Connecting optimization with spectral analysis of tri-diagonal (univariate) moment matrices - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Pré-Publication, Document De Travail Année : 2019

Connecting optimization with spectral analysis of tri-diagonal (univariate) moment matrices

Résumé

We show that the global minimum (resp. maximum) of a continuous function on a compact set can be approximated from above (resp. from below) by computing the smallest (rest. largest) eigenvalue of a hierarchy of (r × r) tri-diagonal univariate moment matrix of increasing size. Equivalently it reduces to computing the smallest (resp. largest) root of a certain univariate degree-r orthonormal polynomial. This provides a strong connection between the fields of optimization, orthogonal poly-nomials, numerical analysis and linear algebra, via asymptotic spectral analysis of tri-diagonal symmetric matrices.
Fichier principal
Vignette du fichier
new-eigenvalue.pdf (153.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02190818 , version 1 (23-07-2019)
hal-02190818 , version 2 (19-08-2019)
hal-02190818 , version 3 (30-10-2019)
hal-02190818 , version 4 (12-03-2020)

Identifiants

Citer

Jean-Bernard Lasserre. Connecting optimization with spectral analysis of tri-diagonal (univariate) moment matrices. 2019. ⟨hal-02190818v3⟩
97 Consultations
59 Téléchargements

Altmetric

Partager

More