Insight into the stability analysis of the reaction-diffusion equation interconnected with a finite-dimensional system taking support on Legendre orthogonal basis - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Chapitre D'ouvrage Année : 2022

Insight into the stability analysis of the reaction-diffusion equation interconnected with a finite-dimensional system taking support on Legendre orthogonal basis

Résumé

The stability analysis of the reaction-diffusion subject to dynamic boundary conditions is not straightforward. This chapter proposes a linear matrix inequality criterion which ensures the stability of such infinite-dimensional system. By the use of Fourier-Legendre series, the Lyapunov functional is split into an augmented finite-dimensional state including within it the first Fourier-Legendre coefficients and the residual part. A link between this modelling and Padé approximation is briefly highlighted. Then, from Bessel and Wirtinger inequalities applied to the Fourier-Legendre remainder and using its orthogonality properties, a sufficient condition of stability expressed in terms of linear matrix inequalities is obtained. This efficient and scalable stability condition is finally performed on examples.
Fichier principal
Vignette du fichier
DECOD_v1.pdf (335.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03434998 , version 1 (18-11-2021)

Identifiants

Citer

Mathieu Bajodek, Alexandre Seuret, Frédéric Gouaisbaut. Insight into the stability analysis of the reaction-diffusion equation interconnected with a finite-dimensional system taking support on Legendre orthogonal basis. Advances in Distributed Parameter Systems, Springer, pp 93-115, 2022, 978-3-030-94765-1. ⟨10.1007/978-3-030-94766-8_5⟩. ⟨hal-03434998⟩
65 Consultations
77 Téléchargements

Altmetric

Partager

More