A Taxonomy of Supervised Learning for IDSs in SCADA Environments - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue ACM Computing Surveys Année : 2020

A Taxonomy of Supervised Learning for IDSs in SCADA Environments

Résumé

Supervisory Control and Data Acquisition (SCADA) systems play an important role in monitoring industrial processes such as electric power distribution, transport systems, water distribution, and wastewater collection systems. Such systems require a particular attention with regards to security aspects, as they deal with critical infrastructures that are crucial to organizations and countries. Protecting SCADA systems from intrusion is a very challenging task because they do not only inherit traditional IT security threats but they also include additional vulnerabilities related to field components (e.g., cyber-physical attacks). Many of the existing intrusion detection techniques rely on supervised learning that consists of algorithms that are first trained with reference inputs to learn specific information, and then tested on unseen inputs for classification purposes. This article surveys supervised learning from a specific security angle, namely SCADA-based intrusion detection. Based on a systematic review process, existing literature is categorized and evaluated according to SCADA-specific requirements. Additionally, this survey reports on well-known SCADA datasets and testbeds used with machine learning methods. Finally, we present key challenges and our recommendations for using specific supervised methods for SCADA systems.
Fichier principal
Vignette du fichier
3379499.pdf (1.37 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02865816 , version 1 (10-11-2020)

Identifiants

Citer

Jakapan Suaboot, Adil Fahad, Zahir Tari, John Grundy, Abdun Naser Mahmood, et al.. A Taxonomy of Supervised Learning for IDSs in SCADA Environments. ACM Computing Surveys, 2020, 53 (2), pp.1-37. ⟨10.1145/3379499⟩. ⟨hal-02865816⟩
111 Consultations
239 Téléchargements

Altmetric

Partager

More