Hybrid Methods to Solve the Two-Stage Robust Flexible Job-Shop Scheduling Problem with Budgeted Uncertainty - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2023

Hybrid Methods to Solve the Two-Stage Robust Flexible Job-Shop Scheduling Problem with Budgeted Uncertainty

Résumé

This paper addresses the robust flexible job-shop scheduling problem considering uncertain operation processing times associated with an uncertainty budget. Exact solution methods based on mixed integer linear programming and constraint programming are proposed to solve the problem. Such solutions are hybridized in the framework of a two-stage robust optimization, and a column and constraint generation algorithm is used to solve representative instances. The experimental results show the advantages of a two-stage approach where constraint programming and integer programming are mixed to solve a master problem and a subproblem, respectively.
Fichier principal
Vignette du fichier
ICORES_2023-Juvin_et_al.pdf (234.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03963343 , version 1 (30-01-2023)

Identifiants

  • HAL Id : hal-03963343 , version 1

Citer

Carla Juvin, Laurent Houssin, Pierre Lopez. Hybrid Methods to Solve the Two-Stage Robust Flexible Job-Shop Scheduling Problem with Budgeted Uncertainty. 12th International Conference on Operations Research and Enterprise Systems (ICORES), Feb 2023, Lisbonne, Portugal. pp.135-142. ⟨hal-03963343⟩
63 Consultations
74 Téléchargements

Partager

More