Image-based tree detection for autonomous navigation in orchards - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2023

Image-based tree detection for autonomous navigation in orchards

Résumé

This paper deals with the autonomous navigation problem through orchards. It highlights the different challenges arising in this particular environment and proposes an adequate framework. This latter relies on a reactive control strategy fed by visual data provided by a set of RGB-D cameras adequately positioned to enlarge the field of view. In this work, we show interest in coupling a deep learning solution for image-based detection with an existing point cloud processing algorithm to improve the overall perception. Experimental results validate the approach.
Fichier principal
Vignette du fichier
23LARS.pdf (6.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04386063 , version 1 (10-01-2024)

Identifiants

Citer

Viviane Cadenat, Adrien Durand-Petiteville, Donatien Billot, Antoine Villemazet. Image-based tree detection for autonomous navigation in orchards. Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE 2023), Oct 2023, Salvador (Bahia), Brazil. ⟨10.1109/LARS/SBR/WRE59448.2023.10332948⟩. ⟨hal-04386063⟩
187 Consultations
101 Téléchargements

Altmetric

Partager

More