Local Input-to-State Stabilization of 1-D Linear Reaction-Diffusion Equation with Bounded Feedback - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Communication Dans Un Congrès Année : 2018

Local Input-to-State Stabilization of 1-D Linear Reaction-Diffusion Equation with Bounded Feedback

Résumé

The problem of robust stabilization with bounded feedback control is considered for a scalar reaction-diffusion system with uncertainties in the dynamics. The maximum value of the control input acting on one of the boundary points has to respect a given bound at each time instant. It is shown that, if the initial condition and the disturbance satisfy the certain bounds (computed as a function of the bound imposed on the control input), then the proposed control respects the desired saturation level and renders the closed-loop system locally input-to-state stable, that is, the trajectories with certain bound on the initial condition converge to a ball parameterized by certain norm of the disturbance.
Fichier principal
Vignette du fichier
MTNS18_0204_FI.pdf (241.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01785104 , version 1 (04-05-2018)

Identifiants

  • HAL Id : hal-01785104 , version 1

Citer

Aneel Tanwani, Swann Marx, Christophe Prieur. Local Input-to-State Stabilization of 1-D Linear Reaction-Diffusion Equation with Bounded Feedback. MTNS 2018 - 23rd International Symposium on Mathematical Theory of Networks and Systems, Jul 2018, Hong Kong, China. 6p. ⟨hal-01785104⟩
272 Consultations
70 Téléchargements

Partager

More