Urysohn in action: separating semialgebraic sets by polynomials
Résumé
A classical result from topology called Uryshon's lemma asserts the existence of a continuous separator of two disjoint closed sets in a sufficiently regular topological space. In this work we make a search for this separator constructive and efficient in the context of real algebraic geometry. Namely, given two compact disjoint basic semialgebraic sets which are contained in an $n$-dimensional box, we provide an algorithm that computes a separating polynomial greater than or equal to 1 on the first set and less than or equal to 0 on the second one.