On the Kernelization of Global Constraints - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2017

On the Kernelization of Global Constraints

Résumé

Kernelization is a powerful concept from parameterized complexity theory that captures (a certain idea of) efficient polynomial-time preprocessing for hard decision problems. However, exploiting this technique in the context of constraint programming is challenging. Building on recent results for the VERTEXCOVER constraint, we introduce novel "loss-less" kernelization variants that are tailored for constraint propagation. We showcase the theoretical interest of our ideas on two constraints, VERTEXCOVER and EDGEDOMINATINGSET.
Fichier principal
Vignette du fichier
ijcai2017.pdf (238.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01670318 , version 1 (21-12-2017)

Identifiants

  • HAL Id : hal-01670318 , version 1

Citer

Clément Carbonnel, Emmanuel Hébrard. On the Kernelization of Global Constraints. International Joint Conference on Artificial Intelligence (IJCAI 2017), Aug 2017, Melbourne, Australia. 7p. ⟨hal-01670318⟩
112 Consultations
29 Téléchargements

Partager

More