Advanced machine learning for the detection of single event effects - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2022

Advanced machine learning for the detection of single event effects

Résumé

With the increase of component complexity, protection against single event effects becomes a critical point for the disponibility and reliability of space systems. In this paper, machine learning is investigated to improve the detection of radiation faults. An algorithm named DYD² that meets space application requirements is proposed. In addition, a study to improve the characterisation of single event effects through feature extraction is described. Finally, results of experimentation based on a heavy-ion campaign test are discussed.
Fichier principal
Vignette du fichier
abstract_Adrien_DORISE_RADECS2022.pdf (6.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03789895 , version 1 (30-09-2022)

Identifiants

  • HAL Id : hal-03789895 , version 1

Citer

Adrien Dorise, Audine Subias, Louise Travé-Massuyès, Corinne Alonso. Advanced machine learning for the detection of single event effects. RADECS 2022, Oct 2022, Venice, Italy. ⟨hal-03789895⟩
107 Consultations
187 Téléchargements

Partager

More