Lyapunov Functions for Singularly Perturbed Hybrid Systems with Frequent Jump Dynamics
Résumé
This article considers the stability analysis for a class of hybrid systems with the focus being on the frequently occurring jump dynamics. The system class is modelled as a singularly perturbed hybrid system where the singular perturbation parameter governs the frequency of jumps. Consequently, this results in a quasi steady-state system modeled by a differential equation without any jumps, and the boundary-layer system described by purely discrete dynamics. By imposing appropriate assumptions on the quasi steady-state system and the boundary-layer system, we derive results showing practical convergence to a compact attractor when the jumps occur frequently often. Our system class is motivated by the control design problem in a network of second-order continuous-time coupled oscillators, where each agent communicates the information about its position to the neighbors at discrete times. As a corollary to our main result, we show that if the information exchange between the agents and their neighbors is frequent enough, then the oscillators achieve practical consensus.
Origine | Fichiers produits par l'(les) auteur(s) |
---|