Lyapunov stability analysis of a string equation coupled with an ordinary differential system - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Pré-Publication, Document De Travail Année : 2017

Lyapunov stability analysis of a string equation coupled with an ordinary differential system

Résumé

In this paper we consider the stability of a linear time invariant system in feedback with a string equation. A new Lyapunov functional candidate is proposed based on the use of augmented states which enriches and encompasses the classical Lyapunov functional proposed in the literature. It results in a hierarchical tractable stability condition expressed in terms of linear matrix inequalities. This methodology follows from the application of the Bessel inequality together with Legendre polynomials. Two numerical examples illustrate the potential of our approach through two scenarious: a stable ODE perturbed by the PDE and an unstable ODE stabilized by the PDE.
Fichier principal
Vignette du fichier
2017_String.pdf (408.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01548256 , version 1 (27-06-2017)
hal-01548256 , version 2 (29-06-2017)
hal-01548256 , version 3 (22-11-2017)
hal-01548256 , version 4 (07-02-2018)

Identifiants

Citer

Matthieu Barreau, Alexandre Seuret, Frédéric Gouaisbaut, Lucie Baudouin. Lyapunov stability analysis of a string equation coupled with an ordinary differential system. 2017. ⟨hal-01548256v1⟩
492 Consultations
114 Téléchargements

Altmetric

Partager

More