Routing optimization based on DRL and Generative Adversarial Networks for SDN environments - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2024

Routing optimization based on DRL and Generative Adversarial Networks for SDN environments

Résumé

Traditional routing protocols and analytical routing optimization models face limitations in adapting to dynamic and complex environments such as SDN. Deep Reinforcement Learning (DRL) offers promise for addressing these challenges, but its intensive training phase hinders practical implementation. This paper presents a distributed DRL-based routing optimization solution in SDN, enhanced with Generative Adversarial Networks (GAN) to expedite agent training. Our approach, evaluated on a Containernet and OpenAI Gym-based testbed, effectively optimizes network traffic routes for diverse traffic classes, maximizing throughput. Activation of the GAN module significantly reduces training times, enhancing the feasibility of our solution for real-world deployment
Fichier principal
Vignette du fichier
Autonomic_Routing_DRL.pdf (845.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04549760 , version 1 (17-04-2024)

Identifiants

  • HAL Id : hal-04549760 , version 1

Citer

Juan Francisco Chafla Altamirano, Mariem Guitouni, Hassan Hassan, Khalil Drira. Routing optimization based on DRL and Generative Adversarial Networks for SDN environments. IEEE/IFIP Network Operations and Management Symposium, IEEE, May 2024, Seoul, South Korea. ⟨hal-04549760⟩
419 Consultations
120 Téléchargements

Partager

More