Approximate Optimal Designs for Multivariate Polynomial Regression - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Annals of Statistics Année : 2019

Approximate Optimal Designs for Multivariate Polynomial Regression

Résumé

We introduce a new approach aiming at computing approximate optimal designs for multivariate polynomial regressions on compact (semi-algebraic) design spaces. We use the moment-sum-of-squares hierarchy of semidefinite programming problems to solve numerically the approximate optimal design problem. The geometry of the design is recovered via semidefinite programming duality theory. This article shows that the hierarchy converges to the approximate optimal design as the order of the hierarchy increases. Furthermore, we provide a dual certificate ensuring finite convergence of the hierarchy and showing that the approximate optimal design can be computed numerically with our method. As a byproduct, we revisit the equivalence theorem of the experimental design theory: it is linked to the Christoffel polynomial and it characterizes finite convergence of the moment-sum-of-square hierarchies.
Fichier principal
Vignette du fichier
AoSv2 (2).pdf (1018.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01483490 , version 1 (06-03-2017)
hal-01483490 , version 2 (17-10-2017)

Identifiants

Citer

Yohann de Castro, Fabrice Gamboa, Didier Henrion, Roxana Hess, Jean-Bernard Lasserre. Approximate Optimal Designs for Multivariate Polynomial Regression. Annals of Statistics, 2019, 47 (1), pp.127-155. ⟨10.1214/18-AOS1683⟩. ⟨hal-01483490v2⟩
686 Consultations
108 Téléchargements

Altmetric

Partager

More