Evaporation with the formation of chains of liquid bridges
Résumé
The objective of the present work is to study the drying of a quasi-2D model porous medium, thereafter called micromodel, initially filled with a pure liquid. The micromodel consists of cylinders measuring 50 µm in both height and diameter, radially arranged as a set of neighbouring spirals and sandwiched between two horizontal, flat plates. As drying proceeds, air invades the pore space and elongated liquid films trapped by capillary forces form along the spirals. These films consist of " chains " of liquid bridges connecting neighbouring cylinders. They provide an hydraulic connectivity between the central, bulk liquid cluster and the external rim of the cylinders pattern, where evaporation is taking place during a first constant evaporation-rate drying stage. The first goal of the present paper is to describe experimentally the phase distribution during drying, notably the liquid films evolution, which controls the evaporation kinetics (e.g. the depinning of the films from the external rim signs the end of the constant evaporation rate period). Then, a visco-capillary model for the drying process is presented. It is based on numerical simulations of a liquid film capillary shape and of the viscous flow within a film. The model shows a reasonably good agreement with the experimental data. Thus, the present study is a step towards direct modelling of the films effect on the drying of more complex porous media (e.g. packing of beads) and should be of interest for multiphase flow applications in porous media, involving transport within liquid films.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...