V 10-46 mA ± 3 %
Irradiance Si-V-420TC 24 V < 1 mA ± 2.0 %
Temperature Tm-I-4090 24 V ∼2 mA 1 K
Current IgT-MU 24 V ∼10mA ± 0.5 %

Continued on next page
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Figure 5.3: Electrical diagram of Solar Vitality

Table 5.2 – continued from previous page

Task Model Power Current UncertainlySupply consumption
Voltage SCK-M-U 24 V < 8 mA ± 1 %

As can be seen in Table 5.2, all elements are within the recommendations of
the IEC 61724 standard [IEC 1998]. Based on the information in Table 5.2, an
electrical power supply kit is designed and coupled with Solar Vitality. This power
kit makes Solar Vitality completely autonomous in terms of energy.

The kit is composed of a 12V-50W PV panel, a 12V-22Ah battery whose charge
is controlled by a 20A PWM type solar charge controller. In turn, this solar kit
feeds two electrical power supplies: 1) of 24V, responsible for powering the sensors,
and 2) of 5V, responsible for powering the Raspberry Pi.

The power supply of the Arduino is done through the serial cable connected
to the Raspberry Pi. A diagram of the electrical power supply of Solar Vitality is
presented in Figure 5.3.

5.2.6 Assembled prototype and electrical connection diagram to
the PV system.

Solar Vitality is conceived to be able to be adapted to PV systems from the res-
idential level to large utility PV plants. To be able to operate Solar Vitality it
is necessary to install three main elements. The first is a PV module (12V-50W)
that is responsible for charging the battery of Solar Vitality so that it works con-
tinuously. The panel can be installed on the structure of the PV system or on
an external structure. The second element is the weather station and finally Solar
Vitality.

Solar Vitality is built to be indoors in the same place where the PV inverters
are located or, failing that, in the place where the junction boxes are. The third
element is the weather station. The station is built with a conventional photovoltaic
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Figure 5.4: Electrical connection diagram. This schematic represents the PV sys-
tem, the junction box, the PV inverter, the weather station and the external power
supply system.

fixing structure, however it is adaptable depending on the surface on which the PV
system is installed, that is, on the ground, on the roof, etc. Figure 5.4 shows a
complete connection diagram of Solar Vitality and the weather station with the
photovoltaic system.

As can be seen in Figure 5.4, the connectors are standard M-type connectors
(MC1, MC2, MC3 and MC4) used in the PV domain. In addition, it is made
clear that depending on the topology of the PV system, an extension of the PV
cables that connect Solar Vitality with the weather station, the PV power supply
module and the PV strings is necessary. This is the latest version of Solar Vitality
built, however, Solar Vitality is the result of various debugging and tests carried
out in the field. The evolution process of the data acquisition system based on the
different instrumented PV systems is presented below.

5.2.7 Product evolution cycle and test scenarios

As in any process of design and innovation of a new product, it is necessary to
carry out a process of constant improvement. For this, the product is subjected to
different connection, performance and usability tests in connection to different PV
systems (real operating environments). Each of these scenarios markedly improved
the prototype until the current prototype, which is still undergoing constant testing,
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Figure 5.5: Evolution diagram of the proposed product for Solar Vitality.

validation and improvement. Figure 5.5 shows the proposed cycle of evolution of
the product.

As can be seen in Figure 5.5 the evolution cycle consists of 6 stages. A descrip-
tion of the process carried out in each stage is presented below.

1. Analysis: In this phase, all the characteristics of the site where Solar Vital-
ity would be installed and the variables of interest to be measured are recovered.
Among them, a small study is carried out with the client to find out the require-
ments and interests to present a solution tailored to their needs. Likewise, in this
phase the commercial requirements are met and the potential risks are identified
(external factors that prevent the correct functioning of Solar Vitality).

2. Planning: In this phase the scope of the problem is delimited, solutions are
identified taking into account the price/functionality ratio. That is, the resources,
costs, time and other aspects that must be considered here are evaluated. Then,
a development plan is built by identifying and prioritizing features that meet the
requirements of the client to build the structure of a project.

3. Design: In this phase, the future physical architecture of Solar Vitality is
designed, as well as programming how each and every one of the characteristics of
the product should work. Among the aspects that must be analyzed is the language
of the database, type of database manager, data storage, communication protocols,
processing, etc.

4. Development: In this phase, the new prototype is developed, converting
the previous requirements and prototypes (if they exist) into a tangible solution.
This phase is the integration of all the changes such as new sensors, new ADCs
(analog to digital converters), new code, new types of storage files, etc. At the end
of this process a new prototype version of the product is finished.

5. Testing: At this stage, all the tests are carried out, connecting Solar Vitality
with the PV system. These tests are necessary to verify and validate the product.
In this phase, the product is constantly monitored in search of errors and faults
that allow it to verify the correspondence between the real and expected behavior
of Solar Vitality.



5.2. Characteristics of Solar Vitality 169

6. Feedback: Finally, once the system is implemented, a retrospective evalua-
tion is carried out that collects the needs for updates, improvements and necessary
changes, to continue improving Solar Vitality. Bearing in mind that in any com-
mercial and industrial product, such as Solar Vitality, it is crucial to maintain and
modernize the system regularly so that it can be adapted to future needs.

In this way, the first 5 versions of Solar Vitality are presented below as an
example. In each scenario the problems and changes are exposed.

5.2.7.1 First test scenario

In this first scenario, a single module on the terrace of the Adream building of the
LAAS - CNRS laboratory is considered. This PV module is instrumented with
the first version of Solar Vitality. This first version captured irradiance using a
pyranometer and a reference cell. The objective of these redundant measurements of
irradiation is to be able to compare the performance of the two sensors to determine
the best method of capturing irradiation on the PV system.

Regarding temperature, a surface temperature probe is used. The current and
voltage is measured using two transducers with current output that is then trans-
formed into voltage to be captured in the Arduino Mega. Figure 5.6 shows the first
version of Solar Vitality.

Although Solar Vitality, in Figure 5.6, correctly collected data with high quality,
Solar Vitality presented multiple drawbacks. The response of the pyranometer
is not the same as the response of the PV module, in addition, determining the
correct position to install the temperature sensor is really a strong inconvenience
considering that it must be guaranteed that the cell in which that sensor is located
represents the average module temperature. Finally, this version of Solar Vitality
had a strong dependence on a PC for the reception, storage and processing of data
sent by the Arduino Mega. Finally, this version of Solar Vitality must also be
connected to the electrical network all the time for its operation.

Due to the aforementioned limitations, a new version of photovoltaic data ac-
quisition system is built.

5.2.7.2 Second test scenario

In this test scenario two PV strings from a small private PV installation located
in Upie, in the Drôme department, in the Auvergne-Rhône-Alpes region, are con-
sidered. This installation has two PV strings each with 12 panels of 230W. In this
version the surface temperature sensors are changed by an ambient temperature
sensor with which the approximate temperature of the modules can be estimated.
In addition, a small central computer (Raspberry Pi 4) is added that controls the
acquisition, storage and treatment of the data captured by the Arduino. Likewise,
a protection system is integrated to avoid all kinds of electrical risks and even pos-
sible fires in the system. To reduce the dependency of this version of Solar Vitality
on the power grid, a battery and charge controller are added. This battery allowed
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Figure 5.6: Installation of the first version of Solar Vitality in the LAAS-CNRS,
Toulouse, France
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Figure 5.7: Installation of the second version of Solar Vitality in Upie, department
of Drôme, France

data capture to be carried out autonomously for two days without problems and the
state and behavior of the battery could be followed using the charge controller. In
this version of Solar Vitality, irradiation is only captured with a reference cell built
with the same technology as the PV system panels. Figure 5.7 shows the second
version of Solar Vitality.

This version of Solar Vitality again presented a high quality in the data capture
of each PV string. It is also the first step towards the realization of a portable
and autonomous photovoltaic data acquisition system in terms of energy. However,
when the data from the two strings are analyzed in parallel, a small gap is found
when the signals are sampled at rates less than one minute.

Another limitation observed is that the installation of the temperature and
irradiation sensor is very complex because it depends directly on the structure of
the PV system. Lastly, there is a maximum limit of two days to maintain energy
autonomy.

Due to the aforementioned limitations, a new version of Solar Vitality is built.

5.2.7.3 Third test scenario

Although this third version of Solar Vitality is equipped with current sensors to
measure 4 strings, in this scenario Solar Vitality is only connected to one string for
security restrictions and to test connectivity.

The first modification in this version is that using the information collected from
the beta charge controller, the size of a small panel is dimensioned, which is also
installed on the terrace of the building and whose function is to feed the battery to
prolong the capture period of data.

The tests are developed for a month and no interruption in terms of system
power outage is recorded. In addition, the sensors are fixed to the same structure
of the PV power supply module, ensuring its easy and adequate fixing. On the
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Figure 5.8: Installation of the third version of Solar Vitality in the LAAS-CNRS

other hand, one more variable is added to the system - wind speed. This variable is
added because strong changes in temperature measurement and electrical behavior
are observed in version two of Solar Vitality that are related to changes in wind
speed. On the other hand, considering the acquisition of signals, a second Arduino
Mega is added to reduce the gap in electrical signals and a trigger signal ensures
synchronization between the two devices for the transmission of signals via serial
to the raspberry.

Figure 5.8 shows the third version of Solar Vitality.
Although the meteorological sensors could be kept in a fixed position and the

measurements could be captured, this type of installation is difficult to adapt to
other topologies and configurations of PV systems. Furthermore, the structure
in which the data is stored did not correspond to the British standard BS IEC
61724 [IEC 1998]. In the same way of the data analysis, the sampling frequency is
increased to seconds. This increase in the sampling frequency, which is within the
recommendations of the IEC 61724 [IEC 1998] standard, revealed the limitations
of the ADCs that are used for data capture. A considerable amount of noise and
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Figure 5.9: Installation of the fourth version of Solar Vitality in the Delegation 14
of the CNRS, Toulouse, France.

incomplete data is transmitted at that sample rate.
Due to the aforementioned limitations, a new version of Solar Vitality is built.

5.2.7.4 Fourth test scenario

This scenario is tested in a photovoltaic installation belonging to the CNRS dele-
gation 14 in Toulouse, France. This version of Solar Vitality captures data on wind
speed, ambient temperature, solar irradiation, 4-string current and the voltage at
the input of the 4-string inverter. In this version all the meteorological sensors are
coupled in a meteorological station adaptable to different topologies and structures
of the PV system. The weather station is adjustable to different orientations to en-
sure irradiation capture in the same plane as the PV system. In addition, the data
is stored in a structured file organized by dates of the "Datetime" type. Likewise,
to avoid the problem of the external ADCs that had been used in previous versions,
the electronics are modified to increase the sampling frequency, maintaining the
quality of the data until measurements are made every 0.5 seconds. This version
ensures data quality and continuous data acquisition of the PV system. Figure 5.9
shows the fourth version of Solar Vitality.

Although Solar Vitality complies with the recommendations of the IEC 61724
[IEC 1998] standard, there are some factors that need to be improved. First, the
data storage system had to be converted into a versatile system that would allow
data to be stored in different formats or on a local server due to the large amount of
data that is collected at high sampling rates. In addition, there are strong storage
capacity limitations in the CSV format, since one day of data at a frequency of 0.5
seconds generates files of 2 GB per day. Finally, this photovoltaic data acquisition
system is conceived for systems where multiple strings are connected in parallel in
a single PV inverter. However, there are some special configurations especially in
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scientific research environments where each PV string is connected to a single PV
inverter. In those scenarios, if one is interested in instrumenting multiple strings,
it is necessary to increase the number of voltage sensors and make modifications to
the internal electronics.

Due to the aforementioned limitations, a new version of Solar Vitality is built.

5.2.7.5 Fifth test scenario

This stage is installed again on the terrace of the LAAS - CNRS. This last version
of Solar Vitality is currently and for more than 6 months monitoring 4 PV strings
that are in production and connected to the Adream building.

On this version of Solar Vitality, all input and output connectors are changed
to standard MC4-type connectors for PV systems. In addition, the data storage
system is modified to generate three types of options, all in accordance with the
IEC 61724 [IEC 1998] standard. The first option builds a comma-separated CSV
file that is stored on an SD memory with 1 TB storage capacity. The second option
is a file that contains a list of SQL statements that is stored in the same SD memory
and that can be extracted to build the database on another computer or external
server. The last option automatically stores the data on a local server using the
MySQL database together with the phpMyAdmin database manager. This storage
medium reduces the size of the files from 2 GB, as in the previous version of Solar
Vitality, to just 500 megabytes. All of these storage options are fully functional
locally and do not require an internet connection or any other cloud communication
protocol. The selection of the data storage system configuration is done through
a JSON type file that contains all the acquisition parameters, the name of the PV
system, the data export conditions, among others. The creation of the MySQL
database, related tables and internal configuration is done automatically based on
the conditions entered in the JSON file. This avoids direct user interaction with
the internal configuration of the data acquisition system.

Another interesting aspect of this latest version is that it also has the fault
detection system embedded. Likewise, this last version of Solar Vitality is capable
of monitoring the meteorological conditions, the voltage and current of multiple
PV strings, maintaining data quality at frequencies of 15 milliseconds. Finally, this
system has the option of remote control, which requires Wi-Fi for its operation,
but which allows this version of Solar Vitality to be integrated into a centralized
supervision and fault detection system. All these features are easily adaptable to
different types of PV systems.

Figure 5.10 shows the last version of Solar Vitality.
Solar Vitality connection scheme and the distribution of the strings measured

to test the fault detection algorithms is shown in Figure 5.11.
As can be seen in Figure 5.11, the 4 strings are each connected to an independent

PV inverter. An example of signals acquired with the last version of Solar Vitality
is presented in Figures 5.12 and 5.13.

Other examples of signals captured with earlier versions of Solar Vitality are
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Figure 5.10: Installation of the last version of Solar Vitality in the LAAS-CNRS
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Figure 5.11: The last version of Solar Vitality on the terrace of the LAAS-CNRS.
Selected PV strings, power supply panel and weather station.
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presented in Annex A.1

5.3 Discussion and Conclusions

All the knowledge collected in Chapter 4 in this review is vital for the construction
of Solar Vitality proposed in this chapter, complying with the recommendations of
the IEC 61724 standard [IEC 1998]. Furthermore, this extensive revision allowed
for a series of adaptations in Solar Vitality that make it viable and effective for
small, medium and large-scale photovoltaic plants, without compromising the de-
sired performance. Among the critical parameters of Solar Vitality, it must be taken
into account that it must be guaranteed that the acquisition of all the data sent by
Arduino does not exceed the sensor data acquisition time. In addition, it must be
ensured that the portable power supply can supply the necessary current to avoid
data loss or corrupt data on the Raspberry. When data acquisition is performed at
high frequencies such as milliseconds or less, problems such as drift start to become
apparent and must be addressed to avoid false fault diagnosis results. In general,
Solar Vitality and the meteorological station proposed in this chapter proved to be
able to efficiently monitor PV plants. In addition, due to the use of the Raspberry
Pi board, it is possible to ship different machine learning algorithms that work in
parallel coded in high-level languages such as Python. The platform was put into
operation in different PV plants, demonstrating high performance and continuity
in operation. Solar Vitality also demonstrated that it is efficient in terms of stor-
ing large amounts of data thanks to the format transformations it performs on the
captured signals. It also demonstrated great versatility and easy parameterization
to be adapted to different topologies of PV plants. However, based on the data
captured with the Tigo data acquisition system described in the chapter 4 and the
Solar Vitality prototype together with the meteorological station proposed in this
chapter, it is necessary to mention that not only because high quality data acquisi-
tion and sampling rate can ensure fine fault detection. It is also necessary to carry
out in-depth research on signal processing to extract the appropriate features that
allow to identify and separate the different health states of the PV plant. That
analysis of features processing named feature engineering is covered below in the
chapter 6.
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Once the data is collected with any of the data acquisition systems presented
in Chapters 4 and 5, the information is generally used to train Machine Learning
algorithms for the detection of faults. However, as it is demonstrated in Chapter 3,
many algorithms are limited when they directly use the captured signals. For this
reason, it is sometimes necessary to use advanced techniques to extract features
from raw data (electrical signals in the case of this thesis) that allow differentiating
the different states of the PV plant. Recently the analysis of extraction, selection or
transformation of features is named Feature engineering. In general, the objective
of feature engineering is to create new variables that are not in the initial training
set (current signals) to simplify and speed up ML model training while increasing
model accuracy [PAU 2022]. With the appearance of increasingly complex faults
to detect, such as those of the snail trail type, feature engineering has become
increasingly important and essential.

First, two feature extraction methods based on signal decomposition in time and
frequency and statistical features are proposed. Then, two feature selection methods
based on correlation and variance are presented. Finally, two feature transformation
methods based on Principal Component Analysis (PCA) and isometric mapping
(Isomap) algorithms are exposed. The detailed description of the approaches and
the results is presented below.
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Figure 6.1: Example of snail trail/track fault
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Figure 6.2: Example of current of three PV modules in status of health, Healthy
(yellow), other fault (blue) and snail trail (red)

6.1 Motivation

As presented in Chapter 3, in fault detection on photovoltaic systems, multi-
ple methods based on machine learning are proposed [Pillai 2019a, Navid 2021a,
Livera 2019b, Carvalho 2019, Madeti 2017b, Alam 2015b, Okere 2020, Alam 2013c,
Jadidi 2020, Pillai 2018b, Mellit 2018a, Lu 2018, Hare 2016, Tsanakas 2016,
Mellit 2021, Li 2021b, Triki-Lahiani 2018b]. However, most of these works have
focused on faults whose energy reduction in the PV system is critical. Damages
caused by these faults induce the reduction of the power generated, from very low
levels to cause the complete stoppage of the system. This makes sense if solutions
oriented to corrective maintenance are thought, however, few works are concerned
with developing algorithms oriented to the detection of faults whose electrical sig-
nature is equal or similar to that of a non faulty PV panel, i.e. whose energy
reduction to the PV system is low. In this category there are faults such as the
snail trail (see Figure 6.1), which, although it does not generate a considerable loss
of energy, is the cause of multiple damages that can cause fire in the PV plant
[Duerr 2016, Li 2021c, Kim 2016, Koentges 2014]. An example of the difference
between the current signal of a panel with a fault that generates large power loss
(blue line), a panel with a snail trail fault (red line - hardly detectable fault) and
a healthy panel (blue line - Fault easy to detect with conventional techniques) is
presented in Figure 6.2.

As can be seen in Figure 6.2, achieving fault detection with large power
loss could be a trivial and straightforward task using conventional machine
learning algorithms [Tsai 2015, Sepúlveda Oviedo 2021, Chouay 2021, He 2021,
Sepúlveda Oviedo 2022, Akram 2015]. However, managing to detect almost un-
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noticeable faults like snail trails is really a challenge. It is important to emphasize
that the sooner a fault such as a snail trail is detected and classified, in order to
carry out preventive maintenance on the defective part, the greater the production
guarantee. This means that the useful life of the photovoltaic plants is lengthened
and the cost of maintenance is largely reduced. The literature assesses that this
type of fault (snail trail/Snail track) occurs after approximately 3 months to 1 year
of exposure to the open air of the PV array [Li 2021c]. This fault primarily af-
fects crystalline silicon cells and often occurs at the edges of cells [Fadhel 2018].
The origin of this fault is not clear, but some documents mention that it may be
due to silver particles containing sulfur, phosphorus or carbon [Li 2021c] that may
be included in the manufacturing process accidentally. Furthermore, as presented
in Chapter 2, the snail trail fault can cause localized temperature increases (hot
spots), non-uniform degradation, corrosion, among others and then more important
impacts in degraded performances of power productions. This thesis defines a fine
fault as a fault whose electrical signature is similar to the one of a healthy panel
(for example the snail trail). All these facts highlight the importance of developing
research such as efficient and early detection and classification of faults in these
systems to guarantee high performances and in a long term, low-cost continuity of
service.

To carry out fault detection in general, it is first necessary to perform data
acquisition and pre-processing of the current signals as a function of the time of
all the panels. Then, a stage of feature extraction followed by a feature selection
stage and/or feature transformation can be performed that allow to differentiate
the states of the PV panels.

6.2 Pre-processing

First the electric current signals Ii for a PV panel PVi, i = 1, . . . , n, are obtained.
For a PV panel PVi, the data takes the form of a time series denoted by Ii{1:nI} =
{ii,t1 , . . . , ii,tnI

}, where nI is the number of samples of the i − th time series that
has a sampling period of one minute and ti, i = 1..nI , is the date of the sample.
However, when the raw signals are obtained from the acquisition system, they are
not directly ready for feature extraction. This is because these raw signals can
sometimes contain missing or null values that can influence the performance of any
algorithm that takes this data as input. Data cleaning is an elementary phase that
must precede all other phases. Because no null data was found, but missing current
values in some scenarios, this thesis uses the Equation (6.1) to replace the missing
current values ii,t as:

ii,t = ii,t−1 + ii,t+1
2 , (6.1)

Although the data cleansing process is not complex, it is very efficient and it is
an indispensable tool to eliminate most faults that affect the performance of the
decomposition algorithms to be applied further. Figure 6.3 presents the PV panel
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Figure 6.3: Behavior of the current over one day for different health statuses:
healthy (yellow), broken glass (blue), and snail trails (red) for a period of 13 hours
every minute.

current behaviors, captured with the Tigo acquisition system described in Chapter
4, over one day for different health statuses after data cleaning, along with an
illustration of the physical appearance of the faults on the PV module.

The blue color corresponds to the PV panels with a broken glass fault, the yellow
color corresponds to the healthy PV panels and the red color to the snail trail fault.
The snail trail represents corrosion of the sheet of the encapsulation surface and
although it does not significantly decrease the performance of the PV panels, it can
be the cause of cracks or micro cracks in the modules that reduce the production
of a PV panel. As shown in Figure 6.3, the behavior of the PV panels with a snail
trail is very similar to that of healthy PV panels. It is in such complex cases of
detection where feature engineering plays a vital and essential role.

Once the current signal of each panel is captured (in the form of a time series)
it is necessary to carry out a feature extraction stage that allows extracting details
of the signals that are used to discriminate the different health states of the panels.

6.3 Feature extraction

The key to achieving high-precision detection is the availability of a robust, high-
quality database. To that point, close attention should be paid not only to the
quality of the sensors and, more generally, to all parts of the measurement chain
mentioned in Chapter 4, but also to the different types of pre-processing that can
be performed on the raw data. Few approaches in the literature have focused on
improving feature extraction and trying to select appropriate methods, aimed at
ensuring the quality of the data that is used to identify faults that occur in the PV
system. The small number of researches is largely due to the high complexity of the
data acquisition system required. In fact, in order to diagnose faults that occur in
photovoltaic systems, the main difficulties are linked to fault signatures that vary
with weather conditions, to the performance of inverters or optimizers, and to other
causes that must be taken into account.

This thesis proposes the exploration of two different feature extraction tech-
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niques. First, a signal decomposition method is explored that allows an extrac-
tion of features that contain information in time and frequency. Then, a fea-
ture extraction based on statistical characteristics is exposed. These two tech-
niques have already been explored previously in the literature for fault detection
[Ahmad 2018, Kurukuru 2020, Haque 2019, Dadhich 2019, Fatama 2019]. The two
proposed methods are explained below.

6.3.1 Multi-resolution signal decomposition

On the way of signal decomposition techniques, Continuous Fourier Transform
(FT), Discrete Fourier Transform (DFT) among others are been proposed for fault
detection [Harrou 2019b, Pedersen 2019, Belaout 2018a, Lebreton 2022]. However,
these transformations only provide information about the frequency. In [Ji 2016]
the authors propose the Fourier Transform with a window that provides both
time and frequency information. However, the fixed window selection may not
always be efficient for detecting critical non-stationary disturbances, such as three-
phase faults and short circuits associated with [Ray 2018] transients. Alterna-
tively, in recent years, the wavelet transform (WT) started to gain popularity
[Haje Obeid 2017, Bayram 2017, Costa 2015, Sangeetha 2018] due to its multi-
resolution time-frequency analysis. This type of decomposition shows better iden-
tification characteristics of all types of faults in photovoltaic systems, as long as
the presence of noise in the signal is avoided [Ray 2018]. Based on the WT , differ-
ent modifications are proposed, such as: the Multiresolution Signal Decomposition
(MSD) that applies the wavelet decomposition iteratively [Yi 2017a], the Slantlet
transform [Ahmadipour 2018b] that is based on a modified discrete wavelet trans-
form with two zero moments and modified temporal localization and the wavelet
packet transform (WPT) that performs an iterative decomposition on the high and
low frequency coefficients [Ahmadipour 2018a, Kumar 2018].

Every faulty condition in a PV system is associated with a change in the output
current. These changes are reflected as variations in the waveform of the out-
put signal compared to a healthy PV panel. Some of these changes are visible in
the frequency domain and others in the time domain. In order to analyze these
changes simultaneously (time - frequency), Multi-resolution Signal Decomposition
is used. The Multiresolution Signal Decomposition is based on the discrete wavelet
transform (DWT) that can decompose a signal into levels with different time and
frequency resolutions using the wavelet transform iteratively [Wang 2014b].

In the following, DWT is presented in a generic form. In our case study, it is
applied to the current times series Ii{1:nI} of each PV panel PVi, i = 1, . . . , n.

DWT is a signal processing technique (linear transformation) like the Fourier
transform [Wang 2013]. Some of the differences between these two techniques can
be read in [Daubechies 1990]. DWT decomposes the input signal into a variable
frequency range that depends on the mother wavelet selected as the decomposition
pattern [Ray 2018]. The input signal is decomposed into approximate and detailed
coefficients that correspond to the high and low frequency components respectively.
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DWT is known for its properties to simultaneously analyze frequency and time
[Kashyap 2003, Etemadi 2008, Mallat 2008]. As mentioned in [Wang 2013], the
wavelet transformation with the proper mother wavelet is a useful tool for fault
detection and feature extraction. For this reason DWT is widely used in this field
[Belaout 2018b, Shaik 2015, Ray 2018, Ray 2016].

Wavelet decomposition uses a mother wavelet that decomposes the signal into a
set of oscillatory functions named wavelets. Each of these mother wavelets is a signal
in time that captures a specific frequency band [Zhao 2000, Pang 2010]. There are
different well-known families of discrete mother wavelets such as: Harr, Meyer, Bior,
Daubechies, Rbio, Coiflet and Symmlet. Which are composed of 1,1,15,38,15,17 and
19 mother wavelets respectively. Each of these mother wavelets has a different com-
putational calculation speed and decomposition quality depending on the particular
application.

Some mother wavelets are particularly used in the PV domain, for example:
Sym8 [Yi 2017a] from the Symmlet family, Harr [Kumar 2018], and db1, db3 - db5,
db8, db9, [Haque 2019, Ray 2018, Dadhich 2019, Kurukuru 2020, Ahmad 2018,
Yi 2017a, Wang 2013, Wang 2014b] from the Daubechies family. Each of these
wavelet families is defined according to Equation (6.2) [Iyer 2013, Dadhich 2019].

ψa,b(t) = 1√
a
ψ

(
t− b

a

)
, (6.2)

where a is the scale or dilation factor, b is the shifting factor, t refers to the times-
tamp of the input signal, and ψ is defined as the mother wavelet [Iyer 2013]. To
restrict the values of a and b to discrete values, these factors are defined according
to Equations (6.3) and (6.4) [Yi 2017c, Iyer 2013].

a = a
−(mx/2)
0 , (6.3)

b = nxb0a
mx
0 , (6.4)

where mx and nx range over Z and a0 > 1 and b0 > 0 are fixed [Iyer 2013]. The
DWT of the discrete signal X{1:nX} that uses the mother wavelet ψa,b(t) of Equa-
tion (6.2) is described in Equation (6.5)[Yi 2017c, Dadhich 2019, Kurukuru 2020,
Iyer 2013]:

DWT(a, b) = 1√
a

∑
1:nX

X(t)ψ
(
t− b

a

)
, (6.5)

For the decomposition of the signal, it is necessary to select the appropriate
mother wavelet ψa,b(t). Some works proposed complex algorithms for the optimal
selection of the mother wavelet [Singh 2006]. In this article, the mother wavelet
selection follows the work of Wang et al. [Wang 2014b] that aims at detecting faults
in PV systems with wavelet transform. According to Wang et, al., [Wang 2014b]
the selected wavelet must comply:
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Figure 6.4: Decomposition into 3 levels of the current signal for a panel with big snail
trails (red) and a healthy panel (yellow). The approximation and detail coefficients
resulting from the decomposition are presented on the left and right of the figure,
respectively.

1. To have a sufficient number of vanishing moments to represent the salient
features of the anomalies.

2. To provide sharp cutoff frequencies to reduce the amount of leakage energy
into the adjacent resolution levels.

3. The wavelet basis should be orthonormal.

Taking into account these considerations and the fact that most of the work in
fault detection in PV systems use wavelets of the Daubechies family (db), the entire
family is tested and the Daubechies38 (db38) mother wavelet is selected due to its
computational speed and good decomposition result.

Multi-resolution signal decomposition can be performed at different levels of
decomposition. For example, the result of the decomposition into 3 levels for a
current signal Ii is shown in Figure 6.4. At each level ℓ of decomposition of a current
signal Ii, two signals can be created as the result of the wavelet transform. The first
signal corresponds to the approximation coefficients (Aℓ

Ii
). This signal receives this

name due to the fact that it is an approximation of the “low frequency" components
of Ii. The second signal corresponds to the detail coefficients (Dℓ

Ii
). This signal

represents the “high frequency" corrections of the signal Ii.
The original signal Ii can be reconstructed from the detail and approximation

coefficients. The reconstructed signal Ii,r is the sum of all the detail coefficients prior
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to the last selected level L, with the detail and approximation coefficients of level L.
This description is formally presented in Equation (6.6) [Wang 2014b, Jensen 2001].

Ii,r = AL
Ii

+
L∑

ℓ=1
Dℓ

Ii
, (6.6)

Although the decomposition of the signal can make some details of the time
series more evident, a strong time dependency is still preserved. As a solution to
eliminate this time dependency, this thesis proposes feature extraction based on
signal characterization to pass from a temporal space to a non-temporal. Feature
extraction based on signal characterization is explained below

6.3.2 Features based on signal characterization

Statistical features have already been used in previous works to extract relevant
statistical properties from PV system data [Li 2021c]. These features increase the
variance between the different classes [Kurukuru 2020]. Features such as mean,
variance, skewness, kurtosis, entropy, among others are suggested for troubleshoot-
ing PV systems [Ahmad 2018, Kurukuru 2020, Haque 2019, Dadhich 2019]. Each
of these features has a better or worse performance depending on the type of fault
to be analyzed. Generally these features are used as input for different fault clas-
sification methods [Sharma 2016, Arunkumar 2019, Hui 2017, Nanopoulos 2001].
Even in other works this extraction of statistical features is combined with
a signal decomposition method based on Multiresolution Signal Decomposition
[Ahmad 2018, Kurukuru 2020, Haque 2019, Dadhich 2019]. In this subsection, fea-
tures are first presented for a generic signal. Then the signals that are used for their
extraction in our case study are made explicit.

For a given generic signal X represented by a time series X{1:nX}, a number of
features can be extracted. Note that the selected features retain only some charac-
teristics of the signal, which has an impact on the possible discrimination of different
signals. The nF selected features are chosen to capture several characteristics of a
signal. These selected features are considered as they are also used in previous works
aimed at fault diagnosis in PV systems [Ray 2018, Ahmad 2018, Kurukuru 2020,
Haque 2019, Dadhich 2019, Vergura 2009, Ismail 2016, Wang 2018a] and works
aimed at fault diagnosis in vibration signals [Arunkumar 2019, Sharma 2016,
Xia 2012, Goyal 2020]. Given a time series X{1:nX} of mean µ, these features are :

• Skewness (F1): skewness represents the asymmetry of the data with respect
to the mean and is calculated by Equation (6.7) [Esmael 2012].

F 1 =
1

nX

∑nX

t=0(Xt − µ)3(√
1

nX

∑nX

t=0(Xt − µ)2
)3 , (6.7)

• Kurtosis (F2): kurtosis measures the peak of the probability distribution
of the data. It also allows knowing how prone to outliers is a distribution.
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Kurtosis is defined according to Equation (6.8) [Esmael 2012].

F 2 =
1

nX

∑nX

t=0(Xt − µ)4(√
1

nX

∑nX

t=0(Xt − µ)2
)4 , (6.8)

• Variance (F3): the variance represents the variability of a series of data with
respect to its mean.

F 3 = 1
nX

nX∑
t=0

(Xt − µ)2, (6.9)

• P − Pvalue (F4): the peak-to-peak distance (p-p) is the distance between the
peak with the highest amplitude and the valley with the lowest amplitude.

F 4 = max(Xt) − min(Xt), (6.10)

• Energy (F5): explain the energy contained in the signal, it is conserved re-
gardless of whether it is in frequency or in time [Ray 2018].

F 5 =
nX∑
t=0

X2
t , (6.11)

• Power spectral density (F6): Power spectral density represents the power
content of the signal as a function of frequency. The amplitude is normalized
per unit frequency as seen below:

F 6 = lim
nX →∞

1
nX

|Xt|2 (6.12)

• Entropy (F7): Entropy is widely used in information theory to evaluate the
uncertainty of a signal and even as a tool to identify the quality of the infor-
mation or inherent surprise of the signal. Entropy can be defined as:

F 7 = −
nX∑
t=1

p(Xt)log(Xt) (6.13)

These statistical characteristics can be directly extracted from the raw signal.
However, to obtain the maximum richness in the training information for machine
learning algorithms, this thesis proposes to perform the multiresolution signal de-
composition followed by the features based on signal characterization in the fol-
lowing way. The characterization of the operational condition of a PV panel PVi

is performed with the set of L + 1 time series {AL
Ii
, Dℓ

Ii
, ℓ = 1, . . . , L}, obtained

from the L levels multi-resolution decomposition of the corresponding current sig-
nal Ii. These time series are segmented in four time slices corresponding to morning,
midday, afternoon, and evening. Sliced signals are indexed accordingly by ∗ ∈ {
morning, midday, afternoon, evening } and we obtain the set S ∈ {AL

Ii,∗
, Dℓ

Ii,∗
},

i = 1, . . . , nP , ℓ = 1, . . . , L, where nP is the number of PV panels.
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The selected features are then determined for each time series in S, forming
a feature vector composed by the feature subvector FAL

Ii,∗
for the approximation

coefficients and the features subvectors FDℓ
Ii,∗

for detail coefficients, each sub vector
being of dimension nF . The characterization of every time slice can be summarized
in a matrix of dimensions nP × ((L+ 1) × nF ):

F∗ =


F AL

I1,∗ F D1
I1,∗ . . . F Dℓ

I1,∗ . . . F DL
I1,∗

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

F AL
InP ,∗ F D1

InP ,∗ . . . F Dℓ
InP ,∗ . . . F DL

InP ,∗

 , (6.14)

∗ ∈{morning, midday, afternoon, evening}

Each row F∗(i, .) of the matrix F∗ provides the signature of the health state of
the PV panel PVi.

It is important to mention that some of the features in each high dimensionality
signature may provide redundant information, which may reduce the performance
of data-based diagnosis algorithms [Lambrou 1998, Chen 2014]. Therefore, it is
necessary to select the outstanding features by means of an algorithm that iden-
tifies a subset of features that preserve the fine details related to a faulty state as
represented in the high dimensional space. As mentioned in [Esmael 2012], a high
dimensionality data set could be reduced by brute-force with an exhaustive search
enumerating and testing all the feature subsets. However, it is more efficient to use
feature selection and feature transformation algorithms. For this reason this chap-
ter proposes two types of feature selection and two types of features transformation.
First the two feature selection techniques are explained. Then the techniques based
on feature transformation are exposed.

6.4 Feature Selection

For a given generic matrix of features F of dimensions (nP × ηb), whose ηb columns
represent the features that characterize the health status of nP individuals, a set of
η⊕

c features, where η⊕
c ⊆ ηb features that preserve relevant details for class discrimi-

nation can be selected. The selection of the η⊕
c features is first based on correlation,

then on variance analysis. In a first selection step, highly correlated features are
discarded. Then the remaining weakly correlated features are given as input to
the variance based feature selection algorithm. Without lack of generality, feature
selection is presented for the matrix of features Fmorning obtained with 3 levels of
decomposition. It can be easily extrapolated to L levels of decomposition in any of
the 4 time slices of interest.

6.4.1 Correlation based feature selection

Correlation based feature selection allows to choose a subset of ηc uncorrelated
relevant features with high predictive value to create solid learning models for the
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nP individuals in matrix F. In the literature, it has been previously mentioned that
a feature is redundant if one or more other features are highly correlated with it.
The use of the Pearson’s correlation matrix for these analyzes has been proposed in
social science works [Zajonc 1962, Buško 2011, Hogarth 1977]. Correlation based
feature selection uses the Pearson’s correlation matrix to determine the degree of
correlation between the initial features ηb. The level of correlation between two
features ranges between -1 and 1, with 1 being the highest positive correlation and -1
the highest negative correlation. 0 indicates no correlation at all. The more a feature
is correlated to another, the less information it brings while it can introduce noise.
Thus, it is recommended to eliminate it [Esmael 2012]. A correlation threshold
τF is defined to remove the correlated features that are out of the range [−τF, τF]
and form a set of uncorrelated features of cardinal ηc that will be used for class
discrimination and that reduce the matrix F into F.

The selection of the uncorrelated features corresponding to the columns of the
matrix F∗ that contain the relevant details of the health states of each PV panel
PVi is performed with a correlation threshold τF∗ = 0.9. As an example, the
correlation based feature selection on the matrix Fmorning is presented in Figure 6.5.
Figure 6.5a provides the correlation matrix crossing the ηb initial features before
feature selection. Figure 6.5b provides the correlation matrix crossing the ηc weakly
correlated features after eliminating the strongly correlated features. With this
feature selection, the number of features is decreased from 20 to 14 uncorrelated
features for the matrix Fmorning. In other words, the feature dimension is reduced
by 40%. Correlation based feature selection is carried out for each matrix F∗,
obtaining the matrices F∗, where ∗ ∈ {morning,midday, afternoon, evening}.

6.4.2 Variance based feature selection

Now, it is not because features are not strongly correlated that they have a strong
discriminating power for a classification problem. For this reason, a feature selection
based on variance is also applied. For this purpose, parallel coordinates is used. This
technique, based on the variability of the features [Steed 2012], is widely used in
multivariate data analysis [Johansson 2016]. In the parallel coordinates, there are
as many normalized axes as features.

For a given matrix of features F of dimensions (nP × ηc), whose ηc columns
represent the uncorrelated features that characterize the health status of nP indi-
viduals, there are η⊕

c features, η⊕
c ⊆ ηc, that preserve relevant details and present

significant variance between the nP individuals. To select the η⊕
c features, the vari-

ance of the ηc features is compared between the rows F(i, .), i = 1, . . . , nP of the
matrix F. Those features that do not show a significant variation are not selected
to form the final set of η⊕

c features, reducing the matrix F into the matrix F of
dimension (nP × η⊕

c ).
To illustrate the variance based feature selection, Figure 6.6 shows the plot of

parallel coordinates on the matrix Fmorning resulting from the correlation based
feature selection. The horizontal axis of Figure 6.6 represents the ηc weakly corre-
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represents the uncorrelated features ηc.

lated features and the vertical axis represents their normalized values. As shown
in Figure 6.6, the feature Skew_CD2 (corresponding to skewness extracted on the
detail coefficients at level 2) does not provide significant variance to distinguish
between the different operating states (healthy and big snail trails). Therefore, this
feature is not selected to form the final set of features η⊕

c . By discarding this fea-
ture, the matrix Fmorning that had 14 features is reduced to matrix Fmorning with
13 features, maintaining the relevant information to identify the different operating
conditions of the PV panels.

Variance based feature selection is applied to all matrices F∗, where ∗ ∈ {
morning, midday, afternoon, evening }, leading to four reduced feature matrices
F∗ of 13, 12, 11 and 16 dimensions respectively.

However, alternatively, feature transformation methods can be used.

6.5 Feature Transformation

Due to the high dimensionality (high number of features), of the matrix F∗ the com-
putational cost of this classification is very high. Therefore, feature transformation
methods are proposed to reduce the high dimensionality of features with minimal
loss of information. This feature transformation creates a compressed version of the
original feature matrix F∗ [Jolliffe 2002]. One of the main advantages of this pro-
cess consists of obtain a drastic decrease of the computational time of the learning
algorithms increasing their efficiencies and their capabilities to treat complex big
data.

Multiple algorithms for feature selections and dimensionality reduction are pro-
posed in the literature. Some of the best known approaches are Principal Com-
ponent Analysis (PCA) [Wang 2015, Tipping 1999, Haque 2019, Kurukuru 2020,
Esmael 2012, Xia 2012, Basnet 2020, Zhao 2020, Hajji 2021, Onal 2021], Iso-
metric Mapping (Isomap) [Tenenbaum 2000a]; Local Linear Embedding (LLE)
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[Roweis 2000, Wang 2015], Singular Value Decomposition (SVD) [Alter 2000];
Multiple Resolution Analysis (MRA) [Yi 2017b, Khoshnami 2018]; among many
others [van der Maaten 2008b, Schölkopf 1999, Ross 2008, Usman 2017, Xia 2012,
Donoho 2003, Ng 2001, Zhang 2004, Hyvärinen 2000, Huang 2019, Jenatton 2010].

As for the case of feature selection, in feature transformation, for a given generic
matrix of features F of dimensions (nP × ηb), whose ηb columns represent the
features that characterize the health status of nP individuals, a set of η⊕

c features,
where η⊕

c ⊆ ηb features that preserve relevant details for class discrimination can be
selected. The selection of features η⊕

c using feature transformation can be performed
using PCA or Isomap. These two algorithms are selected because they are widely
used in the field of feature transformation. As a result of the feature transformation,
a transformation of the matrix F∗ into the new matrix MF,∗ of dimensions nP × U

described as follows is obtained:

MF,∗ =


C1

I1,∗ . . . Cu−1
I1,∗

. . . CU
I1,∗

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

C1
InP ,∗ . . . Cu−1

InP ,∗
. . . CU

InP ,∗

 , (6.15)

where U is the number of latent components or the number of selected features ob-
tained as results of the PCA or Isomap, depending on the case. Each row MF,∗(i, .),
i = 1, . . . , nP of the matrix MF,∗ provides the signature of the health state of the
PV panel PVi. Each column MF,∗(., j), j = 1, . . . , U of the matrix MF,∗ provides
each of the latent components.

The description of the two algorithms selected for feature transformation, which
result in the matrices MP CA

F,∗ and M ISOMAP
F,∗ , is presented below.

6.5.1 Principal Component Analysis

Principal Component Analysis (PCA) is a powerful multivariate statistical tech-
nique that identifies and extracts uncorrelated attributes (named latent compo-
nents) from the multidimensional space of system variables. That is, the PCA
algorithm uses a linear combination of the original variables to construct the new
variables while maintaining the maximum variance information [Fadhel 2019a]. The
PCA represents the new variables in two subspaces [Fadhel 2019a]. The first, named
the main subspace or the "representation" subspace. The second named comple-
mentary or residual subspace in which noises and outliers are rejected.

The search for the PCA, in the multidimensional space of the M variables, is
carried out through a decomposition problem of the eigenvectors of the data co-
variance matrix. The first principal components, spanning the principal subspace,
are given by the first q dominant eigenvectors of the data covariance matrix. Those
dominant eigenvectors are associated with the highest q eigenvalues. The last un-
retained eigenvectors (M − q) define the residual subspace. In the representation
subspace containing the most significant variations, the eigenvectors are named load



6.5. Feature Transformation 193

vectors and the projection of the data onto these load vectors is named principal
component scores [Fadhel 2019a]. The set of the load vector and the component
score is named the search direction. The percentage of variance contained in each
principal component (PC) is expressed by its corresponding eigenvalue. Addition-
ally, each PC is aligned in a direction corresponding to the largest variation in the
data, starting with the first PC. Therefore, the principal components are ordered
from the most energized associated with the highest eigenvalue, to the least ener-
gized associated with the lowest eigenvalue. Finally, the main subspace is covered
by the majority of powered PCs, while the residual is covered by the remaining PCs
[Fadhel 2019a].

Without loss of generality and to simplify the notation, the dimensions of the
matrix F∗ will henceforth be expressed as N ×M , where N = nP and M = ((L+
1) × nF ). The matrix F∗ will be also named the matrix X. Let us consider that
we want to select the features with the highest variance from the matrix X, where
xj , j = 1, . . . , N is the jth variable. First, we must center (mean zero) and reduce
(unit variance) the variables for each observation ni, i = 1, . . . ,M , of xj as follows:

xi,cni = xj(ni) − (x̄j)
σj

, (6.16)

where (xj)c is the centered and reduced variable, (xj) and (σj) are respectively the
mean value and the standard deviation of (xj). With these values it is possible to
form the new centered and reduced data matrix Xc of dimensions (N ×M). Each
row Xc(j, .) of the matrix Xc provides the status information (healthy or snail trail)
of the nP panels PV, centered and reduced. Once Xc is obtained, the covariance
matrix is calculated as follows:

C = 1
N − 1Xc

T Xc, (6.17)

where Xc
T denotes the Xc transposed. The quality of the obtained representation

depends on the latent components retained in the main representation space. Let us
denote it by P as the column matrix of the charge vectors or linear transformation
matrix, which are arranged in descending order of their corresponding eigenvalues
[Fadhel 2019a]. The principal component scores are obtained by projecting the
original centered and reduced data into the new space generated with P obtaining
the matrix T of the principal component scores of dimensions (N × M). That
is, the linear transformation matrix P transforms Xc into a new matrix of latent
components T as follows:

T = PX, (6.18)

where, each column T(., i) of the matrix T provides a PC for the set of PV panels
nP .
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6.5.2 Isometric mapping

Alternatively to PCA, dimensionality reduction or features selection can be per-
formed using the Isomap. Isomap stands for isometric mapping. This method
approaches dimensionality reduction as the problem of creating a transformation
from high dimension to low dimension as a graph problem [Samko 2006]. Isomap
extends the metric multidimensional scale (MDS) [Hout 2013] by incorporating the
concept of geodesic distances imposed by a weighted graph [Bouttier 2003].

In the domain of graph theory, the distance between two vertices on a graph
corresponds to the number of edges in a shortest path connecting them. This
distance is also known as the geodesic distance [Bouttier 2003]. Isomap is intended
to preserve pairwise geodesic distances between conformations in a graph, that
is, in the lower dimension. The distances dX(i, j) between all pairs i, j of N
data points in the high-dimensional input space X are required as input to the
Isomap algorithm, generally measured using the standard Euclidean distance. The
algorithm outputs coordinate vectors Yi in a (lower) d-dimensional Euclidean space
Y that best represents the intrinsic geometry of the data. Dimensionality reduction
or feature selection using Isomap is based on three steps:

First step. The Isomap estimates the neighborhood graph. To obtain it, it
need to start determined each of its points which are neighbors in the manifold
M, based on the distances dX(i, j) between pairs of input points i, j in the input
space X. Then, having these input points, the set of neighbors for each point is
determined. To determine the neighbors, the K nearest neighbors (K-Isomap) can
be used for all those within a fixed radius ϵ (ϵ-Isomap) [Samko 2006]. Neighborhood
relationships are plotted as a weighted graph G over the data points, with weighted
edges dX(i, j) between neighboring points. As mentioned in [Samko 2006], if the
neighbors were determined using the K-Isomap method, the vertices in the graph
can have degree greater than K since the nearest K neighborhood relationship need
not be symmetric [Samko 2006]

Second step. The Isomap computes the shortest path graph given the neigh-
borhood graph. Isomap then estimates the geodesic distances dM(i, j) between all
pairs of points in the manifold by computing the shortest path lengths dG(i, j) in
G. dG(i, j) = dX(i, j) if i, j are joined by an edge, and dG(i, j) = ∞ in other-
wise. Then, for each value of ki, i = 1, . . . , N , all entries dG(i, j) are replaced by
min{dG(i, j), dG(i, k) + dG(k, j)} . The array of final values DG = {dG(i, j)} will
contain the lengths of the shortest paths between all pairs of points in G.

Third and final step. The Isomap constructs the lower dimensional embedding
using classical MDS to the graph distance matrix DG = {dG(i, j)}, constructing an
embedding of the data in a d-dimensional Euclidean space that best preserves the
estimated intrinsic geometry of the manifold. The coordinate vectors Yi for points
in Y are chosen to minimize the following cost function:

E = |τ(DG) − τ(DY)|L2 , (6.19)

where DY denotes the matrix of Euclidean distances {dy(i, j) = |yi −yj |} and |A|l2
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is the matrix norm. The τ operator converts distances to inner products, which
uniquely characterize the geometry of the data in a way that supports efficient
[Tenenbaum 2000b] optimization.

As it can be seen in the Isomap dimensionality reduction steps, only the free
parameter is the neighborhood factor K or ϵ depending on the method used.
The success of the Isomap method transformation lies in choosing an appropriate
value for these two parameters. Generally these parameters are selected manually
[Tenenbaum 2000b].

In order to provide an idea of the performance of some well-known supervised
and unsupervised machine learning algorithms, Annex A.2 presents a series of tests
with algorithms such as k-means and Random Forest (RF). These algorithms are
tested using the feature extraction and transformation techniques proposed in this
chapter. Taking into account the limitations that those algorithms demonstrated,
the proposal of advanced machine learning algorithms adapted to this problem
but that can be easily extrapolated to other domains makes sense. The advanced
machine learning algorithms proposed in this thesis are described in Chapters 7-9.

6.6 Discussion and Conclusions

The set of feature extraction, selection and transformation techniques presented in
this chapter demonstrated that they are capable of extracting small details from
the signals, increasing the richness of the predictor matrix that can be used for the
detection of snail trail faults and broken glass. In the case of fine faults such as the
snail trail, in Figure 6.4, in the detail coefficients the panels with snail trail begin to
stand out. This is extremely important since it is the first time that a fault detec-
tion study is carried out using artificial intelligence aimed at detecting this type of
fault. In addition, the proposed signal decomposition and dimensionality reduction
and selection methods based on correlation and variance managed to reduce the
number of features from the original features matrix by 40%. This reduction of fea-
tures while maintaining the pertinent information is key to guaranteeing accuracy
in fault detection, reducing the computational calculation time. The reduction of
computation is also a key aspect considering that the objective of all the approaches
proposed in Chapters 7-9 is to embark them in the new PV systems data acquisi-
tion system presented in Chapter 5. On the other hand, regarding the PCA and
Isomap methods are methods that when transforming to other spaces are capable
of highlighting features that were not visible in the original space and even depend-
ing on the number of latent components selected, the number of features can be
considerably reduced while also maintaining the information relevant.
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Performance, safety and reliability of photovoltaic plants are strongly linked to
the ability to detect abnormal loss of power production and faults as soon as they
appear. For these reasons, a major objective in this field is to develop intelligent
Fault Detection and Isolation (FDI) paradigms that may greatly benefit from En-
semble Learning (EL). Until now, these techniques applied on sustainable energy
sources as high photovoltaic PV power plants proved to be too complex. Never-
theless, recent advances of the scientific community make these techniques more
applicable and can hence ensure high-performance operation of PV systems. The
technique proposed, in this chapter, combines several learning models, namely the
Support Vector Machine (SVM), K-Nearest Neighbor (kNN) and Decision Trees
(DT), instead of using a single learning model. The combined model is aimed at
detecting classical faults but its own distinguishing property over existing models
is its capacity at detecting faults whose electrical features are similar to that of a
healthy panel. In the proposed methodology, first, a predictor matrix is built by ex-
tracting time-frequency characteristics (using wavelet decomposition) and statistics
from the string PV current signal. Then, due to the high dimension of the matrix
of predictors, two feature selection and dimensionality reduction algorithms (PCA
and Isomap) are used. Finally, the reduced predictor matrix is constituted between
the ensemble learning algorithms. This method is validated with a real PV string
of 8 panels (4 healthy and 4 with snail trail).
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Figure 7.1: Description of stages of the proposed approach. a) Data acquisition and
preprocessing. b) Feature extraction. c) Feature selection. d) Fault detection and
classification based on Ensemble Learning.

7.1 Approach description

It is important to mention that as demonstrated in Chapter 2, few studies have
focused on the detection of fine faults such as snail trail, due to the high similarity
of the electrical signal of this fault compared to the electrical signal of a healthy
panel. It is for this reason that as a contribution to the detection of snail trail faults,
this chapter presents a new approach that takes advantage of multiple learning
algorithms, named Ensemble Learning (EL). EL is a new approache assembling
properties of different techniques with good trade-offs [Sagi 2018]. The main idea
of this proposed method is to combine several models in a meta-algorithm combining
most properties of each technique in the aim to improve the classification results of
any of the base fault detection techniques. To combine the results of the diagnosis,
currently there exists multiple options such as average, weighted average, majority
voting and weighted majority voting.

A summary of the proposed methodology is presented in Figure 7.1.
As shown in Figure 7.1, it is first necessary to capture the panel string current

and perform the respective pre-processing. This stage is named Data acquisition
and pre-processing. Once this data acquisition stage is accomplished, in order to
fully explore and then exploit the richness of the effect of any change in the electrical
current signal of each PV panel strongly connected with any change on weather con-
ditions in particular in level and quality of irradiation at different times of the day,
the signals are divided into 4 time slices named: Morning, Midday, Afternoon and
Evening as proposed in [Sepúlveda Oviedo 2022]. Then, the third stage is concerned
with Feature extraction, working under the assumption that some faults may be vis-
ible in the time domain and others in the frequency domain, a multiresolution signal
decomposition based on the discrete wavelet transform over each time slice is used
to analyses them simultaneously. As a product of this decomposition, a set of detail
and approximation coefficients are obtained on which the extraction of statistical
characteristics is performed. The features obtained from the 4 time slices are then
put together in a matrix of predictors noted F ∗. This choice allows improvements on
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the performance of diagnosis algorithms. The fourth stage named Feature selection
is performed. In that stage each corresponding matrix F ∗ is subjected to a feature
selection process based on a space transformation (Isomap) [Tenenbaum 2000b] and
Principal component analysis (PCA) [Esmael 2012]. This reduction of dimension-
ality allows to compress data representing an important quantity of information
with a major part not pertinent or is redundant to obtain at the end only a signif-
icantly smaller number, keeping only the pertinent information. Finally, the stage
Fault detection and classification based on Ensemble Learning is carried out. In
that stage, the new reduced matrix F can be used as input to a set of machine
learning algorithms (K Nearest Neighbors (KNN), Support-vector machine SVM
and Decision tree learning) that detect and classify PV system faults. To reach
good results, the 3 algorithms are combined based on the method named "majority
voting" in the approach named ensemble learning (EL).

The objective of the approach, presented in this chapter, is to improve the re-
sults of fault detection and classification in PV systems even in cases where there
is a reduced number of PV panels (2 or more panels). In addition, improving the
computational time taken by conventional fault detection systems while increasing
their accuracy are other objectives of this approach. The photovoltaic platform
used in this investigation has 16 PV modules. These modules are divided into 8 for
training and 8 for testing. The classifiers used in this chapter are trained using 8
modules, 4 in a healthy state and 4 with the snail trail fault. The methodology is
validated to date from a series of 8 panels, different from those of the training, of
which 4 panels are healthy panels and 4 panels show traces of discoloration (snail
tracks or snail trails). Both the training signals and the signals for testing and
validation were captured for a period of one day, in each of the seasons of the year.
Information needed is only one variable. The choice is to measure the current of
each panel obtained with a Tigo optimizer and its associated automatized data
acquisition able to capture and store data. The objective is to evaluate and then
validate the proposed approach with the help of an existing data acquisition ob-
tained with a commercial product including its available data acquisition described
in the next section.

In order to fully explore and then exploit the richness of the effect of any change
in the electrical current signal of each PV panel strongly connected with any change
on weather conditions in particular in level and quality of irradiation at different
times of the day, the signals are divided into 4 time slices named: Morning, Midday,
Afternoon and Evening as proposed in [Sepúlveda Oviedo 2022].

Each of the stages of the methodology is explained in detail below.

7.2 Dataset

The fault detection presented in this chapter is performed on a photovoltaic plant
located in the Adream building of the LAAS-CNRS laboratory in Toulouse, France.
The PV plant is made up of 16 PV modules with reference SLK60P6L, with the
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capacity to generate power between 205 and 240 Wp. Each of the modules is
instrumented with a commercial data acquisition system provided by the company
Tigo1.

This Tigo platform is capable of capturing the voltage and current of each
module. However, for this study only the electrical current signal of each PV
module is used. These 8 current signals build a current matrix named F∗ for each
time slice. Tigo’s data acquisition system captures current signals with a sampling
time of one minute. The signals used in this chapter are captured in the year 2020
on August 6 between 7:00 a.m. and 8:00 p.m., November 6 between 7:45 a.m. and
5:15 p.m., February 6 between 8:00 a.m. and 6:00 p.m. and finally on May 6
between 7:00 a.m. and 8:00 p.m. These dates were carefully selected approximately
in the middle of each of the seasons of the year, to measure the robustness of the
proposed approach. The data began to be captured every day as soon as the PV
panel began to produce. The data capture in each day is finished once the panel
stops producing. The signals captured on each day of each season are shown in
Figure 7.2.

In the same Figure 7.2, it is possible to observe the 4 time slices (Morning,
Midday, Afternoon and Evening). The electrical signals framed in the orange color
in Figure 7.2 correspond to the healthy PV panels. Other signals in red color corre-
spond to PV panels with snail trail faults. This type of default represents corrosion
of the sheet of the encapsulation surface [Li 2021c]. Although at the beginning
this fault does not cause a severe or critical reduction in the performance of the
photovoltaic panels, with time, if the panels continue to be exposed to the same
conditions of solar radiation, the fault can evolve producing cracks or microcracks
in the PV cells that can even completely stop the production of the PV system
[Kim 2016, Koentges 2014]. As it can be seen in Figure 7.2, the behavior of pho-
tovoltaic panels with a snail trail (Red color) is very similar to that of healthy
photovoltaic panels (orange) in all scenarios (Summer, Fall, Winter and Spring).
Once the data is captured, the feature extraction is performed.

7.3 Selected features for fault detection

The feature extraction and selection used in the approach proposed in this chapter is
based on some of the algorithms explained in Chapter 6. First, feature extraction is
performed using multi-resolution signal decomposition with 3 decomposition levels.
For the selection of the mother wavelet, in this chapter, all wavelet families were
tested and the mother wavelet Daubechies38 (db38) due to its computational speed
and good decomposition result. Then the extraction of statistical features Mean
µ, Skewness (F1), Kurtosis (F2), Power spectral density (F6) and Entropy (F7),
explained in Section 6.3.2, is carried out. Finally, to reduce the dimensionality
of the matrix or select the appropriate features, the PCA and Isomap methods,
explained in Sections 6.5.1 and respectively, are used independently. In the case

1To obtain the description of this system, visit here

https://fr.tigoenergy.com/ts4
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Figure 7.2: Electric current signals from 8 photovoltaic modules used in the training
of the proposed methodology. The signals are captured during a full day in the 4
seasons of the year. for different health states: healthy (orange) and snail trails
(red). The data is captured with a frequency of one minute. The 4 time slices
proposed [Sepúlveda Oviedo 2022] and adopted in this chapter are represented using
dotted lines.
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study, applying feature selection to MF,∗ obtained after feature extraction, where
∗ ∈ { morning, midday, afternoon, evening }, the matrices MP CA

F,∗ and M ISOMAP
F,∗

are obtained respectively, as explained in the Section 6.5.

7.4 EB-diag composition

In this section, the main details of machine learning techniques used in this work
are described. The classification methods are applied in parallel to the reduced
matrices resulting from the PCA and Isomap methods MP CA

F,∗ and M ISOMAP
F,∗ and to

the matrix without the feature selection MF,∗. Performing the classification on the
matrices MP CA

F,∗ and M ISOMAP
F,∗ significantly reduces the calculation time, since the

high dimensionality of the features is reduced with a minimum loss of information.
A description of the three methods that constitute the Ensemble Learning method
is presented below.

7.4.1 k-Nearest-Neighbor

The non-parametric algorithm K-Nearest-Neighbor (kNN) is one of the most used
models for classification thanks to its features and simplicity [Zhang 2007]. kNN
finds the nearest neighbors for a given sample based on some distance metric of
interest [Wang 2020]. To determine the class kNN, it is considered that the samples
of known class are x = [x1x2, . . . , xk] and those of the data to be classified are
y = [y1, . . . , yk]. According to [Dhibi 2021], the distance between the two samples
x and y is defined as:

d(x, y) =

√√√√ k∑
i=1

(xi − yi)2, (7.1)

Then the kNN assigns the element to a class in which the distance of formula-
tion (7.1) is minimum. The only free parameter to fit is the number of k nearest
neighbors in the training sample space. The proper choice of k has a significant
impact on the diagnosis performance of the kNN algorithm. In the simplest case
where k = 1, the object-oriented class is the nearest neighbor class of the object.
On one hand, as the value of k increases, the model can tolerate more noise. That
is, a large k reduces the impact of variance caused by random error, but risks miss-
ing a small but important pattern. On the other hand, a small value of k makes
the model more sensitive to noise. The key to choose an appropriate value of k is
to strike a balance between overfitting and underfitting [Zhang 2014]. Overfitting
occurs when the model learns complex details and noise from the training data to
the point where it detracts from its effectiveness on new data [Zhang 2014]. On
the other hand, when a machine learning model is underfitting, it does not learn
correctly from the training data and has serious difficulties classifying new data
[Zhang 2014]. Figure 7.3 shows an example of the K-Nearest-Neighbor (kNN) clas-
sification.
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Figure 7.3: Example of classifying a new sample using K-Nearest-Neighbor (kNN).

This chapter uses the Euclidean distance, however there are other interesting
metrics such as the Hamming distance and the Manhattan distance [Ruan 2017].

7.4.2 Support Vector Machines

The support vector machine (SVM) is one of the most powerful, complex
and widely applied classification algorithms for fault diagnosis [Cervantes 2020]
[Natarajan 2020]. SVM uses, unlike passive learning methods, an objective function
obtained from the training data to make the classification decisions. The main idea
of SVM is to map the input space training data into a higher dimensional feature
space through a mapping function and then apply linear SVM on this space. In
general, the SVM classifier seeks to find an optimal separating hyperplane as a deci-
sion plane, maximizing the margin between two classes. As an example to facilitate
the understanding of the SVM algorithm, a two-dimensional plane is analyzed.

In this two-dimensional case, the SVM finds a straight line, also named the
optimal classification surface or hyperplane H. This is the line that separates the
samples into two types of classes. In this method there are also so-called support
vectors. Each support vector corresponds to the closest sample to the hyperplane H
[Cervantes 2020]. Figure 7.4 illustrates the hyperplane H and the support vectors
of SVM.

In Figure 7.4 the blue dots and the red squares represent two different sample
types. H1 and H2 are the two parallel hyperplanes which are the support vectors
of the two sides. As it can be seen in Figure 7.4 there is also the concept of margin.
A margin, sometimes named a class interval, represents the distance between the
hyperplanes H1 and H2.

To formally understand the SVM, suppose we have two classes of balanced
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Figure 7.4: Example of classification hyperplane representation of SVM algorithm.
H1 and H2 correspond to the hyperplanes of classes 1 and 2 respectively. H corre-
sponds to the optimal hyperplane.

data x = [x1, . . . , xn] and y = [y1, . . . , yn], n = 1, . . . , N , where N is the total
number of samples in each class. A pair of samples is defined as (xi, yi). The
optimal hyperplane divides linear separable samples (xi, yi) into two categories and
is formally defined as:

H = (WT x) + b = 0, (7.2)

where W is a vector perpendicular to the hyperplane that represents the weight
vector and determines the direction of the hyperplane. b denotes the bias vector or
displacement term, which determines the distance between the hyperplane and the
origin. The distance from any point in the sample space to the hyper-plane can be
written as:

Y = |WT x + b|
|W|

, (7.3)

The sum of the distance between the two heterogeneous support vectors and
the hyper-plane is:

Y = 2
|W|

, (7.4)

To find the maximum margin, that is, to find W and b the following constrained
optimization problem must be solved:

min
W,b

1
2 |W|2, s.t yi(WT xi + b) ≥ 1, i = 1, . . . , n, (7.5)
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The basic SVM model assumes that the training samples are linearly separable
in the sample space. This means that there is a hyperplane to divide the samples
into different categories. However, it is often difficult to find the proper kernel
function for Equation (7.5) in the real application [Cervantes 2020]. The Kernel
Function can be seen as a method used to take data as input and transform it into
another required form [Chen 2014]. As a solution to this problem support vector
machines are allowed to make errors in some samples. This introduces the concept
of “soft margin”. Vector machines compatible with the “soft margin” are defined
according to [Chapelle 2001] as:

min
W,b,ξ

1
2 |W|2 + C

n∑
i=1

ξi, s.t yi(WT xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n, (7.6)

where ξi. is the distance of xi from the corresponding class’s margin if xi is on the
wrong side of the margin, otherwise zero. As it can see Equation (7.5) required
all samples to satisfy the constraint, which is named “hard margin” while Equa-
tion (7.6) While the margin is maximized, the number of samples that do not satisfy
the constraint must be minimized. For this, Lagrangian multipliers are introduced
in Equation (7.6), obtaining:

L(W, b, α, ξ, µ) = 1
2 |W |2 +C

n∑
i=1

ξi +
n∑

i=1
αi(1 − ξi − yi(WT xi + b)) −

n∑
i=1

µiξi, (7.7)

where αi ≥ 0, µi ≥ 0 is the Lagrange multiplier. Solving the Equation 7.7 the
optimal classification function is obtained as follows:

f(x) = sign (WT x) + b) =
(

n∑
i=1

αiµiyiK(xi, x) + b

)
, (7.8)

where x denotes the input vector to be classified. K is the Kernel function and
where αi ≥ 0, µi ≥ 0 and ξi ≥ 0.

7.4.3 Decision Trees

Tree-based ML techniques are among the most widely used nonlinear models in
many applications, where Random Forest (RF) and Decision Tree (DT) are the
most popular having in some cases an accuracy greater than that of neural networks
[Lundberg 2020]. The DT model uses two types of nodes, which are the decision
node and the leaf node. Decision nodes have multiple branches and are used to
make any decision, while leaf nodes are the result of these decisions [Mahesh 2019].
An illustration of these nodes is presented in Figure 7.5.

DTs are successive models where a numerical feature is compared to a threshold
value at each test. In general, conceptual rules are much easier to construct than
numerical weights for a neural network of connections between nodes. DTs are
mainly used for clustering and data mining purposes [Anuradha 2014].
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Figure 7.5: Structure of the Decision Tree (DT) classifier. The DT classifier is
composed of two types of nodes. The first type corresponds to the decision node
and the second to the leaf node.

The Decision Tree model is also a positive learning model, more exactly, it
is defined as a tree-structured classification model including common algorithms
such as the Iterative Dichotomies 3 (ID3), Successor of ID3 (C4.5), Automatic Chi-
Square Interaction Detector (CHAID), Classification and Regression Tree (CART),
Generalized Unbiased Interaction Detection and Estimation (GUIDE), Multivariate
Adaptive Regression Splines (MARS), Classification Rule with Unbiased Interac-
tion Selection and Estimation (CRUISE), Conditional Inference Trees (CTREE) or
Unbiased and Efficient Statistical Tree (QUEST)[Jiao 2020].

In the methodology proposed, algorithm C4.5 is selected due to its results in
detecting faults in PV systems [Benkercha 2018]. The C4.5 algorithm extracts the
conditional entropy in Equation (7.9) and the information using the entropy in
Equation (7.10) of the sample as follows:

H(X) = H(p) = −
∑

i

Pilog2Pi, (7.9)

H(Y |X) =
∑

i

PiH(Y |X = xi), (7.10)

where Pi is the ratio of the sample number of the subset and the i-th attribute
value. That is, Pi is the probability that the sample X belongs to the category i.
Resulting in the information gain equation as follows:

G(D,A) = H(D) −H(D|A), (7.11)

where D and A are the whole sample set and the specific sample set respectively.
The C4.5 classifier uses the information gain ratio to establish the information
entropy of D over A.
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To carry out ensemble learning it is necessary to use a final label selection
strategy. The final label selection strategy is explained below.

7.4.4 Majority voting

The three classifiers described above (kNN, SVM, and DT) can be considered as
"weak learners" that can be integrated to create an improved learner by training
them to work together [Zhang 2020]. This study uses the principle of majority
voting (MV). In this principle, the prediction results of three diagnosis models
are compared to determine the final class designations. Weighted majority voting,
relative majority voting and absolute majority voting can be used to carry out this
vote. For example, suppose the category or class, to which the panels belong, to be
predicted is Y = {y1, . . . , ynP }, where for each predicted sample x, the predicted
results of the 3 weak learners (kNN, SVM and DT) are (h1(x), h2(x), h3(x)). The
weighted majority voting method is based on multiplying the votes of the weak
classifiers by a weight wi, i = 1, . . . , Nwl, where Nwl is the number of weak learners.
Then, the multiplication products of each class are added together and that result
is used to predict the class with the highest value as the final class. The final label
is named H(x) and is defined as follows:

H(x) = yargmaxj

Nwl∑
i=0

wih
j
i (x), (7.12)

where j is the number of categories. Alternatively, there is the method named
relative majority voting. This method selects the category with the highest number
of votes among the results predicted from the sample x by the Nwl weak learners.
The final category cj with the most votes is chosen. In the event that two classes
have the same number of votes, the final category is randomly selected between the
two classes. Relative majority voting is defined as follows:

H(x) = yargmaxj

Nwl∑
i=0

hj
i (x), (7.13)

In the same way as the relative majority voting method, the absolute majority
voting method can only generate the final label if the highest voting rate of a certain
category exceeds 50%, otherwise, it refuses to issue a prediction. Relative majority
voting is adopted for this investigation due to its interesting results in fault detection
[Zhang 2020] and the non-reliance on weights wi being assigned arbitrarily. In the
Relative majority voting method, the healthy and snail trail labels are used. An
example of classification of a current signal of a Snail Trail panel is presented in
Figure 7.6

The classification results for the Nwl = 3 weak learners (kNN, SVM and DT)
and the EL method are presented and illustrated through the current signals of 8
PV modules different from those used for training. The current signals are captured
under the same conditions as the signals presented in Figure 7.2.
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Figure 7.6: Example of fault classification of a PV panel with snail trail using EL
based on Majority voting.

7.5 Discussion and Conclusions

The selected characteristics with significant variance (obtained with the dimension-
ality reducers) are a priori those that can be useful to solve problems of detection
and classification of the health status of photovoltaic panels. These features are
processed by the feature selection algorithms and then processed by the classifi-
cation methods. All algorithms (kNN, SVM, DT and EL) are trained and tested
with the same photovoltaic panels. Then, the algorithms are tested with the signals
presented in Figure 7.7

To evaluate the degree of predictions of the classification algorithms, number
of panels correctly classified, the F value and the confusion matrix are used. The
Fvalue metric does not take into account true negatives (TN). For example, in a
classification example with two classes (class 1 and class 2), a true negative is
generated when a sample (in this case, a PV panel) that does not belong to a class
for example 1 is effectively classified in class 2. The Fvalue is contained between
0 and 1, with 1 being the best performance and 0 being the worst. The Fvalue is
defined as follows:

Fvalue = 2 ∗ pr ∗ re
pr + re

, (7.14)

where the term pr, represents the precision that can be seen as the cost of false
positives and is defined as follows:
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Figure 7.7: Electric current signals from 8 photovoltaic modules used in the testing
of the proposed methodology. The signals were captured during a full day in the
4 seasons of the year. The data is captured with a frequency of one minute. The
4 time slices proposed [Sepúlveda Oviedo 2022] and adopted in this chapter are
represented using dotted lines.
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pr = TrueP os

(TrueP os + FalseP os) , (7.15)

The term re represents the recall, this recall is the estimate of the number of
panels correctly classified based on the total number of panels belonging to the
class. The recall is defined as follows:

re = TrueP os

(TrueP os + FalseNeg) , (7.16)

Tables 7.1-7.4 present the results of the classification methods, for each season
of the year, as a function of Fvalue. The values reported in Tables 7.1-7.4 are di-
vided by each time slice. In the first scenario (without approach), the extraction of
statistical features is performed directly on the current signal. That is, no signal
decomposition and no dimensionality reduction (NSD_NDR). In the second sce-
nario, signal decomposition is performed using MSD, statistical feature extraction,
and dimensionality reduction using PCA and Isomap.

Season Temporal Slice Methodology kNN SVM DT EL

Summer

Morning
Without Approach NSD_NDR 0,62 0,62 0,5 0,71

New Approach
PCA 0,73 0,7 0,53 0,83

Isomap 0,7 0,71 0,54 0,8

Midday
Without Approach NSD_NDR 0,63 0,65 0,53 0,72

New Approach
PCA 0,63 0,71 0,54 0,78

Isomap 0,66 0,65 0,54 0,75

Afternoon
Without Approach NSD_NDR 0,62 0,64 0,54 0,72

New Approach
PCA 0,63 0,71 0,59 0,76

Isomap 0,68 0,64 0,55 0,74

Evening
Without Approach NSD_NDR 0,63 0,63 0,51 0,7

New Approach
PCA 0,67 0,66 0,53 0,71

Isomap 0,67 0,67 0,53 0,7

Table 7.1: Fault detection and classification results (Fvalue) for signals captured in
Summer. In Without Approach scenario, the statistical characteristics are extracted
directly from the raw current signal. In New approach scenario, the full approach
(signal decomposition, statistical feature extraction, and dimensionality reduction
using PCA and Isomap) is performed.

As it can be seen in Tables 7.1-7.4, the performance of the classifiers increases
with the use of the method proposed in this work. In a complementary way, only on
the classification results using the proposed methodology with the PCA method,
the confusion matrix is used. The confusion matrix is only used over the PCA
method, because in all the scenarios presented in the Tables 7.1-7.4, the PCA
method outperforms the Isomap method. The confusion matrix is a widely known
tool that allows visualizing the performance of a supervised learning algorithm or
classification algorithm [Mahesh 2019]. In this matrix, each column represents the
number of predictions of each class, while each row represents the instances in the
actual class. This allows to see what types of successes and errors our model is
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Season Temporal Slice Methodology kNN SVM DT EL

Fall

Morning
Without Approach NSD_NDR 0,63 0,64 0,5 0,72

New Approach
PCA 0,67 0,73 0,53 0,81

Isomap 0,63 0,63 0,5 0,76

Midday
Without Approach NSD_NDR 0,62 0,64 0,54 0,72

New Approach
PCA 0,66 0,67 0,6 0,81

Isomap 0,67 0,71 0,51 0,8

Afternoon
Without Approach NSD_NDR 0,62 0,65 0,53 0,7

New Approach
PCA 0,68 0,64 0,59 0,81

Isomap 0,62 0,65 0,54 0,76

Evening
Without Approach NSD_NDR 0,62 0,62 0,5 0,7

New Approach
PCA 0,7 0,69 0,57 0,81

Isomap 0,67 0,7 0,5 0,79

Table 7.2: Fault detection and classification results (Fvalue) for signals captured
in Fall. In Without Approach scenario, the statistical characteristics are extracted
directly from the raw current signal. In New approach scenario, the full approach
(signal decomposition, statistical feature extraction, and dimensionality reduction
using PCA and Isomap) is performed.

having when going through the learning process with the current data as a function
of the time of each PV panel of the string. Figure 7.8 shows the results of the
classification algorithms for each season of the year, after dimensionality reduction
using PCA. The results are presented in the form of a confusion matrix where 0 is
the healthy class and 1 is the class of the panels with snail trail. In this chapter,
it is considered that if at least in a time slice the sample is classified as faulty, the
final label is assigned as a faulty panel.

As it can be seen in Tables 7.1-7.4 and in Figure 7.8 the algorithm EL is capable
of clearly discriminating between the 2 types of panels (healthy and snail trail),
reducing the information to be processed to the essential, eliminating redundant
or irrelevant information. In addition, it can be seen how the Ensemble learning
approach proposed in this work is much superior to that of the kNN, SVM and
DT algorithms. In addition, the algorithm for the use of time slices includes the
analysis of the evolution of the faults detected over time.

The various contributions highlighted above make both the proposed approach
effective to detect the faults of PV systems and is likely to reduce maintenance
costs significantly. Also, the ensemble learning approach (EL) is generic and can
be easily extrapolated to other diagnosis problems in other domains. Finally, the
approach proposed in this chapter is easily integrated with devices such as inverters
that capture current measurements of strings, panels, or arrays, etc. as a function
of time.

The approach proposed in this chapter is aimed at making a significant con-
tribution to the preventive maintenance of PV systems. An improvement in the
preventive maintenance of the plants translates into an increase in the guarantee of
continuous production of these PV systems. This becomes critical when taking into
account that PV systems distribute around 2% of the total energy consumption in
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Figure 7.8: Confusion matrix of the results of the classification algorithms for each
season of the year, after dimensionality reduction using PCA. The class 0 corre-
sponds to healthy panels and the class 1 corresponds to panels with a snail trail.
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Season Temporal Slice Methodology kNN SVM DT EL

Winter

Morning
Without Approach NSD_NDR 0,63 0,64 0,54 0,71

New Approach
PCA 0,7 0,75 0,54 0,77

Isomap 0,67 0,65 0,57 0,75

Midday
Without Approach NSD_NDR 0,63 0,63 0,54 0,72

New Approach
PCA 0,73 0,74 0,54 0,74

Isomap 0,65 0,67 0,5 0,72

Afternoon
Without Approach NSD_NDR 0,64 0,65 0,51 0,71

New Approach
PCA 0,64 0,74 0,57 0,74

Isomap 0,71 0,68 0,6 0,73

Evening
Without Approach NSD_NDR 0,61 0,64 0,5 0,7

New Approach
PCA 0,69 0,72 0,59 0,85

Isomap 0,72 0,67 0,54 0,74

Table 7.3: Fault detection and classification results (Fvalue) for signals captured in
Winter. In Without Approach scenario, the statistical characteristics are extracted
directly from the raw current signal. In New approach scenario, the full approach
(signal decomposition, statistical feature extraction, and dimensionality reduction
using PCA and Isomap) is performed.

the world and present losses of more or less 18.9% per year due to the occurrence of
faults. Also, this type of chapter is vital considering that the growth of photovoltaic
energy is expected to continue during the coming decades, and it is even estimated
that by 2050 photovoltaic energy will supply around 11 % of global electricity gen-
eration and reduce 2.3 Gigatonnes (Gt) of CO2 emissions per year. Similarly, it is
important to highlight that this work proposes and develops an approach based on
machine learning that only needs a set of MPP current signals over time.

The approach proposed in this chapter uses only the current signal of the panels,
a reduced number of samples, as well as a reduced number of features that greatly
reduce the costs of data collection, data storage and computation time. Further-
more, the diagnosis process proposed here proved to be computationally simple and
efficient. This approach is validated using a real string of 8 PV modules and its
efficiency is validated by separating two different health scenarios: healthy and snail
trail. Another interesting aspect is that this approach is able to detect this type of
fault even in time slices such as (Morning and Afternoon) where the irradiation is
lower and therefore it is more difficult to diagnose faults. These results on those two
time slices are tested on different days of different months to check its generality.
In all cases, a result consistent with that presented in this chapter is obtained.

Another interesting aspect is that this approach is capable of detecting this type
of fault even in time slices such as Morning and Afternoon, (see Tables 7.1-7.4)
where the irradiation is lower and therefore it is more difficult to diagnose faults.
These results demonstrate its high potential to classify or discriminate panels with
faults whose power reduction is weak, but which may be the cause of other severe
faults, even under low irradiation conditions. The analysis by time slices is another
interesting aspect of this approach, since it considers that the detection of a fault
in a time interval can become a serious fault later on or disappear simply causing
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Season Temporal Slice Methodology kNN SVM DT EL

Spring

Morning
Without Approach NSD_NDR 0,61 0,62 0,5 0,7

New Approach
PCA 0,66 0,67 0,61 0,81

Isomap 0,63 0,65 0,61 0,76

Midday
Without Approach NSD_NDR 0,63 0,63 0,55 0,71

New Approach
PCA 0,65 0,72 0,58 0,79

Isomap 0,7 0,65 0,6 0,71

Afternoon
Without Approach NSD_NDR 0,62 0,63 0,53 0,72

New Approach
PCA 0,69 0,64 0,59 0,81

Isomap 0,63 0,67 0,6 0,76

Evening
Without Approach NSD_NDR 0,63 0,64 0,55 0,71

New Approach
PCA 0,63 0,71 0,62 0,83

Isomap 0,67 0,69 0,57 0,79

Table 7.4: Fault detection and classification results (Fvalue) for signals captured in
Spring. In Without Approach scenario, the statistical characteristics are extracted
directly from the raw current signal. In New approach scenario, the full approach
(signal decomposition, statistical feature extraction, and dimensionality reduction
using PCA and Isomap) is performed.

a slight loss of performance. Therefore, this approach provides a fault evolution
monitoring tool that directly contributes to preventive and corrective maintenance
of large PV plants. This approach succeeded in detecting snail trail type faults with
great precision, which until today, can only be detected by regularly visiting the
photovoltaic plant, which is extremely more expensive.

Finally, because this approach does not require a high computational capacity,
it can be easily integrated as an embedded system in photovoltaic inverters, or data
acquisition systems or other similar data acquisition systems from other domains.
The data storage space required for the predictor matrix is reduced, but since this
approach can be extrapolated to larger time slices according to the desired scale,
this system can be easily integrated with databases on local servers, converting the
control and/or data acquisition systems into powerful fault detection and location
tools.
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Diagnosis aims at predicting the health status of components and systems. In
photovoltaic (PV) systems, it is vital to guarantee energy production and extend
the useful life of PV power plants. Multiple diagnosis algorithms are proposed for
this purpose in the literature. The accuracy of these algorithms depends directly
on the quality of the data with which they are adjusted or trained, i.e., the features.
In this chapter, an innovative approach for diagnosis in PV systems is proposed,
which includes a feature selection stage. This approach first discriminates severely
affected PV panels using basic electrical features. In a second stage, it discriminates
the other faulty panels using more elaborated time-frequency features and select-
ing the most relevant features through correlation and variance analysis. Finally,
the approach diagnoses the health status of PV panels using a nonlinear regression
method named partial least squares. This later is then combined to linear discrimi-
nant analysis and compared. The approach is validated with real current data from
a PV plant composed of 12 PV panels with a power between 205 and 240Wp in three
health states (broken glass, healthy, big snail snails). The results obtained show
that the proposed approach efficiently diagnoses the three health states. It deter-
mines the level of degradation of the panels, which indicates priorities to corrective
and predictive maintenance actions. Furthermore, it is cost-effective since it uses
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Figure 8.1: The five stages of the proposed approach. i) Data acquisition and
preprocessing; ii) DTW Hierarchical clustering; iii) Feature extraction; iv) Feature
selection; and v) Health status diagnosis.

only electrical measurements that are already available in standard PV data acqui-
sition systems. Above all, the approach is generic and it can be easily extrapolated
to other diagnosis problems in other domains.

8.1 Approach description

It is important to remember that, as explained in Chapter 2 and Chapter 3, in recent
years multiple fault detection techniques are proposed. However, it is interesting to
note that in these works:

• No special attention is paid to the process of feature extraction for training

• These approaches have not been tested on faulty PV panels whose fault sig-
nature is similar to that of healthy panels

• No special attention is paid to fault detection under low irradiation conditions
such as at the beginning and end of the day.

• Reduced computational time

• Variety of faults detected

As a contribution to solving the issues mentioned above, this chapter presents a
new approach for health status diagnosis in PV systems. Figure 8.1 illustrates the
five stages of the proposal.

As shown in Figure Figure 8.1, it is first necessary to capture the panel string
current and perform the respective pre-processing. This stage is named Data ac-
quisition and pre-processing. Once this data acquisition stage is accomplished, the
second stage named DTW Hierarchical clustering is performed. This stage ap-
plies the Hierarchical Clustering (HC) [Nielsen 2016] to the time series issued from
the captured signals, for which the time series similarity index of Dynamic Time
Warping (DTW) [Wang 2019, Jeong 2011], explained in Section 8.3.1, is used as
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Figure 8.2: Behavior of the current over one day for different health statuses:
healthy (yellow), broken glass (blue), and big snail trails (red) for a period of 13
hours every minute.

distance. This stage performs a coarse grain discrimination, aiming to separate the
PV panels in two groups, those whose production is heavily affected (cluster A) and
the others (cluster B). The third stage is concerned with feature extraction. It is
intended to be carried out only on cluster B to achieve refined discrimination. This
stage leverages signal decomposition with the Multi-resolution signal decomposition
based on Discrete Wavelet Transform (DWT) [Yi 2017c, Cesar 2017], explained in
Section 6.3.1, to generate a set of features. Then a Features based on signal charac-
terization is carried out, using the features F1-F5 exposed in the Section 6.3.2. The
fourth stage named feature selection uses the Two-stage cascading dimensionality
selection and reduction method proposed in Section 6.4 based on the correlation
and variance analysis to select the appropriate features. Finally, the fifth stage per-
forms the health status diagnosis of the PV system by two methods. It first uses the
Partial Least Squares (PLS) algorithm as a diagnosis method based on a regression
model. Then, this stage uses the PLS latent components, obtained as a product of
the dimensionality reduction of PLS, as input to the Linear Discriminant Analysis
(LDA) algorithm to evaluate the results of the diagnosis with the PLS algorithm
and to perform an alternative diagnosis of the health status of the PV panels.

8.2 Dataset

Similar to the algorithm in Chapter 7, the approach proposed in this chapter is
conducted using only the data from the current signal. The difference is that the
number of panels decreases from 16 to 12 and the number of health states (labels of
samples) is increased to 3 (healthy, snail trail, broken glass). These 12 panels build
a database of 12 current signals captured in parallel with a sampling time of one
minute for 13 hours from 7:00 a.m. to 8:00 p.m. on June 25, 2020. For a PV panel
PVi, the data takes the form of a time series denoted by Ii{1:nI} = {ii,t1 , . . . , ii,tnI

},
where nI is the number of samples of the i − th time series that has a sampling
period of one minute and ti, i = 1..nI , is the date of the sample. The analysis is
carried out in a time window of one day. However, it is possible to use the same
methodology on different time slices. Figure 8.2 presents the PV panel current
behaviors over one day for different health statuses after data cleaning.

The blue color corresponds to the PV panels with a broken glass fault, the
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yellow color corresponds to the healthy PV panels and the red color to the big snail
trail fault. The big snail trail represents corrosion of the sheet of the encapsulation
surface and although it does not significantly decrease the performance of the PV
panels, it can be the cause of fractures or micro cracks in the modules that reduce
the production of a PV panel. As shown in Figure 8.2, the behavior of the PV
panels with a big snail trail is very similar to that of healthy PV panels.

8.3 DTW Hierarchical clustering

In this stage, Hierarchical clustering (HC) is used to construct the two clusters A
and B allowing to separate the panels severely affected data from the other panels
data (cf. Figure 8.1) based on the similarity of the current time series Ii{1:nI} of the
different PV panels PVi, i = 1, . . . , nP . The time series similarity index is taken
as the Dynamic time warping (DTW) index due to its well-known performance
[Lines 2015, Li 2021d].

In the following subsections, HC and DTW are presented for generic time series
that are then instantiated to the current times series Ii{1:nI} of each PV panel PVi,
i = 1, . . . , n of our case study.

8.3.1 Dynamic Time Warping

DTW is a well-known technique that is based on the principle of dynamic pro-
gramming to deform two temporal sequences in a non-linear way and find optimal
alignments between them [Jun 2011, Tanaka 2016]. To measure the similarity be-
tween two time series S{1:ηs} and T{1:ηt} the matrix of distances D of dimensions
(ηs × ηt) is built. Each entry d(i, j) corresponds to a local distance between S and
T given by the Euclidean distance between si, i = 1, . . . , ηs and tj , j = 1, . . . , ηt.

A valid warping path Wk = {wk,1, . . . , wk,ηWk
}, where ηWk

is the number of
elements of the path Wk in matrix D, is defined using the above distances and
satisfying the three following constraints:

1. Endpoint constraints: wk,1 = d(1, 1) and wk,ηWk
= d(ηs, ηt).

2. Monotonicity constraint: If wk,α+1 = d(i, j) and wk,α = d(i′ , j′), then i ≥ i
′

and j ≥ j
′ , ∀α = 1, . . . , ηWk

3. Continuity constraint: If wk,α+1 = d(i, j) and wk,α = d(i′ , j′), then i ≤ i
′ + 1

and j ≤ j
′ + 1, ∀α = 1, . . . , ηWk

Let us define W as the set of valid warping paths and W⊕
k as the sum of elements

of a valid warping path Wk, i.e., W⊕
k = ∑ηWk

p=1 wk,p. Therefore, the DTW (S,T)
distance is given by the minimum warping path among all valid paths in D:

DTW(S, T ) = min
Wk∈W

W⊕
k . (8.1)
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Figure 8.3: Example of warping path in the distance matrix D. Each entry d(i, j)
represents a local distance between the time series S and T given by the euclidean
distance between each point si, and tj .

A more detailed description of DTW is presented in [Li 2021d, Sammour 2019].
Figure 8.3 illustrates the principle of DTW.

The results of DTW are used as input to a hierarchical clustering algorithm.

8.3.2 Hierarchical Clustering

Agglomerative hierarchical clustering (AHC) is a well-known method that allows
several individuals to be grouped into clusters according to the degree of similarity
between the individuals. For this, the algorithm uses a degree of similarity be-
tween individuals and groups, and between groups [Tanaka 2016]. Then in each
iteration, the groups with the shortest distance are merged into a single cluster
[Badr 2016, Aminikhanghahi 2017] from bottom to top in the hierarchical grouping.
This process continues until reaching the final condition [Rani 2012, Saleh 2009].
The result of the clustering is generally presented in the form of a tree called den-
drogram [Sammour 2019]. The final clustering of the AHC depends on the level at
which the dendrogram is cut [Nielsen 2016].

This algorithm is applied to the time series of the current Ii{1:nI} of each PV
panel PVi, i = 1, . . . , nP . The degree of similarity is given by the DTW. The result
of the hierarchical clustering on the current signals of the PV panels is presented
in Figure 8.4.

As shown in Figure 8.4, the PV panels are grouped into two large clusters A
(green color) and B (red color). Since the group of PV panels from cluster A is
easily discriminable, the detailed analysis of the third stage is applied only on the
PV panels of cluster B. In order to analyze in detail, the behavior of the PV panels
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of cluster B under the different irradiation conditions of the day, the signals are
divided into 4 slices called: morning, midday, afternoon and evening.

The feature extraction is carried out on each of these slices. In this article, it
is assumed that if the classes are discriminated in at least one of the slices, the
algorithm is efficient and it is possible to detect anomalies between the PV panels
of group B. Next, the features selected for the diagnosis of the panels are presented.

8.4 Selected features for fault detection

The feature extraction and selection used in the approach proposed in this chapter
is based on some of the algorithms explained in Chapter 6. This stage is per-
formed only on the signals from the panels of cluster B. First, feature extraction is
performed using multi-resolution signal decomposition with 3 decomposition levels.
As in the ensemble learning approach of Chapter 6, the mother wave Daubechies38
(db38) is selected as the basis for the decomposition of multiresolution signal de-
composition. Then the extraction of statistical features Skewness (F1), Kurtosis
(F2), Variance (F3), P − Pvalue (F4) and Energy (F5), explained in Section 6.3.2,
is carried out. Finally, to reduce the dimensionality of the matrix, the two-stage
cascading dimensionality selection and reduction method from Section 6.4 is used.
In the case study, applying feature selection to F∗, where ∗ ∈ { morning, midday,
afternoon, evening }, leads to four reduced feature matrices F∗ of 13, 12, 11, and
16 dimensions respectively are obtained.

8.5 Diagnosis of PV panels

The selected features aim to solve four classification problems of the health status
of the PV panels. Each of these problems can be formulated as a diagnosis problem
based on a regression model or a classification problem where the response variable
is the label, the predictors being the features obtained in Section 6.4.

The PLS algorithm provides very interesting results over other conventional
methods when the objective is class diagnosis [Liu 2007]. In addition, PLS defines
latent components that can be subsequently used as predictors in a classification
problem, providing an alternative method to diagnosis or a validation method of
the results of the PLS based diagnosis. In this sense, the PLS algorithm can be
seen as a dimension reduction method that is coupled with a regression model. It
performs dimensionality reduction and classification based on regression simultane-
ously [Boulesteix 2006].

8.5.1 PLS Regression model

The PLS algorithm is based on the iterative nonlinear partial least squares algo-
rithm (NIPALS) [Wold 1966, Wold 1982] adapted to reduce the dimensionality in
ill-conditioned over-determined regression problems [Liu 2007]. Assume the matrix
of predictors to be given by a centralized and normalized matrix F of dimension
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(nB × η⊕
c ), and the matrix of targets or response variables be given by a matrix

Y of dimension (nB × q). The PLS algorithm is based on the decomposition of Y
and F into latent components T such that:

Y = TQT + U, (8.2)

F = TP T + E, (8.3)

where, P andQ are matrices of coefficients, of dimensions (η⊕
c ×ηP LS) and (q×ηP LS)

respectively, that show how the latent components are related to F and Y . E

and U are matrices of random errors of dimensions (nB × η⊕
c ) and (nB × q)

respectively. Finally, T is a (nB × ηP LS) matrix giving the uncorrelated latent or
PLS components of nB observations. T can be seen as a linear transformation of
F given by Equation (8.4).

T = FK, (8.4)

where K is a (η⊕
c × ηP LS) matrix of weights. The columns of T and K are denoted

as T (., h) = (t1,h, . . . , tnB ,h)T and K(., h) = (k1,h, . . . , kη⊕
c ,h)T , h = 1, . . . , ηP LS .

The rows of F are denoted as F (j, .) = (fj,1, . . . , fj,η⊕
c

), j = 1, . . . , nB. Based on
Equation (8.4), each term tj,h of T (., h) is calculated according to:

tj,h = (fj,1, . . . , fj,η⊕
c

) ∗ (k1,h, . . . , kη⊕
c ,h)T =

η⊕
c∑

i=1
fj,iki,h, (8.5)

where each element ki,h, i = 1, . . . , η⊕
c , corresponds to the normalized covariance of

the response variable with each predictor given by:

ki,h = Cov(fj,i, yj)√∑η⊕
c

i=1Cov
2(fj,i, yj)

, (8.6)

Once T is constructed, the matrix QT is obtained as the least squares solution
of the equation (8.2). Then, the regression model is defined according to:

Y = FB + U, (8.7)

Where, B is a (nB × q) matrix of regression coefficients defined according to:

B = KQT , (8.8)

8.5.2 Diagnosis of the health status of PV panels

In the case study presented in this chapter, the response variables Y are categorical.
In other words, each response variable yi, i = 1, . . . , nB, of the matrix Y takes only
one of the possible nB unordered values. For example, in our case, each categorical
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variable yi takes the value of yi = 2 (big snail trails), yi = 3 (healthy) or yi = 0
otherwise.

In the proposed approach, we first use the non-linear PLS algorithm as a di-
mensionality reducer. In [Dai 2006], the PLS and other dimensionality reduction
algorithms are analyzed. Particularly in categorical scenarios, dimensionality reduc-
tion using PLS shows results similar to PCA [Boulesteix 2006] with high diagnosis
accuracy [Man 2004, Huang 2005]. The set of components that are obtained as a
result of dimensionality reduction using PLS is named the set of PLS latent com-
ponents. These PLS latent components are used for the diagnosis based on the
regression model of Equation (8.7). The PLS is fitted with 60% of the data and
tested with the remaining 40% of the data.

In order to evaluate the accuracy of the regression model, the complementary
metrics Root Mean Squared Error (RMSE) and R-Squared or Coefficient of de-
termination metrics (R2) are used. The RMSE measures the standard deviation
between the predicted values and the actual values of the observation [Pham 2019].
A number close to zero implies a high precision of the model. The RMSE for nB

samples is defined as:

RMSE =

√√√√ 1
nB

nB∑
i=1

(yi − ŷi)2, (8.9)

where yi are observed values and ŷi are the fitted values of the response variable
Y for the ith case. The RMSE does not provide information about the explained
component of the regression fit [Ostertagová 2012]. Because of this, the metric R2

is used in a complementary way. R2 measures the percentage of variation in the
response variable Y explained by the predictors F [Ostertagová 2012]. The value
of R2 ranges from 0 to 1, where 1 corresponds to the best diagnosis or prediction
and 0 corresponds to a poor diagnosis or prediction. The R2 metric for nB samples
is defined as:

R2 = 1 −
∑nB

i=1(yi − ŷi)2∑nB
i=1(yi − ȳ)2 , (8.10)

where ȳ = ∑nB
i=1 yi represents the mean value of the response variable Y . Similarly,

the confusion matrix is used as a tool for evaluating the performance of the PLS
algorithm. The confusion matrix represents a count of the number of accurately
classified negative and positive samples represented as True Negative (TN) and True
Positive (TN) respectively. Also, it represents the number of real negative samples
classified as positive stands for False Positive (FP) and the number of real positive
samples classified as negative stands for False Negative (FN) [Kulkarni 2020].

The results of the diagnosis of health status for all matrices F∗, where ∗ ∈ {
morning, midday, afternoon, evening }, are reported in Figure 8.5.

As can be seen in Figure 8.5, the PLS algorithm is able to correctly predict 7
of the 8 PV panels of cluster B in the 4 time slices. In the Midday time slice, it is
possible to observe how the PLS algorithm classifies a Big Snail Trail panel as a new
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Figure 8.5: Diagnosis of the PV panels of cluster B with PLS. Diagnosis accuracy
with R2 and RMSE metrics for the four time slices morning, midday, afternoon,
and evening with PLS.

different class (label 0). Furthermore, the performance of the diagnosis of the PLS
method on the time slices Midday and Afternoon is related to the similarity of the
current signals between the PV panels PVi, i = 1, . . . , n when solar irradiation is
at its highest value. In the same Figure 8.5, analyzing the value of R2 and RMSE,
in the Morning and Evening slices, it is possible to observe that the model can
explain the 70% and 50%, respectively, of what is happening in the actual data.
While in the Midday and afternoon slices, the model reaches a maximum of 14%
of the data. The performance of the PLS algorithm is strongly affected by the
number of individuals who are used to fit the model.

8.5.3 PLS-LDA classification method

Alternatively, a health status classification method that uses the PLS latent com-
ponents (given by T) as input of a classical classification method is proposed.
The use of PLS as a dimension reducer for classification problems is studied in
[Liu 2007, Nguyen 2002, Boulesteix 2004]. This method allows to classify the health
status and to validate the health status results generated with the PLS diagnosis
of Section 8.5.2.

The classification algorithm is selected to be Linear Discriminant Analysis
(LDA) due to the interesting results reported when it is used with the PLS di-
mensionality reduction [Tang 2014, Boulesteix 2004]. In addition, this algorithm
has already been used in fault detection in PV systems [Fadhel 2018]. The LDA
algorithm projects the original data matrix T (predictors) from a high-dimensional
space into a new low-dimensional space that makes within-class scatter as small as
possible and between-class scatter as large as possible.

Given a number of classes G, the LDA determines the center class φCg , g =
1, . . . , G, for each class Cg according to:



8.5. Diagnosis of PV panels 225

φCg = 1
ne

ne∑
i=1

ei, (8.11)

where ne is the number of elements ei in class Cg. Then, the LDA algorithm com-
putes the within-class SW and the between-class SB scatters. The SW is calculated
according to:

SW =
G∑

g=1
SCg , (8.12)

where SCg is defined as:

SCg =
ne∑

i=1
(ei − φCg )(ei − φCg )T , (8.13)

The between-class scatter SB is calculated according to the expression:

SB =
G∑

i=1
(φg − φ)(φg − φ)T , (8.14)

where, φ is the mean value of all data in matrix T . Finally, the LDA finds a linear
projection v that discriminates as much as possible the set of classes of the data.
This projection is obtained by maximizing the expression:

J(v) = vTSwv

vTSBv
, (8.15)

The discriminant axes of v have as eigenvalues λ1, . . . , ληP LS and correspond
to the decomposition of the matrix SwS

−1
B . This decomposition into eigenvalues

defines the projection space of the original data of the matrix T . To evaluate the
degree of correct diagnosis (ability to identify positive and negative samples) the
confusion matrix and the Fvalue, defined in Chapter 7, are used.

The LDA algorithm is trained and tested with the same PV panels that fit the
model of Section 8.5.2. The total number of components generated in dimension-
ality reduction using PLS are used. The classification results using the PLS-LDA
method, together with the Fvalue and the confusion matrix for each time slice are
presented in Figure 8.6.

As shown in Figure 8.6, with the exception of the Midday time slice, in the
other time slices the PLS-LDA method classifies the PV panels in the same classes
as using the PLS algorithm. In the Midday time slice the different class (label 0)
generated by the PLS algorithm is removed. As a summary, Table 8.1 presents
the final diagnosis accuracy for the time slices morning, midday, afternoon, and
evening of the PLS-LDA and PLS methods.

As seen in Table 8.1, the PLS-LDA method classifies the four time slices with
an Fvalue of 0.875 (high precision) compared to the diagnosis accuracy presented by
the PLS method that does not give homogeneous results for all the time slices (see
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Figure 8.6: diagnosis of the PV panels of cluster B with PLS − LDA. Diagnosis
accuracy with F −V alue metric for the four time slices for the time slices morning,
midday, afternoon, and evening with PLS − LDA.

Time slice
PLS PLS-LDA

R2 RMSE Fvalue

Morning 0,700 0,274 0,875
Midday -0,015 0,537 0,875
Afternoon 0,144 0,463 0,875
Evening 0,500 0,360 0,875

Table 8.1: Diagnosis accuracy for the four time slices with the PLS and PLS−LDA
methods.
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Midday line in Table 8.1. Let us recall that in this chapter it is considered that if
it is possible to discriminate healthy PV panels from another set of PV panels in
at least one time slice, then it is possible to establish which PV panels are faulty
with the available data.

8.6 Discussion and Conclusions

The approach presented in this chapter responds to current energy concerns re-
garding the guarantee of continuous energy production in photovoltaic systems.
These systems distribute approximately 2% of the energy consumed in the world
[Pillai 2019a] and present annual losses of around 18.9% of power due to the pres-
ence of faults [Firth 2010].

This chapter proposes and develops a health state diagnosis dedicated to pho-
tovoltaic systems. The method is based on a set of features all extracted from the
MPP current signal. This approach is tested with a string of 12 photovoltaic panels
and validated for efficiency by separating three different health scenarios: healthy,
big snail trail, and broken glass.

To summarize, the approach uses, in a first stage, a simple hierarchical clustering
based on Dynamic Time Warping, to group the PV panels into two clusters A and
B, where cluster A contains the severely affected PV panels and group B contains
the others. At this early stage, the method clearly discriminates between healthy
and broken glass types, which points at priority predictive maintenance actions and
reduces overall costs consequently. In a second stage, the use of a set of in-depth
time-frequency features allows for a more precise approach to detect tiny faults and
shows its ability to discriminate weakly affected panels from healthy panels.

The second stage is validated by advantageously identifying photovoltaic panels
with big snail trail faults despite the difficulty of discriminating them from healthy
panels. This represents a clear contribution with respect to previous works such as
[Garoudja 2017a] that fails to detect faults whose behavior is highly similar to that
of healthy panels. It is also important to highlight that our method has the clear
advantage to require very simple data acquisition. Indeed, only the MPP current
is required. Nowadays, this type of detection can only be achieved by regularly
visiting the PV plant, which is extremely expensive.

A further advantage is that the approach proposed in this chapter only requires
a reduced number of individuals of each class, which reduces the cost of data ac-
quisition and storage.

Another interesting point is that faults that occur under low irradiation (Morn-
ing and Evening) are generally the most difficult to diagnose, however, the proposed
method presents the best performance in these situations.

Another contribution is to base the diagnosis process on four time slices of
the day. The detection of a fault in a time slice may grow into a serious fault
later or vanish simply inducing a slight loss of performance. The method hence
provides information about specific time points of the day that should be monitored.
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Therefore, this diagnosis by time slices allows analyzing the impact and evolution
of faults over time. Let us note that different time slices could be used to increase
resolution in diagnosing faults such as arc faults [Wang 2013], partial shadowing
[Kumar 2018], LL-faults [Dadhich 2019] that occur with low levels of irradiation.

Referring to time aspects, it should also be noted that multiresolution signal
decomposition is extremely efficient at detecting the exact time a signal changes as
well as the type and extent of the change [Misiti 2013]. This provides an advantage
over the Fourier transform because if the fault manifests faster than the sampling
window of the Fourier analysis, like it is the case of arc faults, it is very likely that
they go completely undetected.

The various contributions highlighted above make the proposed method an ef-
fective method for monitoring PV systems and likely to significantly reduce main-
tenance costs.

Interestingly, the method that is proposed is based on generic algorithms that
could be applied to PV array faults that are not considered in this chapter, and also
to other applications of the energy sector. This is considered in our future work. It
is also envisaged to make the measurements of the electrical quantities, including
the current, at a higher frequency than that used in the tests of this chapter in
order to check whether the diagnosis is thereby improved.
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As has been mentioned on multiple occasions in previous reports, the objective
of diagnosis is to predict or identify the health status of the PV system components.
In Article [Sepúlveda Oviedo 2022], in addition to the detection of fine faults, it was
shown that the detection of various types of faults is possible, with efficient machine
learning algorithms in computational terms and that they can also perform the
analysis of the evolution of a fault in the process. weather. However, although
in [Sepúlveda Oviedo 2022] the objective of diagnosis is achieved, there are still
multiple aspects to be taken into account to overcome. First, the algorithm has
been conceived with data from only one type of solar panel. For this reason, it
is necessary to retrain it when a new PV plant has to be diagnosed. Second, it
is not able to determine a complete maintenance priority. Furthermore, it is not
able to self-adapt depending on the aging of the PV plant. For such reasons a new
diagnostic approach is presented in this section.

This new adaptive machine learning approach called Adaptive-diag is integrated
into the versatile new Solar Vitality data acquisition system. The first characteris-
tic of this methodology is that it uses data normalization oriented to photovoltaic
systems. This normalization allows the usability of the diagnostic model on PV
systems of different technologies, topologies and installation characteristics (incli-
nation, installation age, degradation rate among others). In addition, this approach
combines supervised and unsupervised learning, as well as learning model and data-
based This approach uses a complex PV power prediction model, the techniques
described in [Sepúlveda Oviedo 2022], together with the normalization presented in
this section, to detect, locate and identify faults in photovoltaic systems This ap-
proach uses wind speed, ambient temperature, irradiance, data sheet information,
and age of the PV plant to automatically generate a healthy reference string or
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panel group. With this information, this approach not only is capable of detecting
faults in the photovoltaic system, but also automatically generates a report of main-
tenance priority for faulty panels. This system is also evolutionary, since as faults
are detected and new samples are classified, the internal database grows. Once new
clusters are detected, the system trains itself and updates the fault diagnosis model.
The full description of this new approach is presented below.

9.0.1 General Scheme of operation

The diagnostic system, shown in Figure 9.1, needs three types of information to
perform the diagnosis.

First, it collects the technical information of the PV plant, this information
comes from the field reports of the PV plant and its data sheet. Aspects compiled
include installation age, panel modifications, technology, topology, panel behavior
under standard conditions, and more.

Second, the platform uses the “Diagnosis Box” to assess the electrical behavior
of the photovoltaic plant. The behavior of the installation is represented only by
the acquisition of current and voltage as a function of time.

Finally, weather behavior is recorded by measuring ambient temperature, wind
speed and irradiation using the weather station. Following the analysis carried out
by the Diagnosis Box, a report is obtained which contains 4 results:

• Healthy Strings

• Faulty Strings

• Detected Faults

• Maintenance priority

General scheme of operation

Diagnosis
box

Technical data

Production data

Weather data

Faulty Strings
Detected faults (Type)
Maintenance priorityR

e
p
o
rt Healthy Strings

Figure 9.1: General Scheme of operation.

The diagnosis of the plant is carried out at the end of the day after having col-
lected all the electrical and meteorological data of the day. The diagnostic platform
has two main processes.
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9.0.1.1 Offline operation scheme (server)

The first process takes place offline (see Figure 9.2) and is responsible for training
the AI system. In this process, the DataBase D database consisting of data from
healthy and faulty PV strings is used to build a machine learning model. This will
then be used, together with a knowledge-based model derived from the technical
data, to carry out the diagnosis of new PV installations in the online phase.

In this process, the signals are first divided into 4 time slices and on each of
these slices, the characteristics (features) of the signal are extracted as illustrated
by Figure 9.2 and a model is built by supervised machine learning. The frequency
of execution of this process is variable. This process must be performed when new
labeled data, i.e. which corresponds to an identified fault, is present in sufficient
quantity in the database D or when it is observed that the behavior of a known
cluster (corresponding to a fault) deviates from the actual behavior observed for
this fault in the field. Database D is fed by the online process as explained below.

Supervised
Learning

Update
model

New Machine 
learning model 
by time slice

Offline operation scheme

Yes

End

Time slice
selection

Feature
extraction

Feature
selection

Time
slicing

=4
No

=   + 1

= 0

by technology

DataBase (D)

Figure 9.2: Offline operation scheme (server).

The most relevant elements of Figure 9.2 are explained below.
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Time slicing and time slice selection In order to analyze in detail the behavior
of the PV panels in DataBase (D) under the different irradiation conditions of the
day, the signals are divided into 4 slices called: morning, midday, afternoon and
evening.

The feature extraction is carried out on each of these slices. In this chapter,
it is assumed that if the classes are discriminated in at least one of the slices, the
algorithm is efficient and it is possible to detect anomalies between the PV panels
of DataBase (D). In order to explain and illustrate our approach, feature extraction
is explained and illustrated using the midday slice as an example.

Feature extraction This stage is based on Multiresolution Signal Decomposi-
tion, followed by the extraction of statistical features as proposed in [Ahmad 2018,
Kurukuru 2020, Haque 2019, Dadhich 2019] and presented in Chapter 6.

Multi-resolution signal decomposition , Feature extraction and selection based
on signal characterization sections are described in the Chapter 6.

Supervised Learning

9.0.1.2 Online operation scheme (box)

The second process of the diagnostic platform takes place online. This option is
used to diagnose new installations.

In this process, as shown in Figure 9.3, sensor data and technical information
(reports, datasheet, etc.) are collected. With the technical information, a first
cluster of healthy panels is built (healthy model based on knowledge). Next, we
consider the data from electrical and meteorological sensors acquired during a full
day. This data is normalized using a set of equations to place all strings on the
same scale for comparison (normalization).

If the data acquired by the sensors comes from a chain whose health is known
and healthy, then the chain is stored in the cluster of healthy chains. Otherwise,
all normalized signals in the chain are first tested with the knowledge-based model
(check model from knowledge). If they match healthy behavior, the string is also
stored in the cluster of healthy strings.

Otherwise, the chain’s normalized signals are sent to the maintenance priority
calculation stage on one side and on the other side they are tested by time slices with
the model resulting from offline learning. (classification using the trained machine
learning model). If the fault is recognized, the signals are sent to the DataBase D
database. If the fault is not recognized, an expert intervenes to identify the fault
before sending it to the DataBase D database.

To determine the maintenance priority, a residual calculation is carried out
between the signals of the chain and the centroid of the cluster made up of the data
of the healthy chains.
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Figure 9.3: Offline operation scheme (server).

The most relevant elements of Figure 9.3 are explained below.

9.0.2 Normalization

A global study [Felder 2017] of 1.9 million modules installed in different climates
found that climatic conditions have a strong impact on the appearance of faults
due to material interactions. These effects are more pronounced in hot arid cli-
mates than in tropical and temperate climates. This difference in the occurrence
of faults is directly linked to the rate of degradation, which in turn is linked to
weather conditions [Ndiaye 2013]. For this reason, to compare PV systems that
are under different climatic conditions, or with different configuration conditions or
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technology, a data normalization stage is proposed.
Normalizing the performance ratio of PV systems allows systems with dif-

ferent nominal performances and orientations to be compared with each other
[Herteleer 2017]. To this end, multiple approaches are proposed. Some documents
propose the use of Final Yield to compare two photovoltaic installations. This mea-
sure normalizes the energy produced with respect to the size of the system. This
parameter is strongly linked to the location and type of installation, and allows com-
paring the production of similar photovoltaic installations with different sizes but
located in a specific geographical region [Santiago 2017]. This quantity represents
the time that the photovoltaic array would need to operate at its nominal power
PST C to generate the same energy [Haeberlin 2003]. The Final Yield is calculated
on its discrete over a time interval τ as follows:

Yf,τ = 1
PST C

∫ τ

0
P (t) dt = 1

PST C

τ∑
t=0

P (t) = EAC

PST C
, (9.1)

where EAC is the AC energy of the inverter, determined from the monitoring of the
AC power output of the inverter PAC , in the time interval τ . In the same way, to
quantify and compare the performance of photovoltaic systems, the Performance
Ratio (PR) metric is widely used [Woyte 2014]. The dimensionless metric PR is
calculated in the range of days, and occasionally shorter periods, for example 5
minute intervals are recommended in [Woyte 2014]. PR represents the relationship
between the Final Yield Yf,τ and the Reference Yr,τ , over a time interval τ as
follows:

PRτ = Yf,τ

Yr,τ
, (9.2)

where the reference Yr,τ is defined as follows:

Yf,τ = 1
GST C

∫ τ

0
G(t) dt = 1

GST C

τ∑
t=0

G(t) = EG

GST C
, (9.3)

where EG is the sloped irradiance, determined by multiplying the in-plane irra-
diance value, G(W/m2), by the monitoring time interval τ . GST C = 1000W/m2

is the irradiance under standard STC conditions. This magnitude represents the
time that the photovoltaic field must receive radiation with a value of GST C =
1000W/m2 to generate an energy EG [Haeberlin 2003, IEC 2017b, Malvoni 2017,
Trillo-Montero 2014]. Its value depends on the location, orientation and inclina-
tion of the photovoltaic system and the weather conditions [Santiago 2017]. A
temperature-corrected form of PR [IEA 2014, Dierauf 2013] can be calculated by
using Equations (9.4) and (9.5) defined as:

Tcorr = 1 + γ(Tcell − TST C) = 1 + γ △ TST C , (9.4)
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P ∗ = P (Tcell)
Tcorr

, (9.5)

and then replacing P by P ∗ in Equation (9.1), with P the power (or efficiency)
that shows a temperature dependence, as widely documented [Skoplaki 2009a]. This
same idea has been extended in [Leloux 2012] including and correcting for the ef-
fects of temperature. In a complementary way, the work of Sandia (multiprogram
laboratory operated by Sandia Corporation) proposes the use of the AC efficiency
of the regular system (that is, not normalized) [King 2004a] and an extension for
the DC side is presented in [Copper 2013a]. A modification of the model presented
in [King 2004a] is carried out in [Huld 2010, Huld 2011]. They propose a module-
level model of the relative instantaneous efficiency ηrel and its hourly and annual
equivalent. In [Herteleer 2017] the normalized efficiency of a photovoltaic module or
system is proposed as a metric of photovoltaic performance. That metric is used for
monitoring and analysis purposes and can be implemented on time scales ranging
from seconds to days and more. In the same document [Herteleer 2017], a modifica-
tion to the temperature-corrected form of the power classification model proposed
in [Huld 2010, Huld 2011] for photovoltaic modules is proposed. This modification
is applicable not only to individual photovoltaic modules, but also to photovoltaic
arrays and systems on both the AC and DC sides. In [Walker 2020] an adjustment
to the Performance Ratio is proposed, using a constant annual degradation of 6%.

All these elaborate models have taken place because the MPP signals of the pho-
tovoltaic arrays (photovoltaic voltage (VMPP) and photovoltaic current (IMPP))
vary strongly throughout a year. Specifically, these changes are closely linked to the
dependence of PV systems on environmental conditions such as: i) solar radiation;
ii) temperature; and iii) wind speed. This study works under the hypothesis that
reference modules and photovoltaic arrays degrade in a similar way or at insignif-
icant rates. This hypothesis is the result of the analysis of the studies of optical
degradation of the surface of a photovoltaic array and the reference modules under
similar work environments carried out in [Meyer 2004, Cueto 2010]. In those stud-
ies the comparison is made with exposure to ultraviolet rays, thermal stress and
humidity, similar. This chapter is based on the fact that the unavoidable degrada-
tion rate of the photovoltaic system is between 0.6% and 1% per year [Jordan 2016].
For specific fault detection calculations, this chapter adopts the value 0.6% year as
an assumption on which to normalize the performance of PV systems.

Other more precise approaches, but which require a larger number of sensors,
are based on the normalization of the electrical and meteorological variables of the
PV systems. The fault detection approach presented in this chapter works under
this hypothesis. For this, new normalized parameters are proposed as a modification
of the set of empirical equations presented in [Zhao 2015b].

Furthermore, this chapter works under the hypothesis that the change of the
VOC and ISC conditions caused by the cell temperature difference associated
with the short-circuit and open-circuit conditions is negligible as presented in
[Bharti 2009].
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Performing the normalization of parameters such as voltage and current is highly
advantageous, since they would remain constant, even when the PV modules de-
grade uniformly. The objective of this normalization is that the panels that are
analyzed can be compared under the same scale.

For this reason, one of the contributions of this section lies in the construction
and formal presentation of a set of normalization equations for photovoltaic data
aimed at fault diagnosis. This set of equations not only improves data visualization
but also the accuracy of fault detection algorithms. The normalized variables are:
Voltage, Current, Irradiation, Ambient temperature, and wind speed.

9.0.2.1 Voltage

For the normalized voltage VString,norm, the following parameters are used:

• Vstring: String tension

• VST C : Voltage under STC conditions

• nb: Number of panels in the string

• dnV : Natural degradation

• α: Age of the PV plant (in days)

• β: Annual degradation rate

dnV = 1 + α ∗ −β
365.24 (9.6)

VString,norm = Vstring

VST C ∗ nb
∗ dnV (9.7)

The result of the normalized voltage VString,norm should vary between 0 and 2.

9.0.2.2 Current

For the normalized current, the following parameters are used:

• Istring: String current

• IST C : Current under STC conditions

• dnI : Natural degradation

• α: Age of the PV plant (in days)

• β: Annual degradation rate
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dnI = 1 + α ∗ −β
365.24 (9.8)

IString,norm = Istring

IST C ∗ dnI

(9.9)

Current values must be between 0 and 2 (values may slightly exceed 1 if Irr >
1000 W/m2)

9.0.2.3 Irradiation

This chapter works under the hypothesis that the irradiation values Gpoa vary
between 0 and 1500 W/m2.

Gpoa,norm = Gpoa

GST C
(9.10)

where GST C = 1000

Gpoa,norm = G/GST C (9.11)

The normalized irradiation values Gpoa,norm must vary between 0 and 1.5 W/m2.

9.0.2.4 Ambient Temperature

The adopted hypothesis assumes a average temperature in France of 12◦C and a
variation between average− 40◦C and average+ 40◦C, where between −28◦C and
+52◦C.

Tamb,norm = Tamb,celcius + 28
80 (9.12)

Ambient temperature Tamb,norm can be used together with irradiance Gpoa,norm

to estimate the temperature of the solar cell [Zhao 2015b].

Tcell = Tamb+ NOCT − 20◦C

800W/m2 ∗GT (9.13)

where the nominal operating cell temperature (NOCT) is chosen as 50◦C
[Skoplaki 2009b]

9.0.2.5 Wind speed

Finally, for the normalized wind speed, a variation between 0 and 10 m/s is pro-
posed.

WSnomr =
WSm/s

10 (9.14)

The knowledge-based model is explained below.
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9.0.3 Model based on knowledge

As mentioned in [Berghout 2021a], due to the long lifespan of PV panels, and
associated computational costs, such as that of in-memory storage, it is diffi-
cult to collect the necessary patterns similar to degradation. As mentioned in
Eder et al. [Eder 2018], accelerated tests can be an alternative solution for re-
construction of data-driven models. However, data-driven samples of artificially
aged PV panels suffer from the lack of important descriptive patterns related to
deterioration or damage processes. In addition, some samples, such as I-V/P-V
or thermographic images, are generally difficult or impossible to label, even for
ML developers. Therefore, knowledge-driven models are used in this case to fill
the gaps in uncompleted lists of unlabeled samples [Berghout 2021c]. Two main
types of ML models can be found in this type of learning, namely, generative mod-
els [Theis 2016] and domain adaptation learning by considering the domain to be
invariant [Zhao 2019a, Baktashmotlagh 2013]. Generative models are ML tools ca-
pable of generating new examples or preliminary hypotheses using training data.
These new examples or preliminary hypotheses are used either to improve the rep-
resentation of the features or to provide the necessary information that is assumed
to be hidden in the original feature space. Similarly, domain adaptation learning by
considering the domain to be invariant is an alternative solution for adjusting the
data distribution in the target domain, once similar complete data are available in
the source domain. Mathematical formulations of the loss erm of generative models
are relatively similar to domain invariant learning when feeding a discriminative
model [Bai 2019, Song 2017].

In recent ML modeling, specifically for condition monitoring, Generative Ad-
versarial Networks (GANs) and Transfer Learning (TL) have been among the com-
monly used types of generative models and domain invariant adaptation learning
approaches [Kusiak 2019, Serin 2020]. GANs represent a new effective generative
adversarial learning theory specific to data augmentation. GAN is a ML tech-
nique developed by Goodfellow in 2015 [Goodfellow 2014], in which the main idea
is to train a generative model, such as a deep network, to generate real examples
from fake data in a form of “minimum of two players game” approach. Unlike
traditional generative models that try to extract features, GANs are trained in a
supervised manner by associating a discriminator to classify these representations
to only the two preceding categories of fake/not fake. By comparison, TL can be
applied to any learning algorithm by moving learning parameters from different
distributions of the source domain to the target domain, and minimizing a common
and full loss function of the entire contributed domains in the adaptation process
[Weiss 2016, Long 2014]. Knowledge-driven models have also been investigated ac-
cording to the two discussed data acquisition methods.

To address knowledge-driven modeling using data acquired from ordinary sen-
sors, a set of recent algorithms for PV condition monitoring are discussed in this
review. For instance, Lu et al. [Lu 2019a], proposed a hybrid deep TL algorithm
adaptable to several domain distributions using a CNN for DC arc faults (i.e., can
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be caused by short-circuit or ground faults) diagnosis. First, the algorithm attempts
to learn representative examples from the learning samples in the source domain
data. Then, a dummy generation process of new samples in the target domain is
followed by the TL process using GANs. A total of 25,000 samples were collected
for a real PV system (see Lu et al. [Lu 2019a]) during normal healthy operating
conditions. In addition, 5000 arc fault samples were used to construct the source
domain dataset. Accordingly, 20% of the randomly selected samples from healthy
operating states were reserved for the validation process. Three types of arcing
faults at the start, middle, and end of the PV string were considered. Lu et al.
[Lu 2021a], in a work similar to their previous study (i.e., Lu et al. [Lu 2019a]),
extended their experiments using almost the same training tools and frameworks
by involving three additional datasets.

In the context of knowledge-driven image acquisition, a number of studies can
be noted. Tang et al. [Tang 2020], in the study of a prediction problem using a
limited number of electroluminescence images, augmented their data by combin-
ing GANs and traditional image processing techniques. Then, generated examples
for data augmentation reasons were fed into a CNN fault detection algorithm of
PV modules. Five types of PV cell degradation fault (i.e., micro-cracks in poly-
crystalline silicon, micro-cracks in monocrystalline silicon, finger interruptions in
monocrystalline silicon, finger interruptions in polycrystalline silicon, and breaks)
were studied. Akram et al. [Akram 2020] also examined a TL-based approach to
train a CNN for PV faults. However, a more complicated study was involved in
this case, in which fault classification in two different datasets was considered. An
electroluminescence image dataset was used to train the CNN in the source domain
and infrared image datasets were used for training in the target domain. The in-
frared images enabled manual labeling of the degradation faults with eight types of
faults, namely, failed cell interconnection, cell cracking, cracks isolating cell parts,
failed/resistive soldering bonds, localized shunting in cells, high current density at
bus bars, breakage of module glass, and failed cells in outdoor infrared images. It
should be noted that the use of knowledge-driven models has been lacking in PV
fault detection. As a result, the attention of scientists has moved toward traditional
and deep learning techniques in this field. According to [Berghout 2021a], this type
of knowledge-guided paradigms are especially useful in cases like the following:

• Cases where the test samples are subject to a higher level of variation, or
their data distribution is different from the distribution of the data used for
training;

• Training data is incomplete or many labels are missing;

• Data is incomplete and subject to many outliers.

Taking into account all these previously mentioned aspects, another alterna-
tive to generate models based on knowledge is the use of equations that define
the behavior of a PV system [Dhoke 2019, Herteleer 2017, Huang 2020, Huld 2011,
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Huld 2010]. In this case, multiple researchers have worked on the development
and tests of equations that have shown a prediction of the power of PV systems
quite close to that of a PV system. This approach is adopted in this work be-
cause it provides great precision and is also easily adaptable to real data from PV
plants. The model proposed for the present is a variant of the model presented
in [King , King 2004b] proposed in [Chianese 2003, Kenny 2003, Huld 2008]. The
model applied for the PV power Pi of each PV string PVi, i = 1, . . . , ns, where ns

is the number of strings, in this work has the following form:

Pi = Gpoa,norm ∗ (PST C + a+ b+ c+ d+ e+ f) (9.15)

a = k1 ∗ ln(Gpoa,norm)

b = k2 ∗ (ln(Gpoa,norm))2

c = k3 ∗ T

d = k4 ∗ T ∗ ln(Gpoa,norm)

e = k5 ∗ T ∗ (ln(Gpoa,norm))2

f = k6 ∗ (T )2

where the normalized in-plane irradiance and module temperatures are given
by

T = Tmodule − TST C (9.16)

where TST C = 25◦C. The main difference from the original model is that the terms
for current and voltage at maximum power point (MPP) have been multiplied
together to a single expression for the module power at MPP. In this way the
expression for the module power is linear in the empirical coefficients PST C and
k1–k6, and it is possible to fit the model to data that contain only the measured
power at given G and T . Another way of expressing this is in terms of the relative
conversion efficiency, defined as:

ηi = Pi/(PST C ∗Gpoa,norm) (9.17)

The relative efficiency is the ratio of the module efficiency under given conditions
of G and T to the efficiency at STC. The empirical coefficients PST C and k1–k6
must be found by fitting the function to measured data (indoor or outdoor). The
fit is done by a least-square procedure. Some of the typical values reported in the
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Coefficient c-Si CIS CdTe
k1 -0.017237 -0.005554 -0.046689
k2 -0.040465 -0.038724 -0.072844
k3 -0.004702 -0.003723 -0.002262
k4 0.000149 -0.000905 0.000276
k5 0.000170 -0.001256 0.000159
k6 0.000005 0.000001 -0.000006

Table 9.1: Typical values of the coefficients of Equation (9.15).

literature are presented in Table 9.1.
Finally, this chapter explains how the maintenance priority calculation works.

9.0.4 Maintenance priority

Once the theoretical power is calculated and added to the cluster of healthy panels
along with the actual healthy panels that have been verified in the field, the cen-
troid of that cluster is calculated. Then, the string detected as faulty is compared
with that centroid to determine the magnitude of the difference from the reference
(healthy cluster centroid). The difference of each string i, also called residual ri, is
defined as:

ri = |Pi − Pc| ,∀ i ∈ [1, ns], (9.18)

where Pc is the power of the centroid of the healthy strings and ns is the number
of strings analyzed. Once the residuals of all the strings have been calculated, they
are arranged in descending order to determine those whose ri is the highest.

9.1 Discussion and Conclusions

With new emerging solar cell technologies like the ones we introduced in Section 2,
and increases in financial incentives from governments, the global solar PV industry
is growing exponentially as seen in Figure 2.4. This growth has been accompanied
by multiple studies focused on guaranteeing the continuous and optimal production
of PV systems. Most studies are devoted to fault detection and diagnosis. However,
in order to detect a wide range of faults, it is necessary to have high-performance
monitoring systems that generate enormous amounts of data (Big Data). It is
there, where the use of AI and more specifically of machine learning makes sense,
extracting behaviors that are difficult to detect with other conventional methods.
As presented in Section 2, faults can appear in any of the components, during the
installation and/or operation of the PV system.

This chapter focuses only on the study of the faults that occur on the DC side
after the installation of the PV system. However, considering that it is possible to
capture multiple variables in a power generation system in the form of time series,
these algorithms may be easily extrapolated to the AC side.
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The objective of this study is to provide a set of tools and knowledge to improve
the efficiency and reliability of PV systems. It is important to highlight that the
detection of a large number of faults is really a challenge when taking into account
the strong relationship that exists between the production of the PV system and
changes in weather conditions or automatic corrective actions by inverters or op-
timizers, different fault locations, mismatches between PV modules, among others
[Ahmad 2018].

Having clear the context and the difficulty involved in making this type of
detection, one of the first innovative aspects of this chapter is the application of
advanced feature extraction and selection techniques in conjunction with machine
learning algorithms to detect fine faults in PV systems. This approach is motivated
by the objective of proposing diagnosis methods aimed at preventive maintenance
of PV systems, but that can also be used at other scales or extrapolated to other
types of systems such as storage systems, microgrids, among others.

As the study is oriented to preventive maintenance of PV systems, it is necessary
to detect faults from their occurrence, or faults whose observable electrical signature
is similar to that of healthy panels. In this way, this chapter makes a great effort at
the signal processing level to implement a transformation that extracts not only the
behavior in the time domain, but also manages to extract changes in the frequency
domain. This type of time/frequency analysis can provide vital elements for class
discrimination.

It is necessary to highlight that this chapter not only proposes a machine learning
algorithm for fault detection in embedded PV systems. In addition, it proposes a
whole context of fault diagnosis that includes a new PV system data acquisition
system, a versatile mobile weather station, and machine learning algorithms that,
due to their computational efficiency and rapid response characteristics, can be
embedded in other types of devices such as inverters, optimizers, etc.

A deep investigation about the current monitoring systems of PV systems and
their limitations was carried out. The result of this research allowed a series of
adaptations in Solar Vitality that make it viable and effective for small, medium
and large-scale photovoltaic plants, without compromising the desired performance.
Among the critical parameters of Solar Vitality, it must be taken into account that
it must be guaranteed that the acquisition of all the data sent by Arduino does not
exceed the sensor data acquisition time. In addition, it must be ensured that the
portable power supply can supply the necessary current to avoid data loss or corrupt
data on the Raspberry. When data acquisition is performed at high frequencies such
as milliseconds or less, problems such as drift start to become apparent and must
be addressed to avoid false fault diagnosis results. In general, Solar Vitality and
the meteorological station proposed in this chapter proved to be able to efficiently
monitor PV plants. In addition, due to the use of the Raspberry Pi board, it is
possible to ship different machine learning algorithms that work in parallel coded
in high-level languages such as Python. The platform was put into operation in
different PV plants, demonstrating high performance and continuity in operation.
Solar Vitality also demonstrated that it is efficient in terms of storing large amounts
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of data thanks to the format transformations it performs on the captured signals.
It also demonstrated great versatility and easy parameterization to be adapted to
different topologies of PV plants. However, based on the data captured with the
Tigo data acquisition system and the Solar Vitality prototype together with the
meteorological station proposed in this section, it is necessary to mention that not
only because high quality data acquisition and sampling rate can ensure fine fault
detection.

On the other hand, this chapter not only proposes an operational machine learn-
ing algorithm, but also demonstrates that it can be embedded in a real system, with
very good performance since it is tested in different PV plants. Another of the great
advantages of the approach presented in this chapter is that it does not need to cut
off the production of the PV plant in order to carry out fault detection. This is the
big difference with the wide number of approaches proposed for fault detection in
PV systems using the I(V) characteristic curve.

Another of the problems found in the literature is that many of the approaches
are trained with data based on simulation. The problem with these simulation
models is that on many occasions they fail to faithfully represent the real behavior
of a PV plant. This chapter overcomes this limitation since all the work is based on
real data. Even the algorithm in Section 9, which contains a part of model-based
learning, only uses that information as the base, but then the cluster created with
that model-based data is dynamically adapted based on the real data captured in
the PV plant.

Another interesting aspect of the chapter is that the analysis by time slices has
managed to demonstrate that it is not only efficient for fault detection, but also for
analyzing their evolution, or the discrimination between temporary and permanent
faults. That is, if a fault appears in a single time slice, it is possible that it could
be a non-permanent fault. If the fault appears in two time slices, the panel or
PV string could be put under supervision, while if it appears in more than two, it
probably has a permanent fault.

In addition, the system not only detects faults and allows evolution analysis,
but the approach presented in this chapter can also send a maintenance priority re-
port, exponentially reducing the decision-making time for the replacement of faulty
panels.





Conclusions and Perspectives

With new emerging solar cell technologies like the ones we introduced in Chapter 2,
and increases in financial incentives from governments, the global solar PV industry
is growing exponentially as seen in Figure 2.4. This growth has been accompanied
by multiple studies focused on guaranteeing the continuous and optimal production
of PV systems. Most studies are devoted to fault detection and diagnosis. However,
in order to detect a wide range of faults, it is necessary to have high-performance
monitoring systems that generate enormous amounts of data (Big Data). It is
there, where the use of AI and more specifically of machine learning makes sense,
extracting behaviors that are difficult to detect with other conventional methods.
As presented in Chapter 2, faults can appear in any of the components, during the
installation and/or operation of the PV system.

This thesis focuses only on the study of the faults that occur on the DC side
after the installation of the PV system. However, considering that it is possible to
capture multiple variables in a power generation system in the form of time series,
these algorithms may be easily extrapolated to the AC side.

The objective of this study is to provide a set of tools and knowledge to improve
the efficiency and reliability of PV systems. It is important to highlight that the
detection of a large number of faults is really a challenge when taking into account
the strong relationship that exists between the production of the PV system and
changes in weather conditions or automatic corrective actions by inverters or op-
timizers, different fault locations, mismatches between PV modules, among others
[Ahmad 2018].

Having clear the context and the difficulty involved in making this type of
detection, one of the first innovative aspects of this thesis is the application of
advanced feature extraction and selection techniques in conjunction with machine
learning algorithms to detect fine faults in PV systems. This approach is motivated
by the objective of proposing diagnosis methods aimed at preventive maintenance
of PV systems, but that can also be used at other scales or extrapolated to other
types of systems such as storage systems, microgrids, among others.

As the thesis is oriented to preventive maintenance of PV systems, it is necessary
to detect faults from their occurrence, or faults whose observable electrical signature
is similar to that of healthy panels. In this way, this thesis makes a great effort at
the signal processing level to implement a transformation that extracts not only the
behavior in the time domain, but also manages to extract changes in the frequency
domain. This type of time/frequency analysis can provide vital elements for class
discrimination.

In order to position this research and to know the current limitations in the
area of diagnosis of PV systems, this thesis presents for the first time an extremely
deep and complete study of a large number of articles that builds a state of the
art on the subject of interest. This is possible due to two innovative methodologies
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proposed for the systematic analysis of information. Otherwise, carrying out this
analysis with conventional methods such as expert analysis would not have been
possible.

It is necessary to highlight that this thesis not only proposes a set of machine
learning algorithms for fault detection in embedded PV systems. In addition, it
proposes a whole context of fault diagnosis that includes a new PV system data
acquisition system, a versatile mobile weather station, and machine learning algo-
rithms that, due to their computational efficiency and rapid response characteristics,
can be embedded in other types of devices such as inverters, optimizers, etc.

In the same way, it is important to emphasize that two of the three algorithms for
detecting faults based on machine learning proposed in this thesis (see Chapters 7-
8), are designed to work with the minimum number of variables (electrical current)
to respect the economic limitations of industry. In addition, this feature makes
these algorithms easily implementable, cost-effective, and accurate in installations
that are not only high power but also residential.

On the other hand, this thesis not only proposes a set of operational machine
learning algorithms, but also demonstrates that they can be embedded in a real
system, with very good performance since they are tested in different PV plants.
Another of the great advantages of all the approaches presented in this thesis is
that they do not need to cut off the production of the PV plant in order to carry
out fault detection. This is the big difference with the wide number of approaches
proposed for fault detection in PV systems using the I(V) characteristic curve.

Another of the problems found in the literature is that many of the approaches
are trained with data based on simulation. The problem with these simulation
models is that on many occasions they fail to faithfully represent the real behavior
of a PV plant. This thesis overcomes this limitation since all the work is based on
real data. Even the algorithm in Chapter 9, which contains a part of model-based
learning, only uses that information as the base, but then the cluster created with
that model-based data is dynamically adapted based on the real data captured in
the PV plant.

Another interesting aspect of the thesis is that the analysis by time slices has
managed to demonstrate that it is not only efficient for fault detection, but also for
analyzing their evolution, or the discrimination between temporary and permanent
faults. That is, if a fault appears in a single time slice, it is possible that it could be a
non-permanent fault. If the fault appears in two time slices, the panel or PV string
could be put under supervision, while if it appears in more than two, it probably
has a permanent fault. In addition, the system not only detects faults and allows
evolution analysis, but the approach presented in Chapters 8 and 9 are also capable
of sending a maintenance priority report, exponentially reducing decision-making
time for the replacement of panels.

With all the above, the list of the main contributions of this thesis are presented
below.
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Main contributions of the thesis

To address the issues discussed above, this research presents contributions with
respect to ten aspects:

1. A review of the state of the art in fault detection in PV systems
that includes conventional detection methods and advanced methods based
on Machine Learning. In this scientific context, this research is led with two
novel methodologies for computational and systematic analysis of the litera-
ture. These new approaches can be easily extrapolated based on bibliometrics
and topic modeling and cover more articles to have a more precise idea of the
current state of the art. In addition, this type of review not only presents rele-
vant articles, but also analyzes aspects such as: i) existing collaborative work
relationships between countries, authors, scientific institutions and the most
successful machine learning algorithms in the area depending on the type of
learning (supervised, unsupervised, reinforcement, semi-supervised) and the
families of the master algorithm of machine learning [Domingos 2015]. This
allows identifying, according to the conditions of the problem, the most suit-
able algorithms for fault detection. Finally, this analysis determines interest-
ing research topics and challenges related to fault detection in these systems.

2. A formal dictionary of faults that contains four types of identified faults
sources: external causes, material interaction, component aging or caused by
other faults (cause-effect circle). In turn, within this dictionary a new multi-
level classification of system faults is proposed according to the type of fault,
the component where it occurs (cell, module, arrangement, protection system
or junction box), whether structural, electrical , caused by abnormal increases
in temperature (hot spot), bad connections or shadow (due to obstacles or
dirt). Each fault is exposed with its due explanation and graphic illustra-
tion. This dictionary also includes the aspects of frequency of occurrence and
impact in terms of human safety and loss of energy.

3. A novel platform for data acquisition and monitoring named Solar-
Vitality in PV systems aimed at diagnosing faults in PV strings. This plat-
form contains two embedded systems in charge of: i) a versatile new photo-
voltaic monitoring system that captures the current and voltage at the PV
string level; and ii) automatic fault detection.

4. A portable weather station adaptable to different configurations of PV
plants. This weather station captures climatological variables such as ambient
temperature, wind speed, and irradiation.

5. A contribution to signal processing and analysis for fault feature
extraction and selection that includes a set of transformation operations
performed on the fault signals as a guide to increase the richness of the signals
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analyzed by the machine learning algorithms and therefore improve the ability
to discriminate between classes.

6. An ensemble learning algorithm named EB-diag able to detect snail
trace faults in PV modules. EB-diag combines several learning models, rather
than using a single learning model. Also, this approach takes advantage of
the feature extraction and selection techniques from Point 5, greatly improv-
ing detection accuracy. The results of this approach demonstrate that it is
capable of classifying healthy PV modules and those with snail tracks/trails
efficiently and cost-effectively, since it uses only the electrical current signal
of the modules obtained from standard PV data acquisition systems. Fur-
thermore, the approach is generic and can be easily extrapolated to other
diagnostic problems in other domains.

7. A new hybrid Machine Learning algorithm named Serial-diag for
fault detection in PV systems. These approaches are even capable of detecting
and diagnosing faults such as the snail trail whose behavior is similar to
that of a healthy panel. This algorithm is also tested to detect panels with
broken glass, managing to classify them efficiently. In addition, this proposed
approach proved to be very fast in computational terms because, thanks to the
proposed combination of unsupervised and supervised learning, the heaviest
calculation is only performed on a part of the faulty panels.

8. An efficient normalization method for data from PV plants that
makes an important contribution. This type of approach not only makes it
possible to compare PV strings with different numbers of PV panels, but also
with different temperatures, irradiations, wind speeds, and even technologies.
This approach also includes the degradation factor of the PV plant.

9. A PV power prediction model adjusted to real data that uses the fol-
lowing variables: ambient temperature, wind speed, irradiation, STC power,
number of panels connected in series, plant installation date and annual degra-
dation rate. Due to all these parameters, the proposed model is capable of
estimating PV production at the PV module or PV string level. The esti-
mation results of the module are compared with real data from a PV plant,
obtaining a high level of coincidence with the real data. This model is also
used to generate a data augmentation strategy, and generation of synthetic
faults, as a solution to problems of insufficient amount of data or unbalanced
data.

10. A novel machine learning approach integrated to the new data ac-
quisition system Solar Vitality embedded in the new and versatile data
acquisition system Solar Vitality. This approach combines supervised and
unsupervised learning, as well as model and data-based learning. This ap-
proach uses data from the modeling of point 9, the techniques described in
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point 5, together with the normalization of point 8, to detect, locate and iden-
tify faults in PV systems. This approach is able to use wind speed, ambient
temperature, irradiation, datasheet information and age of the PV plant to
automatically generate a cluster of healthy reference panels or strings. With
this information, this approach is not only capable of detecting faults in the
PV system but also automatically generating a maintenance priority report
for faulty panels. This system is also evolutionary, since as errors are de-
tected and new samples are classified, the internal database grows. Once new
clusters are detected, the system trains itself and updates the fault diagnosis
model.

Perspectives

This thesis leaves the door open for multiple future works because it addresses two
large areas: hardware and software.

Hardware

Diagnosis-oriented Data Acquisition (Solar Vitality)

In future work the dimensions of Solar Vitality should be reduced. For this, a
market analysis of different components that maintain signal quality but reduce
energy consumption and dimensions must be carried out. This can also improve
the weak point of Solar Vitality, which is the cost associated with high-performance
sensors. In addition, the microcontrollers used in the latest version of Solar Vitality
could be replaced by ones with lower power consumption. Also a touch screen could
be added to the platform, to reduce its reliance on a computer to set up the system
and start it. The inclusion of the screen also allows adding a new functionality that
is real-time supervision.

In addition, this would make it easier to parameterize the system before startup.
The two data acquisition cards and data processing cards could be replaced by a
single card with the embedded system so that prototype size and power consumption
could be reduced. If possible, a custom electronic card that allows integrating the
voltage dividers should be made. This would increase the robustness of the platform
considering that it is a portable prototype. Another study on panels failing at
different data capture speeds should be done to determine if a high speed ADC is
really necessary or could be changed to one with lesser features. This would reduce
the price, and also the amount of data to be stored.

Weather station

Other wireless communication protocols should be explored to avoid cabling be-
tween the weather station and the new PV system monitoring platform. This will
also facilitate the coupling of the station with the PV system. It would be inter-
esting to examine the possibility of adding humidity sensors that are related to the
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accelerated degradation of the PV modules and the appearance of other faults as
demonstrated in Chapter 2. Special connectors must be put on the terminals of
sensor cables. the weather station that goes directly to an electrical connection box
that speeds up the connection process and avoids wrong connections of the sensors.

Software

Data storage

The system could be complemented by moving to relational tables that allow having
primary and secondary keys to avoid confusion between the data. An automatic
backup system could be implemented to avoid data loss. The data could no longer
be stored on a local phpmyadmin server and instead go to online platforms such as
those provided by Amazon or others.

Data pre-processing

The kalman estimator system that eliminates noise in the signals captured by the
Arduino should be verified with different field tests. One of the most important
tests is the withdrawal and appearance of the measurement source to adapt the
coefficients adequately with the response times of the sensors and avoid hiding
faults.

Diagnosis system

The approaches presented in Chapters 7 and 8 could be improved using the data
normalization presented in Chapter 9. In addition, they could be modified to per-
form a multivariable classification to include aspects such as humidity, wind speed,
the irradiation and ambient temperature. This, taking into account the excellent
results obtained in Chapters 7 and 8. In addition, all the parameters of Chapter 9
for the model could be improved by including an optimization algorithm (heuristic
or Meta-heuristic).

The fault database to improve training must continue to be built in the field,
ideally with PV plants that have different configurations, technologies and types of
panels. This would exponentially increase the robustness of the system. In addition,
it would show whether it is necessary to further modify the data normalization
proposed in the thesis.

Another idea would be to explore the possibility of coupling the system with an
unmanned vehicle system (at least one) that captures images in order to effectively
locate power plant faults that have a thermal signature at the panel level. Tests
should be carried out to ship the algorithms proposed in Chapters 6-8 in devices
such as inverters or optimizers to test their usability and accuracy.

Furthermore, a new coupled system dedicated to MPPT point tracking based
on machine learning techniques could be easily coupled with the systems already
presented in this thesis.
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Maintenance priority reporting system

For the maintenance reporting system, a system coded in Visual Basic could auto-
matically generate reports for the client, sending a series of change recommendations
based on the detected faults.





Appendix A

Annexes

A.1 Examples of signals captured with the monitoring
platform

For this first data capture test, the information from the temperature and irradia-
tion sensors is captured with a frequency of one second and then compared to the
measurements taken by the Adream building monitoring system. In this experi-
ment, a pyranometer was also used to compare the measurement with the reference
cell. The reference cell and the pyranometer were secured under the same slope of
a solar panel located on the terrace of the Adream building as shown in Figure A.1.
The data capture in the arduino is made every second, while the data of the Adream
building is collected every 15 seconds.

Figure A.1: External connection of the sensors: Irradiance (yellow), Temperature
(blue), Current (red) and Electrical power supply (white arrow)

Two comparison experiments are performed under different irradiation condi-
tions. In addition, the captured current was also compared with the data recorded
by the building’s monitoring system. The temperature could not be compared be-
cause the building’s temperature sensor had some problems and is not calibrated.
The results are presented in Figures A.2 - A.3.
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Figure A.2: Irradiation comparison.

Figure A.3: Current comparison.

A second scenario was performed with other environmental conditions to verify
if the behavior followed the same pattern. The results of the second scenario are
presented in Figures A.4 - A.5.

Figure A.4: Irradiation comparison.
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Figure A.5: Current comparison.

As can be seen in Figures A.2 and A.4, the reference cell again has the highest
precision. The difference in measurement may be related to the place where the cell
is fixed with respect to the sensors of the Adream building. Regarding Figures A.3
and A.5, the current transducer has a behavior similar to that observed by the
supervision platform. In the following test the monitoring platform is connected to
an isolated test panel. The interior of the first version of the monitoring platform
is shown in Figure A.6.

Figure A.6: Data acquisition platform

As can be seen in Figure A.6, the acquisition platform contains the temperature
sensor, current transducer, fuse holder, irradiance and temperature sensors and
the Arduino Mega. Figure A.7 shows the front view of the solar panel with the
photodiode (yellow circle at the top left) and the reference cell (yellow circle at the
bottom left).
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Figure A.7: Positioning of sensors on the panel

Two tests are performed and a hall effect current sensor was added. The first
test captures the data each second and in the second test data is captured each 100
milliseconds. The results are presented in Figure A.8 andA.9

Figure A.8: Acquisition every second.

Figure A.9: Acquisition every 100 milliseconds.

As can be seen, the greatest oscillation with respect to current is obtained with
the Hall effect sensor, so it is again recommended to use only the current transducer
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due to its high precision. A third test is performed capturing the data every 55
milliseconds for 10 minutes. The results are presented in Figure A.9.

Figure A.10: Test of measurements made every 55 milliseconds.

As can be seen in Figure A.9, the behavior of the system every 55 microseconds
is equivalent to the behavior every second. The only known limitation so far comes
from the number of measurements per second that the arduino MEGA’s ADCs can
take.

A.2 Test of conventional machine learning algorithms.

For the examples presented here, only the data from the current signal, that make
up a current database of 12 panels, with signals captured in parallel with a sampling
time of one minute for 13 hours from 7:00 a.m. to 8:00 p.m. on June 25, 2020.
The objective of demonstrating the results with these algorithms is to highlight
the limitations of the actual acquisition platforms on the market for fault detection
and classification of Broken Glass and Snail Trail faults. First, DTW is used in
conjunction with K-means [Chen 2020a] to cluster the current signals. Then, other
feature extraction and transformation methods, from Sections 6.3 and 6.4, are used
as input to the Random Forest supervised learning method.

A.2.1 K-means Clustering

The K-means algorithm is an unsupervised classification algorithm that tries to
divide N data objects into k ≥ 2 partitions or groups, where each would have
an object (mean) as its group center. That is, it groups them so that the ob-
jects in one group are similar to each other and different from those in other
groups. The center of each group represents all the objects (Ii{1:nI} of each PV
panel PVi) within that group. Like hierarchical clustering, its result depends on
the parameter k assigned. Then the algorithm assigns the rest of the objects to
the appropriate groups and recalculates new centers. This process is done un-
til the algorithm considers the cluster centers to be stable [Niennattrakul 2007].
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To group the signals, this algorithm calculates the similarity between the time
series and the centroid of its group. As a similarity metric, the DTW is used.
There are several works that use the k-means algorithm for time series classifi-
cation [Huang 2016, Niennattrakul 2007, Soheily-Khah 2016, Jang 2011]. In the
following paragraphs, the clustering problem related to K-means is formalized.

Let N = {I1{1:nI}, . . . , In{1:nI}}, be the set of n = 12 time series of the current
to be clustered by a similarity criterion. For a k-partition, k ≥ 2, P = {c1, . . . , ck},
is the set of cluster of N , let U = {u1, . . . , uk} be the set of centroids of P and
W = {w1,1, . . . , wn,ck

} be the matrix of weights of dimensions (n × k), where each
row W (z, .), z = 1, . . . , n, denotes the belonging of a current signal Iz{1:nI} with
all k clusters and each column W (., q), q = 1, . . . , k denotes the belonging of all n
current signals to a cluster cq. Therefore, the clustering problem can be formulated
as an optimization problem [Selim 1984] which is described as follows:

P : minimize z(W,U) =
n∑

z=1

k∑
q=1

wz,qd(xz, uq), (A.1)

subject to
n∑

z=1
wz,q = 1, for z = 1, . . . , n,

wz,q = 0 or 1, for z = 1, . . . , n, and q = 1, . . . , k,

where wz,q = 1 implies object Iz{1:nI} belongs to cluster cq and d(xz, uq) denotes
the DTW between Iz{1:nI} and cq for z = 1, . . . , n, and q = 1, . . . , k. Figure A.11
presents the results of the clustering with K-means applied to the time series of the
current Ii{1:nI} of each PV panel PVi, i = 1, . . . , n. In Figure A.11, Figure A.11a
represents the original signals. Figure A.11b represents the centroids found by k-
means algorithm. Finally, Figure A.11c represents an overlay of the original signals
and the centroids.
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Figure A.11: K-means clustering applied to the time series of the current Ii{1:nI}
of each PV panel PVi, i = 1, . . . , n. a) the original signals. b) the centroids found
using the k-means algorithm. c) An overlay of the original signals and the centroids

As can be seen in the Figure A.11b, the algorithm is able to determine three
centroids. The first and second centroids that group the healthy PV panels and
Snail Trails PV panels. The third centroid groups the panels with the Broken Glass
fault. It is evident that both in the Hierarchical Clustering algorithm and in the
K-means clustering the group of photovoltaic panels of cluster A (Broken Glass) is
easily discriminable. Nevertheless, as can be seen in Section A.2.1, unsupervised
learning algorithms are really limited to detect the Snail Trail fault as it requires
really fine detection. In order to improve the detection of this type of fine faults,
other feature extraction and transformation methods, from Sections 6.3 and 6.4,
are used as input for a supervised classification algorithm named Random Forest
(RF).

A.2.2 Random Forest (RF)

The Rf model, having several integrated classifiers, usually improves diagnosis per-
formance than the use of individual classifiers [Zhang 2020]. RF is an ensemble
learning method for classification that builds multiple decision trees during the
training phase and generates the final class by majority voting [Ho 1998]. This ap-
proach represents an improvement in the accuracy of fault detection compared to
the use of a single decision tree. This approach proposes the use of only the decision
tree as weak learners, and the strong learner Random Forest model is integrated
using the bagging algorithm [Badarna 2019]. This bagging method randomly se-
lects samples from the original training set of samples to generate a training set
for each member of the set by random band playback [Zhang 2020]. The bagging
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method allows each subtree to be trained on different parts of the same training
set, with the goal of reducing the variance [Ho 1995]. It has been mentioned in
the literature that RF mitigates the overfitting of DT during training and therefore
generally outperforms DT [Ali 2012].

In the domain of fault detection and classification in PV systems, RF has been
used to analyze the characteristics extracted from the I-V curves, allowing the de-
tection of faults such as partial shading, open circuit, short circuit and degradation
faults in an array PV [Hu 2017a]. In [Chen 2018c] it is used for classification of
partial shading, Line to Line LF, PV chain open circuit and degradation fault. In
[Heinrich 2020], the soiling rate is detected and analyzed using RF on the signals
of VMP P , IMP P and Tm. However, in this thesis the RF is used for the first time
for the detection of Snail Trail faults.

For this approach two predictor matrices MF are evaluated and it will be used
only to detect the panels with the Snail Trail fault due to the high limitation of the
HC and k-means algorithms. The first MF (Without combined feature extraction
approach) is constructed only by extracting the 7 statistical characteristics exposed
in Section 6.3.2. The secondMF , named new approach (combined feature extraction
approach), is built using first the signal decomposition of Section 6.3.1 and then
on each component of the reconstructed signal, the extraction of the 7 statistical
features of the Section 6.3.2 is carried out.

To evaluate the degree of correct predictions (ability to identify positive and
negative samples) the confusion matrix and the Fvalue are used. The Fvalue metric
does not take into account the true negatives (TN), for this reason, in cases of
unbalanced classes it improves the perception of the performance of the algorithm
[Ferri 2009]. The Fvalue ranges from 0 to 1, where 1 indicates the best performance
and 0 the worst. The Fvalue is defined as:

Fvalue = 2 ∗ precision ∗ recall
precision+ recall

(A.2)

where the precision, precision = TP/(TP + FP ), allows us to measure the cost of
false positives. The recall, recall = TP/(TP +FN), allows estimating the number
of individuals correctly classified as true positives compared to the total number of
elements belonging to the class.

The confusion matrix is a widely known tool that allows visualizing the perfor-
mance of a supervised learning algorithm or classification algorithm [Demir 2022].
In this matrix, each column represents the number of predictions of each class, while
each row represents the instances in the actual class. This allows to see what types
of successes and errors our model is having when going through the learning process
with the current data as a function of the time of each PV panel of the string.

In this RF approach, to ensure the performance of strong learners, the differences
with weak students should be as large as possible [Zhang 2020]. The methodology of
this approach starts with randomly selected n samples with reproduction as training
samples on all n samples for each tree in the random forest. This process is done to
increase the chance that the samples in each tree are different, while the samples in
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Signals

Tree-1 Tree-2 Tree-n

Majority Voting

Final class

Figure A.12: Example of classifying a new sample using Random forest (RF) model

Approach Without approach New approach
Reference Combined feature extraction

RF 0.55 0,73
Decision Tree 0,47 0,52

Table A.1: Fault detection and classification results with Random forest (RF)
model.

the same tree are repeatable. As a second measure to guarantee that the samples
of each tree are different, from the characteristics M (number of columns of the
matrix MF ), only k characteristics are selected for each tree. The most common
way to calculate k is by log2M or

√
M .

Because a sample can be entered into different decision trees, it is likely to fall
into different categories due to differences between the trees. It is there that the
final label is assigned using the votes from each decision tree. Like the ensemble
learning algorithm, the RF model, by combining multiple Decision Tree algorithms,
instead of using a single learning model, considerably increases detection accuracy.
This approach presents contributions such as: 1) It reduces the calculation time
necessary to detect and classify faults in PV systems compared to the Decision
Trees algorithm; 2) It also achieves classification using only the MPP current sensor
(no additional sensors required); and 3) Despite the small number of individuals
(current signals from the panels), it manages to classify all healthy panels with a
low cost of learning, data acquisition and storage.

As can be seen from Figure A.13 and Table A.1, Random Forests outperform
decision trees. However, it is important to mention that it can be observed that
the RF performance can be strongly affected in scenarios with a small number or a
low-dimensional data set (Without approach). When the predictor matrix used as
input for the RF is of very low dimension, it is possible that in some scenarios the
RF performance is lower than that of a single decision tree [Zhang 2020].
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Figure A.13: Confusion matrix of the results of the RF model. The class 0 corre-
sponds to healthy panels and the class 1 corresponds to panels with a Snail Trail.

A.2.3 Discussion and Conclusions

As can be seen, some of the conventional and most representative methods of ma-
chine learning, both unsupervised and supervised, have serious problems in detect-
ing Snail Trail faults. As mentioned in Chapter 2 the Snail Trail fault does not
significantly decrease the performance of solar panels (emulates healthy behavior)
and is therefore difficult to detect at the electrical signal level. However, as stated
above, it is a fault that can originate from microcracks and severe cracks to corrosion
and hot spots. Therefore, its early detection is vital.

It is interesting to note that for the detection of faults whose electrical signa-
ture is different from that of a healthy panel, unsupervised detection algorithms
such as hierarchical clustering and k-means represent a great opportunity with low
computational cost since they do not require the multiple feature extraction. A
disadvantage of the two unsupervised methods is that the number of desired classes
must be defined a priori. For example, as mentioned in [Nielsen 2016] the final
result of the HC depends on the level at which the bunches are cut. This character-
istic of the HC could be seen as an advantage, if what is desired is to differentiate
the level of affectation between panels of the same fault, since, as can be seen in
Figure 8.4, if the cut-off level is increased, it is possible to determine sub-clusters
linked to the level fault impact. This aspect is vital to establish a priority in pre-
ventive maintenance. To test the robustness of the HC and k-means algorithms,
both are tested with different time windows, always obtaining the same result even
with 3-minute windows. This aspect is vital to establish a priority in preventive
maintenance.

Regarding the RF approach, it is possible to notice how the increase in the
number of features also increases the precision in the detection and classification
of faults. In addition, it can be seen that although RF has limitations for Snail
Trail detection, it is capable of detecting 3 out of 4 panels with the Snail Trail fault
despite the small number of individuals (samples) and the high similarity between
the samples of each class. One of the advantages of all the methods presented in
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this section is that they manage to group the signals using a single variable, which
is the panel current. This can translate into a significant reduction in the number
of sensors for fault diagnosis whose electrical signature is different from that of a
healthy panel. In addition, it is not necessary to cut PV production to carry out
the diagnosis and they work with a reduced number of individuals of each class
(panels per class), which avoids the need for large numbers of individuals to train
the diagnosis system.

Considering that Snail Trail faults are currently detected with regular staff visits
to PV plants, these approaches really present an important contribution to auto-
matic fault detection. In general, the diagnosis process proposed here using the
extraction and transformation of signatures together with the supervised machine
learning algorithms, although it continues with limitations regarding the complete
detection of the panels with Snail Trail, is a step towards understanding the existing
limitations. For the reasons stated above a new fault detection algorithm is exposed
in Chapters 7-9.
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Résumé : Le diagnostic des défauts est essentiel pour garantir la production
continue des systèmes photovoltaïques. Parmi les approches de diagnostic, le diag-
nostic basé sur les données apprend un modèle de diagnostic à partir d’une base
de données de situations normales et défectueuses. Cette approche nécessite un
contrôle strict par un système d’acquisition de données pour constituer une base
de données substantielle et un algorithme d’apprentissage automatique capable de
discriminer non seulement les défauts qui causent des pertes critiques de produc-
tion, mais également les défauts subtils dont les symptômes doivent être séparés du
bruit.

L’objectif de cette thèse est le développement de méthodes de diagnostic de dé-
fauts pour les installations photovoltaïques qui puissent s’embarquer sur une plate-
forme matérielle incluant un système d’acquisition et de traitement de données en
temps réel, respectant les contraintes industrielles et prenant en compte le com-
promis coût/bénéfice en productivité ou en disponibilité. Afin de positionner notre
recherche et de connaître les limites actuelles dans le domaine du diagnostic des
systèmes photovoltaïques, cette thèse présente d’abord une étude extrêmement ap-
profondie et complète qui construit un état de l’art sur le sujet. Celle se base sur
un très grand nombre d’articles en tirant profit de l’analyse bibliométrique et de la
modélisation thématique.

Pour résoudre le problème posé et contribuer à un diagnostic efficace des défauts
dans les systèmes photovoltaïques, cette thèse propose un cadre matériel/logiciel
complet pour le diagnostic qui comprend une nouvelle plate-forme d’acquisition de
données de système PV, une station météo mobile polyvalente et des algorithmes
d’apprentissage automatique qui, en raison de leur efficacité de calcul et de leurs
temps de réponse rapide, peuvent être intégrés dans un système temps-réel.

La plate-forme d’acquisition de données et le logiciel embarqué ont été testés sur
plusieurs centrales photovoltaïques et se sont avérés efficaces pour détecter divers
défauts critiques dans les panneaux photovoltaïques.

Mots clés : Détection de défauts, Diagnosis, Surveillance, Centrales photo-
voltaïques, Intelligence artificielle, Apprentissage automatique



Abstract: Fault diagnosis is vital to ensure the continued production of photo-
voltaic (PV) systems. Among diagnosis approaches, data-driven diagnosis learns a
diagnosis model from a database of normal and faulty situations. This approach re-
quires strict control by a data acquisition system to constitute a substantial database
and a machine learning algorithm capable of discriminating not only the faults that
cause critical production losses, but also subtle faults whose symptoms must be
separated from noise.

The objective of this thesis is the development of fault diagnosis methods for
photovoltaic installations embedded in a physical system for data acquisition, treat-
ment and detection of faults in real time, respecting industrial limitations and taking
into account the cost/benefit compromise in productivity or uptime. In order to
position the research and to know the current limitations in the area of diagnosis
of PV systems, this thesis first presents an extremely deep and complete study of
a large number of articles that builds a state of the art on the subject of interest
based on bibliometric analysis and topic modeling.

To address the problem at hand and as a contribution to effective fault diagnosis
in photovoltaic systems, this thesis proposes a complete hardware/software frame-
work for fault diagnosis that includes a new PV system data acquisition platform,
a versatile mobile weather station, and machine learning algorithms that, due to
their computational efficiency and rapid response characteristics, can be embedded
in a real system.

The data acquisition platform and embedded software has been tested on several
PV plants and it has proved successful in detecting various critical faults in PV
panels.

Keywords: Fault detection, Diagnosis, Photovoltaic plants, Supervision, Ar-
tificial intelligence, Machine learning, Fault detection fault diagnosis, Data acquisi-
tion, Advanced monitoring
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