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Seul l’inconnu épouvante les hommes.
Mais, pour quiconque l’affronte, il n’est déjà plus l’inconnu.

Only the unknown frightens men.
But for anyone who confronts it, it is no longer the unknown.

— Antoine de Saint-Exupéry
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Part I

I N T R O D U C T I O N

This introduction aims to present the scientific context in which this work is
carried out.
This part is separated in two chapters. The first chapter aims to provide
a high-level general overview of the potential future uses of robots. The
second chapter presents a more detailed discussion of the specific context of
this dissertation and outlines the contributions of this work.





1
H U M A N O I D R O B O T S : T O WA R D T H E
N E X T I N D U S T R I A L R E V O L U T I O N ?

The focus of this chapter is to provide a general introduction to robotics for
industrial manufacturing, with an emphasis on the potential applications un-
locked by humanoid robots. It aims to set the scientific challenges addressed
in this dissertation within a broader context.
This chapter poses the question:
Why are humanoid robots an interesting topic?
Rather than attempting to answer this question exhaustively, it seeks to in-
spire reflection about some of the societal challenges that are inherently
linked to robotics.

In Short

Contents
1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Current trend in manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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1 general context

Automation is a top priority for companies across the industrial world. The number
of industrial robots in use worldwide has been steadily increasing, reaching nearly 4
million units in 2023 [182]. These systems are expected to play an even more significant
role in the future of manufacturing, with major industrial actors forecasting billions of
dollars of investments in automated systems [9].

The integration of robots in industrial processes has been, and will continue to be, a
key driver of economic development. By automating repetitive tasks, robots enhance
productivity, reduce operational costs, and minimize errors. Moreover, robots present
an appealing solution to address the labor shortages that will multiply with the aging of
the population. According to the World Health Organization, 1 in 6 people in the world

3
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will be 60 years or older by 2050, with developed countries, such as Japan, already well
over this rate [196].

Beyond economic benefits, robots have the potential to significantly improve working
conditions by taking over hazardous, strenuous, and monotonous tasks. Industrial envi-
ronments are known to be the cause of many health issues, whether due to exposure to
harmful environments [141] or musculoskeletal disorders caused by repetitive motions
[30]. Robots can operate in dangerous environments with exposure to toxic substances,
extreme temperatures, or harmful noises. By replacing humans in these settings, robots
reduce the risk of work-related injuries and illnesses. Furthermore, they contribute to
creating a more comfortable working environment and help prevent musculoskeletal
disorders by liberating humans from repetitive motions. Improving working conditions
in this manner not only enhances the overall well-being of workers but also reduces the
costs associated with workplace injuries and absenteeism.

2 current trend in manufacturing

Always striving to achieve a better productivity, actors in the manufacturing industry
have already extensively adopted automation technologies. Nevertheless, significant
improvements in this area are still conceivable. According to a McKinsey research,
manufacturing is the second industry that holds the most potential when it comes to
automation opportunities [53].

However, it is essential to recognize that the manufacturing industry is highly diverse,
and not all applications have the same potential for automation. [53] classifies manufac-
turing sub-sectors into three categories based on the skill level required of workers and
the technological complexity of the products:

— Low-skill labor/low product complexity.

— Medium-skill labor/moderate product complexity.

— High-skill labor/high product complexity.

Not all sub-sectors within the manufacturing industry have reached the same level of
automation. For low-product complexity industries, the primary barrier to automation
is often related to cost. Since these industries usually exploit low labor costs, robots
may not present a cost-effective solution.

On the other hand, technical feasibility is the main factor to consider for automation
in complex manufacturing processes, such as aerospace manufacturing. The relatively
low number of units produced, compared to other fields, means there are fewer repet-
itive tasks that can be easily automated with classic industrial robots. Moreover, these
processes involve more complex work that require high safety and precision levels.New technologies

are necessary to
make robots more

useful.

While the former problem can be addressed by making existing technologies more
cost-efficient, the latter requires the emergence of new technologies, leading to smarter
and more flexible robots. New robot’s capabilities would increase the number of tasks
that can benefit from automation across various sub-sectors.
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3 freeing robots from their fixed base

This dissertation focuses on the new technologies that could enable more effective
automation. An interesting avenue to integrate robots into previously unreachable pro-
cesses is to focus on adaptability, which could allow the integration of robots into ex-
isting manufacturing processes with minimal disruption. A type of highly adaptable
robots, often referred to as Collaborative Robots (Cobots), promises to offer the technology
required to work alongside humans in shared workspaces [257].

This broad description encompasses a wide array of technologies. To bring more
clarity to the understanding of collaborative robots, [18] proposes a framework defining
four types of industrial human-robot collaboration:

— Coexistence: The robot is not in an enclosed secure cell, but does not share its
workspace with humans.

— Sequential collaboration: Human and machine work in the same space but not at
the same time.

— Cooperation: Robot and Human are both in motion at the same time to work on
a common part.

— Responsive collaboration: Real-time adaptation of the Robot to the movement of
the worker.

A simplified representation of these categories can be found in Fig. 1.1.
Most current applications fall into the first two categories, and actual responsive col-

laboration is still in the domain of theory. Nonetheless, the common denominator of all
these applications, even the most conservative ones, is the ability of the robot to sense
and react, to a certain degree, to its environment. This underscores the fact that reactiv-
ity is a major driver for the development of these new methods. More reactivity could
bring more interaction capabilities but also adaptability to a broader range of uses.

In order to be actually qualified as cobots, robots must adhere to very strict safety
regulations [117]. Since the subject of this work is focused on technologies with a low Reactivity is a first

step toward
collaboration.

degree of maturity, it will not tackle cobots but instead aim to add more reactivity to the
planning capabilities of robots, a foundational step toward truly collaborative robots.

3.1 Disruptive approach to robotics

Recently, solutions to bring more flexibility to industrial robots have departed from
incremental improvements over manipulator arms. The focus has shifted to humanoid
robots because of their disruptive potential [22]. Indeed, their human-inspired design
holds promise for a wide array of applications.

Firstly, legged locomotion could enable humanoid robots to traverse a wide variety of
terrains that are not accessible by wheeled robots. This enhanced mobility could allow
them to operate in complex environments, such as construction sites, disaster zones, or
remote areas, where traditional robots might struggle.
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Figure 1.1 – Various levels of cooperation between a human worker and a robot [18].

Secondly, their bipedal form factor with two hands makes humanoid robots poten-
tially ideal for manipulation tasks. They possess the mechanical capabilities to perform
intricate operations that require dexterity and precision, similar to those executed by
human workers. This capability would lead to new possibilities for collaboration and
task sharing between humans and robots.

Moreover, humanoid robots appear to be a sensible solution to adapt to human-
optimized environments, as their design is inherently adapted to navigate spaces and
use tools created for human use. When integrating robots into the workplace, this
adaptability would reduce the need for costly modifications to existing infrastructure.

Lastly, interactions with humans might be facilitated by the similarities in shape and
movement between humanoid robots and their human counterparts. This resemblance
could enable humanoid robots to exploit non-verbal communication cues, such as ges-
tures and facial expressions, to better understand and respond to human intentions.

However, these promises can only become a reality if control methods fully exploit
the capabilities of these platforms. Increased mechanical complexity in robotic solutionsExploiting the full

capabilities of
humanoid robots is

challenging.

results in more challenging controls. For humanoid robots, tasks such as locomotion
are far from trivial and have been a research topic for numerous years. Nevertheless,
recent advances in Artificial Intelligence (AI) could significantly benefit robot control.

For instance, the Toyota Research Institute proposes a solution analogous to Large
Language Models but tailored for robotics, called Large Behavior Models [253]. Such
solutions, based on learning and exploiting vast amounts of data, could be the key to
bridging the gap between laboratory environments, where most humanoids have been
evolving for the past years, and factory floors.
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3.2 Humanoid robots in the industry today

Numerous proposals to use humanoid robots in industrial settings have recently
emerged (Fig. 1.2). Agility Robotics announced a partnership with the logistics provider
GXO [6], marking the first formal commercial deployment of humanoid robots. Other
humanoid robot manufacturers have announced collaborations with car manufacturers,
such as Apptronik with Mercedes-Benz [13] and Figure with BMW [26]. These collab-
orations demonstrate the growing interest in humanoid robot technology for industrial
manufacturing.

Tesla has also announced plans to deploy their Optimus robot for car manufacturing
in the coming years [248]. Moreover, Boston Dynamics unveiled a successor to its hy-
draulic robot Atlas in the form of an electrically actuated robot geared toward industrial
applications [31].

Several other companies are advertising humanoid robots for general industrial tasks,
such as Sanctuary in North America [222], 1X in Europe [1], and Fourier [25] and Uni-
tree [255] in Asia.

4 general subject of the dissertation

Humanoid robots, although a long-standing research subject, have only recently be-
come a credible solution to address the challenges related to the automation of manu-
facturing. Their architecture allows them to move through unstructured environments
and to exploit the full possibilities of environments designed for humans. This versatil-
ity makes them a sensible solution to automate tasks that have been, so far, out of reach
for traditional robots. The implementation of robots inside factories also opens up a
new realm of possibilities for more tightly integrated collaboration between humans
and robots.

However, these promises bring their own set of challenges. Useful applications will
only emerge if we manage to exploit these advanced robotic systems to the best of their
abilities. Therefore, this dissertation aims to determine how to endow humanoid robots
with reactive capabilities. In particular, it investigates whether novel learning-based
methods can be leveraged for this purpose.
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(a) Digit [5] (b) Apollo [14] (c) h1 [255]

(d) Figure [85] (e) Optimus [251] (f) Atlas [31]

Figure 1.2 – Industrial Humanoids



2
A P P L I C AT I O N I N A N I N D U S T R I A L
S E T T I N G

In this chapter, topic of this dissertation is narrowed down to a specific de-
burring task carried out by the humanoid robot Talos.
We also explain the nature of the collaboration between Airbus and the
Gepetto team, from which this application arose.

In Short

Contents
1 Context of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Scientific collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Robots for the Future of Aircraft Manufacturing . . . . . . . . . . . . . . . . . . 11

2.2 Memory Of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Hardware: the Humanoid Robot Talos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Task studied in the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 General Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 context of the dissertation

Among the many potential applications of humanoid robots in the industry, this disserta-
tion focuses specifically on their use in aircraft manufacturing. Automation of airplane
manufacturing has been a pressing concern for quite some time. Indeed, airplanes are
primarily made of metal or composite plates riveted together, which requires drilling
tens of millions of holes for every airplane [24]. However, to this day, this tedious task
is still largely carried out by human operators (75% of the holes were drilled by hand,
according to 2022 data).

Attempts have already been made to automate this task. In 2014, Boeing experi-
mented with using KUKA manipulators on moving platforms (Fig. 2.1) to automate
the assembly of the fuselage of their 777 series [91]. This solution involved pairs of
robots working in coordination, one inside the fuselage and the other outside, to place
fasteners. However, precisely coordinating the robots proved to be challenging, and the
system never reached its intended efficiency, requiring human intervention to correct
faulty parts. As a result, Boeing decided to revert to a solution called Flextrack, which

9
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Figure 2.1 – Kuka robots in Boeing’s assembly line [91].

(a) A320 assembly line in Hamburg [7] (b) The Flextrack robot [8]

Figure 2.2 – Robotics solutions employed on Airbus’s assembly lines

is also utilized by their competitor, Airbus. Flextrack moves on rails attached to the fuse-
lage to drill the holes. Unlike the fully autonomous solution experimented by Boeing,
Flextrack requires an operator to move the robot to different sections of the fuselage
and to add the fasteners by hand.

Airbus is also heavily investing in modernizing its manufacturing processes. In 2019,
a new assembly line for the A320 in Hamburg was inaugurated. It combines the Flex-
track robot (Fig. 2.2b) with KUKA robotic arms (Fig. 2.2a), focusing on improving man-
ufacturing efficiency without affecting product quality [7]. Additionally, Airbus makes
significant efforts to develop, integrate, and maintain custom robots, aiming at a tight
integration of new technologies into existing processes [8]. Because of this strategic
orientation, Airbus is a fundamental partner to explore commercial applications of tech-
nologies developed inside research labs.
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Despite extensive efforts directed at developing the use of robots in aircraft manufac-
turing, this topic is still far from solved. Aircraft manufacturing is particularly challeng-
ing because, to reach maximum efficiency, robots need to be able to move around the
plane structure and work inside the fuselage. This involves climbing stairs and navi-
gating cluttered environments. In this context, humanoid robots represent a promising Humanoids can

potentially crawl
through narrow
spaces [75].

research direction because their architecture allows them to reach the same places a
human operator would [256]. However, for this integration to be successful, humanoid
robots should be able to work in proximity with humans. That is why, as already de-
tailed in Section 3 of Chapter 1, we believe reactivity to be a central point for the future
development of robots.

2 scientific collaboration

This work was carried out in the Gepetto team at LAAS-CNRS. Moreover, it is the
fruit of a collaboration with Airbus Operations SAS, which provided us with an appli-
cation case and opportunities to carry out experiments in one of their factories. This
collaboration spanned over two projects:

— Robots For the Future of Aircraft Manufacturing

— The Memory of Motion

2.1 Robots for the Future of Aircraft Manufacturing

Robots For the Future of Aircraft Manufacturing (ROB4FAM) is a joint laboratory be-
tween Airbus Operations and the LAAS-CNRS’s Gepetto team, inaugurated in 2019. Its
primary objective is to investigate innovative automation strategies for drilling and de-
burring tasks, which are critical in the aeronautical industry. The collaboration aims to
integrate reactive robotic solutions into industrial aeronautic manufacturing processes,
enhancing efficiency and safety.

This project was carried out along four axes [215]:

1. The first axis focused on augmenting the robot with reactive motion planning
capabilities. This involved using visual servoing to account for uncertainties in
the environment or the robot’s actuators [192]. By demonstrating manipulation
abilities on the robots TIAGo and TALOS [148], [177], the team showcased the
robots’ ability to plan and execute motions in real-time to perform specific tasks,
such as aligning a tool with holes on an airplane part or flipping a wooden piece.

2. The second axis aimed to exploit torque and force measurements to provide a
safer and more efficient control scheme. Research in this area included studies
on actuator control [212], passivity-based control [211], and benchmarking control
strategies [213]. This axis was crucial for enhancing the robots’ task efficiency and
ensuring safe interactions with human workers.

3. The third axis concerned the perception capabilities of the robot, enabling it to
localize itself within a large factory environment [149], [150]. This aspect is a
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necessary prerequisite for the robot to navigate and interact with its surroundings
effectively.

4. The last axis specifically addressed the equilibrium of a humanoid robot in a com-
plex environment [261].

The work presented in this document is attached to the first axis and involves per-
forming deburring tasks with the humanoid robot TALOS.

2.2 Memory Of Motion

Memory of Motion (Memmo) is a European project carried out within the Horizon
2020 Program under Grant Agreement No. 780684. Initiated in January 2018, it brings
together experts from the fields of motion planning, optimization, machine learning,
and robotics, involving multiple European laboratories, universities, and companies.
It is conducted with the support of key partners, among which PAL-Robotics (Spain)
and Airbus (France). Similar to the ROB4FAM project, Airbus provides the targeted
application, while PAL-Robotics contributes with their TALOS humanoid robot (bottom
left in Fig. 2.3).

Figure 2.3 – Illustration of the robotic platforms involved in the Memmo project (Atalante, ANY-
mal, TALOS, and Solo) [67].
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The primary aim of the Memmo project is to develop new control and planning
methods to generate complex movements independently of the robot architecture. The
scientific approach presented in this project is to exploit a library of pre-computed
trajectories to improve the online optimization capabilities of the robots and to use
exteroceptive sensors to enhance adaptability.

The Memmo project is a laureate of the Stars of Europe 2022, recognizing the success-
ful collaboration of 11 European partners and the demonstrated results.

3 hardware : the humanoid robot talos

The experimental work was conducted on the humanoid robot TALOS (Fig. 2.4), a
32 Degrees of Freedom (DoF) platform manufactured by the Spanish company PAL-
Robotics. TALOS was developed in collaboration with the Gepetto team, with the goal
of creating a robot capable of complex locomotion and bi-handed manipulation of sig-
nificant payloads [242]. Standing at 1.75 m tall and weighing around 100 kg, TALOS is
equipped with electric actuators and strain wave gearing, enabling it to lift more than
6 kg with a straight arm.

Its 32 DoFs are distributed as follows: two legs with 6 DoFs each, a waist with 2 DoFs,
two arms with 7 DoFs each and a 1 DoF gripper, and a head with 2 DoFs. Most joints are
fitted with a torque sensor, except for the head, wrists, and grippers. TALOS operates
on two Ubuntu computers, one for control and one for vision processes, connected to
all actuators and sensors via an EtherCAT bus.

Figure 2.4 – The humanoid robot Talos [242].
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The model used at the lab in Toulouse, named Pyrène, is the first TALOS ever pro-
duced. While subsequent iterations of TALOS have seen improvements such as updated
torque sensors, Pyrène retains some differences due to changes in the production pro-
cess that could not be replicated.

Because of the need for additional sensors to carry out some experiments, the head
of the robot was modified. The modified head integrates a LiDAR with a wide field
of view, a stereo camera pointing straight ahead of the robot, and an infrared-based
RGB-D camera pointing at the ground in front of the robot (Fig. 2.5).

Figure 2.5 – The modified head of Pyrène with a LIDAR (top) and two cameras (middle and
bottom) [150].

4 task studied in the dissertation

Among the various tasks in aircraft manufacturing, this dissertation focuses on de-
burring, specifically the deburring of holes on an aircraft engine pylon (Fig. 2.6a). The
pylon, often made of titanium, is a critical mechanical component that attaches the en-
gine to the wing (Fig. 2.6b). It supports the engine’s weight, transfers thrust to the
airframe, minimizes engine-wing airflow interaction, and protects the aircraft structure
in case of engine failure.

Deburring is a post-drilling operation that removes material residues, which, if left
unaddressed, could cause mechanical weakness, particularly in load-bearing parts like
the pylon. Due to the size of the pylon and for confidentiality reasons, most of the
work in this thesis was conducted on a 3D-printed mockup part provided by Airbus
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(a) A320neo engine pylon [169].

(b) A320neo engine [269].

Figure 2.6 – Picture of an engine pylon (top) and the full assembly on a real airplane (bottom).
The images are for illustrative purposes, and the pylon shown at the top may not
exactly match the setting depicted at the bottom.

(Fig. 2.7a). This mockup represents a small section of the original piece and may have
modified dimensions.

The deburring tool is represented as a 3D-printed part (Fig. 2.7b) rigidly attached to
the robot’s fingertip (Fig. 2.7c). In this study, the deburring task is simplified to a fine
insertion task, as the actual deburring is not performed by the robot. A fine insertion

task is studied as a
first step toward
autonomous
deburring.

The work presented in this manuscript attempts to undertake this task with the hu-
manoid robot TALOS, which was presented in Section 3. This is particularly challenging
because, unlike dedicated manipulator arms, this type of hardware is not specifically
designed for high-precision tasks. The diameter of the hole is less than 1 cm, and
the robot’s inherent flexibility and imprecision necessitate the use of advanced control
techniques to achieve the correct placement of the tool.

Moreover, the goal is to control the robot using torque control, which adds another
layer of complexity to the task. We believe torque control to be important because it
enables finer control of the energy expended by the system compared to position control.
This approach promotes safer robotics by limiting the energy input to what is required Torque control

could unlock safer
human-robot
collaboration.

for a specific movement, preventing dangerous energy increases during unexpected
events.
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(a) 3D printed mockup of an aircraft pylon.

(b) 3D printed tool.

(c) Tool attached to the robot’s
gripper.

Figure 2.7 – Elements of the experimental setup.

5 general outline

In summary, the aim of this work is to realize the fine insertion of a tool inside
the holes of an aircraft structure using a torque-controlled humanoid robot. The work
presented here is organized according to the following outline:

— Part ii presents the state-of-the-art regarding motion planning and control, which
are the two main fields of interest of this thesis. It tackles both model-based ap-
proaches that have been the long-standing baseline solutions and learning-based
approaches that have emerged more recently.

— Part iii presents the technical and theoretical foundations of the WBMPC used to
carry out the experiments on the robot. The main aim of this part is to present
the technical choices as well as the challenges associated with deploying a con-
troller on a full-size humanoid robot. The work presented in this part led to a
demonstration for the Memmo project in June 2022.

— Part iv focuses on improving the performance of the controller. A first chapter
in this part highlights the cost shaping issue that was encountered during the
first experimental sessions. Then, a Reinforcement Learning based approach is
proposed to alleviate this issue by leveraging experience of the robot.

— Finally, part v presents the conclusions of this work and the future perspectives.
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Part II

S TAT E O F T H E A RT

This part of the manuscript provides a general introduction to the field of
industrial robots. It presents the methods, both past and present, that can be
used to execute useful motions on these machines.
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M O T I O N G E N E R AT I O N A N D C O N T R O L
I N R O B O T I C S

In this chapter, the state of the art regarding the motion planning and control
of robot is presented. Particular focus is given to :

— Classical model based approaches

— Emerging learning based solutions
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1 introduction

To enable true breakthroughs of robots in the industry, algorithms and techniques for
motion generation and control are critical. In this chapter, an analysis of the relevant
state of the art regarding robotic control strategies is presented, addressing both model-
based and learning-based approaches.

The scope of this thesis is limited to motion planning and control, and we assume that
the task to be carried out is already well-defined. Therefore, we will not dwell upon task
planning but instead focus on methods that allow us to find the best motion for a pre-
defined task and carry out that motion effectively on the robot. A structured inventory
of these methods is porvided, including both classical and modern approaches.

21
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2 model based approaches

The classical approach to robot motion generation involves separating the problem
into two sub-problems: motion planning and control [34]. Motion planning involves
finding a collision-free path for the robot between two given configurations, while con-
trol involves executing those movements accurately and efficiently while taking into
account sensor feedback. This separation stems from the difficulty to control complex
robots. Splitting the problem into smaller, more manageable sub-problems thus appears
as a sensible strategy.

While some methods blurring the boundary between planning and control have
emerged in recent years, this separation remains a useful starting point to get a good
understanding of solutions that exist in robotics.

2.1 Planning

The problem of motion planning was originally known as the Piano mover problem,
which involves finding a collision-free path for moving a large, rigid object through a
cluttered environment. This purely theoretical problem has been extensively studied
[230]–[233], [235]. It has also been applied to concrete industrial problems such as
disassembly [83] and optimization of vehicle trajectories [147].

Rather than solving the movement of a complex object through a 3-dimensional space,
roboticists study it in the configuration space of the robot [164]. This is a mathematical
space that represents all possible configurations of the robot, where each point in the
space corresponds to a unique configuration. The problem thus becomes that of finding
a path between two points in a high-dimensional space.

We present a quick summary of the different approaches that can be adopted to tackle
this problem:

— Deterministic Planning

— Sampling-based planning

— Optimization-based planning

For further references, a comprehensive introduction to motion planning can be found
in [132]. A more recent state of the art, applied to hardware similar to the one studied
in this thesis, can be found in [193].

2.1.1 Deterministic Planning

Deterministic planning is mainly of theoretical interest because it allows for a sys-
tematic, repeatable way to generate a trajectory. It can also identify cases where no
trajectory exists. The idea is to describe the problem as a deterministic roadmap or a
graph. Voronoi diagrams [249] and Canny’s algorithm [38] are two example of such
methods. Once this is done, a graph path search algorithm like Dijkstra algorithm [68]
or A* [104] can be used to find a trajectory. However, these methods are generally
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extremely computationally intensive, so they are not a viable solution for most prob-
lems that commonly arise in robotics, especially when tackling complicated humanoid
systems.

To alleviate this problem, local field-based methods can be used [138]. These methods
use a gradient-based approach and are less computationally intensive than deterministic
planning methods. However, they are prone to getting stuck in local minima in complex
settings.

2.1.2 Sampling-based planning

Sampling-based planning algorithms are capable of handling larger problems more
efficiently than deterministic methods. They rely on the existence of efficient collision
detection algorithms to swiftly determine whether a given configuration is in collision
with its environment or not. This capability makes random exploration a viable strategy
for quickly discovering new, potentially useful configurations.

These algorithms can generally be categorized into two groups:

1. Single query algorithms, designed for one-time use per problem, prioritize rapid
exploration of the configuration space over the quality of its representation. A
notable example is the Rapidly exploring Random Trees (RRT) algorithm [151].

2. Multiple-query algorithms, typically employed to provide multiple paths in a
quasi-static environment, value an accurate representation of the configuration
space. Most of these methods are derived from the Probabilistic RoadMap (PRM)
concept, introduced in [131].

Despite their practical efficiency in addressing larger problems than deterministic
algorithms, sampling-based methods have certain limitations:

— They offer weaker guarantees. While a solution will eventually be found if one
exists, the planner will continue running indefinitely if no solution is available.

— They struggle with problems in which random sampling is unlikely to provide
good estimates, such as scenarios involving narrow passages.

— Lastly, The random nature of the exploration may result in paths that are not
optimal for the robot to follow.

A more comprehensive description of this topic can be found in [152].

2.1.3 Optimization-based planning

In the planning problem formulations discussed so far, optimality has been given
little to no importance. The primary focus of planning has been to find a feasible path
in a cluttered environment, with any given solution often deemed satisfactory. Even if
the quality of the solution was of interest, it is not trivial to define an optimality criterion
for a planning task.

Some methods nonetheless carry out motion planning through optimization. Optimal
variants of RRT and PRM have been proposed in [130]. These algorithms guarantee
convergence towards the globally optimal solution of the motion planning problem.
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Methods like Covariant Hamiltonian Optimisation for Motion Planning (CHOMP) [278]
and its evolution TrajOpt [226] require an initial trajectory as input. They iteratively im-
prove the initial trajectory to construct an optimal solution.

The connection between optimization and motion planning will be further explored
in Section 2.3.

2.1.4 Planning of humanoid movements

The planning of humanoid robot movement is a complex task due to the unique char-
acteristics of the system. The under-actuation of humanoid robots means that they must
rely on external forces to control their Center of Mass (CoM). This results in frequent
shifts in contact during locomotion or manipulation, which significantly impacts the
system’s dynamics and makes the planning process challenging.

The Gepetto team proposed an approach to address these challenges by splitting the
complex problem of humanoid planning into several more manageable sub-problems
[42]. The problem is divided into three main steps:

— Contact sequence planner: This first step aims to compute a sequence of contacts
according to the desired behavior of the robot [252]. First, the planner considers
only the root of the robot, ensuring that the robot is close enough to obstacles to
be within reach of the limbs but at a distance that guarantees contact avoidance.
Then, a discrete sequence of statically stable configurations is generated along the
found path. [82] extends this approach with new steering method to account for
dynamic transitions. The workflow of the approach is summarized in Fig. 3.1.

Figure 3.1 – Overview of the contact sequence planner [44]. An initial movement request is first
transformed into a trajectory of the root of the robot, which is then used to obtain a
discrete contact sequence.

— Centroidal pattern generator: This step computes control for the centroidal dynam-
ics of the system to obtain a smooth movement by taking as input the contact
sequence generated at the previous stage of the framework [44].

— Whole-body motion generator: The last step uses an RRT-based approach to compute
whole-body motions and plan the position of the end-effectors while following
the desired trajectory of the CoM [44].
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The information obtained through this process can then be fed to a controller to
obtain the torques that must be sent to the robot. However, splitting the problem in this
manner does not guarantee that a solution will lead to a feasible problem for subsequent
steps. This means that in the case of infeasible movements, the whole pipeline must be
evaluated again, and there are no solutions to address this issue locally. This is one of
the reasons that explain the emergence of integrated planning methods, which will be
explained in Section 2.3.

2.2 Control

Assuming that the motion planning problem has been solved, it is necessary to design
a control solution to ensure that the desired trajectory is accurately tracked by the robot.
In robot control, this control phase is typically divided into two levels:

— Low-Level Control: This controller operates at high frequencies (up to several kHz)
directly at the actuator level. Its function is to precisely regulate the actuator
dynamics, leveraging the specific characteristics of the actuators, which can either
be identified on existing hardware [66] or integrated into new designs [96].

— High-Level Control: This controller addresses the architecture-specific requirements
and formulates a control law that satisfies system constraints, such as torque limits.
It is responsible for bridging the gap between the high-level motion plan and
the commands executable by the low-level controller. The high-level controller
compensates for model limitations encountered during the planning phase and
ensures the plan’s feasibility in real-world scenarios.

In the context of robotics, the low-level controller is the distinctive element that dif-
ferentiates position control from torque control.

Position control translates joint positions into motor commands. It has been suc-
cessfully applied to execute walking motions on humanoid robots [39]. However, this
control type is less effective in handling unforeseen disturbances or achieving compliant
behavior.

To overcome these limitations, torque control directly regulates the torque output of
the actuators, offering better adaptability and compliance. Nonetheless, the additional
modeling required for successful deployment on real hardware poses significant chal-
lenges [73].

Given that the design and implementation of low-level controllers, including mod-
eling and compensation of actuator effects, are outside the scope of this PhD, these
aspects will not be further elaborated. Instead, we will focus on high-level control by
detailing the following strategies:

— Joint Space Control

— Operational Space Control

For a more comprehensive understanding of motion control, including detailed math-
ematical developments, the reader can refer to [54], [234].
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2.2.1 Joint Space control

Joint Space Control involves controlling the robot directly in its joint space. The most
straightforward and widely used control scheme in this context is the Proportional
Integral Derivative (PID) controller. This control scheme has been studied for many
years [276]. One of its advantages lies in its simplicity and clear physical meaning
[52]. Additionally, its theoretical foundations have been extensively researched [10], [15].
These factors combine to make PID control a solid choice for industrial applications and
explain why it remains prevalent to this day.

However, this approach presents significant limitations when controlling highly non-
linear systems. The simple feedback loop may not be sufficient to achieve the desired
performance. Moreover, most industrial applications require very precise placement
of the robot’s end effector, necessitating extremely stiff feedback gains. This means
that while tracking performance is improved, compliance is reduced, which may not be
optimal in unstructured environments or when dealing with unforeseen disturbances.

The simplest form of PID control falls into the category of independent joint control,
meaning that the control input for each joint is not influenced by the state of other joints.
To address situations where this assumption is limiting, such as with manipulator arms
that have long kinematic chains, a feed-forward term can be incorporated. The most
common example in robotics is adding a gravity compensation torque [134].

Another limitation of PID is that a fixed set of gains, tuned for a specific system model
might not deliver satisfactory performances on an uncertain system. Two main families
of solutions exist to address this issue: adaptive control and robust control. Adaptive
controllers [112] augment traditional fixed-gain controllers with a strategy that adjusts
the gains based on signals from the closed-loop system to make them time-varying. On
the other hand, robust control [3] aims to optimize a single set of gains to achieve the
best average performance across various situations, even in the presence of uncertainties
such as mathematical model inaccuracies and unmodeled dynamics. Adaptive control
is applicable to a wider range of uncertainties, whereas robust control is generally easier
to implement.

2.2.2 Operational Space control

Despite being a straightforward control technique, operating in the joint space is
sometimes not the best way to specify the movement of a robot. The operational space
framework was introduced to focus on task execution and make control more intuitive
[137].

In this approach, tasks are defined as the error between a current and desired value
for a specific robot feature. Originally conceived to control the end-effector position
of a manipulator arm, operational space control can also apply to a broader range of
features, for example, the position of the feet or the position of the CoM in humanoid
robots [76], [221].

The main goal is to regulate this specific quantity to zero. Desired damping can be
achieved by specifying values on the derivatives of the error [256]. Another approach
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involves designing a control Lyapunov function to ensure the error converges to zero
[11].

Other solutions handle inequality tasks [65], [200]. However, this approach is by
nature instantaneous, which means that guaranteeing constraints on the system’s state
over an extended period of time is inherently precarious.

Operational space methods generally rely on solving a Quadratic Program (QP) and
can benefit from mature, off-the-shelf solvers [84], [243]. The specificity of the resolution
lies in the method chosen to accommodate the hierarchy between tasks. The simplest
approach is to weight each goal and rely on the relative weight differences to prioritize
tasks [33], [55]. A second approach enforces a strict hierarchy by solving the lower-
priority tasks in the null space of the previously solved tasks [129], [187].

For a more comprehensive overview of this approach, refer to [263].

2.3 Toward unified motion generation and control

Control methods presented so far often fail to provide assurance for the complete
motion of the robot. To tackle this challenge, MPC utilizes a model of the system to
forecast its evolution over a specified time. This strategy enables online prediction of
constraint violations and timely recomputation of a suitable control strategy. Originally
developed for controlling process plants [194], [207], where the slow dynamics permit-
ted online solution re-computation, MPC has now become a viable option for real-time
robot control, thanks to advancements in computational methods and power.

The core concept of MPC [175] involves solving an open-loop Optimal Control Prob-
lem (OCP) online, using the measured system state as the initial condition. Only a
fraction of the resulting control is applied to the system before the process is repeated.
A core component of the MPC, distinguishing it from traditional control strategies, is a
model of the controlled system that provides foresight into future system states.

Most MPC approaches rely on a two-step pipeline, where a planner generates a ref-
erence trajectory, which is then tracked by the controller [86]. However, MPC’s online
replanning capabilities can blur the lines between control and planning, aiming to unify
motion planning and control into a single solution.

Regardless of how Model Predictive Control is integrated into the control pipeline,
selecting an appropriate model is crucial for achieving optimal performance. This de-
cision involves a trade-off between model representativity and the allocated computa-
tional power for solving the OCP.

For a comprehensive review of MPC applications in legged robots, refer to [241].

2.3.1 Linear MPC

The simplest model used for bipedal robots is the Linear Inverted Pendulum (LIPM).
Introduced in [127] as a 2D dynamical model. It has since been extensively generalized,
as seen in [40]. The LIPM is derived from centroidal dynamics of the robot, neglecting
tilting movements around the CoM.



28 motion generation and control in robotics

The linearization of the dynamics allows the problem to be approached as a QP. Many
dedicated solvers have been developed for this purpose, with an overview provided in
[146]. Most strategies rely on an instantaneous whole-body controller to apply the MPC

solution to the robot. An overview of linear MPC for bipedal robots is proposed in [265].
[126] uses a reference trajectory computed during footstep planning to improve com-

putational efficiency, though this approach cannot account for inequality constraints.
[266] addresses this issue by exploiting improved computational performance and effi-
cient QP solvers to formulate a linear MPC that explicitly considers inequality constraints.
[106] further extends this approach to allow simultaneous planning of CoM trajectory
and foot placement. Other extensions focus on accounting for external forces on the
robot’s hand, enabling loco-manipulation applications [171], [181], [183], [244].

2.3.2 Simplified non-linear MPC

A more advanced model is the centroidal dynamics, described in [41], which details
the dynamics of the Center of Mass and the total angular momentum. A common
simplification of this model, Single Rigid-Body Dynamics (SRBD), considers only the
inertia of the base link. This approximation makes SRBD primarily suitable for MPC in
robots with light limbs, such as lightweight quadruped robots [27].

Since the model is nonlinear, a Nonlinear Model Predictive Control (NMPC) must be
employed. [188] proposes a solution that optimizes foot placement and handles local
obstacles for the humanoid robot HRP-2. [214] implements a real-time NMPC with
terrain adaptation on the HyQ quadruped.

The limitation of the centroidal MPC approach is that it does not guarantee constraint
satisfaction for the generated movements. To address this, some methods enforce kine-
matic limits along the horizon in addition to the centroidal dynamics, ensuring the fea-
sibility of whole-body motions. For instance, [79] employs a parallelized Sequential Lin-
ear Quadratic (SLQ) algorithm to compute real-time movements on the HyQ quadruped,
considering both the CoM dynamics and the full robot kinematics. Similarly, [93] adopts
a Differential Dynamic Programming (DDP)-based solver for an ANYmal robot.

2.3.3 Whole-body dynamics MPC

MPC using the full dynamics of the system is a promising solution that could unlock
the full potential of robot hardware. Its complexity has long prevented its use on real
robots, but thanks to advancements in software and hardware, real-time whole-body
MPC applications have become a reality.

Initial applications relied on smooth contact dynamics [118], [145], [189]. This ap-
proach does not require a predefined footstep sequence, as it can adapt step timings
during optimization, effectively replacing motion planning and control with a single
component.

In contrast, [60] demonstrates locomotion on a humanoid robot, Talos, using a pre-
computed contact sequence. It employs the algorithm developed in [172], which exploits
the derivation strategy introduced in [43] to achieve sufficient computational speed.
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[140] uses a similar strategy but with implicit contact dynamics in the backward pass of
the DDP, eliminating the need for precomputed step sequences.

WBMPC offers the advantage of being seamlessly applicable to various tasks and hard-
ware. For example, [143] uses the same solution as [60] to perform pointing tasks on
a manipulator. [101] extends this approach to obstacle avoidance. [59], [144] demon-
strate sanding and pointing tasks on a full-size humanoid robot, paving the way for
loco-manipulation.

[122], [173] address a shortcoming of the method presented in [172] by accepting hard
constraints.

Finally, some solutions [158] combine two types of models within the same horizon,
leveraging the accuracy of the full dynamic model while allowing for longer prediction
horizons with a simplified model.

2.3.4 Sampling-based optimization methods

Methods presented so far can be classified as gradient-based methods, as they rely on
first or second order linearization of the dynamics to compute a local improvement di-
rection for the predicted control. However, computing the derivative of the dynamic can
be challenging, especially for legged-locomotion applications where interaction with the
environment through contact leads to non-smooth physical phenomena. To address this
issue, gradient-based methods often rely on specifically tailored models or heuristics,
such as using a predefined contact sequence [60].

This weakness limits the generality of these methods and requires additional tuning
to apply them to new situations. [153], [210] propose extensions of DDP to tackle non-
smoothness in a black-box manner by leveraging sampling techniques.

These methods draw a link between gradient-based methods and sampling-based
methods, also referred to as zeroth-order methods. Zeroth-order methods such as
Bayesian optimization [87] or Evolutionary Algorithms [268] have been largely used
for solving non-convex and non-smooth optimization problems. They have been used,
for example, for hyperparameter tuning [57] or to optimize the mechanical design of
quadruped robots [78]. They also have more recently been applied to online motion
planning and control with the introduction of Model Predictive Path Integral (MPPI)
[270].

However, even if they represent a promising lead to increase the generality of control
methods for humanoid robots, they suffer from the curse of dimensionality and often
rely on parallelized sampling to be efficient. This parallelization is typically achieved
using Graphics Processing Units (GPUs), which are not commonly embedded directly
on robots due to power and space constraints. This limitation hinders the real-world
application of sampling-based methods for the whol-body control of humanoid robots.

3 learning based approaches

Differing from traditional model-based approaches, solutions leveraging large quanti-
ties of data have demonstrated significant potential to enhance adaptability and perfor-
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mance in dynamic and uncertain environments. Learning-based methods, by harness-
ing the power of data, enable robots to learn from experience, thereby improving their
ability to handle complex tasks and varying conditions.

Within learning-based approaches, two main methodologies stand out:

— Imitation Learning: This approach focuses on exploiting datasets of expert demon-
strations to extract features and patterns that can be used for robot control. Imi-
tation Learning is particularly effective when high-quality expert data is available,
allowing robots to learn complex tasks by mimicking observed behaviors.

— Reinforcement Learning: It involves the robot interacting with its environment to
develop a control policy. Through trial and error, and guided by a reward signal,
the robot learns to optimize its actions to achieve desired outcomes.

For further reference, an extensive survey on learning methods applied to legged
robots can be found in [98].

3.1 Imitation Learning

Imitation Learning (IL) involves training a robot to perform tasks by observing and
mimicking expert demonstrations. This paradigm is particularly useful in scenarios
where high-quality expert data is available, and exploration through interaction may
be impractical or unsafe. The fundamental challenge in IL lies in effectively leveraging
the provided data to develop robust control policies. One significant difficulty is the
compounding nature of errors during control, where small deviations from the expert
trajectory can accumulate over time, leading to a substantial mismatch between the
robot’s state and the training dataset, particularly in long-horizon tasks.

To address these challenges, several methods have been developed to enhance the
robustness and generalization of learned policies. Generative Adversarial Imitation
Learning (GAIL) [109] and Dataset Aggregation (DAgger) [217] are two prominent ap-
proaches. GAIL leverages adversarial training to encourage the robot’s behavior to be
indistinguishable from that of the expert, while DAgger iteratively refines the policy by
incorporating the robot’s own experiences into the training data, thus mitigating error
accumulation.

The quality and diversity of demonstration data are crucial for the success of IL. This
data can be collected through various means, such as teleoperation, where a human
operator directly controls the robot [2], [205], or by retargeting from biological systems,
which involves transferring skills from biological entities to robots [260]. Additionally,
other control strategies, which may not be suitable for real-time robot control but are
valuable for generating training data, can be utilized [197].

An important aspect of IL is the choice of method to represent the policy effectively.
In the following sections, we will review three relevant approaches to policy represen-
tation:

— Motion Models: Utilizing mathematical models to synthetically represent complex
motions.
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— Deep Learning: Leveraging neural networks to encode motion policy.
— Inverse Reinforcement Learning: Inferring the underlying cost function that an

expert optimizes.

3.1.1 Motion Models

We define motion models as mathematical representations that efficiently encode com-
plex movements using a limited set of parameters. This approach is inspired by the
study of biological systems, which exhibit highly dynamic movements. In such cases,
storing individual control strategies for every possible scenario becomes impractical,
prompting the hypothesis of internal synthetic representations [185]. The concept in-
volves extracting these internal models and learning a concise set of parameters through
demonstrations.

One widely used tool for this purpose is the Gaussian Mixture Model (GMM) [136],
which characterizes movement trajectories as combinations of Gaussian distributions.

Another significant mathematical framework for motion primitives is the Dynamic
Movement Primitives (DMP) [116], [224]. DMPs provide a structured approach to captur-
ing and reproducing complex motions, facilitating adaptation to varying environmental
conditions and task requirements.

For instance, in the context of teleoperation with communication delays, Probabilistic
Movement Primitives (Pro-MPs) [199] have been employed to predict robot movements
effectively [201]. [223] offers a comprehensive survey of the evolution and applications
of DMPs in robotics research.

3.1.2 Deep Learning

Deep learning [154] approaches leverage the powerful synthesis capabilities of neural
networks to minimize the need for explicit feature engineering in learning processes.
The core principle involves using neural networks, trained on vast amounts of data, to
encode complex policies [206], [273].

Recent advancements in deep learning have focused on creating more flexible policies
to accommodate multiple tasks, moving towards a generic policy for humanoid robot
control. One solution [70] exploits the reasoning capabilities of a Large Language Model
(LLM) to develop a generic policy. Diffusion Policies [51] demonstrate graceful handling
of multimodal action distributions commonly found in robotic manipulation tasks.

3.1.3 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) [190] also referred to as Inverse Optimal Con-
trol (IOC) aims to infer a cost function that is minimized by an expert by observing
its behavior. One advantage of IRL, compared to other IL methods, is that it offers a
more easily explainable result. By analyzing the cost function, insights into the expert’s
functioning can be gained, which is not possible with deep learning methods.

For example [170], [180] present IOC as a promising strategy to control a humanoid
robot. More recently [19] leverages IOC to study the human gait.
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3.2 Reinforcement Learning

The idea behind Reinforcement Learning (RL) is to define a task through a scalar
reward function and learn a policy that maximizes this reward through trial and error
interactions with the environment [247].

The work proposed in [179] introduced Deep Q-Network (DQN), the first successful
combination of Deep Learning and RL, laying the foundation for several major improve-
ments in this field. Trust Region Policy Optimization (TRPO) [227] addressed instability
issues of DQN by using a trust region constraint to regulate the divergence between
two updates of the policy. This work was later refined into Proximal Policy Optimiza-
tion (PPO) [228] which is still one of the most widely used algorithms.

Deep Deterministic Policy Gradient (DDPG) [160], extended DQN to continuous action
spaces, which are prevalent in robotics applications. It was followed by numerous
variations [90], [99], [100], [178].

The proliferation of available algorithms has also led to a surge in proposed imple-
mentations [32], [77], [113], [209]. However, this poses the issue of reproducibility. In-
deed, small implementation details can have major effects on performances [4], [105].

The variability of results obtained with RL methods can be further attributed to the
design choices made in the control pipeline. We will study three crucial elements in the
design of an efficient RL pipeline:

— Hyperparameters: The parameters that need to be chosen before deployment.

— Sample efficiency: The strategies to allow for sufficient trial-and-error to achieve
complex behaviors.

— Sim-to-real: The challenge of deploying the obtained policy in the real world.

3.2.1 Hyperparameters

An important element that can significantly affect an algorithm’s learning ability is
the choice of hyperparameters. Although selecting an appropriate algorithm can al-
leviate this issue, it remains a major difficulty for RL practitioners. This challenge is
exacerbated by the fact that RL trainings tend to be extremely computationally inten-
sive, making systematic exploration of the hyperparameter space impractical. While
some methods have been proposed to overcome this obstacle [119], hyperparameter
tuning is still largely performed by human experts through costly trial and error.

Another crucial design element in RL is the reward function. Algorithms tend to
require dense information to converge to a satisfactory policy. However, robotic tasks
are often inherently sparse, for example when success can only be evaluated after a
sequence of actions. The most common approach is to add hand-tuned reward elements
to guide the agent towards favorable regions, but this can be cumbersome and lead to
suboptimal results.

Some strategies aim to exploit sparse rewards more intelligently [12], [47], [198].
Other methods rely on demonstrations to overcome the exploration challenge associ-
ated with sparse rewards [186], [238], [258], [274]. A complementary approach is to
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facilitate shaping by reducing the number elements that needs to be accounted for in
the reward. For example, some methods consider constraints independently of the re-
ward [46], [142], [155], effectively reducing the number of penalizations that need to be
integrated in the reward.

3.2.2 Sample efficiency

Because of its principle, Reinforcement Learning requires a vast amount of data to
achieve successful results. For instance, a major advancement presented in [195] re-
quired several weeks of runtime on computer clusters. The training amounted to a
tremendous quantity of energy expanded to learn how to solve a Rubik’s cube. While
not diminishing the pioneering role of this publication, the magnitude of resources in-
volved makes this approach impractical for most cases.

Improving the efficiency of the algorithms as therefore been a central focus in the
Reinforcement Learning community. One approach is to make RL more sample efficient.
This can be achieved by increasing the stability of the algorithm to improve the update-
to-data ratio and accelerate convergence [50], [108]. Another solution, often referred
to as model-based Reinforcement Learning, involves applying planning methods to
learned models of the environment to minimize the number of interactions needed for
convergence [102]. Strategies mentioned in Section 3.2.1 can also be applied to limit the
initial random exploration phase of the algorithm.

Another approach has been to increase the throughput of simulators to generate more
samples in a shorter amount of time. This is primarily driven by advances in GPU-based
computation [167]. These technical improvements have unlocked possibilities that once
seemed out of reach for RL methods [110], [208], [220].

3.2.3 Sim-to-real

Another important consideration is the ability to transfer the policy to real robots. A
popular approach is to use domain randomization [49]. Some methods collect data to
build more representative models [97], [115].

Another sim-to-real strategy involves separating the training into two phases. In the
first phase, training is carried out with privileged information that will not be available
to the robot in the real world. In the second phase, the robot learns to imitate the first
policy but has access only to an accurate representation of real-world sensor data. This
learning from cheating [48] enables the handling of challenging tasks and their transfer
to the real world [45], [163].

The last approach is to learn directly on the robot to eliminate the need for models
[239], [271]. This approach requires highly sample-efficient learning algorithms and
hardware robust enough to withstand the control policy of the RL [36].
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4 hybrid approaches

Both model-based and learning-based methods, as presented in the previous sections,
have their strengths and weaknesses. To achieve the best of both worlds, a number of
works have aimed to exploit those two methods in an integrated manner. However, as
these techniques tend to be at the intersection of two research fields, their taxonomy is
not well-defined.

To provide a clearer understanding, we propose to inventory them into two groups:

— Methods that aim for more efficient exploration of the environment

— Methods that seek to achieve learning with safety guarantees

This separation is arbitrary and aims to present solutions particularly relevant to
the topic of this dissertation. However, it does not aim to be exhaustive, and some ap-
proaches already mentioned, such as model-based RL in Section 3.2.2, could be classified
into one of these two categories.

4.1 Models for exploration

A major weakness of learning approaches is that they require large amounts of data
to be efficient, as explained in Section 3.2.2. In the case of RL, this means that the agent
must encounter a lot of successful examples before converging to a satisfactory policy.
However, for difficult tasks like locomotion for humanoid robots, this requires a long
training time and might altogether prevent the system from converging [174].

A promising strategy to solve this issue is to leverage the structure provided by well-
known Trajectory Optimization (TO) approaches, which can provide useful examples
and only use RL to explore around those solutions.

[89] build upon work presented in [202] to obtain dynamic quadruped behaviors.
The idea is to use TO computed from a simplified model to generate reference trajec-
tories for an RL controller, which takes into account the full dynamics of the system.
Similarly, [123], [128] use a model-based planner to provide a reference motion during
training to achieve robust legged locomotion. [16] learns by reinforcement the differ-
ence between a simplified model and a full model for a footstep planner in the case of
humanoid locomotion. These approaches demonstrate superior robustness when com-
pared to model-based methods while benefiting from the knowledge of model-based
solutions. However, adding an imitation reward might bias the system toward subop-
timal solutions. Care must be taken to only use demonstrations when they are useful,
as suggested by [186]. The other main drawback of this approach is that it relies on
demonstrations, which might not be available for new applications or very challenging
tasks.

Other strategies leverage differentiable simulators [229], [240], where the gradient
information from the model of the system is exploited by the learning agent to increase
the convergence rate. However, it is not clear if adding gradient information to the
simulators is always beneficial [246]. Indeed, it might provide noisy information when
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dealing with stiffness or discontinuities in the dynamics, which are common in robotic
applications.

Lastly, [166] expands on the method developed by [20] by combining a learned lo-
comotion policy with an MPC for manipulation. The idea is to carry out the precise
manipulation task with MPC and use RL only for locomotion, treating the dynamic ef-
fects of the arm as a disturbance for the RL controller. However, this approach is only
relevant if a good enough model-based controller exists for manipulation and cannot
be used to address the shortcomings of MPC.

4.2 Toward safe learning

One of the main drawbacks of end-to-end learned architectures is the lack of guaran-
tees they offer, making them unsuitable for safety-critical applications. To address this
issue, a solution present in the literature is to leverage model-based methods as a way
to ensure safety within a learned pipeline [35], [107].

For example, [272] uses MPC as a function approximator within an RL framework
to benefit from the guarantees offered by MPC while learning the model discrepancies
between MPC and reality. [216] integrates a differentiable MPC as the final layer of an
actor within an actor-critic framework.

[161], [162] modify the action space of the RL agent to act on the tangent space of the
constraints, providing guarantees even during the training phase.

5 conclusion

The primary focus of this thesis is on movement planning and control for humanoid
robots for manipulation tasks. We thus assume that the task planning step has already
been addressed, and that the sequence of movements that needs to be carried out is
known. We have seen in this chapter that planning and control for humanoid robots is
a challenging task and that, while effective in certain contexts, traditional approaches
often lack generality. On the other hand, learning approaches have recently shown
promising results but lack the maturity of model-based approaches, which slows down
their adoption for industrial applications.

We have chosen to use a Whole-Body Model Predictive Control (WBMPC) as the foun-
dation for our work. This choice is motivated by the promising results MPC has demon-
strated in handling both planning and control in a unified framework. The ability of
MPC to manage these aspects simultaneously is particularly appealing, as it aligns well
with the flexibility expected from a humanoid robot.

However, recognizing the limitations of MPC, particularly its reliance on accurate mod-
els and well-defined cost functions, this work aims to explore hybrid approaches that
combine MPC and RL. By integrating MPC with RL, we seek to enhance the overall ef-
fectiveness and adaptability of our framework without sacrificing the recent progress
made thanks to WBMPC.





Part III

A H U M A N O I D C O N T R O L L E R

This part presents the necessary elements to understand the control structure
that was used to carry out experiments on TALOS.
Chapter 4 presents the theoretical foundation of the MPC deployed on the
robot.
Chapter 5 focuses on the practical aspects of the experiments.





4
A D E B U R R I N G C O N T R O L L E R

This chapter presents the theoretical foundation of the controller used in the
experiments conducted during this dissertation.

In Short

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2 Robot Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 General problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Resolution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Robot control using Crocoddyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Differential Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Feasibility-driven Differential Dynamic Programming . . . . . . . . . . . . . . 46

5 Riccati interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Interfacing with the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1 introduction

TALOS is controlled in torque using Whole-Body Model Predictive Control (WBMPC).
We chose a torque control approach because it promises better flexibility, adaptability,

and safety. For example, torque control allows the robot to be more compliant. If the
robot encounters an obstacle or a human, a torque-controlled robot can react more softly
and reduce the risk of damage or injury compared to a position-controlled robot that
might try to force its way through to reach a specific position. Although this is just a Torque control is a

step toward safer
robots.

step towards safer robots, and does not render further research on enforcing compliance
and permitting human interaction pointless, we believe torque control to be a promising
robot control strategy.

In addition, we exploit Model Predictive Control because, contrary to classic control,
it has predictability capabilities which can be exploited to offer guarantees on a complex
system. The whole-body model is necessary for undertaking general tasks that utilize
the full capabilities of the robot. It also offers more flexibility and can be adapted to a
wider range of architectures than a simplified model that exploits the specificity of the
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hardware. Additionally, the effects of the limbs on the dynamics are more pronounced
on TALOS than on other humanoid robots because it has heavier limbs in comparison.

These reasons explain why a WBMPC is chosen to carry out the deburring task. While
this work provides few elements to assess the validity of these claims, it is not the core
topic of the dissertation. Therefore, we consider these statements as working hypothe-
ses, and their veracity in concrete contexts remains to be demonstrated.

The remainder of the chapter presents the theoretical foundation necessary to imple-
ment the controller on the robot.

2 robot modelling

To fully describe a humanoid robot with nj actuated joints and nP rigid contacts with
the environment, we define a configuration vector q ∈ SE(3) × Rnj . This vector is
the concatenation of the free-flyer joint’s placement and the nj angular joint positions.
Consequently, we can define q̇, the velocity vector of size nv laying in the tangent space
of SE(3) × Rnj , and q̈, the acceleration vector. We also define τ ∈ Rnj as the joint
torques.

The dynamics of the multi-body system can be described as follows [80]:

M(q)q̈ + b(q, q̇) = S⊤τ +
nP−1

∑
p=i

Ji(q)⊤λi (4.1)

In Eq. (4.1), M ∈ Rnv×nv is the joint-space inertia matrix and b ∈ Rnv represents the
generalized non-linear forces, accounting for the centrifugal, Coriolis, and gravitational
terms. S ∈ Rnv×nj is the motion freedom matrix that maps the torques to the actuated
part of the dynamics. It translates the fact that the command cannot act directly on
the free-flyer joint. For all i ∈ J1; nPK, λi represents the contact force and Ji the contact
Jacobian at contact i.

In this context, forces λp abstractly represents either 3D forces for punctual contacts or
spatial 6D forces for planar contacts, expressed in their respective contact frame. They
must respect the contact model described by the cone Kp:

∀i ∈ J1; nPK, λi ∈ Ki

Assuming non-slippage conditions, the existence of a contact i with the environment
implies the end effector position is fixed. Consequently, the end effector’s velocity
should be zero, and we can also constrain its acceleration to be zero:

∂Jiq̇
∂t

= J̇iq̇ + Jiq̈ = 0 (4.2)

By combining the equality established at Eq. (4.2) with Eq. (4.1), we can obtain the
Karush-Kuhn-Tucker conditions of the rigid contact dynamics:
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[
M J⊤c
Jc 0

] [
q̈

-λ

]
=

[
S⊤τ − b

-J̇cq̇

]
(4.3)

Here, λ = [λ1...λP]
⊤ and Jc = [J1...JP]

⊤ are the concatenation of vectors of contact
forces and concatenation of contact Jacobian matrices.

This formulation can be understood as an optimality condition for the problem that
minimizes the deviation in acceleration between the constrained and unconstrained
motion. It allows expressing contact forces in terms of robot state and actuation [37]. If,
we consider the state of the robot to be x = (q, q̇) and the control to be u = τ, Eq. (4.3)
leads to the following force-free partial derivative equation:

ẋ =

[
q̇

q̈

]
= F(x, u) (4.4)

More information about the derivation of this equation, in a setting similar to the one
studied in this document, can be found in [58].

3 optimal control

The control approach chosen for the robot is to iteratively solve an OCP leveraging
the dynamics presented in Eq. (4.4). The idea is, at each control step, to solve the
OCP from the currently measured state and execute only a fraction of the obtained
control sequence before repeating this process. This strategy, known as Model Predictive
Control (MPC) [81] allows the leverage a model of the system to predict its evolution on
a control horizon while exploiting sensors to react to disturbances.

3.1 General problem formulation

The objective of optimal control is to find the control sequence U : t 7→ u(t) that will
take the robot from a starting state xS to a goal specified by a set of constraints XG while
minimizing running and terminal costs L(x, u) and Lterm(x):

U∗ = arg min
U

∫ T

0
L(x(t), u(t))dt + Lterm(x(T))

s.t. ẋ(t) = F(x(t), u(t))

∀t g(x(t), u(t)) = 0

∀t h(x(t), u(t)) ≤ 0

x(0) = xS, x(T) ∈ XG

(4.5)

g(x(t), u(t)) and h(x(t), u(t)) represent additional equality and inequality constraints.
The equality constraints generally encode the task that must be carried out by the robot.
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Inequality constraints are often used to represent the feasibility bounds of the system:
torque limits, joint limits, self-collisions.

3.2 Resolution approaches

The solutions to this problem are formally described by the Hamilton-Jacobi-Bellman
equations. However, directly integrating these equations is rarely feasible in practice,
especially for high-dimensional states and non-smooth costs. Nonetheless, practical
solutions exist to solve this problem:

— Indirect Methods: These methods exploit the Maximum Principle of Pontryagin to
derive necessary conditions for optimality [29]. The application of these condi-
tions usually results in a set of differential equations subject to boundary condi-
tions. However, even if these approaches can provide highly accurate solutions,
they require the first-order necessary conditions to be derived for every new prob-
lem instance, which can be cumbersome. Additionally, they do not handle state
constraints well, and cases where such constraints are present require an a priori
estimation of the constrained arcs of the solution.

— Direct Methods: These methods can deal with large systems and are more flexible
and robust, though less accurate compared to indirect methods [28]. Direct meth-
ods cast the optimization into a Nonlinear Programming (NLP) problem by using a
direct transcription into a finite-dimensional parameterization of variables. Once
the problem is transcribed, it can be solved using fast and efficient NLP solvers
such as Acados [259] and IPOPT [262].

4 robot control using crocoddyl

To solve the continuous problem presented in Eq. 4.5 we chose a direct transcription
approach. The continuous OCP will be discretized before being solved. More precisely,
the discrete NLP will be solved using Contact RObot COntrol by Differential DYnamic
Library (Crocoddyl) [172], an optimal control library that exploits a multiple-shooting
variant of Differential Dynamic Programming (DDP).

4.1 Discrete formulation

In order to discretize the problem, the control interval [0, T] is split into N sub-
intervals. In our case, all the sub-intervals are of equal duration dt = T

N , but this is
mainly for convenience and does not affect the generality of this approach. Assuming
the control is constant over each sub-interval, the aim is to optimize a discrete control
sequence U = [u0...uN−1].
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U∗ = arg min
U

N−1

∑
t=0

l(xt, ut) + lterm(xN)

s.t. xt+1 = f (xt, ut)

(4.6)

In this version of the problem, f (xk, uk) is the discrete dynamic of the system, derived
from the numerical integration of Eq. (4.4). l and lterm are the running and terminal cost
functions.

It is worth noting that the strategy employed to solve this problem does not accept
hard constraints. Consequently, there are no constraints other than the dynamics in Constraints are

encoded as penalties
inside the cost
function.

this formulation. This also means that the discrete costs lk(x, u) and lterm(x) are not
direct transcriptions of the costs L(x, u) and Lterm(x) defined in Eq. (4.5). Indeed, for
the problem to be equivalent, these terms must also translate the equality and inequality
constraints g(x, u) and h(x, u). In practice, this is often done by encoding the constraints
as relaxed penalties.

4.2 Differential Dynamic Programming

Even after being discretized, the problem is often too challenging to be solved directly.
The complexity of the dynamics coupled with that of the costs typically makes it non-
linear and non-convex. This is especially true when tackling complex tasks with full-size
humanoid robots. That is why we use DDP, an algorithm introduced in [176].

To solve the NLP, DDP exploits Bellman’s optimality principle. This principle states
that, given an optimal trajectory from an initial state to a final state, any sub-trajectory
within it is also optimal for the sub-problem defined by the starting and ending states
of that sub-trajectory. In practice, it offers a solution to solve the optimization of a
sequence by recursively solving a sequence of optimizations.

However, exploiting Bellman’s optimality principle is not sufficient, as the problem
solved at each step is still non-linear and non-convex. That is why DDP leverages a DDP computes

optimal
improvements
around a given
control sequence.

quadratic approximation of the cost function and the dynamics. Instead of looking for
a global solution at each step, the effect on the cost function of small variations of the
control sequence is determined, enabling an improved control sequence to be chosen.

4.2.1 Bellman equation

In order to apply Bellman’s principle, we define the cost-to-go associated with a
partial control sequence Ui = [ui...uN−1], starting from a state x at time i (i ∈ J0; N − 1K):

J(x, Ui) =
N−1

∑
k=i

l(xk, uk) + lterm(xN) (4.7)

Here, we assume that the trajectory follows the dynamic i. e. xk+1 = f (xk, uk), ∀k ∈
Ji; N − 1K, and xi = x. The running and terminal costs l and lterm are identical to those
defined by Eq. (4.6).
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We refer to the optimal cost-to-go as the value function, which is given, at time i, by:

V(x, i) = min
Ui

J(x, Ui) (4.8)

Using this notation, the Bellman equation for the discrete problem can be written as:

V(x, i) = min
u

[l(x, u) + V( f (x, u), i + 1)] (4.9)

This formulation of the value function effectively transforms a minimization over
a sequence of controls into a sequence of minimizations over a single control. The
problem of finding the optimal control step u∗

i at time i, can thus be written as:

u∗
i = arg min

u
[l(x, u) + V( f (x, u), i + 1)] (4.10)

The value function, and the optimal control sequence, can be recursively computed
starting from the terminal state by enforcing the terminal condition V(x, N) = lterm(x).
This process is often referred to as the backward pass.

4.2.2 Computation of the backward pass

As mentioned previously, even after exploiting Bellman’s principle, the problem re-
mains non-linear and non-convex. That is why we study the variation of the cost-to-go
caused by a small perturbation around an initial trajectory. This approach has the
advantage of allowing iterative improvement of the trajectory but also means that a
warm-start must be provided to the solver.

Given, at time i, a state-command pair (x, u) from a warm-start trajectory and pertur-
bations (δx, δu), we define the variation of the cost-to-go:

Q(δx, δu) =l(x + δx, u + δu) +V( f (x + δx, u + δu), i + 1)

− l(x, u) −V( f (x, u), i + 1)
(4.11)

Working on minimizing the Q-value with respect to δu allows us, assuming that the
perturbations are small enough, to approximate the variation of the cost-to-go using a
second-order Taylor expansion of the costs and the dynamics.

The Q-value can then be written as:

Q(δx, δu) ≈ 1
2

 1

δx

δu


⊤  0 Q⊤

x Q⊤
u

Qx Qxx Qxu

Qu Qux Quu


 1

δx

δu

 (4.12)
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Here, the subscripts denote differentiation. For readability, we drop the time index i
and define the next time step using primes, i. e. V ′ = V(i + 1).

Qx = lx + f⊤x V ′
x

Qu = lu + f⊤u V ′
x

Qxx = lxx + f⊤x V ′
xx fx + V ′

x · fxx

Quu = luu + f⊤u V ′
xx fu + V ′

x · fuu

Qxu = Qux = lux + f⊤u V ′
xx fx + V ′

x · fux

Vx = Qx − QxuQ−1
uu Qu

Vxx = Qxx − QxuQ−1
uu Qu

(4.13)

(lx, lu, lxx, luu, lux) represent the derivatives of the cost function with respect to state
and control. Similarly, ( fx, fu, fxx, fuu, fux) represent the derivatives of the dynamics
with respect to the state and control variables.

By minimizing the quadratic approximation found in Eq. (4.12) with respect to δu,
we can deduce the optimal control variation:

δu∗ = arg min
δu

Q(δx, δu) = −Q−1
uu(Qu + Quxδx) (4.14)

This result is often rewritten as a linear feedback policy with a feedforward term k
and a feedback term K (sometimes referred to as Riccati gains):

δu∗(δx) = k + Kδx

with k = −Q−1
uu Qu

K = −Q−1
uu Qux

(4.15)

This policy allows us to determine a quadratic model of the value function at time i:

∆V = −1
2

QT
uQ−1

uu Qu

Vx = Qx − QxuQ−1
uu Qu

Vxx = Qxx − QxuQ−1
uu Qu

(4.16)

The model of the value function and the optimal control variations can be used to
carry out the recursion starting from i = N − 1 with a condition on the final value
function V(x, N) = lterm(x).
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4.2.3 Computation of the forward pass

Once the backward pass is completed, the policy computed at each time step can be
used to improve the state and control sequences. The improved terms are designated
with a superscript star notation:

x∗0 = x0

u∗
i = ui + ki + Ki(x∗i − xi)

x∗i+1 = f (x∗i , u∗
i )

(4.17)

It is clear that, apart from time i = 0, the state from which the dynamics are rolled out
will be different from the state used to compute the optimal policy during the backward
pass. That is why DDP computes a policy depending on the state instead of a single opti-
mal control variation. However, the policy is computed from a quadratic approximation
and often takes large steps. Therefore, to apply this method to concrete problems, addi-
tional heuristics are often necessary. For example, Crocoddyl uses a line-search scheme to
effectively scale k to achieve the longest step along the descent direction given by DDP.

Once the forward pass has been completed, an improved control sequence is obtained.
However, since this method works locally, several successive iterations of the backward
and forward passes are often necessary. In practice, these iterations are often carried out
until convergence. However, in settings with limited computational resources, such as
online MPC, the algorithm can be run only a limited number of times. The efficiency of
this method then largely relies on the quality of the warm-start provided to the solver.

4.3 Feasibility-driven Differential Dynamic Programming

A point that has been omitted so far, is that in the class of Direct methods, there exists
several transcription strategies [133]:

— Single shooting: Optimizes only the control inputs and relies on a model of the
dynamics to compute the state trajectory.

— Multiple shooting: Splits the trajectory into smaller intervals and solves the problem
using single shooting on each interval.

— Collocation: Simultaneously discretizes the state and control trajectories and en-
forces the dynamics as constraints at discrete points in the trajectory.

DDP is generally considered a single-shooting method, but the Crocoddyl library relies
on an improved multiple-shooting version of this algorithm called Feasibility-driven
Differential Dynamic Programming (FDDP) [172].

This method adds intermediate state points as decision variables, effectively turning
the algorithm into a multiple-shooting optimization. This formulation introduces gaps
in the dynamics fi (also sometimes referred to as defects), representing the difference
between the rollout state and the shooting state at each time step i:

fi+1 = f (xk, uk)− xi+1 (4.18)
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In addition, this algorithm neglects the second-order terms of the dynamics to re-
duce computational load. According to some practitioners, this means that this method
should be classified as an Iterative Linear Quadratic Regulator (iLQR) [159], but it uses
a very similar approach to DDP, which was designed earlier, hence its name.

This multiple shooting formulation mainly brings two advantages:

— First, it allows the warm-start to be infeasible. This is especially relevant when
dealing with complicated systems where generating a state trajectory is possible
but finding the corresponding command can be challenging.

— Then, having gaps in the dynamics during early rollouts allows leveraging the
better globalization capacity of multiple shooting schemes.

5 riccati interpolation

The drawback of controlling a robot in torque is that it typically needs to be done
at a higher frequency than position control. The controller used on the TALOS runs at
2 kHz. However, despite extensive work carried out to speed up the computation of the
derivatives [43] and technological advancements in CPU power, the controller cannot
run at more than 100 Hz while taking into account the full dynamics of the robot.

That is why we rely on a linear approximation of the policy to interpolate the control
at the desired frequency. [62] shows that the feedback term of the policy K can be
interpreted as the sensitivity of the optimal policy with respect to the initial state:

K0 =
∂u
∂x

∣∣∣∣
x0

(4.19)

In practice, the policy used on the robot is the following:

u = u∗
0 + K0(xmeas − x∗0) (4.20)

where u∗
0 = k0 and K are results of DDP computation, and x∗0 is the initial state of

the trajectory, corresponding to the state measured at the moment the solver is called.
These values are updated every time the solver provides a new result, i. e. at roughly
100 Hz. xmeas corresponds to the current measured state and is updated much more
frequently, at 2 kHz in our case. Riccati

interpolation is
necessary to reach a
sufficient control
frequency.

This method has been successfully employed to send torques command at 2 kHz to
carry out dynamic movements on a humanoid robot [62].

6 interfacing with the robot

In addition to the Riccati interpolation method, there are additional control layers pro-
vided by the manufacturer to perform torque tracking. These layers take into account
the dynamics of the actuators, ensuring that the commanded torques are accurately exe-
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cuted. Unfortunately, these control layers are not open source, and further details about
their implementation cannot be disclosed.



5
D E B U R R I N G E X P E R I M E N T S

This chapter details the practical design choices made to carry out deburring
experiments on the TALOS humanoid. Those experiments were presented in
the scope of the Memmo project in June 2022.
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1 introduction

This chapter dwells upon the practical design choices and methodologies employed to
conduct deburring experiments on the TALOS humanoid robot. The chapter is struc-
tured into three main sections, each addressing a critical aspect of the experimental
process.

First, Section 2 explores the technical intricacies involved in setting up and executing
the deburring experiments. This includes an explanation of how transitions between
holes are managed. Additionally, this section discusses the integration of exteroceptive
feedback, which is crucial for the robot’s ability to adapt to its environment and perform
tasks with precision.

Next, Section 3 presents the initial findings obtained from the deburring experiments.
These results provide valuable insights into the performance and capabilities of the TA-
LOS humanoid in real-world scenarios. The analysis of these results helps understand-
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ing the strengths and limitations of the current setup and paves the way for further
improvements.

Finally, Section 4 summarizes the challenges encountered while working with the
TALOS platform. By addressing these challenges, the section aims to provide a compre-
hensive understanding of the complexities involved in conducting such experiments.

2 implementation

MPC LFC Robot

MoCap

Target
u

u∗
0,K0

x∗
0

xmeas

toolMtarget

WmMtool

WmMtarget

Figure 5.1 – Control structure for the deburring experiment. The Robot node encompasses the
hardware and the low-level controllers mentioned in Section 6 of the previous chap-
ter.

2.1 Control pipeline structure

The different elements of the control pipeline are integrated inside a Robot Operating
System (ROS) architecture. The key components of this architecture, represented in
Fig. 5.1, are the following:

— Linear Feedback Controller (LFC) 1: Controller running directly on the robot and han-
dling the interpolation presented in Section 5 of Chapter 4. It outputs torques
commands that are transmitted to the custom controller of the robot.

— MPC: Node running on a separate computer which solves the OCP using the
Crocoddyl library. To allow more interoperability, this node communicates with
the robot using predefined ROS messages 2. That way the implementation of the
LFC node is independent of that of the MPC.

— Motion Caputre (MoCap): Node used to detect the position of the target and that of
the tool in order to provide real-time measurements.

1. https://github.com/loco-3d/linear-feedback-controller
2. https://github.com/loco-3d/linear-feedback-controller-msgs

https://github.com/loco-3d/linear-feedback-controller
https://github.com/loco-3d/linear-feedback-controller-msgs


2 implementation 51

2.2 Model Predictive Control

The MPC node is responsible for iteratively solving the OCP which provides torque
commands u∗

0 , as well as the feedback gain K0 and the state reference x∗0 for the Linear
Feedback Controller. A major challenge

of MPC is
designing the right
cost function.

The main design choice for the MPC is the structure of the cost function that is op-
timized by the solver at every step. Another important aspect is the strategy chosen
to make the cost function evolve in time thus adapting the behavior of the MPC to the
situation.

2.2.1 Cost function

The cost function is a scalar function designed to encode the behavior of the robot,
which amounts to simultaneously satisfying a variety of goals. In our case, these goals
are:

— Bringing the end effector of the robot to a desired position and orientation.

— Preserving the equilibrium of the robot.

— Preventing the robot from exceeding its limits.

The running cost is typically constructed as a sum of nc ∈ N sub-costs:

l(x, u) =
nc

∑
k=1

wkak(rk(x, u)) (5.1)

∀k ∈ J1; ncK, rk : Rnx × Rnj → Rnk is a residual model, i. e. a vector function encoding
a specific objective (such as the placement of a frame of the robot or the position of
the CoM). The size nk depends on the characteristics of the cost. ak : Rnk → R is an
activation function which translates a residual into a scalar value. wk is a weight chosen
to adjust the relative importance of each cost.

In our approach, the derivative of the cost function with respect to state and com-
mand must be computed analytically. Splitting the cost as presented in Eq. (5.1) makes
computation easier and allows for the reuse of the same costs for different tasks, thus
saving engineering time.

The terminal cost has a similar formulation but depends only on x and may have a
different number of sub-costs nc_term ∈ N:

lterm(x) =
nc_term

∑
k=1

wkak(rk(x)) (5.2)

The difference between the running and terminal cost is that the running cost should
encode the task, while the terminal cost should only guarantee that the robot ends up
in a controllable state at the end of the horizon. By controllable, we mean a state in
which there exists a constraint-satisfying control that can stabilize the robot. In theory,
this ensemble is very broad, but it is difficult to characterize in practice. That is why we
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choose the same structure for both the terminal and running cost; we simply remove
any control-dependent term from the terminal cost.

We choose a general structure for the cost function to achieve all the desired goals.
We reuse the architecture presented in [62], which implements a similar task on the
same hardware. This architecture includes the following components:

— A constraint cost on the position of the joints

— A cost on the position of the CoM to maintain equilibrium

— A regularization cost on the state of the robot

— A regularization cost on the control

— A goal cost related to the position of the end-effector

— A goal cost related to the orientation of the end-effector

— A goal cost on the speed of the end-effector

constraint cost

The most important component of the cost function, and thus the one with the high-
est weight, is related to constraints. Since the solution we use does not accept hard con-
straints, they are encoded as penalizations. Constraints aim to prevent the solver from
providing a trajectory command that could damage the robot, although in practice this
risk is limited by the fact that there are safeties in the lower level of the control. Mechan-
ical limits are modeled as position, velocity, and effort limits at every joint. The values
of these limits are typically provided in the Unified Robot Description Format (URDF)
of the robot, which in our case was supplied by the manufacturer.

However, during the first set of experiments, only the position of the joints was lim-
ited at the level of the OCP (the low-level controller embedded on the robot always has
all the limits activated). This was not limiting since the first movements tested on the
robot were slow and with no payload.

Another important aspect is that the low-level control had additional limits, the for-
mulation of which is not open source. It means that they could not be implemented in
the OCP which lead to manually tuning the position limits to achieve successful move-
ment on the robot. The position limits that had to be tweaked the most were the one of
the torso.

This cost is formed from a residual which is the posture of the robot q and a quadratic
barrier activation. The quadratic barrier, represented in Fig. 5.2, is null if the residual is
within the fixed bounds and follows a quadratic evolution out of the bounds. The full
expression of this cost is:

lcons(q) = ∥max(q − qu, 0) + min(q − ql , 0)∥2 (5.3)

With qu and ql being respectively the upper and lower bounds of the admissible joint
positions.
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equilibrium cost

When working on the whole-body control of a humanoid robot, balance is always a
major concern. It is crucial to prevent the robot from falling over both to preserve its
integrity and to be able to efficiently carry out tasks. In our case, the movements are
slow, and the robot does not move its feet, so a command on the position of the CoM is
sufficient. However, more advanced costs would need to be employed for locomotion
or loco-manipulation tasks [60].

The equilibrium cost is formulated as follows:

lcons(x) = ∥c(x)− cd∥2 (5.4)

With c(x) and cd the current and desired Center of Mass of the robot.

regularization costs

Regularization is important to prevent drifting of the unconstrained parts of the robot
when several solutions might allow solving a given task (for example, prevent move-
ment of the right arm when manipulating with the left arm). Additionally, it is useful
to facilitate the convergence and numerical stability of DDP. We regularize the state, and
the control.

The regularization cost is formulated as follows:

lreg(x, u) = (x − xd)
TRx(x − xd) + (u − ud)

TRu(u − ud) (5.5)

This cost prioritizes behaviors that are close to the desired state xd, built from the
initial robot posture with zero velocities. It also penalizes controls that are far from the
torques ud required to counteract the force of gravity in the desired position. For both
of these costs, a weighted quadratic activation is chosen (see Fig. 5.2), Rx and Ru are
positive definite matrices used to tune the relative impact of each joint on the cost.

goal related costs

The last component of the cost function is related to the task being carried out by the
robot. For the deburring operation, there are three goals:

— Good position: The position of the end-effector p must be close to the position of the
hole pd. This is the most important objective, and the tolerance on the error is low
given that the diameter of the hole in which the insertion is done is dhole = 1 cm.

— Good orientation: This goal is necessary to ensure that the orientation of the end-
effector R matches the desired orientation Rd (R and Rd are defined as elements
of SO(3)). This goal is necessary to force the robot to have the tool perpendicular
to the aircraft part’s surface during insertion.

— Good speed: The Cartesian speed of the tool v should not be too high for the
insertion to be safe. This goal has a relatively lower weight than the other two
goals in order not to impede performance.

The cost is thus designed as follows:
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lgoal = log(1 +
∥p − pd∥

α
) + ∥R − Rd∥2 + ∥v∥2 (5.6)

The activation of the position cost is referred to as Quad Flat Log, and its shape can be
seen in Fig. 5.2. The idea is to have a bigger slope near the objective to encourage the
robot to move closer to the target while not risking destabilization when the tool is really
far from the target. The sensitivity of the behavior can be tuned with the parameter α,
in our case α = 0.02.
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Figure 5.2 – Comparison of the different activation functions that are used to build the cost.

2.2.2 Transition between tasks

The structure of the cost function is not the only crucial design point for achieving a
successful deburring sequence. A strategy to handle a succession of holes also needs to
be devised.

We are using a receding horizon strategy, which means that the horizon of the MPC

is sliding along a trajectory representing the full movement, as can be seen in Fig. 5.3.
At every control step, the first node of the horizon is discarded, all other nodes are
shifted by one index, and a new one is created at the end of the horizon. This has theUsing a receding

horizon strategy,
only one new node

needs to be provided
at every control

step.

advantage of maintaining coherence between successive resolutions of the OCP because
the problem is mostly identical from one step to another. That is why we can reuse the
previously computed solution as a warm-start for each iteration, which greatly limits
the number of DDP passes that need to be carried out to reach a satisfying solution.

In practice, to change the desired target, we just need to update the desired position
of the end-effector pd when creating a new node. The approach is similar to the one
proposed in [143].

To achieve the full deburring sequence, the robot will have to sequentially reach a list
of positions before executing a one-axis translation. That is why we use intermediate
points situated in the alignment of the hole but at a safe distance from the structure
before each insertion.
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In practice, the full sequence is implemented as a finite state machine with additional
safety checks. For example, if the tool is not aligned with the hole, the insertion is not
carried out and the robot goes back to its initial position.
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Figure 5.3 – Simplified representation of the receding horizon strategy when transitioning from
target 1 to target 2. At every time step, the MPC horizon in shifting along the full
trajectory by one node. The transition is complete after N steps, where N is the
number of node in the horizon (N = 4 in this illustration).

2.3 Integration of sensory feedback

To add more flexibility to the experimental setup, the integration of an exteroceptive
sensor was necessary. Indeed, conducting the experiments without sensory feedback
would require a very precise initial placement of the robot with respect to the aircraft
piece, which is not practical.

However, perception is not the main focus of this work, so the problem of detecting
and locating the piece in a real setup is not treated in this section. Instead, we focus on
the practical solution that we used.

For localization, we relied on a Qualisys Motion Caputre (MoCap) system.

2.3.1 Experimental setup

MoCap systems function by detecting reflective markers. Placing several markers in a
given configuration allows the system to detect the position and orientation of objects.

The objective of the setup is to be able to detect the target and place it back in the
reference frame of the robot. It means that markers should be placed on the target, but
also on the robot. Indeed, the reference frame of the MoCap doesn’t match that of the
robot, so we need two measures to assess the relative position of each element.
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target

Two targets were successively used for the experiments (Fig. 5.4).

(a) First target (b) Second target

Figure 5.4 – Pictures of the target used to test deburring movement in lab.

The first one was a 3D printed plate with holes matching the size of those found on
the aircraft pylon. The plate was attached to a pole, which allowed us to easily test
various deburring configurations. The MoCap markers were rigidly attached to the side
of the plate. Since its dimensions were precisely known, locating the holes with respect
to the markers was straightforward.

The second target was the 3D printed mockup of the aircraft pylon presented in
Chapter 2. MoCap markers were placed on top of the structure. The position of the holes
with respect to those markers was measured using the MoCap system itself by placing
additional markers in the holes, and removing them for the experiments.

robot

Two solutions were envisioned to link the MoCap to the robot:

— The first solution was to place a set of markers on the waist of the robot and carry
out a calibration [191] to identify the placement of the markers in the reference
frame of the robot. Once this value was identified, expressing MoCap measures
in the reference frame of the robot was straightforward. Another set of markers
would be placed on the tool.

— Another solution was to rigidly attach the tool to the end-effector of the robot and
place markers on the tool, as seen in Fig. 5.5. The transformation from the frame
of the tool to the frame of the fingertip can be computed because the shapes are
known, and the tool is fixed to the hand.
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(a) Tool fitted with the MoCap
markers.

(b) Tool screwed to the finger-
tips of Talos.

Figure 5.5 – Pictures of the tool used for the deburring tests.

Contrary to the second method, the first one has the advantage of not relying on the
internal state estimation of the robot, which can make the system robust to errors in the
perceived placement of the tool. However, this solution relies on the precise placement
of the waist markers and the quality of the calibration, adding complexity to the setup.

That is why we chose the second method, even if errors can arise from any estimation
uncertainties in the forward kinematics of the robot. In practice, it appeared that this
was not limiting for our use case. This can be explained by the fact that the flexibilities,
which are a major source of uncertainty, are more pronounced if the arm is straight,
which increases the lever effect. It is not problematic when the robot is in its initial
posture.

2.3.2 Integration in the MPC

The MoCap can compute the transformation from the tool to the target, and the posi-
tion of the target can then be expressed in the reference frame of the robot using the
internal estimation of the robot.

OMtarget = OMtool(x) toolMtarget

= OMtool(x) (WmMtool)
−1 WmMtarget

(5.7)

With OMtarget ∈ SE(3) being the placement of the target in the reference frame of the
robot, which is the value that is fed to the MPC. OMtool(x) ∈ SE(3) is the placement
of the tool in the reference frame of the robot, which, given a robot configuration, can
be computed using the forward kinematics of the robot. toolMtarget ∈ SE(3) is the
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transformation from the tool to the target, which can be computed by the MoCap using
WmMtool and WmMtarget, respectively the placement of the tool and the placement of the
target in the MoCap world.

For the experiment, we used the MoCap only during initialization to set the target
appropriately with respect to the robot. We carried out tests where the position of thePrecision of the

proprioceptive
sensors was not the

limiting
performance factor.

target was updated online using the new measured value, but this did not improve the
precision while adding complexity to the control loop

3 preliminary results

3.1 Protocol

There are several preliminary steps before deploying a new movement on the robot.
First, the cost function is tuned in the PyBullet simulator [56]. This allows for quick

iteration when testing new cost function terms. Indeed, designing the appropriate cost
function for a given task requires extensive effort, and the ability to quickly iterate over
new designs is crucial for achieving movements on the robot in a reasonable time. In
this case, the controller exploits python bindings of a C++ code, but the communication
between the simulator and the controller is not done using ROS.

A second step is to test the same movement inside Pal’s private simulator. This
simulator is more representative than PyBullet and uses the same ROS interface as the
robot. It allows for the use of strictly the same code as what will be run on the robot,
which is a significant advantage for debugging purposes. This simulator is not open-
source, so it is not possible to know the exact modeling elements it contains. However,
we know that it simulates actuator dynamics and measurement noise. It also includes
the additional safety limits implemented on the robot, which are also closed-source.
Due to the differences existing with the first simulator, a new tuning of the cost function
is often necessary.

The final step is to run the movement on the robot. Despite running tests on a custom-
made simulator, additional tuning is also necessary directly on the real robot, especially
to obtain a movement that does not trigger the manufacturer’s safety mechanisms.

3.2 Results

During our experiments, we successfully obtained a stable reaching movement on
the humanoid robot Talos. Thanks to the torque control, the robot could be slightly
perturbed without outputting dangerous amounts of energy or becoming unstable. This
stability is a crucial aspect for ensuring safe operation in dynamic environments.

However, the precision achieved was not satisfactory. The placement error was above
1 cm, as can be seen in Fig. 5.6. It is significantly higher than our objective to be under
5 mm.
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Figure 5.6 – Picture of the robot at the end of the baseline movement. It is clear that the tool is
not inserted in the hole.

3.3 Gain Scheduling

It became apparent that, despite spending a reasonable amount of time tuning the
cost function, it was not possible to find a fixed set of parameters that would lead to a
sufficiently precise movement.

Increasing the weight associated to the end-effector’s placement task could drive the
system closer to the target but did not allow for a stable movement when the target was
far away. To address this issue, we resorted to adopting a time-based variable weight
for this task.

The idea was to have a first part of the movement with the initially tested weight.
Then, once the end-effector stabilized near the target, to steadily increase the weight
until the desired precision was reached. For safety reasons, a threshold on the maximum
weight was set.

This solution allowed us to improve the precision of the movement and successfully
carry out the insertion.

We can see in Fig. 5.7 an experiment on 4 holes of the structure. We can see that for
the first target, the error is above the threshold, but since the weight is already at its
maximum, it is not further increased. We can also see that for the last two targets, a
smaller increase in weight leads to a good precision.

However, this solution is not fully satisfactory. Indeed, this approach led to a stable
and precise but slow movement. The achieved insertion time, more than 10 s was signif-
icantly larger than that of a human operator and far from exploiting the full capabilities
offered by the hardware.
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Figure 5.7 – Evolution of the measured error and the weight of the position task with respect to
time. The insertion is successful (the error is below the 5 mm threshold) for 3 holes
out of 4.

This underwhelming operating speed can be explained by the necessary caution that
this solution entailed. Indeed, changing the relative weights of the terms in the cost func-
tion can have dangerous effects on the stability of the system. Increasing the weight too
much could lead the controller to compromise on other objectives, such as equilibrium,
in favor of the insertion task. This is especially true in our case, where the weight was
increased by more than a factor of 10 to achieve the desired precision.

In addition to that, a time-based gain scheduling degrades the flexibility of the system,
and the lack of reactivity can cause issues if unforeseen situations arise.

These reasons explained why we wanted to further study this problem in the hope of
providing a reactive cost-shaping strategy to control the robot more efficiently.

4 experimental hurdles

4.1 Hardware limitations

Beyond the experimental results, the tests carried out on the robot highlighted some
difficulties that arise when working on a complex robotic platform such as a humanoid.
These challenges need to be identified and explained, as they underscore why the design
of a new demonstration should not rely too heavily on extensive testing directly on the
platform. The test procedure should be structured and thought out to extract as much
information as possible from any test performed on the robot.

A first significant hurdle is that, because of its dimensions, any test requires at least
two persons to attend the robot. This requirement induces a significant labor cost, as
well as organizational difficulties.
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Additionally, issues with the low-level controller of the robot were encountered. Vi-
brations could be heard when controlling the wrists in torque, which were linked to
the tuning of the low-level controller. However, since the controller is not open source,
only people working for the constructor of the robot could alter these elements. This
increases the dependency of the researcher to the intervention of a company, as well as
making debugging process more complex.

Finally, as mentioned in the introduction (Chapter 2, Section 3), Pyrène is the first
prototype of the Talos robot. After several years of extensive use, signs of wear and tear
have begun to appear, especially in the electronics. Both wrists are not functioning due
to issues with the electronic board. In addition to this, the robot randomly raises errors Problems with the

wrists prevented
further experiments
from being carried
out.

related to communication between components. Although technically not hard to fix,
these issues are time-consuming and prevent intensive use of the hardware.

However, solutions to these issues, such as making the hardware more reliable or
increasing the human resources on the robot, are hardly applicable in practice and
beyond the scope of this thesis.

4.2 Focus on simulation

Despite hardware limitations preventing us from undertaking all the desired exper-
iments, I still managed to discover fundamental limitations in our control structure.
Indeed, I demonstrated that an ill-designed cost function could not yield satisfactory
results. Adding the MoCap inside the control loop also highlighted that the error caused
by the use of proprioceptive sensors during the movement was not the limiting factor.

These design limitations can be studied in simulation, and since the robotic platform
could not be used to carry out further experimentation, I focus in the remainder of this
manuscript on improving the simulated behavior of the robot. However, to benefit as
much as possible from the gained experience and make going back to the robot easier,
I keep the control architecture as close as possible to what ran during the experiments.
That is why I do not adopt alternative control strategies to replace MPC or completely
change the structure of the cost. I even decide to keep the low-level Riccati interpolation
(Chapter 4, Section 5), even if recent work [245] has demonstrated its weaknesses.

Therefore, the following parts mainly tackle simulation results, but with an approach
that will make producing movements on the robot easier because the core of the control
structure has already been thoroughly tested.

5 conclusion

These results demonstrated a technical solution to carry out the desired task but are
not entirely satisfactory from a theoretical viewpoint.

They highlighted the fact that it is very challenging to find an appropriate cost func-
tion to carry out a task using WBMPC. This difficulty underscores the need for further
exploration into more adaptive and reactive approaches.
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Therefore, in the next part of the manuscript, we delve into reactive cost shaping as a
potential solution to address these challenges.



Part IV

T O WA R D R E A C T I V E P L A N N I N G

This part highlights the main contribution of this dissertation. I propose a
reactive cost function planner to be used in conjunction with the previously
presented control structure.
Chapter 6 presents in more detail how a reactive cost function could be
leveraged to improve performance. This work was published at the 2023

International Conference on Intelligent Robots and Systems.
As a follow-up, Chapter 7 presents a Reinforcement Learning based reactive
posture controller. This part was submitted to Transactions on Automation
Science and Engineering.





6
VA R I A B L E C O S T M P C

This chapter seeks to assess how a variable cost function could benefit a
WBMPC. In particular, it studies how information about the robot’s posture,
collected during an experiment, can be leveraged to improve performance for
subsequent runs.
This chapter has been published at IROS in 2023 [203]. Sections 1.1, 2 and
3.1 summarize elements presented in the previous chapters. They have been
included to maintain the coherence of the chapter.
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1 introduction

1.1 Context presentation

Robots are nowadays a standard tool in large-scale manufacturing [103]. They excel at
performing repetitive tasks in very well-known environments. However, they are yet to
reach a huge part of the wide variety of industrial work that exists in our society.
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One of the major drawbacks most industrial robots suffer from is lack of mobility.
Their design does not allow them to be a relevant solution for many low volume, high
added value productions such as the one found in aeronautic manufacturing. According
to [139], humanoids are a promising direction to overcome this weakness. However,
the resort to humanoid robots induces a higher control complexity which is further
heightened when dealing with variability in the environment.

In recent years, Reinforcement Learning (RL) has been successfully used to generate
highly dynamical motions on quadruped robots, such as ANYMAL [219], as well as
bipedal torque controlled walking robots such as CASSIE [71]. Still, in [94], a com-
parison with Model Predictive Control (MPC) shows that the latter has a higher rate
of success in constrained environments. Despite both approaches being different, the
definition of the cost function remains a central point for both RL and MPC. The increas-
ing complexity of the system makes it difficult to properly design such a cost-function.
The aim of this chapter is, first, to experimentally find an initial feasible solution for a
real situation. Then, design a simple strategy to modify the cost function in order to
improve performances.

A widely used motion generation framework for humanoid robot is built upon a
Model Predictive Controller for the centroidal dynamics in conjunction with an instan-
taneous QP-controller for the whole body [39]. A planner provides the reference trajec-
tories to follow for tasks such as gaze direction, end-effectors placement and the overall
direction of the robot.

If position control has been quite successful in generating a wide variety of robot
behaviors, its capacity to react to external forces is limited to the end-effector, where a
force sensor is typically incorporated for that purpose. In [74], [139] torque controlled
robots appear as a potential solution for managing interactions with the environment
as well as ensuring safe and compliant behavior in unplanned situations.

These situations can arise because of unforeseen events such as changes in the context,
or human interaction. It opens up the way for more flexible use of robots than what
was achieved with existing position control methods. Recent robots such as Digit [114]
are using torque control and demonstrate impressive locomotion performances and
robustness. It comes however at the cost of a more complex control architecture on
robots with wave generators, and a lack of precision for positioning tasks.

Precision is nonetheless of great importance when executing industrial tasks such
as deburring. A simple way to handle this issue is, assuming you can measure it, to
apply a strong feedback on the error between the desired and perceived position of the
tool. But, on a torque controlled robot, this might lead to a diverging command [213].
[72] has developed a passivity framework which is taking into account the energy of
the system to maintain its stability. It was successfully tested on the TORO humanoid
robot [139]. This approach assumes that either the desired position or trajectory of
the end-effector is given. The passivity approach avoids injecting unsafe amounts of
energy in the system if the environment differs too much from what was planned. The
whole body instantaneous controller is in charge of absorbing model discrepancies and
planner assumptions.
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The success and the efficiency of the classical approach lie in the capabilities of the
motion planner to generate a desired trajectory that is compatible with the whole body
instantaneous controller. It can be done for instance by using a hybrid control approach
and planning over a graph of motion primitives for quadrupeds [254]. It can also be
done using A* through a discrete set of actions predefined according to the targeted
tasks, see [95] for a locomotion example. In order to cope with the complexity of the
problems most planners are using heuristics [95], or reason on low dimensional neces-
sary conditions [250].

Still, no matter how advanced the planning heuristic is, it cannot entirely address the
fundamental limitation of instantaneous whole body control. This limitation resides in
the inability of this technique to account for whole-body related constraints within the
MPC horizon. It means that potential conflicts with the constraints can only be detected
by the whole-body controller when it is too late. For this reason, [59] proposed a whole-
body model predictive control with state feedback at 100 Hz. It can perform trajectory
optimization and provides reference torques to a low-level torque loop running at 2 kHz.
An extension of this technique was introduced in [62], where the feedback gains of the
DDP are directly sent to the low-level controller, improving meaningfully the quality of
the generated motion. This approach has several advantages. A significant one is to
include all the dynamical effects of the limbs on the balance criteria. This is particularly
important with a robot having arms and legs that way more than 10 kg and 15 kg
respectively, such as TALOS.

1.2 Contributions

WBMPC has successfully been applied to the humanoid robot TALOS to carry out an
industrial deburring task similar to the one presented in [177]. As seen in Fig. 6.1, the
objective of the task is to insert a 3d printed tool inside the holes of a mockup aircraft
part. It simulates deburring, an operation that needs to be undertaken after drilling
holes to clean up any material residues.

Experiments were conducted in a lab as well as on an Airbus site. The results that
were obtained validate the relevance of using WBMPC for humanoid robots in an indus-
trial context.

This chapter also tackles the issue of cost shaping. It is a challenging aspect for
optimal control based approaches that needs to be resolved in order to unlock the full
performances of the system. [57] uses a multi-objective optimization in conjunction with
Bayesian optimization to find a suitable set of parameters. Because we expect optimal
approaches to be too computationally intensive in our case, we choose to use a fixed
cost function structure to experimentally explore the environment.

The contributions presented in this chapter are twofold:

— Demonstration of the experimental use of a humanoid robot in an industrial set-
ting;

— Use of advanced cost shaping solutions to enable better performances in this con-
text.
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Figure 6.1 – Deburring task, high precision for a fine insertion into a hole using whole-body MPC
on a torque controlled robot.

The adopted control architecture is first presented in section 2 before going into more
details about the structure of the cost function that was considered in section 3. To
finish, the most significant results are exposed in section 4.

2 whole-body model predictive control

This section recalls key elements from Chapter 4 to ensure that the current chapter
can be understood independently. Readers who have already familiarized themselves
with the previous chapter may proceed directly to Section 3.

2.1 Robot Modelling

The robot configuration q ∈ SE(3)× Rnj defines the global position, orientation and
posture that a mobile robot has at one given moment. Such configuration evolves under
the action of internal and external forces as described by the rigid-body dynamics [267]:[

M J⊤c
Jc 0

] [
q̈

-λ

]
=

[
S⊤ τ − b

-J̇cq̇

]
, (6.1)
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where M is the inertia matrix, b stands for Coriolis, centrifugal and gravity forces,
joint-motor torques τ ∈ Rnj affect only the nj actuated joint as indicated by the se-
lection matrix S ∈ R(nj+6)×nj , and all contact wrenches λi ∈ R6 are contained in
λ =

[
λ1 · · · λi · · ·

]
with the application points described respectively by the Jacobians

Ji ∈ R6×n+6 contained in J =
[
J1 · · · Ji · · ·

]
. The second line of Eq. (6.1) constraints the

robot parts under contact to stay motion less during the contact.
Based on this dynamics, the robot configuration q and its time derivative q̇, which

are the state x = (q, q̇), are controlled by inputting desired torques τ on joint motors
during some discretization period dt to obtain the next state

x+ = f (x, τ), (6.2)

which is predicted from numerical integration of Eq. (6.1).

2.2 Optimal Control

For a given initial state x0, an optimal control sequence U∗ ≜ {τ0, τ1, · · · , τN-1}
is generated according to Eq. (6.2), along a horizon of N time-steps in the future by
minimizing the cost function

V(x0) =
N−1

∑
i=0

l(xi, τi) + lterm(xN), (6.3)

that is designed to encode the desired robot behavior with a running cost l(·, ·) for each
time-step, and a terminal cost lterm(·) guiding the robot to end into some safe set of
states. This desired behavior is discussed more precisely in Section 3.

The resulting optimal pair of control sequence and robot motion (U∗, X∗) is said feasi-
ble if it satisfies the dynamics described in Eq. (6.1) [135]. Here, feasibility of the optimal
controller is ensured by implicitly imposing the discrete form Eq. (6.2) in Eq. (6.3).

Following an MPC scheme, i.e.: at time j, the control sequence U∗
j is generated con-

sidering the initial state xj
0, then only the first control τ

j
0 of the sequence is executed

during the discretization time dt arriving to a new state xj
1, which is used as initial state

xj+1
0 = xj

1 to generate an entire new sequence U∗
j+1 and this is repeated cyclically [81].

This procedure guarantees that the generated robot motion is part of a feasible path of
at least N steps in the future. Feasibility beyond the horizon can also be ensured by
making the robot reach some state where the robot can stay safely during indefinite
time at the end of the horizon [175]. This property is enforced with the terminal cost
lterm(·).

In particular, the DDP algorithm is used to minimize the cost function Eq. (6.3) at each
iteration of the MPC. The computational efficiency of DDP allows controlling 31 degrees
of freedom of the robot TALOS along a horizon of N = 100 time-steps with dt = 10 ms
online (computed during the movement of the robot). DDP has the drawback of not
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accepting explicit constraints, though recent results suggest a forthcoming solution to
this issue [121]. Here, however, the traditional solution is to consider Eq. (6.2) as an
implicit constraint.

DDP produces Riccati gains

K0 ≜
∂τ

∂x

∣∣∣∣
x0

(6.4)

evaluated at the initial state, as a partial result of the optimization. Control values
are interpolated using these gains, as proposed in [62], to reach an updating period of
0.5 ms on the resulting control law:

τ = τ0 + K0(xmeas − x0), (6.5)

with a feedback term based on the measured state xmeas which is updated at every
millisecond and a feedforward term τ0 = k0 computed optimally from the measured
initial state x0 at each MPC iteration (every 10 ms). In order to further boost the DDP

performance, the pair (U∗, X∗), obtained in the previous MPC iteration, is the warm
start at each computation of the control sequence. For the first control sequence, since
there is no previous solution to reuse, DDP is iterated starting from a constant trajectory
until convergence.

3 deburring controller

Contrary to most solutions found in the literature the WBMPC implemented on the
robot does not rely on a reference trajectory. Instead, all the information about the task
is encoded through the cost function and the robot’s trajectory is implicitly generated.
This reduces the overall complexity of the control structure because it does not require
a higher level planner to be used. It however makes the design of the cost function for
a single task much more challenging.

Shaping the cost function is made even more complex by the need to reconcile occa-
sionally conflicting objectives in a single scalar function. Furthermore, the solver does
not accept explicit constraints. So the cost function must incorporate relaxed safety
constraints and address multiple objectives simultaneously. To simplify the process, a
fixed structure is chosen where the cost is composed of sub-costs that incentivize or
discourage specific robot behaviors.

3.1 Cost function structure

We reuse the cost architecture presented in Chapter 5 because it has already shown
interesting results in [59].

The cost function is split into four different sub-costs: constraints, equilibrium, regu-
larization, and goal

l(x, τ) = wconslcons + weqleq + wreglreg + wgoallgoal. (6.6)
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Each of the sub-costs has an associated weight, which can be adjusted to define the
relative priority of each task.

3.1.1 Constraints cost

The first and most highly weighted cost, aims at preserving the integrity of the robot.
It is a barrier cost that greatly penalizes any configuration that does not respect the
kinematic constraints of the robot: lcons(x) = ∥max(x − xu, 0) + min(x − xl , 0)∥2. With
xu and xl respectively being the upper and lower bounds of the admissible states.

3.1.2 Equilibrium cost

Balance is also a major concern when working with humanoid robots. The robot must
stay on its feet, throughout the whole operation. It is achieved with an equilibrium cost:
lcons(x) = ∥c(x)− cd∥2 with c(x) and cd the current and desired Center of Mass of the
robot. For the deburring task, maintaining the CoM of the full robot over its supporting
feet is enough to penalize movements leading to losses of equilibrium. As this cost also
preserves the robot integrity, it is set with the second-highest relative weight.

3.1.3 Regulation cost

To guarantee the numerical stability of DDP, a regularization cost that ensures unique-
ness of the optimal control is added: lreg(x, τ) = (x− xd)

TRx(x− xd)+ (τ − τd)
TRτ(τ −

τd). It prioritizes behaviors that are close to the desired state xd built from the initial
robot posture, with zero velocities. It also penalizes controls that are far from the torques
τd required to counteract the force of gravity in the desired position. Rx and Rτ are pos-
itive definite matrices used to tune the relative impact of each joints on the regulation
cost.

3.1.4 Goal related cost

While constraints, equilibrium and regulation are general enough to be widely used
in humanoid robot applications, task-specific components are also required for the cost
to be applied in a concrete experiment. For the deburring operation, the goal cost
encourages the robot to position correctly its left end-effector and maintain zero velocity.
It is designed as follows: lgoal = log(1 + ∥p−pd∥

α ) + ∥R − Rd∥2 + ∥v∥2 with p and pd
the actual and desired Cartesian position of the end-effector, R and Rd the actual and
desired rotation (defined as elements of SO(3)), v its Cartesian velocity and α = 0.02.

3.2 Cost function shaping

From the structure presented in Section 3.1 naturally arises a set of parameters that
needs to be tuned in order to achieve a specific task. A common approach is to proceed
via trial and error either in a simulator or directly on the real robot. For simplicity
purposes, a single tuning is often chosen for the whole movement. However, even if
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Figure 6.2 – Simplified illustration of the cost conflict. Values are just for scale and do not
represent the actual value of the cost function for our application. Colored tick
on the x-axis indicate the abscissa of the minimum of each function. The distance
between the red and green ticks represents the error associated to the cost function.

it is theoretically possible to shape a cost function that exploits the full abilities of the
robot in every situation, it is in practice very challenging.

Despite trying to set a clear hierarchy between tasks by choosing weights with differ-
ent orders of magnitude, the problem of conflict between tasks still arises during the
experiments. Indeed, the posture task reference is always the same for all the cases
while the desired goal can vary in all the robot workspace. It means that, most of the
time, those two costs tend to attract the robot toward different equilibrium. This re-
sults in the optimal solution being a trade-off between both costs which leads to poor
performances.

That is why we resort to have a cost function that varies in time and along the horizon
of the MPC:

V(x0, t) =
N−1

∑
i=0

lt
i (xi, τi) + lt

N(xN), (6.7)

In order to guarantee the coherence of the problem between each iteration we up-
date cyclically each node of the cost function so that only the last one contains new
information:

∀i ∈ J0 : N − 2K, lt+1
i = lt

i+1, (6.8)

All the experiments used the same receding horizon approach where the first node
of the horizon is discarded and a new custom one is added at the end. This approach
permits to have a richer representation of the task while keeping a simple structure for
the cost function even if it requires either to hard-code the time sequence or to resort to
an external planner.

We tried several approaches to generate this new node in the trajectory as shown in
Fig. 6.2.
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3.2.1 Baseline

The baseline performances is computed using a mostly fixed cost function. The only
parameter that changes over time is the desired Cartesian position of the end-effector.
It allows the robot to reach several targets during one experiments.

Even if a more advanced tuning could lead to better results, any further improvement
is made very challenging because of the sensitivity of the performances to the cost
function.

3.2.2 Variable goal-cost weight

A straightforward way to solve the cost conflict is to increase the relative weight of the
goal cost with respect to the posture cost. A linear scheduling of the weight is chosen
so that the cost only increases at the end of the movement when high precision needs
to be achieved:

wgoal(t) = wslopet + w0 (6.9)

This strategy was successfully used to conduct the first set of validating experiments on
the real robot.

3.2.3 Variable posture reference

Another solution to solve the conflict is to update the reference posture at the same
time as the goal:

lreg = ∥x(t)− xreg(t)∥ (6.10)

where x(t) is the measured state and xreg(t) a variable reference state.
This allows to improve performances without tempering with the relative weight of

each cost hence preserving the safety of the robot.
To do so we do not use an external logic, but reuse solutions of previous experiments

found using our control structure. In practice, we explore the environment of the task
using a simple control structure and re-inject the reached posture as a reference for
subsequent realizations. This approach is relevant when no expert data is available to
guide the resolution.

4 application of the control structure

To validate the method presented in this chapter, we study a task which consists in
reaching a series of points in sequence while achieving a good accuracy (less than 5 mm
of error in our case). The accuracy threshold is chosen to match the radius of the hole
in which the tool needs to be inserted.

We will explain the software architecture used during both the experiment and the
simulation in Section 4.1 before detailing the two phases of test that we carried out:

— First, an exploratory phase conducted on the robot. It aimed at validating that the
presented method could reach a precision of 5 mm.
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— Then, a performance improvement phase focused on exploiting the full capabili-
ties of the physical system.

4.1 Control setup

The control architecture is split into two levels. The computationally expensive opti-
mal control resolution is done at 100 Hz. In the case of experiments on the real robot
this part is carried out by an external computer (fitted with an AMD Ryzen 5950X, 16

cores with 64 GB of RAM). A faster control, based on the gains computed by the MPC

can then be run directly on the robot at 2 kHz as shown in Eq. (6.5). The MPC implemen-
tation was based on Contact RObot COntrol by Differential DYnamic Library (Crocoddyl).
The software architecture is summarized in Fig 6.3.

Figure 6.3 – Diagram of structure used to control the robot. l(x, u) is the cost function optimized
by the OCP, (x∗, u∗) are the current optimal state and control trajectory produced
by the MPC, u∗

0 is the control sent to the robot and xm the state measured by the
proprioceptive sensors of the robot.

4.2 Concept validation in the real world

As mentioned in Section 1.2 experiments were conducted both in our lab and directly
on site at an Airbus plant.

Speed was not the focus of this stage, that is why we resorted to the gain scheduling
technique to carry out the task. Indeed, it was a straightforward way to achieve the
desired result in a setting where stability was not a major concern because of the low
movement speed involved.
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The robot successfully managed to reliably insert the tool that was fitted on its end-
effector in a sequence of 4 holes 1. In a separate experiment we checked that the robot
remained compliant while it inserted the tool by having a human push its arm.

A motion capture system was used to calibrate the position of the aircraft piece with
respect to the robot at the beginning of the experiment. Other than that, no visual
feedback was required during the experiment and the proprioceptive based movement
was precise enough to carry out the task.

4.3 Performance improvements

After validating the relevance of the chosen approach, work was done to improve
the performances and the achieved movement speed using the PyBullet simulator [56].
This simulator has been used in the past as a validation step before deploying new
movements on the robot.

4.3.1 Benchmark

First, a benchmark of the three approaches presented in Section 3.2 is showed. The
performances of the controllers are evaluated according to two metrics :

— The distance between the center of the hole and the tip of the end effector. The
task is considered to be successful if this distance is below 5 mm;

— The time to successfully carry out the task. Which is the time between the begin-
ning of the movement and the moment where the tip of the tool is less than 5 mm
away from the hole and stays in this zone.

We set up the robot to reach a precise point in space starting from its default position
using all three approaches. The results are compiled in table 6.1.

Method Baseline Variable weight Variable posture

Accuracy (mm) 8.27 0.85 0.24
Reach time (s) _ 1.06 1.24

Table 6.1 – Comparison of the accuracy and of the Baseline, Variable weight and Variable posture
methods.

As can be seen in Fig. 6.4, the baseline is not precise enough to reach the desired
threshold. This illustrates the limitation that we mentioned in Section 3.2. The other
two solutions can solve this issue if tuned properly.

However, it is worth noting that this results comes from a simulation and cannot be
directly translated to the real world because of unforecasted disturbances and discrep-
ancies between the model and the real robot.

In particular, the variable weight approach suffers from a major weakness. Changing
the relative weight of costs may reduce the significance of the safety related cost. This

1. https://peertube.laas.fr/w/s6UeEXiheSCD47EZrwhksS

https://peertube.laas.fr/w/s6UeEXiheSCD47EZrwhksS
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Figure 6.4 – Evolution of the cartesian position of the end effector with respect to time.

can lead to more dangerous movements if done recklessly. In addition to that, higher
gains can hinder the stability of the control. We can see oscillations in the movement
which indicates a less stable control.

On the other hand, updating the reference posture can solve the cost conflict without
altering the relative weight of the tasks. Since the weights of the placement and posture
task are relatively low with respect to the limits and stability cost in this setting, this
approach is less dangerous for the robot.

4.3.2 Performances of the variable posture approach

Because it is less dangerous for the robot while still being efficient, the variable pos-
ture approach is tested on a sequence of two holes. Fig 6.5 indicates the robot can
precisely reach both holes with a transition time of 0.5 seconds. While we do not have
precise data regarding the performances of a human operator for this specific experi-
ment, it has been reported to us by Airbus employees that a worker would take around
one second to transition between two holes. It means that the attained performances
are in the same order of magnitude of what a human could achieve, which was not the
case with the baseline solution.
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Figure 6.5 – Simulated evolution of the Cartesian position (in meters) of the end effector with
respect to time. The distances are given with respect to the center of mass of the
robot. The x-axis is oriented toward the front of the robot, the y-axis to the left and
the z axis is going up. Regions highlighted in green are when the end-effector is
less than 5 mm away from the target position.

5 discussion

5.1 Difficulties to deploy an efficient motion

Even if the control scheme was successfully deployed on the robot, increasing the
performances still represents a major challenge. Indeed, in [213] a similar performance
improvement as the one described in paragraph 4.3 was applied to the TALOS robot
without any particular precaution. It caused the controller to inject a high quantity of
energy in the system which, despite the safeties that are implemented, damaged the
robot. This is not desirable and may imply to expand the solver and include a passivity
constraint as proposed in [72], or a similar approach to prevent this type of behavior.
Such an extension is beyond the scope of this work.

To reduce the occurrence of accidents, the manufacturer of the robot, PAL-Robotics,
provides a high fidelity simulator which includes a model of the actuators. It also warns
the user of possible collision using an energy based criteria for each actuator separately.
This is unfortunately not sufficient to guarantee the safety of the robot.
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This means that the only tractable way to proceed is to gradually increase perfor-
mances on the real robot. However, in the case of a complex system like a humanoid
robot, this requires extensive manpower (at least two people are needed to operate the
robot safely). It also subjects the hardware to high wear and tear.

5.2 Need for planning to achieve human-like performances

The proposition made in this chapter to improve performances revolves around in-
jecting relevant information inside the system through the cost function. It differs from
traditional motion planning approaches because it does not rely on an external heuristic
to provide the necessary information. Instead, it leverages data from previous experi-
ments to achieve the desired performances.

This drives the intuition that work should be done to build a form of memory for
the system. This memory would be queried in every situation to select the appropriate
parameters of the cost function. It could be populated by exploring the environment
using our control approach.

A hybrid MPC/RL approach could be used to achieve this goal. The RL Agent would
be trained to maximize a higher level reward function that depends upon the perfor-
mances (accuracy and speed). It would control the robot through the choice of the
parameters of the cost function. This means that the MPC, with the structure presented
in this chapter, would still be used on the robot. The reference posture would however
be reactively picked by the RL algorithm. [219] successfully deploys Proximal Policy
Optimization to control a quadruped robot. However, the approach we present would
be much more computationally intensive because of the more advanced control struc-
ture that would need to be simulated. That is why off-policy algorithms, such as Soft
Actor-Critic, that are known to be more sample efficient would be more appropriate.

6 conclusion

This chapter demonstrates the use of high frequency MPC to carry out a position task
with an accuracy of few millimeters with the humanoid robot TALOS, controlled in
torque. Strategies regarding the shaping of the cost function are the main focus of this
chapter. Simulations show that changing the reference posture during the movement
can improve the speed of completion of the task to human like levels.

In the short term, we plan to demonstrate the shown results on the robot. We also plan
to continue this work by leveraging machine learning as a planning tool to reactively
choose the appropriate reference configuration for a wide range of situations.



7
R L - B A S E D R E A C T I V E C O N T R O L L E R

This chapter builds upon the conclusions drawn in the previous chapter
to propose a reactive planner that exploits RL. This solution enhances the
WBMPC to improve the robot’s performance. In addition to better overall per-
formance, it addresses some limitations of the MPC and offers the ability to
incorporate additional constraints into the control structure. This chapter was
submitted to Transactions on Automation Science and Engineering.
Section 2 recap elements from earlier chapters to allow this chapter to be read
independently. Readers who have already familiarized themselves with the
previous chapters may proceed directly to Section 3.

In Short
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1 introduction

1.1 Context presentation

Assembly and insertion tasks constitute a significant segment within the production
cycle of industrial items [124]. Despite extensive research efforts aimed at automating
these tasks, they continue to be largely carried out by human workers. Current solutions
predominantly rely on manipulator arms controlled by positional inputs. To facilitate
closer collaboration between humans, and robots and to adapt to less structured work
environments, the focus has shifted toward the adoption of lightweight robotic arms
[23], accompanied by the incorporation of compliance mechanisms.

Another fundamental characteristic of small batch production is variability in the
working environment which does not accommodate well classic manipulator arms. The
prospect of mobile base manipulators emerges as a promising solution for augmenting
the flexibility of industrial robots. A majority of solutions discussed in the literature
involve a wheeled platform equipped with a robotic arm [69]. In contrast, some re-
searchers [139] advocate for the use of legged robots, particularly in scenarios character-
ized by cluttered and hard-to-reach environments, such as those encountered in aircraft
manufacturing sites.

Our viewpoint posits that, regardless of the robot’s architectural design, a compre-
hensive understanding of the entire system’s dynamics is imperative to fully harness
the platform’s performance capabilities. In this context, demonstrating such feat on a
humanoid robot appears as a significant milestone that can be achieved on our way
to bring robots to the factory alongside humans. As exemplified in [21], a proposed
approach involves a unified force-control scheme paired with a reinforcement-learning
policy. This combination facilitates the acquisition of skills in contact-intensive manipu-
lations, even for rigid position-controlled robots.

Following up on Chapter 6, the idea is to use a hybrid approach combining MPC

and RL to improve the performances previously reached. We leverage the memory
and exploration capabilities of learning based methods to extend an MPC while safe
guarding the guarantees offered by a model based approach.

The application has been chosen in the scope of the ROB4FAM project. It aims at
carrying deburring tasks on aircraft parts. Because we are working on solutions with a
low Technology Readiness Level, the task is simplified into the insertion of a 3d printed
tool into the holes of the structure.

The main topic of this chapter is to execute an insertion task on a torque controlled
humanoid robot.
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Figure 7.1 – Deburring task, high precision for a fine insertion into a hole using WBMPC on a
torque controlled robot.
© Airbus - All rights reserved

1.2 Related work

Most of the literature regarding industrial insertion tasks carried out by robot focuses
on manipulator arms. In that case, the main challenge of the task is to control the ap-
plied forces, even in the presence of uncertainties. This property known as compliance
is a pivotal factor in enhancing human-robot interaction and adaptability. It can be in-
troduced through two distinct avenues: passive approaches and active methodologies.

Passive approaches [264] rely on specialized compliant devices tailored for each task.
However, they have the drawback of not being controllable or universal.

On the other hand, active methodologies depend on their ability to measure interac-
tion forces with the environment. This can be achieved using a dedicated sensor [64],
yet this solution specializes the robot and may not be suitable for settings where ver-
satility is crucial. A promising alternative is to reconstruct interaction forces through
joint torques [165], which enables the embedding of compliance inside the control. Ac-
tive force control strategies can be declined into two categories: hybrid force/position
control and impedance control [111]. However, these traditional approaches often lack
adaptability and robustness when faced with new situations.

To overcome the shortcomings of classic solutions, learning-based methods have been
gradually applied to industrial tasks. There are two main ways to integrate data-based
approaches into industrial robotic tasks: Imitation Learning [275] and Reinforcement
Learning. Imitation Learning involves extracting information from example movements,
while Reinforcement Learning relies on interaction with the environment. For instance,
[225] proposes solving industrial insertion tasks for electronic components using RL.
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[277] suggests combining traditional active force control strategies with learning-based
optimization to carry out peg-in-hole assembly tasks.

As opposed to the literature regarding fine insertion tasks using manipulator arms,
the examples of such tasks carried out by legged manipulator are few. A lot of in-
spiration can however be drawn from the literature regarding whole-body control and
loco-manipulation.

A straightforward way to handle manipulation for mobile based robot is to treat the
movement of the base and the manipulation as independent tasks. This might however
be suboptimal when trying to achieve very dynamic movements. In addition to that,
even if this approach might be viable in some cases with quadrupeds, it is unlikely
that it will work for humanoids (the subject of this manuscript) because of the inherent
instability of those architectures. [20] proposes a unified loco-manipulation approach
for quadrupeds based on hierarchical planning. [184] presents a versatile planning
framework for loco-manipulation on humanoid robots.

MPC has been widely used in for the control of humanoid robot thanks to its ability
to handle constraint and provide guarantees. [59] uses an MPC augmented with a mem-
ory of motion to carry out whole-body manipulation tasks, although not reaching the
precision we are looking for in our case. [144] proposes a way to handle multi-contact
and interaction with the environment.

MPC approach excel when the dynamic of the system are well known. But it often
relies on local online solvers that only handle differentiable constraints. Reinforcement
Learning as been gaining traction over the last few years because it can use rewards
that more directly encode the task of interest. RL on complicated hardware such as
legged robot as been made accessible thanks to the scaling ability offered by novel hard-
ware [220]. [208] exploits these technical advancements to obtain real-world locomotion.
[237] highlights the need for good modeling of the robot to carry out sim to real learning.
Another approach [239] exploits more sample efficient algorithm to train directly on the
robot, bypassing the need for a model of the system. [88] proposes a data based ap-
proach for simultaneous manipulation and locomotion. [63] proposes a Reinforcement
Learning based approach for box loco-manipulation on humanoid robots.

[123] and [92] uses examples from trajectory optimization to drive the exploration of
the RL agent.

Even if some solutions tackle the constraint with RL methods [46], [142], [155] they do
not guarantee respect of the constraints during training.

Combining the advantages of learning approaches with classical model based tra-
jectory optimization has been the subject of several publications. [272] uses MPC as a
function approximator inside an RL framework to benefit from the guarantees offered
by the MPC while learning the model discrepancies between the MPC and the reality.
[166] expand on the method developed by [20] by incorporating a learned locomotion
policy with an MPC for manipulation, demonstrating an effective way to incorporate
specialized controllers within an RL solution. However, this approach does not extend
the guarantees offered by the MPC to the entire system.
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To address this limitation, solutions that provide safety guarantees have been pro-
posed in [216] and [162]. [216] integrate a differentiable MPC as the final layer of an
actor within an actor-critic framework, although this approach is constrained by the
requirement for a differentiable MPC, which restricts the variety of applicable model-
based methods. On the other hand, [162] modify the action space of the RL agent to
act on the tangent space of the constraints, thereby offering guarantees even during the
training phase.

1.3 Contributions

The objective of the task is to insert a 3d printed tool inside the holes of a mockup
aircraft part. This task is similar to the one presented in [177]. It simulates deburring, an
operation that needs to be undertaken after drilling holes to clean up material residues.

We propose to extend the previously used MPC with a learned policy that reactively
shapes the cost function. This addition to the control structure allows us to extract more
performance from the robotic platform in use.

Our method also notably provides a systematic approach to explore the cost function
space of the whole body controller.

This work represents an efficient use of the possibilities of RL while maintaining a de-
gree of safety (brought by the MPC) that is necessary to envision large scale deployment
of robots in the industry.

The contributions presented in this chapter are :

— Reactive cost shaping using Reinforcement Learning

— High speed movements to carry out precise deburring task with a humanoid robot

— Approach to provide systematic cost function space exploration using Reinforce-
ment Learning

— Foundational work toward deploying reinforcement learning in safety requiring
setups

Theoretical foundations of the MPC are given in section 2. Then further explanation
regarding RL a provided in section 3. Details regarding the full implementation are
explained in section 4. Then the results are detailed in section 5.

2 whole-body model predictive control

2.1 Robot Modelling

Similarly to what has been presented in Chapter 4, we describe the attitude of the
robot at a given time, we use the generalized configuration q ∈ SE(3) × Rnj , with nj
the number of robot’s controlled joints. It defines the global position and orientation
of the base as well as the posture of the robot’s joints. We model the evolution of this
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Figure 7.2 – Control structure implementing RL tuned MPC cost function.

configuration as resulting from internal and external forces, as described by the rigid-
body dynamics [267]: [

M J⊤c
Jc 0

] [
q̈

-λ

]
=

[
S⊤ τ − b

-J̇cq̇

]
, (7.1)

where M is the inertia matrix, b stands for Coriolis, centrifugal and gravity forces, joint-
motor torques τ ∈ Rnj affect only the actuated joint as indicated by the selection matrix
S ∈ R(nj+6)×nj , and all contact wrenches λi ∈ R6 are contained in λ =

[
λ1 · · · λi · · ·

]
with the application points described respectively by the Jacobians Ji ∈ R6×n+6 con-
tained in J =

[
J1 · · · Ji · · ·

]
.

The second line of Eq. (7.1) imposes constraints on the parts of the robot that are in
contact with the environment, requiring them to remain stationary. The explicit formu-
lation of contacts in the dynamics assumes that the contact sequence is known a priori.
In our case, this assumption is not limiting, as we focus on maintaining the robot’s
equilibrium without moving the feet. However, similar control methods have been suc-
cessfully applied to locomotion tasks [60]. Furthermore, [140] proposes a generalization
that eliminates the need for pre-computed contact sequence. In this work, we do not
address loco-manipulation as it is beyond the scope of our study.

Using the dynamics described in Eq. (7.1), the state of the robot x is controlled by
inputting the desired command torques u = τ on joint motors during some discretiza-
tion period dt. In our case, the state is formed by the robot configuration q and its time
derivative q̇, i. e. :

x = (q, q̇) (7.2)

2.2 Optimal Control Problem

Given the model of the robot dynamics, we can formulate an optimal control problem
to find the torque sequence that minimizes the cost along a horizon of size N ∈ N.
Specifically, we are looking for the control sequence U∗ = {u∗

0 , ..., u∗
N−1} that will take

the robot from a starting state x0, which will be in our case the current state of the
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system, to a desirable final state while minimizing the running and terminal costs lt

and lterm. This problem is a continuous control problem, but we discretize it to make it
computationally tractable. The formulation of the discrete-time optimal control problem
is as follows: {

x∗0 , ..., x∗N
u∗

0 , ..., u∗
N−1

}
=arg min

X,U

N−1

∑
t=0

lt(xt, ut, at) + lterm(xN , aN)

s.t. xt+1 = f (xt, ut)

(7.3)

Where f (xk, uk) describes the discrete-time dynamics of the system and corresponds
to the numerical integration of Eq. (7.1). lt(t ∈ J0; N − 1K) and lterm are respectively the
running and terminal costs function. at(t ∈ J0; NK) encompasses all the hyperparam-
eters of the cost function that need to be properly chosen. More details regarding the
formulation of these parameters will be provided in Section 4.

To generate the appropriate control for the robot, we use Crocoddyl, which relies on
FDDP, a modified version of DDP (Differential Dynamic Programming) [176]. The prin-
ciple of DDP is to find an optimal solution to the problem by locally searching for a
solution around an initial guess (X0, U0). As explained in Chapter 4, FDDP provides
a more robust strategy by casting the single shooting problem into a multiple shooting
formulation. This approach has the advantage of accepting unfeasible warm-starts, i. e.
initial guess that does not satisfy the dynamics described in Eq. (7.1).

We chose Crocoddyl for its ability to generate control at high enough frequency for a
complex system like the humanoid robot TALOS. We used it to solve Eq. (7.3) at each
iteration of the MPC. The computational efficiency of the FDDP implementation allows
controlling n = 22 joints of the robot TALOS along a horizon of N = 100 time-steps
with dt = 10 ms online (computed during the movement of the robot).

DDP has a limitation in that it does not accept explicit constraints, except for the
dynamics, which is treated as an implicit constraint. Although there are some tech-
niques to address this issue, such as those proposed in [125] and [120], they have not
yet been applied to practical cases like the one we study. Instead, our method builds
upon a controller that has already demonstrated its ability to control humanoid robots
for advanced tasks, as shown in [203], [144] and [61].

2.3 Optimal Control Policy

The optimal policy is extracted from the solution provided by Crocoddyl following an
MPC scheme. At time j, an optimal control sequence U∗

j is generated, considering xj
0

as the initial state. Only the first control uj
0 of the sequence is executed during the

discretization time dt, resulting in a new state xj
1. This state is used as the initial state

xj+1
0 = xj

1 to generate an entire new sequence U∗
j+1. This control strategy is repeated

cyclically, as described in [81]. The procedure ensures that the generated robot motion
is part of a feasible path of at least N steps (corresponding to 1 second in our case) in
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the future. Feasibility beyond the horizon can also be achieved by making the robot
reach a state where it can stay safely indefinitely at the end of the horizon, as described
in [175]. This property is enforced with the terminal cost lterm(·).

To improve the performance of DDP, the pair (U∗, X∗), obtained in the previous
MPC iteration, is used as the warm start at each computation of the control sequence.
For the first control sequence, DDP is iterated starting from a constant trajectory until
convergence.

DDP not only produces an optimal torque but also Riccati gains:

K0 ≜
∂u
∂x

∣∣∣∣
x0

, (7.4)

which can be interpreted as sensitivity to the initial state. According to [62], these gains
can be used to generate an approximation of the optimal policy:

u = u0 + K0(x − x0), (7.5)

with a feedback term based on the measured state x (updated at 2 kHz) and a feed-
forward term u0 computed optimally from the measured initial state x0 at each MPC

iteration (every 10 ms). This allows for a significant reduction in the updating period
of the control law, resulting in better performance on the system. However, we also
noticed that it caused higher frequencies in the control which may cause wear and tear
on the system in the long run.

2.4 Parameter optimization

The application of MPC to real-world problems presents a significant challenge in the
form of parameter tuning. The previously introduced formulation highlights two sets
of parameters that contribute to the practical complexity of implementing Crocoddyl in a
real-world context:

— The choice of the warm-start (X0, U0).

— The formulation of the cost function lt(x, u, a) and lterm(x, a) which is equivalent,
in our case, to choosing the right a.

A prevalent suggestion for resolving the initial guess problem is the use of a memory
of motion to warm start the non-linear solver, as proposed in [168] and [156]. However,
this approach raises several concerns, including the construction of the memory, trajec-
tory encoding, and the selection of the appropriate warm-start when required. In our
case, we presume that the method outlined in section 2.3 is sufficient, provided the cost
function is correctly defined.

The issue of cost tuning is a critical aspect of optimal control-based approaches, as
it significantly impacts the performance of the system. Traditionally, this problem has
been addressed through laborious trial and error methods, which are time-consuming
and not particularly efficient. The search for generalizable cost function tuning method
is still an ongoing research endeavor.
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The general idea presented in this chapter is to find the parameters that optimize the
average performance of the controller on an ensemble of tasks, in our case an ensemble
of targets to reach. Existing solutions either leverage expert demonstrations [236] or
exploration of the parameter space with an evolutionary algorithm [57].

However, they often limit to finding the best set of parameters, i. e. a∗ constant over
time. We believe that reactivity is necessary to have the emergence of complex behaviors.
Therefore, we introduce RL to find an optimal policy that links observations and task to
appropriate cost function parameters.

3 reinforcement learning agent

The solution we propose incorporates an RL-based reactive cost planner, which dy-
namically tunes the MPC’s cost function to influence its behavior, as shown in Fig. 7.2.

As explained in Section 2.3 of Chapter 3, MPC typically relies on a planner to generate
a reference trajectory to be followed by the controller. Our approach differs from this
traditional architecture, because the proposed planner explicitly accounts for the con-
troller’s specifications and limitations, which are often overlooked in standard designs.
To the best of our knowledge, this is the first time such an approach has been applied
to a humanoid robot control scheme of this nature.

3.1 Markov Decision Process

The cost tuning problem is formulated as a policy search within a Markov Decision
Process (MDP), defined as a tuple (S, Θ, T, r):

— S: The state space, comprising the robot’s state and task-related information.

— Θ: The action space, consisting of a continuous, reduced set of the MPC’s cost
function parameters.

— T : S × S × Θ → [0,+∞[: The probability density of reaching state s′ ∈ S when
executing action at ∈ Θ from state s ∈ S.

— r : S × Θ → R: The reward associated with each transition.

Our objective is to find a policy that maps the environment’s state s ∈ S to an action
a ∈ Θ, enabling the MPC to converge to a feasible solution and avoid local minima. This
optimal policy is defined as:

π∗(s) = arg max
a

Q(s, a) (7.6)

With Q defined as:
Q(s, a) = r(s, a) + γ max

a
E

s′∼T
[Q(s′, a)] (7.7)

Here, r(s, a) represents the reward obtained by executing action a from state s, and s′

is the resulting state. γ ∈ [0, 1] is the discount factor, which determines the importance
of future rewards relative to immediate rewards. This recursive formulation of the
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Q-function is based on Bellman’s Principle of Optimality and allows us to leverage
experimental (or simulation) data to refine the Q-function.

The specificity of our approach lies in the definition of T, which links together subse-
quent states s, and s′. This probability density must reflect that the MPC, presented in
part 2.3, is used to control the robot. In practice, this is achieved by incorporating the
MPC into the simulated environment during the training phase.

3.1.1 Action

Following upon the conclusion exposed in the Chapter 6. We choose to modulate the
reference robot state xr of the state regularization cost. Further detail on exactly how
this action is integrated in the general structure of our MPC cost will be provided in
part 4.

This approach allows us to address the issue of fixed reference posture leading to cost
conflicts, which negatively impacts the performances of the controller.

3.1.2 State

The complexity of our approach with respect to more common RL usage resides in
the presence of the MPC inside the environment. It means that identifying the sole state
of the robot is not sufficient to accurately predict future outputs. That is why the state
should also reflect the internal state of the controller. The environment’s state should
encompass:

— The robot’s state,

— The controller’s state,

— Information about the current task, in our case, the position of the target to reach.

3.1.3 Reward

The reward should be designed to be maximal when desired behavior arises on the
robot, i.e.: the robot precisely reaches the designated target. Essentially it should align
with the MPC’s cost function defined in Eq. (7.3). The flexibility of RL should however
make the cost definition task much simpler for the higher level problem and will not
require us to add complicated extra regularization terms.

The high level performances we seek to optimize are:

— The time to reach the target,

— The distance to the target at the end of the movement.

3.1.4 Reinforcement Learning Algorithm

In order to carry out the proposed approach, we employ the Soft Actor-Critic (SAC)
[100] algorithm. The choice of SAC is primarily driven by its superior sample efficiency
compared to state-of-the-art on-policy algorithms, such as Proximal Policy Optimization
(PPO) [228].
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In our case, the need for a sample-efficient algorithm is particularly critical, as the MPC

must be integrated within the RL environment. This configuration necessitates substan-
tial computational resources, making sample efficiency a key factor in the algorithm’s
selection.

SAC is an off-policy RL algorithm that builds upon the foundations of Deep Determin-
istic Policy Gradient (DDPG) [160]. It introduces a few essential modifications, such as
the use of a stochastic policy, the incorporation of an entropy term in the objective func-
tion, and the employment of twin Q-functions to mitigate the overestimation bias. These
improvements contribute to SAC’s robustness, stability, and sample efficiency, making it
an ideal choice for our proposed approach.

4 reactive cost shaping

4.1 Cost function structure

The structure the cost function beyond the general case, which is a scalar function
that takes the state and control as arguments: l : Rns × Rnc → R (where ns and nc

represent the size of the state and control spaces, respectively). By imposing additional
structure, we can render the exploration tractable and reduce the size of the space to
be explored. However, this approach may constrain the ability of the RL planner to
influence the robot’s behavior.

We nonetheless demonstrate, in our case, that even when acting on a limited set of
parameters, the Reactive Cost Shaping agent can significantly impact the system’s over-
all performance. To achieve this, we build upon the previously presented architecture
as a foundation for our experiments. This architecture consists of eight distinct costs:

1. State limit cost:
lx_lim = ∥max(x − xu, 0) + min(x − xl , 0)∥2 (7.8)

It ensures that the state x remains within the admissible bounds, defined by xu

(upper bound) and xl (lower bound).

2. Control limit cost:

lu_lim = ∥max(u − uu, 0) + min(u − ul , 0)∥2 (7.9)

Similar to the state limit cost, it constrains the control u within the admissible
bounds, defined by uu and ul .

3. Center of mass tracking cost:

lcom = ∥c(x)− cd∥2 (7.10)

Encourages the robot’s current center of mass c(x) to be close to the desired center
of mass cd.
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4. End-effector position cost:

lEF_pos = log(1 +
∥p − pd∥

α
) (7.11)

Drives the actual end-effector position p toward the desired position pd, α = 0.02.

5. End-effector orientation cost:

lEF_rot = ∥R − Rd∥2 (7.12)

Promotes the alignment of the end-effector orientation R (defined as an element
of SO(3)) with the desired orientation Rd.

6. Regularization of the end-effector velocity:

lEF_vel = ∥v∥2 (7.13)

Penalizes the end-effector’s Cartesian velocity v, preventing unstable end-effector
movements.

7. Control regularization cost:

lu_reg = (u − ud)
⊤Ru(u − ud) (7.14)

This cost encourages the control u to be close to the desired control ud, which is
the torque required to counteract the force of gravity in the desired position. The
positive definite matrix Ru is used to tune the relative impact of each joint on the
regulation cost.

8. State regularization cost:

lx_reg = (x − xr)
⊤Rx(x − xr) (7.15)

This cost promotes the alignment of the state x with the reference state xr. The
positive definite matrix Rx is used to tune the relative impact of each joint on the
regulation cost.

4.2 Cost function shaping

Incorporating a high-level cost planner into the pipeline necessitates the use of a
time-varying and horizon-dependent cost function. Given our MPC control scheme (out-
lined in part 2.3) and the receding horizon approach, maintaining coherence of the cost
function between resolutions is crucial. Indeed, it allows us to leverage previous MPC

solutions as a warm-start for new resolutions. Consequently, the cost function nodes
are updated cyclically:

∀i ∈ J0 : N − 2K, lt+1
i = lt

i+1, (7.16)
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In practical terms, the sole new information introduced to the problem is associated
with the final running node. Accordingly, we require only one parameter set, a, for each
time step.

The parameter selection for optimization is guided by the conclusions drawn during
previous experiments, which demonstrated that appropriate posture selection signifi-
cantly impacts control performance. Consequently, the RL will not optimize the entire
hyperparameter set of the cost function. Our primary focus is the adjustment of the
state regularization cost reference, xr. We introduce multiple strategies for modifying
this parameter, aiming to establish a comprehensive benchmark for our approach.

4.2.1 Baseline MPC

For comparison, we include results obtained when the reference posture remains con-
stant. This posture corresponds to the robot’s initial state x0 throughout the movement:

at = x0 (7.17)

We consider this approach to represent a reasonable performance level for an MPC

fine-tuned by a trained operator with extensive system knowledge. It illustrates the
best achievable outcome, given a reasonable time allocation for tuning. We refer to this
strategy as baseline MPC throughout the rest of the chapter.

4.2.2 Posture feedback

This method, referred to as posture feedback, provides a simple solution to address the
regularization issue. The currently measured state x̂t serves as a regularization reference
to prevent potential cost conflicts:

at = x̂t (7.18)

However, this approach creates a feedback loop between the robot’s movement and
the OCP’s cost function. While no stability proof is offered, the underlying assumption
is that priority costs (state and control limits) will ensure the system’s safety. It means
that, regardless of its quality, no regularization reference should result in harmful con-
trol.

4.2.3 Cost shaping policy

The third strategy involves employing a policy trained by reinforcement learning to
determine the optimal posture reference:

at = π(s) (7.19)

with π the policy introduced in Eq. (7.6). This strategy is the primary contribution of
this part and will be simply referred to as RL in the next parts.
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4.3 Reinforcement Learning

Additional design choices were made in order to deploy the RL policy. The full set
of hyperparameters used for the training is provided in appendix 8.1. The full code,
including the MPC and the architecture for carrying out trainings, is available online 1.

4.3.1 Environment

60 cm

40 cm

60 cm

60 cm

Figure 7.3 – Illustration of the workspace (in blue) from which targets are sampled to carry out
benchmarks.

The environment is designed to evaluate the control structure’s ability to precisely
reach a set of targets. At the beginning of each episode, the robot starts in its initial
half-sitting posture. A target is randomly chosen inside a predefined workspace. The
episode is successful if the robot brings the tip of the tool placed in its end effector, less
than 5 mm away from the target. This precision threshold corresponds to the radius
of the hole in which the insertion should take place in reality. A representation of this
setup can be seen on Fig. 7.3.

The workspace from which targets are sampled is a 400 × 600 × 600 mm box in front
of the robot. Since the task is carried out using the left arm, we chose the target space
to be on the left side of the robot. The results can be extended by symmetry to the other
side by changing the hand used by the robot.

The tests were conducted using the PyBullet simulator [56]. To increase the robustness
of training, additional effects were added to the simulator:

1. https://github.com/ComePerrot/talos-deburring

https://github.com/ComePerrot/talos-deburring
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— The computation delay of the OCP (≈ 10 ms).

— Additional limits beyond the ones modeled in the MPC. They represent additional
safeguard strategies implemented by the constructor, PAL Robotics, to protect the
robot.

4.3.2 Reward

The reward given during the policy training aims to optimize two criteria: reach time
and precision. Additional rewards penalize failures and minimize torque outputted by
the MPC.

Our proposal is to have a fixed duration for each episode, along with a positive
reward when the robot gets close to its objective. This approach encourages both speed
and precision with a single reward. The episode is interrupted if the robot exceeds a
limit, and a significant negative reward is associated with the failure.

The detailed formulation of the reward is the following:

r = wsrs + wdrd + wørø + wtruncrtrunc (7.20)

With

— rs = 1 in case of success, 0 otherwise.

— rd = 1 − ∥p − pd∥ with p and pd defined as in Eq. (7.11)

— rτ = −τ̄ with τ̄ the average joint torque during one time step.

— rtrunc = −1 if the episode has been truncated, 0 otherwise.

Additionally, ws, wd, wτ and wtrunc are positive scalar weights. Their value can be found
in appendix 8.2.

4.3.3 State

As mentioned in part 3.1.2 the state of the RL environment is not limited to that of the
robot. It must also reflect the internal state of the MPC as well as information regarding
the task.

That is why, the state is composed of:

— The state of the robot x as defined in Eq. (7.2).

— Three nodes sampled from the current optimal trajectory given by the MPC:
{x⌊ N

3 ⌋, x⌊ 2N
3 ⌋, xN}.

— The Cartesian position of the target pd.

4.3.4 Action

As detailed in part 4.2, the RL policy only adjusts the reference posture of the MPC.
This reduction in the action space of the agent speeds up training by making exploration
easier. Since we are studying a specific insertion movement, we can further reduce the
action space by choosing to modify the posture of the joints that move the most in this
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kind of movement. As a consequence, we reduce the action to the three joints of the left
arm (joint numbers 1,2 and 4 when counting from the robot’s shoulder):

a = qarm ∈ R3.

The output of the neural network is scaled to match the kinematic limits of the three
chosen joints.

5 results

5.1 Test of the baseline on site

The baseline MPC approach was extensively tested in the lab and also at an Airbus
site, demonstrating its deployability in various conditions. It demonstrated that the MPC

was a fitting strategy to control the robot in torque, allowing physical interaction with
a human during movement, as shown in Fig. 7.4. However, it became clear from the
series of tests that the baseline was not a fitting strategy to reliably achieve the desired
precision.

Figure 7.4 – Fine insertion task by a torque-controlled robot in an Airbus factory. The torque
control allows a human to interact safely with the robot during movement.
© Airbus - All rights reserved

Unfortunately, due to technical difficulties with the robot, we were unable to carry
out the benchmark of the new proposed strategies on real hardware. Nonetheless, we
conducted an evaluation of these control strategies in simulation.
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5.2 Evaluation Methodology

To evaluate the performances of each method presented in part 4.2, 125 targets are
uniformly sampled from the working space. The number of target reached, i. e. the tip
of the tool is within 5 mm of the target, as well as the time to reach the target, and the
final placement error, serve as the comparison criteria.

For the RL strategy, the algorithm we employ (SAC) generates a stochastic policy.
However, during the benchmark, we use the average of the distribution as the action
chosen by the policy, effectively converting it into a deterministic policy. This choice
is made because repeatability is crucial in industrial applications, and exploration is
not necessary during the benchmark. Additionally, it facilitates comparison with other
approaches, which are also deterministic.

To provide more depth to this benchmark, we attempted to implement an end-to-end
RL policy to carry out the deburring task. This policy leveraged a training architecture
similar to the one designed for the approach combining RL and MPC. In this setup,
the MPC was replaced by an impedance controller that followed a reference position
provided by the policy. However, we were unable to obtain a policy that was sufficiently
precise to reach the targets. As a consequence, we decided not to include this approach
in the presented results.

It is worth noting that this test does not aim to evaluate the absolute reachability
capabilities offered by the robot. To provide a more straightforward comparison of the
various control strategies, the study was restricted to the case where the feet of the robot
are not moving. Considering this case as representative of the absolute performance of
a legged robot would be neglecting the main strength of the platform. The mobile base
allows the robot to move freely to reach holes that are not reachable from its initial
position.

Nonetheless, it is essential to test targets that are mechanically not reachable in our
case to assess the robustness of our approach. An unreachable target should not trigger
any movement that jeopardizes the system.

5.3 Performance Improvement

The results according to the three previously introduced criteria are summarized in
table 7.1.

The first conclusion that can be drawn from these results aligns with that of [203].
Using a single fixed cost function over time is not suitable when trying to achieve
precise movements with our architecture.

The proposed variable posture appears to be an easy-to-implement solution to ad-
dress this issue and significantly increases the robot’s reaching performance. However,
it falls short of the RL-based approach and suffers from major limitations, further de-
tailed in part 5.4, from which the latter method is exempt.

Regarding reach time and placement error, the performances are computed only on
reached targets, meaning that the set of targets is different for each method, preventing
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Baseline Posture Feedback RL

Successes 5% (6) 50% (63) 74% (93)
Avg reach time (s) 1.2 1.9 2.1
Avg position error (mm) 3.1 2.7 2.4

Table 7.1 – Comparison of the performances of the proposed control strategies along three crite-
ria (success, average reach time, average position error). The benchmark consists of
125 targets. Average reach time and average position error are considered only on
successful attempts.

any meaningful interpretation. Indeed, the RL method reaches more targets, which are
further away from the robot, significantly degrading average performances.

To assess the actual reach time performance, we compare the results for targets
reached by both the Posture Feedback and RL methods (which represents 59 holes). The
baseline method was excluded from this comparison due to its overall low success rate.
Indeed, the ensemble of target reached with this approach is too small to make any
meaningful statistical analysis.

Baseline Posture Feedback RL

Avg reach time (s) N.A. 1.92 1.86
Avg position error (mm) N.A. 2.7 2.4

Table 7.2 – Comparison of the reach time and placement error of the Variable Posture and RL
methods. The table summarizes results on 59 targets successfully reached by both
methods.

We can conclude that the RL method significantly improves the number of targets
reached while not affecting the overall performance of the system with respect to the
other criteria. We even notice a marginal improvement over the variable posture ap-
proach in terms of both reach time and position error.

5.4 Safety assessment

In the context of industrial applications, it is imperative to evaluate the constraint
satisfaction of each method. We categorize and examine the benchmark’s failure cases
in table 7.3. A catastrophic failure is defined as a movement during which any of
the limits (position, velocity, torque, or additional simulator limits) are not satisfied.
Instances where the target is not reached, but are safe to execute on the real robot, are
classified as failures. Successes are defined as per part 5.2.

The RL-based approach appears to be the only method that prevents the system from
triggering limits in every situation.

The other methods, which are based on MPC, do not exhibit the same results. This
discrepancy can be attributed to some well documented limitations of MPC [157]. More
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Baseline Posture Feedback RL

Catastrophic failures 2% (2) 28% (35) 0% (0)
Failures 94% (117) 22% (27) 26% (32)
Successes 5% (6) 50% (63) 74% (93)

Table 7.3 – Constraint satisfaction of the proposed control strategies for a benchmark of 125
targets. Catastrophic failure means a limit has been infringed. Failure means the
target has not been reached, but the movement is safe.

Figure 7.5 – Snapshot of the pointing movement done by the robot. The reference posture sent
by the RL policy can be seen as the transparent left arm.

specifically, our approach employs penalization instead of hard constraints and utilizes
an interpolation of the optimal policy with no safety guarantees to increase control fre-
quency. While these shortcomings are not typically limiting, they become problematic
in challenging tasks. Solutions have been proposed to address these issues. [125], [120]
suggest methods to implement hard constraints instead of penalization. Additionally,
[158] proposes an interpolation method that leverages Riccati gains while ensuring con-
straint satisfaction. However, the effectiveness of these methods to carry out complex
tasks on humanoid robots remains to be demonstrated.

5.5 Model Mismatch

Not all catastrophic failures can be explained by the arguments presented in the previ-
ous section. To ensure representativeness, we incorporated additional safety constraints
that mirror those implemented on the robot. However, these constraints cannot be di-
rectly integrated into the MPC and must be considered in a black-box manner.

We document the cause of failures for each method in table 7.4. Catastrophic fail-
ures caused by limits not implemented in the MPC are categorized as unmodeled catas-
trophic failures, while failures that should be prevented by the MPC are designated as
modeled catastrophic failures.
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Baseline Posture Feedback RL

Unmodeled
Catastrophic Failures

2% (2) 5% (6) 0% (0)

Modeled
Catastrophic Failures

0% (0) 23% (29) 0% (0)

Table 7.4 – Comparison of the sources of catastrophic failures for each control structure on a
benchmark of 125 targets. Unmodeled failures refer to those caused by limits not
incorporated in the MPC, while modeled failures correspond to limits that are explic-
itly considered within the MPC.

The RL-based approach can mitigate the shortcomings of the chosen MPC implemen-
tation. Moreover, it can adapt to model mismatch to account for limits that are not
explicitly formulated in the MPC.

5.6 Movement analysis

When examining the snapshot of the movement in Fig. 7.5, it appears that the posture
transmitted by the RL policy fluctuates significantly from one time step to another. This
fluctuation persists throughout the movement, even when the tool has reached its target.
At first glance, this may seem like a pathological behavior, as one would anticipate the
system to maintain a fixed posture and cease movement once the target is reached.
However, this behavior results in only minor movements of the robot, which do not
substantially increase the distance to the target and therefore are not penalized during
training.

This behavior could potentially be reduced by incorporating a specific RL reward that
encourages more stable solutions. But the aim of this part was to limit as much as
possible the reward engineering for the RL algorithm and test what behavior would
emerge with high level rewards.

Furthermore, this situation illustrates the benefits of incorporating a model-based
controller within the control pipeline, rather than solely relying on RL. Even if the
training has not fully converged to the optimal solution, additional performance can be
gained by exploring the parameter state. This is especially relevant in the context of
industrial deployment where data may be limited, and additional performance must be
obtained without compromising the safety of the system.

6 discussion

6.1 Proof of concept for hybrid RL/MPC approach

The proposed RL/MPC approach was implemented on the robot and resulted in stable
movements. However, due to issues related to the control of the wrists, the position of
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the tip of the tool could not be precisely controlled. This prevented us from carrying out
the benchmark in the real world. Although the approach’s stability is demonstrated, the
extent of performance gains observed in simulation remains uncertain for real-world ap-
plications. Nonetheless, this work serves as a compelling proof of concept for deploying
reinforcement learning on delicate hardware. Exploiting the advantages of currently ex-
isting controllers appears to us as the most promising way to leverage the unmatched
exploration and generalization abilities of RL in real world settings.

6.2 Improve training performances

Despite promising results, the training stability of the RL policy was inconsistent.
For each hyperparameter set, five training sessions were conducted, and only the best
was evaluated. Furthermore, our method’s integration of MPC within the environment
during training makes it computationally intensive. This factor is especially limiting
because our controller does not run on GPU preventing us from leveraging recent ad-
vancement in GPU computation [167].

Additionally, we observed that the policy output tends to fluctuate rapidly. This
behavior is primarily due to the construction of our training reward, which does not
explicitly penalize high-frequency control. Such high-frequency control is not penalized
by the other terms of the reward since the posture cost has a relatively low weight in
the MPC. The MPC tends to filter out noise on the reference posture meaning that it will
not negatively affect the performances. However, this also indicates that the policy has
not fully converged.

These issues underscore the need for improved sample efficiency, which we believe
could be achieved by leveraging transfer learning to bootstrap the policy. The chal-
lenging aspect is to provide a guide for the training without limiting the exploration
capabilities of the RL training. That is why we believe that inputting privileged infor-
mation directly into the experience buffer of the policy, as proposed in [238], could
significantly speed up training.

7 conclusion

This chapter extends previously demonstrated results related to the use of high fre-
quency MPC to carry out a fine insertion task with an accuracy of few millimeters with
the humanoid robot TALOS, controlled in torque. A novel RL/MPC approach is pre-
sented to improve the overall performance of the system through cost shaping. Simula-
tion benchmark showcases the improvement in performance brought by the proposed
approach, whether it is regarding target reachability or safety of the system.

In the short term, we plan to demonstrate the shown results on the robot. We also
plan to continue this work by leveraging transfer learning in order to speed up the
training and make it more stable.
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8 appendix

8.1 Hyperparameters

We used the SAC implementation proposed by [209]. Table 7.5 lists the chosen value
for the parameters of the training:

Table 7.5 – SAC Hyperparameters

Parameter Value

learning rate 0.0003
discount factor 0.99
replay buffer size 1000000
number of samples per minibatch 256
number of hidden layers (all networks) 2
number of hidden units per layer 256
nonlinearity ReLU
target smoothing coefficient τ 0.005
target update interval 1
gradient steps 1

8.2 Reward

Table 7.7a details the relative weights for the MPC function that is presented in
part 3.1. It is worth noting that, since the terms are not normalized, the weights also
compensate discrepancies in the order of magnitude of costs.

Table 7.7b lists the weights chosen for the RL cost function Eq. (7.20).

Table 7.6 – Tables regrouping reward parameters for MPC and RL

Weight Value

State limit wx_lim 1000
Control limit wu_lim 500
Center of mass tracking wcom 500
End-effector position wEF_pos 5
End-effector orientation wEF_rot 1
End-effector velocity wEF_vel 2
Control regularization wu_reg 0.001
State regularization wx_reg 0.02

(a) MPC reward parameters

Weight Value

Success ws 10
Distance to target wd 5
Torque regularization wø 0.001
Failure penalization wtrunc 500

(b) RL reward parameters



Part V

C O N C L U S I O N

In this closing part, the thesis work is summarized, and the main contribu-
tions are highlighted. Immediate limitations of the work are identified, and
continuation work is mentioned. Lastly, a more general opening, challeng-
ing some hypothesis on which this work is based is proposed.
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H U M A N O I D R O B O T S : T O WA R D T H E
N E X T I N D U S T R I A L R E V O L U T I O N ?

This concluding chapter serves as a wrap-up of the work carried out during
the thesis. It summarizes the strengths and weaknesses of the contributions
and places them back in the general industrial context introduced at the be-
ginning of this document.

In Short
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1 summary

This dissertation has explored the integration of humanoid robots within industrial
manufacturing operations, with a specific focus on employing a TALOS robot to per-
form deburring tasks on aircraft parts.

Initially, a precise insertion task was successfully executed using state-of-the-art Whole-
Body Model Predictive Control. In this part, attention was drawn to the theoretical
complexity of the approach and the substantial technical effort required to adapt it to
new settings. Despite encountering technical challenges, experiments were successfully
conducted both in the laboratory and at an Airbus site, demonstrating the feasibility of
the approach on real hardware.

Following this, further investigation was carried out regarding cost shaping, a major
issue with the proposed approach. First, a study confirmed that cost shaping was
indeed a limiting factor for performance and indicated that adjusting the regularization
cost of the MPC could help mitigate this problem.

Then, a novel approach leveraging Reinforcement Learning was introduced to reac-
tively tune the regularization cost. This method not only significantly improved simu-
lated performance but also showcased the ability to harness the exploration capabilities
of Reinforcement Learning while retaining the guarantees provided by MPC.
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Conducted within the framework of the ROB4FAM and Memmo projects, this work
contributes to the ongoing efforts of the Gepetto team in designing reactive control
solutions that fully exploit the capabilities of humanoid robots. The findings lay the
groundwork for further advancements in autonomous reactive deburring and drilling,
ultimately enhancing the role of humanoid robots in industrial settings.

2 perspectives

The perspectives that arise from this work are of two kinds.
First, a legitimate question is to identify the next steps necessary to achieve the de-

sired goal, which is using humanoid robots for deburring and drilling tasks in aircraft
manufacturing. Knowing some major limitations of the proposed work, can we iden-
tify concrete short-term developments that can be undertaken to drive the proposed
solution closer to real-world applications?

The second perspective departs from the applicative aspect and is of a broader sci-
entific nature. It relates to the hypotheses formulated at the beginning of this work
about using a torque-controlled humanoid robot animated via MPC. Reflecting upon
their viability in a broader context is important for the soundness of the work that has
been proposed. This is especially true since the field of humanoid robots has started
attracting more attention, and new learning-based methods have demonstrated their
potential.

2.1 Follow-up work

Follow-up work naturally emerges from some limitations of that has been presented
so far. These limitations include:

— The results of Part iv were only demonstrated in simulation.

— The proposed solution is only a fraction of the full control pipeline required for
autonomous work in a factory.

— The RL-MPC approach is complicated and requires extensive tuning as well as
significant computational resources.

validating results on real hardware

Unfortunately, the performance of the approach I proposed could not be evaluated
on the real robot due to technical difficulties with the control of the wrist. However,
simulation is not sufficient to perfectly assess the extent to which the theoretical benefits
of the proposed solution can be realized in practical applications.

Tests on real hardware are necessary to judge if the improvements observed in sim-
ulation translate to the real world. Although care has been taken to ensure that the
simulator is representative of real-world conditions and the architecture rests upon a
MPC that has been extensively tested before, running the new architecture on the actual
robot is not a trivial task.
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integration into full control pipelines

Continuing in the direction elaborated in this work to get closer to real-world applica-
tions would also require extensive technical and integration work. Essentially, it would
mean putting together the different solutions that have been developed in the scope of
the collaboration with Airbus:

— Enhancing the robot with advanced perception capabilities. This includes using
computer vision and sensor fusion techniques to provide the robot with a compre-
hensive understanding of its environment.

— Implementing task planning algorithms to autonomously choose and execute the
appropriate high-level tasks.

— Incorporating force feedback into the control system to allow the robot to perform
tasks with greater precision and safety. This is particularly important for delicate
operations such as deburring and drilling.

— Unlocking loco-manipulation capabilities by integrating the proposed controller
with a robust walking controller. This could enable the robot to navigate complex
environments while performing manipulation tasks, enhancing its overall versatil-
ity.

The integration part is decisive in order to obtain actual solutions to real-world prob-
lems but is beyond the scope of what can be reasonably done in a research lab. These
tasks need to be undertaken by industrial actors who have extensive real-world experi-
ence and can thus define appropriate characteristics for the systems to fulfill.

From a scientific standpoint, the loco-manipulation issue is especially relevant to the
results shown in this document. Indeed, the controller chosen for the deburring task can
also be used for bipedal locomotion [60]. Putting the two together is thus theoretically
straightforward. However, it is hard to predict how the complexity of the task will
influence the quality of the solution. In our case, the quality of the results might be
primarily driven by the warm-start provided to the solver. Some solutions propose to
leverage demonstration encoded as a memory of motion to drive the system [59], but
this is still an open research question.

leveraging transfer learning

The hybrid approach presented in this thesis proposes to conjointly exploit the knowl-
edge contained in the models of the WBMPC and the exploration capabilities of RL. The
idea is to allow the system to interactively refine the quality of the movement by interact-
ing with the environment while guaranteeing that it is mostly stable during exploration.

However, this solution has the major drawback of being very complex. Both in terms
of tuning, where RL hyperparameter tuning is added to the already cumbersome cost
function shaping, and in terms of computational expenses. Indeed, this approach neces-
sitates extensive computations during training to generate enough examples for the RL

to learn, and at runtime to compute the solution of the MPC online.
The specificity of our approach is that we make the assumption that the existing

controller, in our case the WBMPC, has good properties that we want to safeguard. In
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an industrial setting, it makes sense to try and incrementally build upon an existing
solution rather than discarding it altogether. In this context, the lever to reduce the
overall complexity of our approach is to reduce the complexity of the RL layer, i.e., to
make it more sample-efficient and easier to tune.

A potential solution to achieve this endeavor would be to leverage a form of trans-
fer learning to speed up training. For example, using demonstrations that have either
been generated with other control strategies [238] or, in the case of humanoid robots,
that are retargeted from human movement. This could help guide the system during
the initial training phase as well as requiring simpler reward functions to achieve sim-
ilar objectives, thus significantly simplifying the integration of RL into existing control
structures.

However, it is important to note that, in our case, it is not straightforward to find
suitable demonstrations since the MPC is in the control loop.

2.2 General prospects

So far, the highlighted perspectives arise as a natural continuation of the work pro-
posed in this document. However, as already mentioned, this thesis lays its foundation
on two major hypotheses: regarding the architecture of the hardware studied and the
control strategy used to generate motions. These hypotheses are the result of the exten-
sive robotics experience accumulated in the Gepetto team over the years, but they are
yet to be proven.

Even if all the intricacies regarding the debate that could surround these hypotheses
go beyond the scope of this thesis, we can succinctly look at potential arguments that
could challenge the approach adopted.

the future of wbmpc

Model Predictive Control has been a long-standing solution for controlling robots,
with WBMPC recently emerging as a promising generic approach to fully exploit the
possibilities offered by the hardware. The general trend has been that improving the
models contained in these control structures is the main enabler for better performance.

However, this comes at the cost of additional complexity. These methods require
extensive tuning, are difficult to master, demand significant computational power at
runtime, and often limit the generality of the model that can be used.

Recently, learning-based methods have also shown interesting results and appear to
alleviate some issues of MPC. While not solving the problem of tuning, they tend to be
easier to implement and can be used for a wide variety of applications regardless of the
underlying model. They essentially tackle model complexity by leveraging computation
during training and conveniently do not require a lot of energy at runtime.

However, their widespread adoption is hindered by safety concerns associated with
the lack of guarantees provided by training. Additionally, the lack of industrial exam-
ples in safety-sensitive settings such as aerospace engineering contributes to the inertia
slowing down the diffusion of learning-based solutions.
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This fact should, nonetheless, not prevent us from investigating the relevance of end-
to-end learning methods and prompts us to better define the safety specifications to
establish meaningful comparisons between these competing approaches.

the future of humanoid robots

Humanoid robots hold a lot of potential when it comes to designing more adaptable
automation technologies. Their architectural proximity to humans could allow them to
gradually replace human workers with minimal disturbance to existing manufacturing
processes.

While the versatility of such robots is beneficial in exploratory research carried out in
labs, their industrial usefulness remains to be demonstrated. Indeed, despite the ongo-
ing trend, at the time of writing, the only notable commercial application of humanoid
robots involves Agility Robotics’ Digit [6].

Given that humanoid robots are yet to demonstrate actual superiority compared to
other types of robots, identifying the specific roles we want them to fulfill in our society
is becoming increasingly important. Defining these roles would make it more straight-
forward to develop performance metrics, such as those proposed by [17], to meaning-
fully assess their effectiveness. This would provide a rational approach to evaluate the
potential of human-shaped robots.





A P P E N D I X

109





A
S Y N T H È S E E N F R A N Ç A I S

Sommaire
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2 Un contrôleur corps complet générique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3 Fonction de coût réactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

1 introduction

Bien que faisant l’objet de recherches scientifiques depuis plusieurs décennies, les ro-
bots humanoïdes ne sont apparus que récemment comme une solution crédible pour
automatiser des tâches industrielles [22]. Leur architecture pourrait leur permettre de se
déplacer dans des environnements non structurés et d’exploiter facilement les spécifici-
tés d’un cadre originellement conçu pour les humains. Cette versatilité promet d’offrir
des possibilités pour automatiser des tâches dangereuses ou difficiles qui étaient jusqu’à
présent hors de portée des robots traditionnels.

Cependant, bien que la récente annonce du premier déploiement commercial de ro-
bots humanoïdes [6] nous rapproche d’une utilisation réelle de cette technologie dans
l’industrie, toutes les promesses des robots humanoïdes ne pourront être tenues que si
nous parvenons à exploiter le plein potentiel de ces plateformes. C’est pourquoi cette
thèse vise à déterminer comment doter les robots humanoïdes de capacités réactives.

Elle a été réalisée au sein de l’équipe Gepetto au LAAS-CNRS et en collaboration avec
Airbus Operations SAS. Cette collaboration s’est déroulée dans le cadre de deux projets :

— Le laboratoire joint Robot For the Future of Aircraft Manufacturing (ROB4FAM) ;

— Le projet européen H2020 Memory of Motion (Memmo).

Le cadre choisi pour cette thèse est d’étudier la pertinence d’utiliser des robots hu-
manoïdes pour automatiser des tâches d’ébavurage et de perçage. En pratique, il s’agit
d’utiliser un robot humanoïde TALOS pour effectuer des tâches d’insertion avec une
grande précision (figure A.1), un premier pas vers l’automatisation complète de l’éba-
vurage.

Plus précisément, seront abordés la planification de mouvement et le contrôle des
robots pour effectuer cette tâche. Cette thèse adopte une approche à l’intersection des
méthodes de contrôle basées modèles classiques et des méthodes plus novatrices basées
sur l’apprentissage. Dans un premier temps, le contrôleur corps complet choisi pour
effectuer la tâche d’insertion est présenté (Partie iii). Ensuite, une méthode exploitant
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Figure A.1 – Insertion d’un outil dans un trou par un robot commandé à l’aide d’un contrôleur
prédictif.

l’apprentissage par renforcement est adoptée pour le réglage réactif de la fonction de
coût (Partie iv).

2 un contrôleur corps complet générique

La base technique de cette thèse repose sur l’utilisation d’un contrôleur prédictif corps
complet. Cette stratégie de contrôle nous permet de traiter simultanément la planifica-
tion de mouvement et le contrôle.

De plus les contrôleurs prédictifs disposent, comme leur nom l’indique, de capacités
de prédiction qui, contrairement aux méthodes de contrôle classique, permettent d’anti-
ciper l’évolution du système afin de garantir qu’il respecte les contraintes physiques et
réalise la tâche souhaitée au mieux.

Dans notre cas, le modèle dynamique complet du corps du robot permet de rendre
le contrôleur plus générique. En effet, cette stratégie peut-être adaptée à une large
gamme d’architecture pour réaliser des tâches variées. De plus, les effets dynamiques
des membres sont plus prononcés sur TALOS que sur d’autres robots humanoïdes, car
il possède des membres plus lourds en comparaison.

Des expériences ont été menées en laboratoire, ainsi que dans un atelier d’Airbus,
afin de valider l’utilisation de cette stratégie de contrôle sur le robot TALOS. Les résul-
tats obtenus ont permis de démontrer la faisabilité technique de cette approche dans un
cadre industriel réel. Toutefois, ces expériences ont également mis en lumière plusieurs
limitations, en particulier liées à la quantité de réglages nécessaire pour trouver une
fonction de coût approprié pour effectuer la tâche d’insertion. Les performances glo-
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bales du robot ont été satisfaisante, mais perfectible, notamment en termes de rapidité
d’exécution.

3 fonction de coût réactive

L’un des aspects critique de l’approche proposée réside dans la définition de la fonc-
tion de coût. Dans notre cas, la fonction de coût joue un rôle central, car elle permet de
gérer la priorité entre les différentes tâches.

Les résultats expérimentaux ont montré que, bien que la méthode soit techniquement
viable, elle restait limitée par las ajustements manuels de la fonction de coût nécessaire
pour obtenir le mouvement désiré. C’est pourquoi la suite de la thèse porte sur la pos-
sibilité de mettre en place une stratégie permettant de modifier de manière réactive la
fonction de coût du contrôleur.

Dans un premier temps l’impact des variations de la fonction de coût pendant la
réalisation du mouvement est analysée en simulation [203]. Ensuite une méthode de
planification réactive de la fonction de coût exploitant l’apprentissage par renforcement
est proposée, comme présentée dans la Figure A.2.

Le recours à l’apprentissage par renforcement permet au robot d’exploiter ses expé-
riences passées et d’élaborer une forme de mémoire de mouvement permettant d’obte-
nir de meilleures performances. En simulation, cette méthode utilisant à la fois l’appren-
tissage par renforcement et le contrôleur prédictif atteint de meilleures performances en
termes de précision et de vitesse d’atteinte de la cible que la méthode classique. De plus,
cette méthode permet de surmonter les défauts de modélisation de la dynamique du
robot, limitation souvent décisive pour obtenir de bonnes performances dans le monde
réel.

RL Policy MPC Riccati Robot
u

qarm

u0,K0

x0

X

xmeasured

ptarget

100Hz 2kHz

Figure A.2 – Structure de contrôle combinant contrôle prédictif et apprentissage par renforce-
ment.

4 conclusion

Cette thèse a exploré les défis et les opportunités liés à l’intégration des robots hu-
manoïdes dans les environnements industriels, en se concentrant sur l’utilisation du
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robot TALOS pour accomplir des tâches de précision telles que l’ébavurage. Les pre-
miers résultats expérimentaux, obtenus grâce à l’utilisation d’un contrôleur prédictif,
ont démontré la faisabilité technique de cette approche, bien que certaines limitations,
notamment en termes de définition de la fonction de coût, aient été identifiées.

Face à ces limitations, l’intégration de l’apprentissage par renforcement a permis
d’élaborer une méthode de planification réactive de la fonction de coût du contrôleur
prédictif.
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Titre : Stratégie de contrôle réac�f basée sur l'IA pour des robots humanoïdes industriels
Mots clés : Robots Industriels, Robots Humanoïdes, Intelligence Ar�ficielle, Appren�ssage par Renforcement, Contrôle Prédic�f
Résumé : Ce�e thèse porte sur l’intégra�on de robots humanoïdes au sein des chaînes de produc�on d’avions de ligne. Elle a été réalisée dans le
cadre commun de deux projets : Robot For the Future of Aircra� Manufacturing (ROB4FAM) et le projet européen H2020 Memory of Mo�on
(Memmo). ROB4FAM est un laboratoire joint entre Airbus Opera�ons et l’équipe Gepe�o du LAAS-CNRS. L’objec�f de ce�e collabora�on est
l’étude de stratégies innovantes d’automa�sa�on afin de réaliser des tâches, omniprésentes dans l’industrie aéronau�que, de perçage et
d’ébavurage. Memmo se concentre sur le 

 développement de solu�on de contrôle pour les robots. L’abou�ssement de ce projet vise à obtenir des générateurs de mouvement réac�fs
exploitant des méthodes d’appren�ssage et pouvant facilement être appliqués à une grande variété d’architecture robo�ques. 

 Les robots humanoïdes ont récemment a�ré une a�en�on significa�ve en raison de leur poten�el pour réaliser des tâches jusqu’alors
inaccessibles aux robots. Cependant, concevoir des solu�ons de contrôle qui exploitent pleinement les capacités de ces systèmes représente un
défi scien�fique sur lequel l’équipe Gepe�o se concentre depuis sa créa�on. Le travail présenté contribue à ce�e probléma�que en étudiant le
contrôle d’un robot humanoïde TALOS pour effectuer des tâches d’inser�on avec une grande précision, un premier pas vers l’automa�sa�on
complète des tâches d’ébavurage et de perçage. 

 Dans un premier temps, un contrôleur prédic�f corps-complet est déployé pour effectuer une tâche d’inser�on sur un robot humanoïde
contrôlé en couple. Ensuite, le problème du réglage de fonc�on de coût, limitant les performances rencontrées lors de la première campagne
expérimentale, est étudié en avec plus d’a�en�on en simula�on. Enfin, une approche u�lisant l’appren�ssage par renforcement est introduite
pour résoudre ce problème. La méthode proposée améliore significa�ve les performances simulées. Elle permet d’exploiter les capacités
d’explora�on de l’appren�ssage par renforcement tout en maintenant les garan�es associées au contrôle prédic�f.

Title: AI-Driven Reac�ve Control Strategy for Industrial Humanoid Robots
Key words: Industrial Robots, Humanoid Robots, Ar�ficial Intelligence, Reinforcement Learning, Model Predic�ve Control
Abstract: This disserta�on focuses on the integra�on of humanoid robots inside of industrial aircra� manufacturing opera�ons. It was
conducted in the context of two projects : Robot For the Future of Aircra� Manufacturing (ROB4FAM) and the European project H2020
Memory of Mo�on (Memmo). ROB4FAM is a joint laboratory between Airbus Opera�ons and the LAAS-CNRS’s Gepe�o. Its goal is to
inves�gate innova�ve automa�on strategies for drilling and deburring tasks, which are ubiquitous in the aeronau�cal industry. Memmo focuses
on developing learning-based reac�ve mo�on control strategies that can easily be applied to a wide variety of robot architectures. 

 Humanoid robots recently have gained significant a�en�on due to their poten�al to perform tasks that have been previously una�ainable for
robots. However, designing control solu�ons that fully u�lize the capabili�es of these systems presents a scien�fic challenge that has been the
focus of the Gepe�o team since its crea�on. The presented work contributes to this topic by studying the control of a humanoid robot TALOS to
perform a fine inser�on task, a step towards achieving autonomous reac�ve deburring 

 and drilling. 
 First, a state of the art Whole-Body Model Predic�ve Controller is used to carry out a precise inser�on task on a torque-control humanoid robot.

Next, the performance-restric�ng cost shaping issue encountered during the ini�al set of experiments is studied in simula�on. Finally, an
approach leveraging Reinforcement Learning is introduced to address this issue. The proposed method demonstrates a significant improvement
in simulated performances. It allows to exploit the explora�on abili�es of Reinforcement Learning while maintaining the guarantees associated
with Model Predic�ve Control.
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