Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2020

Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis

Résumé

This paper proposes a framework to assess the stability of an ordinary differential equation which is coupled to a 1D-partial differential equation (PDE). The stability theorem is based on a new result on Integral Quadratic Constraints (IQCs) and expressed in terms of two linear matrix inequalities with a moderate computational burden. The IQCs are not generated using dissipation inequalities involving the whole state of an infinite-dimensional system, but by using projection coefficients of the infinite-dimensional state. This permits to generalize our robustness result to many other PDEs. The proposed methodology is applied to a time-delay system and numerical results comparable to those in the literature are obtained.
Fichier principal
Vignette du fichier
report_draft_hal.pdf (195.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02504830 , version 1 (13-03-2020)
hal-02504830 , version 2 (04-05-2020)
hal-02504830 , version 3 (27-05-2020)

Identifiants

Citer

Matthieu Barreau, Carsten Scherer, Frédéric Gouaisbaut, Alexandre Seuret. Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC World Congress, Jul 2020, Berlin, Germany. ⟨hal-02504830v2⟩
483 Consultations
117 Téléchargements

Altmetric

Partager

More