Exploiting Sparsity in Complex Polynomial Optimization - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Journal of Optimization Theory and Applications Année : 2022

Exploiting Sparsity in Complex Polynomial Optimization

Résumé

In this paper, we study the sparsity-adapted complex moment-Hermitian sum of squares (moment-HSOS) hierarchy for complex polynomial optimization problems, where the sparsity includes correlative sparsity and term sparsity. We compare the strengths of the sparsity-adapted complex moment-HSOS hierarchy with the sparsity-adapted real moment-SOS hierarchy on either randomly generated complex polynomial optimization problems or the AC optimal power flow problem. The results of numerical experiments show that the sparsity-adapted complex moment-HSOS hierarchy provides a trade-off between the computational cost and the quality of obtained bounds for large-scale complex polynomial optimization problems.

Dates et versions

hal-03178832 , version 1 (24-03-2021)

Identifiants

Citer

Jie Wang, Victor Magron. Exploiting Sparsity in Complex Polynomial Optimization. Journal of Optimization Theory and Applications, 2022, 192, pp.335-359. ⟨10.1007/s10957-021-01975-z⟩. ⟨hal-03178832⟩
99 Consultations
0 Téléchargements

Altmetric

Partager

More