Distributionally robust polynomial chance-constraints under mixture ambiguity sets - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Mathematical Programming, Series A Année : 2021

Distributionally robust polynomial chance-constraints under mixture ambiguity sets

Résumé

Given $X \subset R^n$, $\varepsilon \in (0,1)$, a parametrized family of probability distributions $(\mu_{a})_{a\in A}$ on $\Omega\subset R^p$, we consider the feasible set $X^*_\varepsilon\subset X$ associated with the {\em distributionally robust} chance-constraint \[X^*_\varepsilon\,=\,\{x \in X :\:{\rm Prob}_\mu[f(x,\omega)\,>\,0]> 1-\varepsilon,\,\forall\mu\in M_a\},\] where $M_a$ is the set of all possibles mixtures of distributions $\mu_a$, $a\in A$. For instance and typically, the family $M_a$ is the set of all mixtures of Gaussian distributions on $R$ with mean and standard deviation $a=(a,\sigma)$ in some compact set $A\subset R^2$. We provide a sequence of inner approximations $X^d_\varepsilon=\{x\in X: w_d(x) <\varepsilon\}$, $d\in N$, where $w_d$ is a polynomial of degree $d$ whose vector of coefficients is an optimal solution of a semidefinite program. The size of the latter increases with the degree $d$. We also obtain the strong and highly desirable asymptotic guarantee that $\lambda(X^*_\varepsilon\setminus X^d_\varepsilon)\to0$ as $d$ increases, where $\lambda$ is the Lebesgue measure on $X$. Same results are also obtained for the more intricated case of distributionally robust ``joint" chance-constraints.
Fichier principal
Vignette du fichier
robust-chance-revised.pdf (680.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01755147 , version 1 (30-03-2018)
hal-01755147 , version 2 (21-11-2018)

Identifiants

Citer

Jean B Lasserre, Tillmann Weisser. Distributionally robust polynomial chance-constraints under mixture ambiguity sets. Mathematical Programming, Series A, 2021, 185, pp.409--453. ⟨10.1007/s10107-019-01434-8⟩. ⟨hal-01755147v2⟩
154 Consultations
70 Téléchargements

Altmetric

Partager

More