Learning to Adapt the Trotting Gait of the Solo Quadruped - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Pré-Publication, Document De Travail Année : 2021

Learning to Adapt the Trotting Gait of the Solo Quadruped

Résumé

Predefined gait patterns for quadruped locomotion can hardly be optimal in all situations with regard to stability, cost of transport and velocity tracking error. Hence, in this work, we tackle the challenge of adapting a predefined trotting gait, implemented in the model-based controller of Solo, to optimize both energy consumption and velocity tracking. To this end, we propose a model-free reinforcement learning method for adapting the timings of the contact/swing phases for each foot. The learned agent augments a control pipeline that was previously developed for the Solo robot. We also propose to use a self-attention mechanism over the history of states in order to extract useful information for adapting the gait. Through a comprehensive set of experiments, we demonstrate how, compared to the nominal gait, our method significantly reduces energy consumption, better tracks the desired velocity, and makes it possible to reach higher speeds. A video of the method is found at https://youtu.be/ykbDUyASXs4.
Fichier principal
Vignette du fichier
ICRA2022(5).pdf (10.75 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03409682 , version 1 (29-10-2021)

Identifiants

  • HAL Id : hal-03409682 , version 1

Citer

Michel Aractingi, Pierre-Alexandre Leziart, Thomas Flayols, Julien Perez, Tomi Silander, et al.. Learning to Adapt the Trotting Gait of the Solo Quadruped. 2021. ⟨hal-03409682⟩
90 Consultations
100 Téléchargements

Partager

More