A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue IFAC-PapersOnLine Année : 2021

A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter

Résumé

This paper deals with a sensor fault detection approach using the Optimal Upper Bounded Interval Kalman Filter (OUBIKF) and an adaptive degree of freedom χ 2-statistics method. It is devoted to discrete time linear model subjected to mixed uncertainties in terms of observations and noises. Mixed uncertainties mean both bounded and stochastic uncertainties. The degrees of freedom of this χ 2 hypothesis test method are adaptively chosen thanks to amplifier coefficients improving the detection of the sensor faults. The proposed approach is an extension of a result developped in Lu et al. (2019). Application on a vehicle bicycle model highlights the efficiency of the proposed approach. Comparisons with other efficient estimation and fault detection strategies are provided to discuss the accuracy of the obtained results.
Fichier principal
Vignette du fichier
FinalSubmission-IFACSYSID2021-A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter.pdf (309.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03363452 , version 1 (04-10-2021)

Identifiants

Citer

Quoc Hung Lu, Soheib Fergani, Carine Jauberthie. A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter. IFAC-PapersOnLine, 2021, 54 (7), pp.292-297. ⟨10.1016/j.ifacol.2021.08.374⟩. ⟨hal-03363452⟩
93 Consultations
42 Téléchargements

Altmetric

Partager

More