Event-triggered damping stabilization of a linear wave equation - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2019

Event-triggered damping stabilization of a linear wave equation

Résumé

The paper addresses the design of an event-triggering mechanism for a partial differential wave equation posed in a bounded domain. The wave equation is supposed to be controlled through a first order time derivative term distributed in the whole domain. Sufficient conditions based on the use of suitable Lyapunov functional are proposed to guarantee that an event-triggered distributed control still ensures the exponential stability of the closed-loop system. Moreover, the designed event-triggering mechanism allows to avoid the Zeno behavior. The 'existence and regularity' prerequisite properties of solutions for the closed loop system are also proven.
Fichier principal
Vignette du fichier
event-triggered-wave-Final.pdf (238.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01968409 , version 1 (02-01-2019)

Identifiants

Citer

Lucie Baudouin, Swann Marx, Sophie Tarbouriech. Event-triggered damping stabilization of a linear wave equation. 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019, May 2019, Oaxaca, Mexico. pp.58-63. ⟨hal-01968409⟩
130 Consultations
25 Téléchargements

Altmetric

Partager

More