Optimally bounded Interval Kalman filter - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2019

Optimally bounded Interval Kalman filter

Résumé

This paper is concerned with the optimization of the upper bounds of the interval covariance matrices appearing in the Interval Kalman filter [1]. This filter is applied to discrete time linear systems subject to mixed uncertainties (combining bounded and stochastic uncertainties), in terms of observations and noises (mainly sensors limitations). It uses interval analysis in order to provide the optimal bound of the state estimation error covariance. Based on that, an optimal state estimation enclosing the set of all possible solutions w.r.t admissible uncertainties is performed. In this article, theorems and lemmas proving the optimality of the proposed solution are provided.Simulations on an example show the efficiency of the developed interval estimation.
Fichier principal
Vignette du fichier
CDC_OptimallyBoundedIntervalKalmanFilter.pdf (394.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03300095 , version 1 (08-06-2023)

Identifiants

Citer

Quoc Hung Lu, Soheib Fergani, Carine Jauberthie, Francoise Le Gall. Optimally bounded Interval Kalman filter. 2019 IEEE 58th Conference on Decision and Control (CDC), Dec 2019, Nice, France. pp.379-384, ⟨10.1109/CDC40024.2019.9028918⟩. ⟨hal-03300095⟩
40 Consultations
79 Téléchargements

Altmetric

Partager

More