FIGAROH: a Python toolbox for dynamic identification and geometric calibration of robots and humans - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Conference Papers Year : 2023

FIGAROH: a Python toolbox for dynamic identification and geometric calibration of robots and humans

Abstract

The accuracy of the geometric and dynamic models for robots and humans is crucial for simulation, control, and motion analysis. For example, joint torque, which is a function of geometric and dynamic parameters, is a critical variable that heavily impacts the performance of model-based control, or that can motivate a clinical decision after a biomechanical analysis. Fortunately, these models can be identified using extensive works from literature. However, for a non-expert, building an identification model and designing an experimentation plan, which should not require long hours and/or lead to poor results, is not a trivial task, especially for anthropometric structures such as humanoids or humans that need frequent update. In this work, we propose a unified framework for geometric calibration and dynamic identification in the form of a Python open-source toolbox. Besides identification model building and data processing, the toolbox can automatically generate exciting postures and motions to minimize the experimental burden from the robot, measurements, and environment description. The possibilities of this toolbox are exemplified with several datasets of human, humanoid, and serial robots.
Fichier principal
Vignette du fichier
FIGAROH_IROS_2022-5.pdf (1.49 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04234676 , version 1 (10-10-2023)
hal-04234676 , version 2 (26-10-2023)

Identifiers

Cite

Dinh Vinh Thanh Nguyen, Vincent Bonnet, Sabbah Maxime, Maxime Gautier, Pierre Fernbach, et al.. FIGAROH: a Python toolbox for dynamic identification and geometric calibration of robots and humans. IEEE-RAS International Conference on Humanoid Robots, Dec 2023, Austin (TX), United States. ⟨10.1109/Humanoids57100.2023.10375232⟩. ⟨hal-04234676v2⟩
323 View
146 Download

Altmetric

Share

More