Improved observer design for heat equation with constant measurement delay via Legendre polynomials - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2020

Improved observer design for heat equation with constant measurement delay via Legendre polynomials

Résumé

In this paper, we present improved results on observer design for 1D heat equation. We first introduce an observer under delayed spatially point measurements that leads to an error heat equation with time-delay. Inspired by recent developments in the area of delayed ODEs, we propose novel Lyapunov functionals based on the Legendre polynomials. Then, new Bessel-Legendre (BL) inequalities are provided to derive sufficient stability conditions in the form of linear matrix inequalities (LMIs) that are parameterized by the degree of the polynomials. Finally, a numerical example illustrates the efficiency of the results that allow to enlarge the value of delay preserving the stability by more than 20%.
Fichier principal
Vignette du fichier
CDC20_Jin.pdf (226.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03191064 , version 1 (06-04-2021)

Identifiants

Citer

Jin Zhang, Wen Kang, Emilia Fridman, Alexandre Seuret. Improved observer design for heat equation with constant measurement delay via Legendre polynomials. 59th IEEE Conference on Decision and Control (CDC 2020), Dec 2020, Jeju (virtual), South Korea. pp.4448-4453, ⟨10.1109/CDC42340.2020.9304502⟩. ⟨hal-03191064⟩
44 Consultations
29 Téléchargements

Altmetric

Partager

More