Human Trajectory Prediction Model and its Coupling with a Walking Pattern Generator of a Humanoid Robot - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Access content directly
Journal Articles IEEE Robotics and Automation Letters Year : 2021

Human Trajectory Prediction Model and its Coupling with a Walking Pattern Generator of a Humanoid Robot

Abstract

In order to smoothly perform interactions between a humanoid robot and a human, knowledge about the human locomotion can be efficiently used. Indeed, in a human-robot collaboration, a prediction model of the human behaviour allows the robot to act proactively. In this paper, an optimal control based model predicting the human Center of Mass (CoM) trajectory during gait is presented. A Walking Pattern Generator (WPG) based on non-linear model predictive control is, then, introduced in order to generate the robot CoM and footsteps along the predicted trajectory. The combination of the human trajectory prediction model and this new WPG aims to allow the robot to proactively walk along with a human instead of passively follow him. These models have been tested in simulation on Gazebo on a TALOS humanoid robot model using measured human trajectories. To perform the CoM and foot trajectories computed by the WPG, a real-time whole-body controller is used. This controller is a Quadratic Program which solves the inverse dynamics of the robot at torque level.
Fichier principal
Vignette du fichier
Maroger_RAL_2021_Hal.pdf (1.77 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03292150 , version 1 (20-07-2021)

Identifiers

Cite

Isabelle Maroger, Noelie Ramuzat, Olivier Stasse, Bruno Watier. Human Trajectory Prediction Model and its Coupling with a Walking Pattern Generator of a Humanoid Robot. IEEE Robotics and Automation Letters, 2021, 6 (4), pp.6361 - 6369. ⟨10.1109/LRA.2021.3092750⟩. ⟨hal-03292150⟩
95 View
136 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More