Combination of RGB-D Features for Head and Upper Body Orientation Classification
Résumé
In Human-Robot Interaction (HRI), the intention of a person to interact with another agent (robot or human) can be inferred from his/her head and upper body orientation. Furthermore, additional information on the person's overall intention and motion direction can be determined with the knowledge of both orientations. This work presents an exhaustive evaluation of various combinations of RGB and depth image features with different classifiers. These evaluations intend to highlight the best feature representation for the body part orientation to classify, i.e, the person's head or upper body. Our experiments demonstrate that high classification performances can be achieved by combining only three families of RGB and depth features and using a multiclass SVM classifier.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...