Optimal control and machine learning for humaoid and aerial robots - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Thèse Année : 2018

Optimal control and machine learning for humaoid and aerial robots

Contrôle optimal et apprentissage automatique pour les robots humanoïdes et aériens

Résumé

What are the common characteristics of humanoid robots and quadrotors? Well, not many... Therefore, this document is focused on the development of algorithms allowing to dynamically control a robot while staying generic with respect to the model of the robot and the task that needs to be solved. Numerical optimal control is good candidate to achieve such objective. However, it suffers from several difficulties such as a high number of parameters to tune and a relatively important computation time. This document presents several ameliorations allowing to reduce these problems. On one hand, the tasks can be ordered according to a hierarchy and solved with an appropriate algorithm to lower the number of parameters to tune. On the other hand, machine learning can be used to initialize the optimization solver or to generate a simplified model of the robot, and therefore can be used to decrease the computation time.
Quelle sont les points communs entre un robot humanoïde et un quadrimoteur ? Et bien, pas grand-chose... Cette thèse s’intéresse donc au développement d’algorithmes permettant de contrôler un robot de manière dynamique tout en restant générique par rapport au model du robot et à la tâche que l’on cherche à résoudre. Le contrôle optimal numérique est pour cela un bon candidat. Cependant il souffre de plusieurs difficultés comme un nombre important de paramètres à ajuster et des temps de calcul relativement élevés. Cette thèse présente alors plusieurs améliorations permettant dâAZatténuer ces difficultés. D’un côté, l’ordonnancement des différentes tâches sous la forme d’une hiérarchie et sa résolution avec un algorithme adapté permet de réduire le nombre de paramètres à ajuster. D’un autre côté, l’utilisation de l’apprentissage automatique afin d’initialiser l’algorithme d’optimisation ou de générer un modèle simplifié du robot permet de fortement diminuer les temps de calcul.
Fichier principal
Vignette du fichier
GEISERT Mathieu.pdf (36.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

tel-01886622 , version 1 (03-10-2018)
tel-01886622 , version 2 (18-10-2018)

Identifiants

  • HAL Id : tel-01886622 , version 1

Citer

Mathieu Geisert. Optimal control and machine learning for humaoid and aerial robots. Automatic. Institut national des sciences appliquées de Toulouse, 2018. English. ⟨NNT : ⟩. ⟨tel-01886622v1⟩
619 Consultations
219 Téléchargements

Partager

More