Smooth Sensitivity for Learning Differentially-Private yet Accurate Rule Lists - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Pré-Publication, Document De Travail Année : 2024

Smooth Sensitivity for Learning Differentially-Private yet Accurate Rule Lists

Résumé

Differentially-private (DP) mechanisms can be embedded into the design of a machine learning algorithm to protect the resulting model against privacy leakage, although this often comes with a significant loss of accuracy. In this paper, we aim at improving this trade-off for rule lists models by establishing the smooth sensitivity of the Gini impurity and leveraging it to propose a DP greedy rule list algorithm. In particular, our theoretical analysis and experimental results demonstrate that the DP rule lists models integrating smooth sensitivity have higher accuracy that those using other DP frameworks based on global sensitivity.
Fichier principal
Vignette du fichier
HAL-version_submitted-paper.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04505410 , version 1 (14-03-2024)
hal-04505410 , version 2 (04-11-2024)

Identifiants

  • HAL Id : hal-04505410 , version 1

Citer

Timothée Ly, Julien Ferry, Marie-José Huguet, Sébastien Gambs, Ulrich Aivodji. Smooth Sensitivity for Learning Differentially-Private yet Accurate Rule Lists. 2024. ⟨hal-04505410v1⟩
206 Consultations
46 Téléchargements

Partager

More