Improvements in bounded error parameter estimation using distribution theory - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Access content directly
Conference Papers Year : 2018

Improvements in bounded error parameter estimation using distribution theory

Abstract

A bounded error estimation procedure based on integro-differential polynomials linking the inputs, the outputs and the parameters of the model is presented in this paper. These polynomials are obtained from differential algebra tools given input-output polynomials. The use of the distribution theory permits to obtain new relations in which the order of derivatives of the model outputs are smaller. This method is applied on the water tank example and the results are compared with the classical method based on the simple use of input-output polynomials. As it will be seen, this method significantly improves the parameter estimation results.
Fichier principal
Vignette du fichier
2018ECC_SubmCor.pdf (1.1 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01966316 , version 1 (28-12-2018)

Identifiers

  • HAL Id : hal-01966316 , version 1

Cite

Nathalie Verdiere, Carine Jauberthie, Louise Travé-Massuyès. Improvements in bounded error parameter estimation using distribution theory. European Control Conference (ECC 2018), Jun 2018, Limassol, Cyprus. ⟨hal-01966316⟩
95 View
27 Download

Share

Gmail Mastodon Facebook X LinkedIn More