A Generalized Pell's equation for a class of multivariate orthogonal polynomials - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2024

A Generalized Pell's equation for a class of multivariate orthogonal polynomials

Résumé

We extend the polynomial Pell's equation satisfied by univariate Chebyshev polynomials on [−1, 1] from one variable to several variables, using orthogonal polynomials on regular domains that include cubes, balls, and simplexes of arbitrary dimension. Moreover, we show that such an equation is strongly connected (i) to a certificate of positivity (from real algebraic geometry) on the domain, as well as (ii) to the Christoffel functions of the equilibrium measure on the domain. In addition, the solution to Pell's equation reflects an extremal property of orthonormal polynomials associated with an entropy-like criterion.
Fichier principal
Vignette du fichier
BX-revised.pdf (286.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04163153 , version 1 (17-07-2023)
hal-04163153 , version 2 (31-03-2024)

Licence

Identifiants

Citer

Jean-Bernard Lasserre, Yuan Xu. A Generalized Pell's equation for a class of multivariate orthogonal polynomials. Transactions of the American Mathematical Society, In press, 23 p. ⟨10.1090/tran/9200⟩. ⟨hal-04163153v2⟩
260 Consultations
98 Téléchargements

Altmetric

Partager

More