Near-Optimal Decentralized Diagnosis via Structural Analysis - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Access content directly
Journal Articles IEEE Transactions on Systems, Man, and Cybernetics: Systems Year : 2022

Near-Optimal Decentralized Diagnosis via Structural Analysis


Health monitoring of current complex systems significantly impacts the total cost of the system. Centralized fault diagnosis architectures are sometimes prohibitive for large-scale interconnected systems, such as distribution systems, telecommunication networks, water distribution networks, or fluid power systems. Confidentiality constraints are also an issue. This article presents a decentralized fault diagnosis method that only requires the knowledge of local models and limited knowledge of their neighboring subsystems. The method, implemented in the decentralized diagnoser design (D³) algorithm, is based on structural analysis and can advantageously be applied to high-dimensional systems, linear or nonlinear. Using the concept of isolation on request, a hierarchy is built according to diagnostic objectives. The resulting diagnoser is based on analytical redundancy relations (ARRs) generated along the hierarchy. Their number is optimized via binary integer linear programming (BILP) while still guaranteeing maximal diagnosability at each level. D³ proves of lower time complexity than its centralized equivalent. It is successfully applied to a nonlinear combined cycle gas-turbine power plant.
Fichier principal
Vignette du fichier
SMC___Decentralized_Diagnosis__v4_FINAL.pdf (2.66 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03615003 , version 1 (24-03-2022)



Gustavo Perez-Zuniga, Elodie Chanthery, Louise Travé-Massuyès, Javier Sotomayor. Near-Optimal Decentralized Diagnosis via Structural Analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (12), pp.7353-7365. ⟨10.1109/TSMC.2022.3156539⟩. ⟨hal-03615003⟩
63 View
25 Download



Gmail Facebook X LinkedIn More