Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
Résumé
In this paper we stabilize the linear Kuramoto-Sivashinsky equation by means of a delayed boundary control. From the spectral decomposition of the spatial operator associated to the equation, we find that there is a finite number of unstable eigenvalues. After applying the Artstein transform to deal with the delay phenomenon, we design a feedback law based on the pole-shifting theorem to exponential stabilize the finite-dimensional system associated to the unstable eigenvalues. Then, thanks to the inversion of the Artstein transform and the use of a Lyapunov function, we obtain a delayed feedback law that exponential stabilize the original unstable infinite-dimensional system.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...