Modeling of microfluidically tuned capacitor for RF applications
Résumé
This paper presents the modeling of microfluidically tuned capacitor for RF applications. The designed structure is based on performances variations following DI water displacement between capacitor's electrodes. We have modeled the electric field and the current distribution using FEM tool for different DI water position in microchannels. The obtained results at 4.5 GHz show an important variation of electric field and current distribution that impacts the capacitor performances: the capacitance value is comprised between Cmin = 0.11 pF and Cmax = 5.76 pF, the factor value decreases from Qmax = 84.27 to Qmin = 3.99, and the resonant frequency ranges from 5.67 GHz to 19.8 GHz. Indeed, the capacitance variation reaches Tr = 5136% and the broadband ability is higher than 240%.
Fichier principal
Modeling of microfluidically tuned capacitor for RF applications.pdf (498.58 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...