Mapping Chronicles to a k-dimensional Euclidean Space via Random Projections - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2018

Mapping Chronicles to a k-dimensional Euclidean Space via Random Projections

Résumé

This paper is concerned with an innovative strategy that maps chronicles, that are timed discrete event models, to a k-dimensional Euclidean space via random projections. The proposed approach is a projection that takes into account both characteristics of events, namely event types, and temporal constraints of chronicles. This will lead to an unbounded convex polytope in the Euclidean space that contains all the possible instances of the corresponding chronicle. It allows to easily and efficiently compare chronicles. Such comparisons are useful in a fault diagnosis purpose to discriminate chronicles representing behaviors of dynamic processes. Examples and preliminary results are provided in this paper to introduce the proposed methodology.
Fichier principal
Vignette du fichier
version_finale.pdf (210.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01817539 , version 1 (18-06-2018)

Identifiants

  • HAL Id : hal-01817539 , version 1

Citer

Alexandre Sahuguède, Soheib Fergani, Euriell Le Corronc, Marie-Véronique V Le Lann. Mapping Chronicles to a k-dimensional Euclidean Space via Random Projections. 14th annual IEEE International Conference on Automation Science and Engineering (IEEE CASE 2018), Aug 2018, Munich, Germany. 6p. ⟨hal-01817539⟩
91 Consultations
34 Téléchargements

Partager

More