A dynamic programming operator for tour location problems applied to the covering tour problem
Résumé
This paper presents an evaluation operator for single-trip vehicle routing problems where it is not necessary to visit all the nodes. Such problems are known as Tour Location Problems. The operator, called Selector, is a dynamic programming algorithm that converts a given sequence of nodes into a feasible tour. The operator returns a subsequence of this giant tour which is optimal in terms of length. The procedure is implemented in an adaptive large neighborhood search to solve a specific tour location problem: the Covering Tour Problem. This problem consists in finding a lowest-cost Hamiltonian cycle over a subset of nodes such that nodes outside the tour are within a given distance from a visited node. The metaheuristic proposed is competitive as shown by the quality of results evaluated using the output of a state-of-the-art exact algorithm.