Reduction theorems for hybrid dynamical systems
Résumé
This paper presents reduction theorems for stability, attractivity, and asymptotic stability of compact subsets of the state space of a hybrid dynamical system. Given two closed sets Γ1 ⊂ Γ2 ⊂ R n , with Γ1 compact, the theorems presented in this paper give conditions under which a qualitative property of Γ1 that holds relative to Γ2 (stability, attractivity, or asymptotic stability) can be guaranteed to also hold relative to the state space of the hybrid system. As a consequence of these results, sufficient conditions are presented for the stability of compact sets in cascade-connected hybrid systems. We also present a result for hybrid systems with outputs that converge to zero along solutions. If such a system enjoys a detectability property with respect to a set Γ1, then Γ1 is globally attractive. The theory of this paper is used to develop a hybrid estimator for the period of oscillation of a sinusoidal signal.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...