Attractors and limit cycles of discrete-time switching affine systems : nominal and uncertain cases - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue Automatica Année : 2023

Attractors and limit cycles of discrete-time switching affine systems : nominal and uncertain cases

Résumé

This paper deals with the robust stabilization of uncertain discrete-time switched affine systems using a control Lyapunov approach and a min-switching state-feedback control law. After presenting some preliminaries on limit cycles, a constructive stabilization theorem, expressed as linear matrix inequalities, guarantees that the solutions to the nominal closed-loop system converge to a limit cycle. This method is extended to the case of uncertain systems, for which the notion of limit cycle needs to be adapted. The theoretical results are evaluated on academic examples and demonstrate the potential of the method over the recent literature.
Fichier principal
Vignette du fichier
2023_AUT_MS_AttractorSAS.pdf (1.73 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03110340 , version 1 (14-01-2021)
hal-03110340 , version 2 (14-09-2022)

Identifiants

Citer

Mathias Serieye, Carolina Albea-Sanchez, Alexandre Seuret, Marc Jungers. Attractors and limit cycles of discrete-time switching affine systems : nominal and uncertain cases. Automatica, 2023, 149, pp.110691. ⟨10.1016/j.automatica.2022.110691⟩. ⟨hal-03110340v2⟩
163 Consultations
171 Téléchargements

Altmetric

Partager

More