Temporal models of motions and forces for Human-Robot Interactive manipulation
Modèles temporels du mouvement et des forces pour la manipulation Interactive Homme-Robot
Abstract
It was in the 70s when the interest for robotics really emerged. It was barely half a century ago, and since then robots have been replacing humans in the industry. This robot-oriented solution doesn't come without drawbacks as full automation requires time-consuming programming as well as rigid environments. With the increased need for adaptability and reusability of assembly systems, robotics is undergoing major changes and see the emergence of a new type of collaboration between humans and robots. Human-Robot collaboration get the best of both world by combining the respective strengths of humans and robots. But, to include the human as an active agent in these new collaborative workspaces, safe and flexible robots are required. It is in this context that we can apprehend the crucial role of motion generation in tomorrow's robotics. For the emergence of human-robot cooperation, robots have to generate motions ensuring the safety of humans, both physical and physchological. For this reason motion generation has been a restricting factor to the growth of robotics in the past. Trajectories are excellent candidates in the making of desirable motions designed for collaborative robots, because they allow to simply and precisely describe the motions. Smooth trajectories are well known to provide safe motions with good ergonomic properties. In this thesis we propose an Online Trajectory Generation algorithm based on sequences of segment of third degree polynomial functions to build smooth trajectories. These trajectories are built from arbitrary initial and final conditions, a requirement for robots to be able to react instantaneously to unforeseen events. Our approach built on a constrained-jerk model offers performance-oriented solutions : the trajectories are time-optimal under safety constraints. These safety constraints are kinematic constraints that are task and context dependent and must be specified. To guide the choice of these constraints we investigated the role of kinematics in the definition of ergonomics properties of motions. We also extended our algorithm to cope with non-admissible initial configurations, opening the way to trajectory generation under non-constant motion constraints. [...]
L'intérêt pour la robotique a débuté dans les années 70 et depuis les robots n'ont cessé de remplacer les humains dans l'industrie. L'automatisation à outrance n'apporte cependant pas que des avantages, car elle nécessite des environnements parfaitement contrôlés et la reprogrammation d'une tâche est longue et fastidieuse. Le besoin accru d'adaptabilité et de ré-utilisabilité des systèmes d'assemblage force la robotique à se révolutionner en amenant notamment l'homme et le robot à interagir. Ce nouveau type de collaboration permet de combiner les forces respectives des humains et des robots. Cependant l'homme ne pourra être inclus en tant qu'agent actif dans ces nouveaux espaces de travail collaboratifs que si l'on dispose de robots sûrs, intuitifs et facilement reprogrammables. C'est à la lumière de ce constat qu'on peut deviner le rôle crucial de la génération de mouvement pour les robots de demain. Pour que les humains et les robots puissent collaborer, ces derniers doivent générer des mouvements sûrs afin de garantir la sécurité de l'homme tant physique que psychologique. Les trajectoires sont un excellent modèle pour la génération de mouvements adaptés aux robots collaboratifs, car elles offrent une description simple et précise de l'évolution du mouvement. Les trajectoires dîtes souples sont bien connues pour générer des mouvements sûrs et confortables pour l'homme. Dans cette thèse nous proposons un algorithme de génération de trajectoires temps-réel basé sur des séquences de segments de fonctions polynomiales de degré trois pour construire des trajectoires souples. Ces trajectoires sont construites à partir de conditions initiales et finales arbitraires, une condition nécessaire pour que les robots soient capables de réagir instantanément à des événements imprévus. L'approche basée sur un modèle à jerk-contraint offre des solutions orientées performance: les trajectoires sont optimales en temps sous contraintes de sécurité. Ces contraintes de sécurité sont des contraintes cinématiques qui dépendent de la tâche et du contexte et doivent être spécifiées. Pour guider le choix de ces contraintes, nous avons étudié le rôle de la cinématique dans la définition des propriétés ergonomiques du mouvement.[...]
Origin | Version validated by the jury (STAR) |
---|
Loading...