Lyapunov stability analysis of a string equation coupled with an ordinary differential system - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue IEEE Transactions on Automatic Control Année : 2018

Lyapunov stability analysis of a string equation coupled with an ordinary differential system

Résumé

This paper considers the stability problem of a linear time invariant system in feedback with a string equation. A new Lyapunov functional candidate is proposed based on the use of augmented states which enriches and encompasses the classical Lyapunov functional proposed in the literature. It results in tractable stability conditions expressed in terms of linear matrix inequalities. This methodology follows from the application of the Bessel inequality together with Legendre polynomials. Numerical examples illustrate the potential of our approach through three scenari: a stable ODE perturbed by the PDE, an unstable open-loop ODE stabilized by the PDE and an unstable closed-loop ODE stabilized by the PDE.
Fichier principal
Vignette du fichier
2017_String_2.pdf (567.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01548256 , version 1 (27-06-2017)
hal-01548256 , version 2 (29-06-2017)
hal-01548256 , version 3 (22-11-2017)
hal-01548256 , version 4 (07-02-2018)

Identifiants

Citer

Matthieu Barreau, Alexandre Seuret, Frédéric Gouaisbaut, Lucie Baudouin. Lyapunov stability analysis of a string equation coupled with an ordinary differential system. IEEE Transactions on Automatic Control, 2018, ⟨10.1109/TAC.2018.2802495⟩. ⟨hal-01548256v3⟩
492 Consultations
114 Téléchargements

Altmetric

Partager

More