Volumes of sublevel sets of nonnegative forms and complete monotonicity - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue SIAM Journal on Applied Algebra and Geometry Année : 2023

Volumes of sublevel sets of nonnegative forms and complete monotonicity

Résumé

Let $\mathcal{C}_{d,n}$ be the convex cone consisting of real $n$-variate degree $d$ forms that are strictly positive on $\mathbb{R}^n\setminus \{\mathbf{0}\}$. We prove that the Lebesgue volume of the sublevel set $\{g\leq 1\}$ of $g\in \mathcal{C}_{d,n}$ is a completely monotone function on $\mathcal{C}_{d,n}$ and investigate the related properties. Furthermore, we provide (partial) characterization of forms, whose sublevel sets have finite Lebesgue volume. Finally, we discover an interesting property of a centered Gaussian distribution, establishing a connection between the matrix of its degree $d$ moments and the quadratic form given by the inverse of its covariance matrix.
Fichier principal
Vignette du fichier
main.pdf (298.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03693810 , version 1 (13-06-2022)

Identifiants

Citer

Khazhgali Kozhasov, Jean-Bernard Lasserre. Volumes of sublevel sets of nonnegative forms and complete monotonicity. SIAM Journal on Applied Algebra and Geometry, 2023, 7 (4), ⟨10.1137/22M1502458⟩. ⟨hal-03693810⟩
80 Consultations
89 Téléchargements

Altmetric

Partager

More