Order of Legendre-LMI conditions to assess stability of time-delay systems - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Proceedings/Recueil Des Communications Année : 2022

Order of Legendre-LMI conditions to assess stability of time-delay systems

Résumé

This paper investigates the stability analysis of time-delay systems through Lyapunov arguments. Using the existence of a complete Lyapunov-Krasovskii functional and relying on the polynomial approximation theory, our main goal is to approximate the complete Lyapunov functional and to take profit of the supergeometric convergence rate of the truncated error part. Necessary and sufficient conditions in the linear matrix inequality (LMI) framework for sufficiently large approximated orders are consequently proposed. Moreover, an estimation of the necessary order is provided analytically with respect to system parameters.
Fichier principal
Vignette du fichier
Conference_TDS_vf.pdf (371.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03666571 , version 1 (12-05-2022)
hal-03666571 , version 2 (13-02-2023)

Identifiants

  • HAL Id : hal-03666571 , version 1

Citer

Mathieu Bajodek, Alexandre Seuret, Frédéric Gouaisbaut. Order of Legendre-LMI conditions to assess stability of time-delay systems. 55 (36), pp.175-180, 2022. ⟨hal-03666571v1⟩
109 Consultations
54 Téléchargements

Partager

More