Homogeneous polynomials and spurious local minima on the unit sphere - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Optimization Letters Année : 2022

Homogeneous polynomials and spurious local minima on the unit sphere

Résumé

We consider degree-d forms on the Euclidean unit sphere. We specialize to our setting a genericity result by Nie obtained in a more general framework. We exhibit an homogeneous polynomial Res in the coefficients of f , such that if Res(f) = 0 then all points that satisfy first-and second-order necessary optimality conditions are in fact local minima of f on the unit sphere. Then we obtain obtain a simple and compact characterization of all local minima of generic degree-d forms, solely in terms of the value of (i) f , (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its Hessian, all evaluated at the point. In fact this property also holds for twice continuous differentiable functions that are positively homogeneous. Finally we obtain a characterization of generic degree-d forms with no spurious local minimum on the unit sphere by using a property of gradient ideals in algebraic geometry.
Fichier principal
Vignette du fichier
spurious-new.pdf (150.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02966390 , version 1 (14-10-2020)
hal-02966390 , version 2 (04-05-2021)

Identifiants

Citer

Jean-Bernard Lasserre. Homogeneous polynomials and spurious local minima on the unit sphere. Optimization Letters, 2022, 46 (4), pp.1105-1118. ⟨10.1007/s11590-021-01811-3⟩. ⟨hal-02966390v2⟩
130 Consultations
167 Téléchargements

Altmetric

Partager

More